

 zotonic_filewatcher

 v1.0.0-rc.15

 Table of contents

 	Modules

 	zotonic_filewatcher_app

 	zotonic_filewatcher_beam_reloader

 	zotonic_filewatcher_fswatch

 	zotonic_filewatcher_handler

 	zotonic_filewatcher_inotify

 	zotonic_filewatcher_monitor

 	zotonic_filewatcher_sup

zotonic_filewatcher_app

Filehandler - handles changes on files, starts recompiles

 Anchor for this section

 Summary

 Functions

 start()

 start(StartType, StartArgs)

 stop(State)

 Anchor for this section

Functions

 Link to this function

 start()

 Link to this function

 start(StartType, StartArgs)

 Link to this function

 stop(State)

zotonic_filewatcher_beam_reloader

Periodically loads modules whose beam file have been updated.

 Anchor for this section

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 Convert process state when code is changed

 handle_call(Message, From, State)

 Trap unknown calls

 handle_cast(Message, State)

 handle_info(Info, State)

 Periodic check for changed beam files.

 init(_)

 Initiates the server.

 make()

 Perform a make:all() and reload the changed beam files.

 reload()

 Check if beam files are changed, load the changed ones.

 reload_module(M)

 Reload a module, purge the old code.

 start_link(Periodic)

 Starts the server

 terminate(Reason, State)

 This function is called by a gen_server when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value is ignored.

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

Convert process state when code is changed

 Link to this function

 handle_call(Message, From, State)

Trap unknown calls

 Link to this function

 handle_cast(Message, State)

 Link to this function

 handle_info(Info, State)

Periodic check for changed beam files.

 Link to this function

 init(_)

Initiates the server.

 Link to this function

 make()

Perform a make:all() and reload the changed beam files.

 Link to this function

 reload()

Check if beam files are changed, load the changed ones.

 Link to this function

 reload_module(M)

Reload a module, purge the old code.

 Link to this function

 start_link(Periodic)

Starts the server

 Link to this function

 terminate(Reason, State)

This function is called by a gen_server when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value is ignored.

zotonic_filewatcher_fswatch

Watch for changed files using fswatch (MacOS X; brew install fswatch). https://github.com/emcrisostomo/fswatch

 Anchor for this section

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 Convert process state when code is changed

 handle_call(Message, From, State)

 Trap unknown calls

 handle_cast(Message, State)

 handle_info(Info, State)

 Reading a line from the fswatch program.

 init(_)

 Initiates the server.

 is_installed()

 restart()

 start_link()

 Starts the server

 terminate(Reason, State)

 This function is called by a gen_server when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value is ignored.

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

Convert process state when code is changed

 Link to this function

 handle_call(Message, From, State)

Trap unknown calls

 Link to this function

 handle_cast(Message, State)

 Link to this function

 handle_info(Info, State)

Reading a line from the fswatch program.

 Link to this function

 init(_)

Initiates the server.

 Link to this function

 is_installed()

 -spec is_installed() -> boolean().

 Link to this function

 restart()

 -spec restart() -> ok.

 Link to this function

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Starts the server

 Link to this function

 terminate(Reason, State)

This function is called by a gen_server when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value is ignored.

zotonic_filewatcher_handler

Handle changed files

 Anchor for this section

 Summary

 Functions

 code_change(Vsn, State, Extra)

 file_changed(Verb, F)

 Called when a file is changed on disk, buffers changes before sending a batch to the zotonic_filehandler.

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 handle_info(Msg, State)

 init(_)

 is_file_blocked(F)

 is_file_blocked(Dir, File)

 Called by zotonic_filewatcher_handler

 re_exclude()

 start_link()

 terminate(Reason, State)

 Anchor for this section

Functions

 Link to this function

 code_change(Vsn, State, Extra)

 Link to this function

 file_changed(Verb, F)

 -spec file_changed(zotonic_filehandler:verb(), file:filename_all()) -> ok.

Called when a file is changed on disk, buffers changes before sending a batch to the zotonic_filehandler.

 Link to this function

 handle_call(Msg, From, State)

 Link to this function

 handle_cast(Msg, State)

 Link to this function

 handle_info(Msg, State)

 Link to this function

 init(_)

 -spec init(term()) -> {ok, #state{}}.

 Link to this function

 is_file_blocked(F)

 -spec is_file_blocked(binary() | string()) -> boolean().

 Link to this function

 is_file_blocked(Dir, File)

Called by zotonic_filewatcher_handler

 Link to this function

 re_exclude()

 -spec re_exclude() -> string().

