

 Witchcraft

 v1.0.3

 [image: Logo]

 Table of contents

 	README

 	Modules

 	Witchcraft

 	Witchcraft.Applicative

 	Witchcraft.Applicative.Proto

 	Witchcraft.Apply

 	Witchcraft.Apply.Proto

 	Witchcraft.Arrow

 	Witchcraft.Arrow.Proto

 	Witchcraft.Bifunctor

 	Witchcraft.Bifunctor.Proto

 	Witchcraft.Category

 	Witchcraft.Category.Proto

 	Witchcraft.Chain

 	Witchcraft.Chain.Proto

 	Witchcraft.Comonad

 	Witchcraft.Comonad.Proto

 	Witchcraft.Extend

 	Witchcraft.Extend.Proto

 	Witchcraft.Foldable

 	Witchcraft.Foldable.Proto

 	Witchcraft.Functor

 	Witchcraft.Functor.Proto

 	Witchcraft.Monad

 	Witchcraft.Monad.Proto

 	Witchcraft.Monoid

 	Witchcraft.Monoid.Proto

 	Witchcraft.Ord

 	Witchcraft.Ord.Proto

 	Witchcraft.Semigroup

 	Witchcraft.Semigroup.Proto

 	Witchcraft.Semigroupoid

 	Witchcraft.Semigroupoid.Proto

 	Witchcraft.Setoid

 	Witchcraft.Setoid.Proto

 	Witchcraft.Traversable

 	Witchcraft.Traversable.Proto

 	Witchcraft.Unit

 	Witchcraft.Foldable.EmptyError

 	Exceptions

 	Witchcraft.Foldable.EmptyError

[image:]
Witchcraft is a library providing common algebraic and categorical abstractions to Elixir.
Monoids, functors, monads, arrows, categories, and other dark magic right at your fingertips.
[image: Build Status]
[image: Inline docs]
[image: API Docs]
[image: license]
[image:]
[image:]
README
Table of Contents
	Quick Start
	Library Family
	Values
	Type Class Hierarchy
	Writing Class Instances
	Operators
	Haskell Translation Table
	Prior Art and Further Reading
	Credits

Quick Start
def deps do
 [{:witchcraft, "~> 1.0"}]
end

...

use Witchcraft
Library Family
Quark TypeClass
 ↘ ↙
 Witchcraft
 ↓
 Algae
	Name	Description
	Quark	Standard combinators (id, compose, &c)
	TypeClass	Used internally to generate type classes
	Algae	Algebraic data types that implement Witchcraft type classes

Values
Beginner Friendliness
You shouldn't have to learn another language just to understand powerful abstractions!
By enabling people to use a language that they already know, and is already in the
same ballpark in terms of values (emphasis on immutability, &c), we can teach and
learn faster.
As much as possible, keep things friendly and well explained.
Concrete examples are available via doctests.
Consistency & Ethos
Elixir does a lot of things differently from certain other functional languages.
The idea of a data "subject" being piped though functions is conceptually different from
pure composition of functions that are later applied. Witchcraft honours the
Elixir/Elm/OCaml way, and operators point in the direction that data travels.
Some functions in the Elixir standard library have been expanded to work with more
types while keeping the basic idea the same. For example, <> has been expanded
to work on any monoid
(such as integers, lists, bitstrings, and so on).
All operators have named equivalents, and auto-currying variants of higher order functions
are left at separate names so you can performance tune as needed (currying is helpful for
more abstract code). With a few exceptions (we're looking at you, Applicative),
pipe-ordering is maintained.
Pragmatism
Convincing a company to use a language like Haskell
or PureScript can be challenging. Elixir is gaining
a huge amount of interest. Many people have been able to introduce these concepts
into companies using Scala, so we should be able to do the same here.
All functions are compatible with regular Elixir code, and no types are enforced aside
from what is used in protocol dispatch. Any struct can be made into a Witchcraft
class instance (given that it conforms to the properties).
Type Class Hierarchy
Semigroupoid Semigroup Setoid Foldable Functor -----------┐
 ↓ ↓ ↓ ↓ ↙ ↓ ↘ |
 Category Monoid Ord Traversable Apply Bifunctor |
 ↓ ↙ ↘ ↓
 Arrow Applicative Chain Extend
 ↘ ↙ ↓
 Monad Comonad
Having a clean slate, we have been able to use a clean set of type classes. This is largely
taken from the Fantasy Land Specification
and Edward Kmett's semigroupoids package.
As usual, all Applicatives are Functors, and all Monads are Applicatives.
This grants us the ability to reuse functions in their child classes.
For example, of can be used for both pure and return, lift/* can handle
both liftA* and liftM*, and so on.
Import Chains
It is very common to want to import a class and all of its dependencies.
You can do this with use. For example, you can import the entire library with:
use Witchcraft
Or import a module plus all others that it depends on:
use Witchcraft.Applicative
Any options that you pass to use will be propagated all the way down the chain:
use Witchcraft.Applicative, except: [~>: 2]
Some modules override Kernel operators and functions. While this is generally safe,
if you would like to skip all overrides, pass override_kernel: false as an option:
use Witchcraft.Applicative, override_kernel: false

