

    

        yaccety_sax

        v0.3.0



    



  

    Table of contents

    
      



            	yaccety_sax


            	LICENSE





  	Modules
    

    	yaccety_sax


    	yaccety_sax_simple


    	ys_parse


    	ys_parse_simple


    	ys_utils


    

  



      

    


  

    
yaccety_sax
    

Fast, StAX-like XML Parser for BEAM Languages
The big idea
Instead of as with SAX or DOM parsing of XML, forcing the user to handle everything at once, this parser allows the user to consume events from a stream as it suits them. Simply call next_event on the stream.
This means that the user can parse multiple streams from the same process at the same time.
It works like an iterator on any set or list-like type, but returns XML events instead.
Conformance and Features
yaccety_sax is a Namespace aware, non-validating XML 1.0 parser.
	Accepts only UTF-8 encoding directly.
	It does check DTDs for wellformedness.
	It can read and parse external DTDs (When given a callback function to retrieve the DTD).
	Returns the parsed DTD as an event to the user for custom validation if needed.
	Comment, Processing Instructions, and whitespace Text nodes are all optionally ignorable.
	All parsed events, report UTF-8 binary (No character lists).

Roadmap of Coming Features
	Handling of common security risks known from parsing DTDs
	Content skipping - skipping entire content of an element
	Event writing - Serializing event streams back into XML
	YACC-like syntax for setting up complex, selective parsers.
	Validation from DTD
	XML 1.1 ??
	Others? add an issue to the repo :-)

Parsing SOAP from an API
Chances are when parsing XML from some REST API, you won't need a lot of the features yaccety has.
This is what yaccety_sax_simple is for.
It works mostly in the same way as the full version, except for:
	Smaller, tuple events
	Comments are ignored
	Whitespace text nodes are ignored
	Processing-instructions are not allowed
	DTDs are not allowed
	The entire UTF-8 XML is passed to yaccety_sax_simple:string/1 without a continuation function

Examples
Checking XMLs with different encodings and human-readability for equality
kinda_equal(Filename1, Filename2) ->
    % UTF-16 file with external DTD and full of whitespace nodes
    {Cont, Init} = ys_utils:trancoding_file_continuation(Filename1),
    LhState = yaccety_sax:stream(Init, [
        {whitespace, false},
        {comments, false},
        {proc_inst, false},
        {continuation, {Cont, <<>>}},
        {base, filename:dirname(Filename1)},
        {external, fun ys_utils:external_file_reader/2}
    ]),
    % Start Document event
    {_, LhState1} = yaccety_sax:next_event(LhState),
    % DTD event
    {_, LhState2} = yaccety_sax:next_event(LhState1),

    % UTF-8 file with no DTD or whitespace nodes
    % Could have streamed this file as well...
    {ok, Bin2} = file:read_file(Filename2),
    RhState = yaccety_sax:stream(Bin2),
    % Start Document event
    {_, RhState1} = yaccety_sax:next_event(RhState),

    % Now both streams are in a comparable state, so diff them
    diff_loop(LhState2, RhState1).

diff_loop(LhState, RhState) ->
    {LhEvent, LhState1} = yaccety_sax:next_event(LhState),
    {RhEvent, RhState1} = yaccety_sax:next_event(RhState),
    #{type := EventType} = LhEvent,
    % Some function that checks equality, maybe ignoring 
    % namespaces or prefixes or something.
    case equal_enough(LhEvent, RhEvent) of
        true when EventType =:= endDocument -> true;
        true -> diff_loop(LhState1, RhState1);
        false -> false
    end.
some (early) numbers
Just-for-fun parsing a 5.2 GB Wiki abstract dump with a callback that throws away all events:
	There are 113,593,892 elements in the file.
	yaccety_sax takes around 5 minutes on my machine.
	xmerl_sax_parser with default settings is still running...
	xmerl_sax_parser with a larger buffer in the continuation function takes around 12 minutes.

Another big difference is that the xmerl process held onto about 42 MB by the end of parsing. yaccety never went above 109 KB.
I didn't attempt using the xmerl_scan on the 5.2 GB file. Not sure it's a good idea to try.
I'm sure there are other parsers out there that stream-parse large data.
It would be cool to see how all of them react.
The repo name
Anyone who has seen The Benny Hill Show knows the song that inspired the name for the repo. Yakety Sax



  

    

    


                                 Apache License
                           Version 2.0, January 2004
                        http://www.apache.org/licenses/

   TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

   1. Definitions.

      "License" shall mean the terms and conditions for use, reproduction,
      and distribution as defined by Sections 1 through 9 of this document.

