
luerl(3)
Jean	Chassoul,	Robert	Virding

2018-2023

Interface	functions
The	Lua	State	parameter	is	the	state	of	a	Lua	VM	instance.	It	must	be	created	with	the
luerl:init()	call	and	be	carried	from	one	call	to	the	next.

As	it	is	possible	in	Lua	to	create	self-referencing	data	structures,	indeed	the	standard	libraries
have	many	instances	of	this,	then	using	the	functions	which	decode	their	return	values	will
generate	an	error	when	they	would	cause	an	infinite	loop	during	the	decoding.	An	simple
example	is	the	top	level	table	which	contains	a	key	_G	which	references	the	top-level	table.

Note	that	Lua	Chunks	(see	definition	below)	can	travel	between	different	States.	They	are
precompiled	bits	of	code,	independent	of	State.	That	you	can	‘carry	around’	this	is	no	unique
to	Luerl	but	a	low-level	implementation	detail	of	the	standard	Lua	language,	for	more	on
chunks	read	the	official	Lua	5.3	 reference	manual.

Spec	Definitions
Binary	means	an	Erlang	binary	string.
Chunks	means	a	portion	of	precompiled	bytecode.
State	means	a	Lua	State,	this	 is	a	Lua	VM	instance.
Path	means	a	file	system	path	and	file	name.
KeyPath	means	an	Erlang	list	of	 atoms	representing	nested	names,	e.g.	[table,pack]	for
table.pack.
Keys	means	Lua	table	keys,	the	keys	of	a	key-value	structure.

Functions
eval	and	do	functions	differ	only	in	what	they	return.	The	 do	functions	return	results	and	a
new	Lua	State,	the	eval	functions	return	a	tuple	starting	on	‘ok’	or	‘error’,	then	the	result,	or
cause	of	error.

do	-->	{Result,	State}	

eval	-->	{ok,	Result}	|	{error,	Reason}

luerl:eval(String|Binary|Form,	State)	->	{ok,	Result}	|	{error,	Reason,	StackTrace}.

Evaluate	a	Lua	expression	passed	in	as	a	string	or	binary,	and	return	its	result.

luerl:evalfile(Path,	State)	->	{ok,	Result}	|	{error,	Reason,	StackTrace}.

Load	and	execute	a	file,	and	return	the	result.

luerl:do(String|Binary|Form,	State)	->	{Result,	NewState}.

Evaluate	a	Lua	expression	and	return	its	result,	and	the	new	Lua	State.

luerl:dofile(Path,	State)	->	{Result,	NewState}.

Load	and	execute	the	Lua	code	in	the	file	and	return	its	result,	and	the	new	Lua	State.
Equivalent	to	doing	luerl:do(“return	dofile(‘FileName’)”).

https://lua.org
https://www.lua.org/manual/5.3/manual.html#3.3.2
https://www.lua.org/manual/5.3/manual.html

luerl:load(String|Binary[,	CompileOptions],	State)	->	{ok,Function,NewState}	|	{error,
Reason}.

Parse	a	Lua	chunk	as	string	or	binary,	and	return	a	compiled	chunk	(‘form’).

luerl:loadfile(FileName[,	CompileOptions],	State)	->	{ok,Function,NewState}	|	{error,
Reason}.

Parse	a	Lua	file,	and	return	a	compiled	chunk	(‘form’).

luerl:path_loadfile([Path,],	FileName[,	CompileOptions],	State)	->
{ok,Function,FullName,State}	|	{error,	Reason}.

Search	Path	until	the	file	FileName	is	found.	Parse	the	file	and	return	a	compiled	chunk
(‘form’).	If	Path	is	not	given	then	the	path	defined	in	the	environment	variable
LUA_LOAD_PATH	is	used.

luerl:load_module(KeyPath,	ErlangModule,	State)	->	State.

Load	ErlangModule	and	install	its	table	at	 KeyPath	which	is	encoded.

luerl:load_module1(KeyPath,	ErlangModule,	State)	->	State.

Load	ErlangModule	and	install	its	table	at	 KeyPath	which	is	NOT	encoded

luerl:init()	->	State.

