
luerl_sandbox(3)
Robert	Virding

2023

Name
luerl_sandbox	-	Fuctions	for	sandboxing	Luerl	evaluation

Interface	Functions
The	Lua	State	parameter	is	the	state	of	a	Lua	VM	instance.	It	must	be	created	with	the
luerl:init()	call	and	be	carried	from	one	call	to	the	next.

As	it	is	possible	in	Lua	to	create	self-referencing	data	structures,	indeed	the	standard	libraries
have	many	instances	of	this,	then	using	the	functions	which	decode	their	return	values	will
generate	an	error	when	they	would	cause	an	infinite	loop	during	the	decoding.	An	simple
example	is	the	top	level	table	which	contains	a	key	_G	which	references	the	top-level	table.

Note	that	Lua	Chunks	(see	definition	below)	can	travel	between	different	States.	They	are
precompiled	bits	of	code,	independent	of	State.	That	you	can	‘carry	around’	this	is	no	unique
to	Luerl	but	a	low-level	implementation	detail	of	the	standard	Lua	language,	for	more	on
chunks	read	the	official	Lua	5.3	 reference	manual.

Spec	Definitions
Binary	means	an	Erlang	binary	string.
Chunks	means	a	portion	of	precompiled	bytecode.
State	means	a	Lua	State,	this	 is	a	Lua	VM	instance.
Path	means	a	file	system	path	and	file	name.
KeyPath	means	an	Erlang	list	of	 atoms	representing	nested	names,	e.g.	[table,pack]	for
table.pack.
Keys	means	Lua	table	keys,	the	keys	of	a	key-value	structure.

Functions

init()	->	State.

init([State	|	TablePaths])	->	State.

init(State,	TablePaths)	->	State.

Create	a	new	sandboxed	state.	If	a	state	is	given	as	an	argument	then	that	state	will	be	used
otherwise	a	new	default	be	be	generated.	TablePaths	is	a	list	of	paths	to	functions	which
will	be	blocked.	If	none	is	given	then	the	default	list	will	be	used.

run(String	|	Binary)	->	{Result,	State}	|	{error,	Reason}.

run(String	|	Binary,	State)	->	{Result,	State}	|	{error,	Reason}.

run(String	|	Binary,	Flags,	State)	->	{Result,	State}	|	{error,	Reason}.

Spawn	a	new	process	which	runs	the	string	 String	in	State	where	the	default	sandbox	state
will	be	used	if	none	is	given.	Flags	is	a	map	or	keyword	list	which	can	contain	the	following

https://lua.org
https://www.lua.org/manual/5.3/manual.html#3.3.2
https://www.lua.org/manual/5.3/manual.html

fields

#{max_time	=>	MaxTime,
		max_reductions	=>	MaxReds,
		spawn_opts	=>	SpawnOpts}

MaxReds	limits	the	number	of	reductions	and	 MaxTime	(default	100	msecs)	the	time	to	run
the	string,	SpawnOpts	are	spawn	options	to	the	process	running	the	evaluation.

run(String	|	Binary)	->	{Result,	State}	|	{error,	Reason}.

run(String	|	Binary,	State)	->	{Result,	State}	|	{error,	Reason}.

run(String	|	Binary,	State,	[MexReds	|	Flags])	->	{Result,	State}	|	{error,	Reason}.

run(String	|	Binary,	State,	MexReds,	Flags)	->	{Result,	State}	|	{error,	Reason}.

run(String	|	Binary,	State,	MexReds,	Flags,	Timeout)	->	{Result,	State}	|	{error,
Reason}.

This	is	the	old	interface	to	run.	It	still	works	but	the	new	interface	is	recommendded.	Spawn	a
new	process	which	runs	the	string	String	in	State	where	the	default	sandbox	state	will	be
used	if	none	is	given.	MaxReds	limits	the	number	of	reductions	and	 TimeOut	(default	100
msecs)	the	time	to	run	the	string,	Flags	are	spawn	options	to	the	process	running	the
evaluation.

	luerl_sandbox(3)
	Name
	Interface Functions
	Spec Definitions
	Functions
	init() -> State.
	init([State | TablePaths]) -> State.
	init(State, TablePaths) -> State.
	run(String | Binary) -> {Result, State} | {error, Reason}.
	run(String | Binary, State) -> {Result, State} | {error, Reason}.
	run(String | Binary, Flags, State) -> {Result, State} | {error, Reason}.
	run(String | Binary) -> {Result, State} | {error, Reason}.
	run(String | Binary, State) -> {Result, State} | {error, Reason}.
	run(String | Binary, State, [MexReds | Flags]) -> {Result, State} | {error, Reason}.
	run(String | Binary, State, MexReds, Flags) -> {Result, State} | {error, Reason}.
	run(String | Binary, State, MexReds, Flags, Timeout) -> {Result, State} | {error, Reason}.