      "Licensor" shall mean the copyright owner or entity authorized by
      the copyright owner that is granting the License.

      "Legal Entity" shall mean the union of the acting entity and all
      other entities that control, are controlled by, or are under common
      control with that entity. For the purposes of this definition,
      "control" means (i) the power, direct or indirect, to cause the
      direction or management of such entity, whether by contract or
      otherwise, or (ii) ownership of fifty percent (50%) or more of the
      outstanding shares, or (iii) beneficial ownership of such entity.

      "You" (or "Your") shall mean an individual or Legal Entity
      exercising permissions granted by this License.

      "Source" form shall mean the preferred form for making modifications,
      including but not limited to software source code, documentation
      source, and configuration files.

      "Object" form shall mean any form resulting from mechanical
      transformation or translation of a Source form, including but
      not limited to compiled object code, generated documentation,
      and conversions to other media types.

      "Work" shall mean the work of authorship, whether in Source or
      Object form, made available under the License, as indicated by a
      copyright notice that is included in or attached to the work
      (an example is provided in the Appendix below).

      "Derivative Works" shall mean any work, whether in Source or Object
      form, that is based on (or derived from) the Work and for which the
      editorial revisions, annotations, elaborations, or other modifications
      represent, as a whole, an original work of authorship. For the purposes
      of this License, Derivative Works shall not include works that remain
      separable from, or merely link (or bind by name) to the interfaces of,
      the Work and Derivative Works thereof.

      "Contribution" shall mean any work of authorship, including
      the original version of the Work and any modifications or additions
      to that Work or Derivative Works thereof, that is intentionally
      submitted to Licensor for inclusion in the Work by the copyright owner
      or by an individual or Legal Entity authorized to submit on behalf of
      the copyright owner. For the purposes of this definition, "submitted"
      means any form of electronic, verbal, or written communication sent
      to the Licensor or its representatives, including but not limited to
      communication on electronic mailing lists, source code control systems,
      and issue tracking systems that are managed by, or on behalf of, the
      Licensor for the purpose of discussing and improving the Work, but
      excluding communication that is conspicuously marked or otherwise
      designated in writing by the copyright owner as "Not a Contribution."

      "Contributor" shall mean Licensor and any individual or Legal Entity
      on behalf of whom a Contribution has been received by Licensor and
      subsequently incorporated within the Work.

   2. Grant of Copyright License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      copyright license to reproduce, prepare Derivative Works of,
      publicly display, publicly perform, sublicense, and distribute the
      Work and such Derivative Works in Source or Object form.

   3. Grant of Patent License. Subject to the terms and conditions of
      this License, each Contributor hereby grants to You a perpetual,
      worldwide, non-exclusive, no-charge, royalty-free, irrevocable
      (except as stated in this section) patent license to make, have made,
      use, offer to sell, sell, import, and otherwise transfer the Work,
      where such license applies only to those patent claims licensable
      by such Contributor that are necessarily infringed by their
      Contribution(s) alone or by combination of their Contribution(s)
      with the Work to which such Contribution(s) was submitted. If You
      institute patent litigation against any entity (including a
      cross-claim or counterclaim in a lawsuit) alleging that the Work
      or a Contribution incorporated within the Work constitutes direct
      or contributory patent infringement, then any patent licenses
      granted to You under this License for that Work shall terminate
      as of the date such litigation is filed.

   4. Redistribution. You may reproduce and distribute copies of the
      Work or Derivative Works thereof in any medium, with or without
      modifications, and in Source or Object form, provided that You
      meet the following conditions:

      (a) You must give any other recipients of the Work or
          Derivative Works a copy of this License; and

      (b) You must cause any modified files to carry prominent notices
          stating that You changed the files; and

      (c) You must retain, in the Source form of any Derivative Works
          that You distribute, all copyright, patent, trademark, and
          attribution notices from the Source form of the Work,
          excluding those notices that do not pertain to any part of
          the Derivative Works; and

      (d) If the Work includes a "NOTICE" text file as part of its
          distribution, then any Derivative Works that You distribute must
          include a readable copy of the attribution notices contained
          within such NOTICE file, excluding those notices that do not
          pertain to any part of the Derivative Works, in at least one
          of the following places: within a NOTICE text file distributed
          as part of the Derivative Works; within the Source form or
          documentation, if provided along with the Derivative Works; or,
          within a display generated by the Derivative Works, if and
          wherever such third-party notices normally appear. The contents
          of the NOTICE file are for informational purposes only and
          do not modify the License. You may add Your own attribution
          notices within Derivative Works that You distribute, alongside
          or as an addendum to the NOTICE text from the Work, provided
          that such additional attribution notices cannot be construed
          as modifying the License.