 Link to this function

 start_link()

 -spec start_link() -> {ok, pid()} | {error, term()}.

 Link to this function

 terminate(Reason, State)

zotonic_filewatcher_inotify

Watch for changed files using inotifywait. https://github.com/rvoicilas/inotify-tools/wiki

 Anchor for this section

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 Convert process state when code is changed

 handle_call(Message, From, State)

 Trap unknown calls

 handle_cast(Message, State)

 handle_info(Info, State)

 Reading a line from the inotifywait program. Sets a timer to prevent duplicate file changed message for the same filename (e.g. if a editor saves a file twice for some reason).

 init(_)

 Initiates the server.

 is_installed()

 restart()

 start_link()

 Starts the server

 terminate(Reason, State)

 This function is called by a gen_server when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value is ignored.

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

Convert process state when code is changed

 Link to this function

 handle_call(Message, From, State)

Trap unknown calls

 Link to this function

 handle_cast(Message, State)

 Link to this function

 handle_info(Info, State)

Reading a line from the inotifywait program. Sets a timer to prevent duplicate file changed message for the same filename (e.g. if a editor saves a file twice for some reason).

 Link to this function

 init(_)

Initiates the server.

 Link to this function

 is_installed()

 -spec is_installed() -> boolean().

 Link to this function

 restart()

 -spec restart() -> ok.

 Link to this function

 start_link()

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Starts the server

 Link to this function

 terminate(Reason, State)

This function is called by a gen_server when it is about to terminate. It should be the opposite of Module:init/1 and do any necessary cleaning up. When it returns, the gen_server terminates with Reason. The return value is ignored.

zotonic_filewatcher_monitor

Erlang file monitoring service
The behaviour of this service is inspired by the open source FAM daemon (http://oss.sgi.com/projects/fam/). It allows file system paths to be monitored, so that a message will be sent to the client process whenever a status change is detected. Currently, the only supported method of detection is by regular polling by the server. While it is not optimal, polling has less overhead than might be expected, and is portable across platforms. The polling interval can be adjusted; by default the server polls all monitored paths every 5 seconds. Recursive (automatic) monitoring is supported. The server keeps track of its client processes, and removes all their monitors if they should die.
[bookmark: Event_messages]Event messages
When a new monitor is set up, or a change is detected, an event message is sent to the client. These have the following general form:{file_monitor, Ref::monitor(), Event}
where Ref is the monitor reference returned when the monitor was set up, and Event is one of the following:	{found, Path::binary(), Type, Info::#file_info{}, Entries::[{added | deleted, Name::binary()}]}
	{changed, Path::binary(), Type, Info::#file_info{}, Entries::[{added | deleted, Name::binary()}]}
	{error, Path::binary(), Type, PosixError::atom()}

where Path is the watched path (as a binary), Type is the type of monitoring being performed (either file or directory), Info is a file_info record as defined in kernel/include/file.hrl, and Entries is a list of tuples {added, binary()} and {deleted, binary()} describing changes to the directory entries if Type is directory, otherwise this is always the empty list. For a found event, all entries are {added, Name}.
A found event is sent when a monitor is initially set up, if the path can be read. After that, whenever a change in status is detected, a changed event is sent. If the file does not exist or could for some other reason not be accessed, an error event is sent (both initially and for subsequent changes). In other words, the first event for a path is always either found or error, and later events are either changed or error.
[bookmark: Detection_of_file_type_changes]Detection of file type changes
If the object found at a path changes type in the interval between two polls, for example if a directory is replaced by a file with the same name, or vice versa, the file monitor server will detect this and dispatch an enoent error event before the new status event. A client can thus rely on always seeing the old file disappear before any change that reports a different file type.
[bookmark: Monitoring_types]Monitoring types
There are two ways in which a path can be monitored: as a file, meaning that we are interested only in the object found at that path, or as a directory, meaning that we expect the path to point to a directory, and we are also interested in the list of entries of that directory.
If a path is monitored as a directory, and the object at the path exists but is not a directory, an enotdir error event will be generated. An existing directory can however both be monitored as a directory and as a file - the difference is that in the latter case, the reported list of entries will always be empty.
[bookmark: Automatic_(recursive)_monitoring]Automatic (recursive) monitoring
Automatic monitoring (automonitoring for short) can be used to watch a single file of any type, or a whole directory tree. The monitoring type (file or directory) used for any path is based on the actual type of object found at the path (directory if the object is a readable directory, and file otherwise). If the object is replaced by another of different type, the monitoring type will change automatically.
When a directory becomes automonitored, all of its entries will also be automatically monitored, recursively. As entries are created or deleted in an automonitored directory, they will be dynamically added or removed, respectively, from being monitored. The root path used to create the automonitor will however always remain monitored (even if the object temporarily or permanently disappears) until the server is told to delete the monitor.
The event messages sent to the client are the same as if manual monitoring was done. A newly discovered path will be reported by a found (or possibly, by an error event), and subsequent changes on that path are reported by changed and error events. If the monitoring type is changed, a new found event is sent, and so on.