Get	a	new	Lua	State	=	a	fresh	Lua	VM	instance.

luerl:call(Form,	Args,	State)	->	{Result,State}

luerl:call_chunk(Form,	Args,	State)	->	{Result,State}

Call	a	compiled	chunk	or	function.	Use	the	call_chunk,	call	has	been	kept	for	backwards
compatibility.

luerl:call_function(KeyPath,	Args,	State)	->	{Result,NewState}

Call	a	function	already	defined	in	the	state.	 KeyPath	is	a	list	of	names	to	the	function.	
KeyPath,	Args	and	Result	are	automatically	encoded/decoded.

luerl:call_function1(KeyPath,	Args,	State)	->	{Result,NewState}

Call	a	function	already	defined	in	the	state.	 KeyPath	is	a	list	of	keys	to	the	function.	
KeyPath,	Args	and	Result	are	NOT	encoded/decoded.

luerl:call_method(MethPath,	Args,	State)	->	{Result,NewState}.

Call	a	method	already	defined	in	the	state.	 MethPath	is	a	list	of	names	to	the	method.	
MethPath,	Args	and	Result	are	automatically	encoded/decoded.

luerl:call_method1(MethPath,	Args,	State)	->	{Result,NewState}

Call	a	method	already	defined	in	the	state.	 MethPath	is	a	list	of	keys	to	the	method.	 Keys,	
Args	and	Result	are	NOT	encoded/decoded.

luerl:stop(State)	->	GCedState.

Garbage	collects	the	state	and	(todo:)	does	away	with	it.

luerl:gc(State)	->	State.

Runs	the	garbage	collector	on	a	state	and	returns	the	new	state.

luerl:set_table(KeyPath,	Value,	State)	->	State.

Sets	a	value	inside	the	Lua	state.	Value	is	automatically	encoded.

luerl:set_table1(KeyPath,	Value,	State)	->	State.

Sets	a	value	inside	the	Lua	state.	 KeyPath	and	Value	are	NOT	encoded.

luerl:get_table(KeyPath,	State)	->	{Result,State}.

Gets	a	value	inside	the	Lua	state.	 KeyPath	and	Result	are	automatically	encoded.

luerl:get_table1(KeyPath,	State)	->	{Result,State}.

Gets	a	value	inside	the	Lua	state.	 KeyPath	and	Result	are	NOT	encoded/decoded.

You	can	use	this	function	to	expose	an	function	to	the	Lua	code	by	using	this	interface:	
fun(Args,	State)	->	{Results,	State}

Args	and	Results	must	be	a	list	of	Luerl	compatible	Erlang	values.

	luerl(3)
	Interface functions
	Spec Definitions
	Functions
	luerl:eval(String|Binary|Form, State) -> {ok, Result} | {error, Reason, StackTrace}.
	luerl:evalfile(Path, State) -> {ok, Result} | {error, Reason, StackTrace}.
	luerl:do(String|Binary|Form, State) -> {Result, NewState}.
	luerl:dofile(Path, State) -> {Result, NewState}.
	luerl:load(String|Binary[, CompileOptions], State) -> {ok,Function,NewState} | {error, Reason}.
	luerl:loadfile(FileName[, CompileOptions], State) -> {ok,Function,NewState} | {error, Reason}.
	luerl:path_loadfile([Path,], FileName[, CompileOptions], State) -> {ok,Function,FullName,State} | {error, Reason}.
	luerl:load_module(KeyPath, ErlangModule, State) -> State.
	luerl:load_module1(KeyPath, ErlangModule, State) -> State.
	luerl:init() -> State.
	luerl:call(Form, Args, State) -> {Result,State}
	luerl:call_chunk(Form, Args, State) -> {Result,State}
	luerl:call_function(KeyPath, Args, State) -> {Result,NewState}
	luerl:call_function1(KeyPath, Args, State) -> {Result,NewState}
	luerl:call_method(MethPath, Args, State) -> {Result,NewState}.
	luerl:call_method1(MethPath, Args, State) -> {Result,NewState}
	luerl:stop(State) -> GCedState.
	luerl:gc(State) -> State.
	luerl:set_table(KeyPath, Value, State) -> State.
	luerl:set_table1(KeyPath, Value, State) -> State.
	luerl:get_table(KeyPath, State) -> {Result,State}.
	luerl:get_table1(KeyPath, State) -> {Result,State}.