      You may add Your own copyright statement to Your modifications and
      may provide additional or different license terms and conditions
      for use, reproduction, or distribution of Your modifications, or
      for any such Derivative Works as a whole, provided Your use,
      reproduction, and distribution of the Work otherwise complies with
      the conditions stated in this License.

   5. Submission of Contributions. Unless You explicitly state otherwise,
      any Contribution intentionally submitted for inclusion in the Work
      by You to the Licensor shall be under the terms and conditions of
      this License, without any additional terms or conditions.
      Notwithstanding the above, nothing herein shall supersede or modify
      the terms of any separate license agreement you may have executed
      with Licensor regarding such Contributions.

   6. Trademarks. This License does not grant permission to use the trade
      names, trademarks, service marks, or product names of the Licensor,
      except as required for reasonable and customary use in describing the
      origin of the Work and reproducing the content of the NOTICE file.

   7. Disclaimer of Warranty. Unless required by applicable law or
      agreed to in writing, Licensor provides the Work (and each
      Contributor provides its Contributions) on an "AS IS" BASIS,
      WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
      implied, including, without limitation, any warranties or conditions
      of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
      PARTICULAR PURPOSE. You are solely responsible for determining the
      appropriateness of using or redistributing the Work and assume any
      risks associated with Your exercise of permissions under this License.

   8. Limitation of Liability. In no event and under no legal theory,
      whether in tort (including negligence), contract, or otherwise,
      unless required by applicable law (such as deliberate and grossly
      negligent acts) or agreed to in writing, shall any Contributor be
      liable to You for damages, including any direct, indirect, special,
      incidental, or consequential damages of any character arising as a
      result of this License or out of the use or inability to use the
      Work (including but not limited to damages for loss of goodwill,
      work stoppage, computer failure or malfunction, or any and all
      other commercial damages or losses), even if such Contributor
      has been advised of the possibility of such damages.

   9. Accepting Warranty or Additional Liability. While redistributing
      the Work or Derivative Works thereof, You may choose to offer,
      and charge a fee for, acceptance of support, warranty, indemnity,
      or other liability obligations and/or rights consistent with this
      License. However, in accepting such obligations, You may act only
      on Your own behalf and on Your sole responsibility, not on behalf
      of any other Contributor, and only if You agree to indemnify,
      defend, and hold each Contributor harmless for any liability
      incurred by, or claims asserted against, such Contributor by reason
      of your accepting any such warranty or additional liability.

   END OF TERMS AND CONDITIONS

   Copyright 2019 Zachary N. Dean

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.




  

    
yaccety_sax 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          ext_parser_state/0

        


      


      
        
          location/0

        


      


      
        
          options/0

        


      


      
        
          parser_state/0

        


      


      
        
          processed_dtd/0

        


      


      
        
          qname/0

        


      


      
        
          xml_attribute/0

        


      


      
        
          xml_characters/0

        


      


      
        
          xml_comment/0

        


      


      
        
          xml_dtd/0

        


      


      
        
          xml_endDocument/0

        


      


      
        
          xml_endElement/0

        


      


      
        
          xml_event/0

        


      


      
        
          xml_namespace/0

        


      


      
        
          xml_processingInstruction/0

        


      


      
        
          xml_startDocument/0

        


      


      
        
          xml_startElement/0

        


      


  


  
    
      Functions
    


      
        
          event_characters(Data, CData, Ignorable, IsWs, State)

        


      


      
        
          event_comment(Text, State)

        


      


      
        
          event_dtd(Processed, State)

        


      


      
        
          event_endDocument(State)

        


      


      
        
          event_endElement(QName, State)

        


      


      
        
          event_processingInstruction(Target, Data, State)

        


      


      
        
          event_startDocument(Version, Encoding, EncSet, StandAlone, StandSet, State)

        


      


      
        
          event_startElement(QName, Attributes, Namespaces, State)

        


      


      
        
          file(Filename)

        


      


      
        
          file(Filename, Opts)

        


      


      
        
          next_event(State)

        


      


      
        
          stream(Stream)

        


      


      
        
          stream(Stream, Opts)

        


      


      
        
          write_event(Event, _)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    ext_parser_state/0


      
       
       View Source
     


  


  

      Specs

      

          ext_parser_state() :: parser_state().