 Anchor for this section

 Summary

 Types

 filename/0

 This is an "extended IO-list", that allows atoms as well as binaries to occur either on their own or embedded in a list or deep list. The intent of this is to accept any file name that can be used by the standard library module file, as well as any normal IO-list, and any list that is formed by combining such fragments.

 monitor/0

 A monitor reference.

 options/0

 A list of options.

 server_ref/0

 A reference to a running server. See gen_server:call/3 for more information.

 Functions

 automonitor(Path)

 Equivalent to automonitor(Path, []).

 automonitor(Path, Opts)

 Equivalent to automonitor(file_monitor, Path, Opts).

 automonitor(Server, Path, Opts)

 Automonitors the specified path. Returns the monitor reference as well as the monitored path as a binary.

 demonitor(Ref)

 Equivalent to demonitor(file_monitor, Ref).

 demonitor(Server, Ref)

 Deletes the specified monitor. This can only be done by the process that created the monitor.

 demonitor_dir(Path, Ref)

 Equivalent to demonitor_dir(file_monitor, Path, Ref).

 demonitor_dir(Server, Path, Ref)

 Removes the directory path from the specified monitor. This can only be done by the process that created the monitor.

 demonitor_file(Path, Ref)

 Equivalent to demonitor_file(file_monitor, Path, Ref).

 demonitor_file(Server, Path, Ref)

 Removes the file path from the specified monitor. This can only be done by the process that created the monitor.

 get_interval()

 Equivalent to get_interval(file_monitor).

 get_interval(Server)

 Returns the current polling interval.

 monitor_dir(Path)

 Equivalent to monitor_dir(Path, []).

 monitor_dir(Path, Opts)

 Equivalent to monitor_dir(file_monitor, Path, Opts).

 monitor_dir(Server, Path, Opts)

 Monitors the specified directory path. Returns the monitor reference as well as the monitored path as a binary.

 monitor_file(Path)

 Equivalent to monitor_file(Path, []).

 monitor_file(Path, Opts)

 Equivalent to monitor_file(file_monitor, Path, Opts).

 monitor_file(Server, Path, Opts)

 Monitors the specified file path. Returns the monitor reference as well as the monitored path as a binary.

 normalize_path(Path)

 Flattens the given path to a single binary.

 set_interval(Time)

 Equivalent to set_interval(file_monitor, Time).

 set_interval(Server, Time)

 Sets the polling interval. Units are in milliseconds.

 start()

 Equivalent to start([]).

 start(Options)

 Equivalent to start({local, file_monitor}, Options).

 start(Name, Options)

 Starts the server and registers it using the specified name. If the name is undefined, the server will not be registered. See gen_server:start_link/4 for details about the return value.

 start_link()

 Equivalent to start_link([]).

 start_link(Options)

 Equivalent to start_link({local, file_monitor}, Options).

 start_link(Name, Options)

 Starts the server, links it to the current process, and registers it using the specified name. If the name is undefined, the server will not be registered. See gen_server:start_link/4 for details about the return value.

 stop()

 Equivalent to stop(file_monitor).

 stop(Server)

 Stops the specified server.

 Anchor for this section

Types

 Link to this type

 filename/0

 -type

This is an "extended IO-list", that allows atoms as well as binaries to occur either on their own or embedded in a list or deep list. The intent of this is to accept any file name that can be used by the standard library module file, as well as any normal IO-list, and any list that is formed by combining such fragments.

 Link to this type

 monitor/0

 -type

A monitor reference.

 Link to this type

 options/0

 -type

A list of options.

 Link to this type

 server_ref/0

 -type

A reference to a running server. See gen_server:call/3 for more information.

 Anchor for this section

Functions

 Link to this function

 automonitor(Path)

Equivalent to automonitor(Path, []).

 Link to this function

 automonitor(Path, Opts)

Equivalent to automonitor(file_monitor, Path, Opts).