      



  



  
    
      
      Link to this type
    
    location/0


      
       
       View Source
     


  


  

      Specs

      

          location() :: pos_integer().


      



  



  
    
      
      Link to this type
    
    options/0


      
       
       View Source
     


  


  

      Specs

      

          options() ::
    [{whitespace, boolean()} |
     {comments, boolean()} |
     {proc_inst, boolean()} |
     {base, binary()} |
     {dtd, processed_dtd()} |
     {continuation, {Fun :: fun(), State :: any()}} |
     {external, Fun :: fun()}].


      



  



  
    
      
      Link to this type
    
    parser_state/0


      
       
       View Source
     


  


  

      Specs

      

          parser_state() :: #ys_state{}.


      



  



  
    
      
      Link to this type
    
    processed_dtd/0


      
       
       View Source
     


  


  

      Specs

      

          processed_dtd() ::
    #{name := undefined | qname(),
      external_id := undefined | {Pub :: binary(), Sys :: binary()},
      elems := #{Name :: binary() := empty | any | mixed | {mixed, [binary()]}},
      atts :=
          #{{ElemPx :: binary(), ElemLn :: binary()} :=
                #{{AttPx :: binary(), AttLn :: binary()} := term()}},
      nots := #{Name :: binary() := {binary(), binary()}},
      gen_ents := #{Name :: binary() := binary()},
      par_ents := #{Name :: binary() := binary()},
      ref_stack := list(),
      pi_comments := list()}.


      



  



  
    
      
      Link to this type
    
    qname/0


      
       
       View Source
     


  


  

      Specs

      

          qname() ::
    {Prefix :: binary(), LocalPart :: binary()} |
    {NamespaceUri :: binary(), Prefix :: binary(), LocalPart :: binary()}.


      



  



  
    
      
      Link to this type
    
    xml_attribute/0


      
       
       View Source
     


  


  

      Specs

      

          xml_attribute() :: {QName :: qname(), Value :: binary()}.


      



  



  
    
      
      Link to this type
    
    xml_characters/0


      
       
       View Source
     


  


  

      Specs

      

          xml_characters() ::
    #{type := characters,
      line := location(),
      data := binary(),
      cdata := boolean(),
      ignorable := boolean(),
      space := boolean()}.


      



  



  
    
      
      Link to this type
    
    xml_comment/0


      
       
       View Source
     


  


  

      Specs

      

          xml_comment() :: #{type := comment, line := location(), text := binary()}.


      



  



  
    
      
      Link to this type
    
    xml_dtd/0


      
       
       View Source
     


  


  

      Specs

      

          xml_dtd() :: #{type := dtd, line := location(), proc := undefined | processed_dtd()}.


      



  



  
    
      
      Link to this type
    
    xml_endDocument/0


      
       
       View Source
     


  


  

      Specs

      

          xml_endDocument() :: #{type := endDocument, line := location()}.


      



  



  
    
      
      Link to this type
    
    xml_endElement/0


      
       
       View Source
     


  


  

      Specs

      

          xml_endElement() :: #{type := endElement, line := location(), qname := qname()}.


      



  



  
    
      
      Link to this type
    
    xml_event/0


      
       
       View Source
     


  


  

      Specs

      

          xml_event() ::
    xml_characters() |
    xml_comment() |
    xml_dtd() |
    xml_endDocument() |
    xml_endElement() |
    xml_processingInstruction() |
    xml_startDocument() |
    xml_startElement().


      



  



  
    
      
      Link to this type
    
    xml_namespace/0


      
       
       View Source
     


  


  

      Specs

      

          xml_namespace() :: {Uri :: binary(), Prefix :: binary()}.


      



  



  
    
      
      Link to this type
    
    xml_processingInstruction/0


      
       
       View Source
     


  


  

      Specs

      

          xml_processingInstruction() ::
    #{type := processingInstruction, line := location(), target := binary(), data := binary()}.


      



  



  
    
      
      Link to this type
    
    xml_startDocument/0


      
       
       View Source
     


  


  

      Specs

      

          xml_startDocument() ::
    #{type := startDocument,
      line := location(),
      version := binary(),
      encoding := binary(),
      enc_set := boolean(),
      standalone := boolean(),
      sa_set := boolean()}.


      



  



  
    
      
      Link to this type
    
    xml_startElement/0


      
       
       View Source
     


  


  

      Specs

      

          xml_startElement() ::
    #{type := startElement,
      line := location(),
      qname := qname(),
      attributes := [xml_attribute()],
      namespaces := [xml_namespace()]}.


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    event_characters(Data, CData, Ignorable, IsWs, State)


      
       
       View Source
     


  


  

      Specs

      

          event_characters(Data, CData, Ignorable, IsWs, State) -> {Event, State} | State
                    when
                        Data :: binary(),
                        CData :: boolean(),
                        Ignorable :: boolean(),
                        IsWs :: boolean(),
                        State :: ext_parser_state(),
                        Event :: xml_characters().


      



  



  
    
      
      Link to this function
    
    event_comment(Text, State)


      
       
       View Source
     


  


  

      Specs

      

          event_comment(Text, State) -> {Event, State}
                 when Text :: binary(), State :: ext_parser_state(), Event :: xml_comment().


      



  



  
    
      
      Link to this function
    
    event_dtd(Processed, State)


      
       
       View Source
     


  


  

      Specs

      

          event_dtd(Processed :: processed_dtd(), State :: ext_parser_state()) ->
             {xml_dtd(), ext_parser_state()}.


      



  



  
    
      
      Link to this function
    
    event_endDocument(State)


      
       
       View Source
     


  


  

      Specs

      

          event_endDocument(State) -> {Event, State}
                     when State :: ext_parser_state(), Event :: xml_endDocument().


      



  



  
    
      
      Link to this function
    
    event_endElement(QName, State)


      
       
       View Source
     


  


  

      Specs

      

          event_endElement(QName, State) -> {Event, State}
                    when QName :: qname(), State :: ext_parser_state(), Event :: xml_endElement().


      



  



  
    
      
      Link to this function
    
    event_processingInstruction(Target, Data, State)


      
       
       View Source
     


  


  

      Specs

      

          event_processingInstruction(Target, Data, State) -> {Event, State}
                               when
                                   Target :: binary(),
                                   Data :: binary(),
                                   State :: ext_parser_state(),
                                   Event :: xml_processingInstruction().


      



  



  
    
      
      Link to this function
    
    event_startDocument(Version, Encoding, EncSet, StandAlone, StandSet, State)


      
       
       View Source
     


  


  

      Specs

      

          event_startDocument(Version, Encoding, EncSet, StandAlone, StandSet, State) -> {Event, State}
                       when
                           Version :: binary(),
                           Encoding :: binary(),
                           EncSet :: boolean(),
                           StandAlone :: boolean(),
                           StandSet :: boolean(),
                           State :: ext_parser_state(),
                           Event :: xml_startDocument().


      



  



  
    
      
      Link to this function
    
    event_startElement(QName, Attributes, Namespaces, State)


      
       
       View Source
     


  


  

      Specs

      

          event_startElement(QName, Attributes, Namespaces, State) -> {Event, State}
                      when
                          QName :: qname(),
                          Attributes :: [xml_attribute()],
                          Namespaces :: [xml_namespace()],
                          State :: ext_parser_state(),
                          Event :: xml_startElement().


      



  



  
    
      
      Link to this function
    
    file(Filename)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    file(Filename, Opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    next_event(State)


      
       
       View Source
     


  


  

      Specs

      

          next_event(State) -> {Event, State}
              when State :: ext_parser_state(), Event :: xml_event() | {error, no_event}.