 Link to this function

 automonitor(Server, Path, Opts)

Automonitors the specified path. Returns the monitor reference as well as the monitored path as a binary.
Options: none at present.

 Link to this function

 demonitor(Ref)

Equivalent to demonitor(file_monitor, Ref).

 Link to this function

 demonitor(Server, Ref)

Deletes the specified monitor. This can only be done by the process that created the monitor.

 Link to this function

 demonitor_dir(Path, Ref)

Equivalent to demonitor_dir(file_monitor, Path, Ref).

 Link to this function

 demonitor_dir(Server, Path, Ref)

Removes the directory path from the specified monitor. This can only be done by the process that created the monitor.

 Link to this function

 demonitor_file(Path, Ref)

Equivalent to demonitor_file(file_monitor, Path, Ref).

 Link to this function

 demonitor_file(Server, Path, Ref)

Removes the file path from the specified monitor. This can only be done by the process that created the monitor.

 Link to this function

 get_interval()

Equivalent to get_interval(file_monitor).

 Link to this function

 get_interval(Server)

Returns the current polling interval.

 Link to this function

 monitor_dir(Path)

Equivalent to monitor_dir(Path, []).

 Link to this function

 monitor_dir(Path, Opts)

Equivalent to monitor_dir(file_monitor, Path, Opts).

 Link to this function

 monitor_dir(Server, Path, Opts)

Monitors the specified directory path. Returns the monitor reference as well as the monitored path as a binary.
Options: see monitor_file/3.

 Link to this function

 monitor_file(Path)

Equivalent to monitor_file(Path, []).

 Link to this function

 monitor_file(Path, Opts)

Equivalent to monitor_file(file_monitor, Path, Opts).

 Link to this function

 monitor_file(Server, Path, Opts)

Monitors the specified file path. Returns the monitor reference as well as the monitored path as a binary.
Options:	{monitor, monitor()}: specifies a reference for identifying the monitor to which the path should be added. The monitor need not already exist, but if it does, only the same process is allowed to add paths to it, and paths may not be added manually to an automonitor.

 Link to this function

 normalize_path(Path)

Flattens the given path to a single binary.

 Link to this function

 set_interval(Time)

Equivalent to set_interval(file_monitor, Time).

 Link to this function

 set_interval(Server, Time)

Sets the polling interval. Units are in milliseconds.

 Link to this function

 start()

Equivalent to start([]).

 Link to this function

 start(Options)

Equivalent to start({local, file_monitor}, Options).

 Link to this function

 start(Name, Options)

Starts the server and registers it using the specified name. If the name is undefined, the server will not be registered. See gen_server:start_link/4 for details about the return value.
Options:	{interval, Milliseconds::integer()}

 Link to this function

 start_link()

Equivalent to start_link([]).

 Link to this function

 start_link(Options)

Equivalent to start_link({local, file_monitor}, Options).

 Link to this function

 start_link(Name, Options)

Starts the server, links it to the current process, and registers it using the specified name. If the name is undefined, the server will not be registered. See gen_server:start_link/4 for details about the return value.
Options: see start/2.

 Link to this function

 stop()

Equivalent to stop(file_monitor).

 Link to this function

 stop(Server)

Stops the specified server.

zotonic_filewatcher_sup

Check for changed files, notify the zotonic_filehandler of any changes

 Anchor for this section

 Summary

 Functions

 init(_)

 Return the filewatcher gen_server(s) to be used.

 restart_watchers()

 Restart watchers because of a new application. This is because of new symlinks, the filewatcher_monitor resolves symlinks itself, so doesn't need to be restarted.

 start_link()

 API for starting the site supervisor.

 start_watchers()

 watch_dirs()

 Return the list of all directories to watch

 watch_dirs_expanded()

 We expand all watch dirs, so that symbolic links to src, include, and priv are followed

 Anchor for this section

Functions

 Link to this function

 init(_)

Return the filewatcher gen_server(s) to be used.

 Link to this function

 restart_watchers()

Restart watchers because of a new application. This is because of new symlinks, the filewatcher_monitor resolves symlinks itself, so doesn't need to be restarted.

 Link to this function

 start_link()

API for starting the site supervisor.

 Link to this function

 start_watchers()

 Link to this function

 watch_dirs()

 -spec watch_dirs() -> [string()].

Return the list of all directories to watch

 Link to this function

 watch_dirs_expanded()

 -spec watch_dirs_expanded() -> [string()].

We expand all watch dirs, so that symbolic links to src, include, and priv are followed

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