      



  



  
    
      
      Link to this function
    
    stream(Stream)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    stream(Stream, Opts)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    write_event(Event, _)


      
       
       View Source
     


  


  


  


        

      



  

    
yaccety_sax_simple 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          ext_parser_state/0

        


      


      
        
          qname/0

        


      


      
        
          xml_attribute/0

        


      


      
        
          xml_characters/0

        


      


      
        
          xml_endDocument/0

        


      


      
        
          xml_endElement/0

        


      


      
        
          xml_event/0

        


      


      
        
          xml_startDocument/0

        


      


      
        
          xml_startElement/0

        


      


  


  
    
      Functions
    


      
        
          next_event(State)

        


      


      
        
          string(Stream)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    ext_parser_state/0


      
       
       View Source
     


  


  

      Specs

      

          ext_parser_state() :: #ys_state_simple{}.


      



  



  
    
      
      Link to this type
    
    qname/0


      
       
       View Source
     


  


  

      Specs

      

          qname() :: PrefixLocalPart :: binary().


      



  



  
    
      
      Link to this type
    
    xml_attribute/0


      
       
       View Source
     


  


  

      Specs

      

          xml_attribute() :: {Name :: qname(), Value :: binary()}.


      



  



  
    
      
      Link to this type
    
    xml_characters/0


      
       
       View Source
     


  


  

      Specs

      

          xml_characters() :: {characters, Data :: binary()}.


      



  



  
    
      
      Link to this type
    
    xml_endDocument/0


      
       
       View Source
     


  


  

      Specs

      

          xml_endDocument() :: endDocument.


      



  



  
    
      
      Link to this type
    
    xml_endElement/0


      
       
       View Source
     


  


  

      Specs

      

          xml_endElement() :: {endElement, QName :: qname()}.


      



  



  
    
      
      Link to this type
    
    xml_event/0


      
       
       View Source
     


  


  

      Specs

      

          xml_event() ::
    xml_characters() |
    xml_endDocument() |
    xml_endElement() |
    xml_startDocument() |
    xml_startElement().


      



  



  
    
      
      Link to this type
    
    xml_startDocument/0


      
       
       View Source
     


  


  

      Specs

      

          xml_startDocument() :: {startDocument, Version :: binary(), Encoding :: binary()}.


      



  



  
    
      
      Link to this type
    
    xml_startElement/0


      
       
       View Source
     


  


  

      Specs

      

          xml_startElement() :: {startElement, QName :: qname(), AttributesNamespaces :: [xml_attribute()]}.


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    next_event(State)


      
       
       View Source
     


  


  

      Specs

      

          next_event(State) -> {Event, State} when State :: ext_parser_state(), Event :: xml_event().


      



  



  
    
      
      Link to this function
    
    string(Stream)


      
       
       View Source
     


  


  


  


        

      



  

    
ys_parse 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          parse_Misc(Stream, State)

        


      


      
        
          parse_XMLDecl(Stream, State)

        


      


      
        
          parse_content(Stream, State)

        


      


      
        
          parse_doctypedecl(Stream, Ys_state)

        


      


      
        
          parse_element(Stream, State)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    parse_Misc(Stream, State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_XMLDecl(Stream, State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_content(Stream, State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_doctypedecl(Stream, Ys_state)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_element(Stream, State)


      
       
       View Source
     


  


  


  


        

      



  

    
ys_parse_simple 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          event_endDocument(State)

        


      


      
        
          event_endElement(QName, State)

        


      


      
        
          parse_Misc(Stream, State)

        


      


      
        
          parse_XMLDecl(Stream, State)

        


      


      
        
          parse_content(Stream, State)

        


      


      
        
          parse_element(Stream, State)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    event_endDocument(State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    event_endElement(QName, State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_Misc(Stream, State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_XMLDecl(Stream, State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_content(Stream, State)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    parse_element(Stream, State)


      
       
       View Source
     


  


  


  


        

      



  

    
ys_utils 
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          default_file_continuation(Filename)

        


      


      
        
          default_file_continuation(Filename, Size)

        


      


      
        
          external_file_reader(_, Base)

        


      


      
        
          trancoding_file_continuation(Filename)

        


      


      
        
          trancoding_file_continuation(Filename, Size)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    default_file_continuation(Filename)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    default_file_continuation(Filename, Size)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    external_file_reader(_, Base)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    trancoding_file_continuation(Filename)


      
       
       View Source
     


  


  


  



  
    
      
      Link to this function
    
    trancoding_file_continuation(Filename, Size)


      
       
       View Source
     


  


  


  


        

      



  !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&amp;").replace(/</g,"&lt;").replace(/>/g,"&gt;").replace(/"/g,"&quot;")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});