Or even

use Witchcraft, override_kernel: false
Writing Class Instances
How to make your custom struct compatible with Witchcraft:
	Read the TypeClass README
	Implement the TypeClass data generator protocol for your struct
	Use definst ("define instance") instead of defimpl:

definst Witchcraft.Functor, for: Algae.Id do
 def map(%{id: data}, fun), do: %Algae.Id{id: fun.(data)}
end
All classes have properties that your instance must conform to at compile time.
mix will alert you to any failing properties by name, and will refuse to compile
without them. Sometimes it is not possible to write an instance that will pass the check,
and you can either write a custom generator
for that instance, or force
the instance. If you must resort to forcing the instance, please write a test
of the property for some specific case to be reasonably sure that it will be compatible
with the rest of the library.
More reference instances are available in Algae.
Operators
	Family	Function	Operator
	Setoid	equivalent?	==
		nonequivalent?	!=
	Ord	greater_than?	>
		lesser_than?	<
	Semigroup	append	<>
	Functor	lift	~>
		convey	~>>
		chain	>>>
		over	<~
		ap	<<~
		reverse_chain	<<<
	Semigroupoid	compose	<|>
		pipe_compose	<~>
	Arrow	product	^^^
		fanout	&&&

Haskell Translation Table
	Haskell Prelude	Witchcraft
	flip ($)	|>/2 (Kernel)
	.	<|>/2
	<<<	<|>/2
	>>>	<~>/2
	<>	<>/2
	<$>	<~/2
	flip (<$>)	~>/2
	fmap	lift/2
	liftA	lift/2
	liftA2	lift/3
	liftA3	lift/4
	liftM	lift/2
	liftM2	lift/3
	liftM3	lift/4
	ap	ap/2
	<*>	<<~/2
	<**>	~>>/2
	*>	then/2
	<*	following/2
	pure	of/2
	return	of/2
	>>	then/2
	>>=	>>>/2
	=<<	<<</2
	***	^^^/2
	&&&	&&&/2

Prior Art and Further Reading
This library draws heavy inspiration from mathematics, other languages,
and other Elixir libraries. We would be ashamed not to mention them here.
There is much, much more out there, but these are our highlights and inspirations.
The Monad library predates Witchcraft
by several years. This library proved that it is entirely possible
to bring do-notation to Elixir. It takes a very different approach:
it is very up-front that it has a very loose definition of what it means for
something to be a "monad", and relies on behaviours rather than ad-hoc polymorphism.
The Fantasy Land Spec is a spec for
projects such as this one, but targeted at Javascript. It does not come with its
own implementation, but provides a helpful chart
of class hierarchies.
In many ways, Scalaz, and later cats,
were the first widely-used port of categorical & algebraic ideas to
a mainstream language. While dismissed by some as "Haskell fan fiction",
it showed that we can write our own Haskell fanfic in all sorts of languages.
Obviously the Haskell Prelude
deserves mention. Haskell has inspired so many programmers to write clean,
declarative, functional code based on principled abstractions. We'll spare you
the love letter to SPJ,
the Glasgow team, and the original Haskell committee, but we're deeply appreciative
of how they pushed the state of the art forward.
classy-prelude/mono-traversable
have also made a lot of progress towards a base library that incorporates modern ideas
in a clean package, and was an inspiration to taking a similar approach with Witchcraft.
The semigroupoids library
from the eminent Edward Kmett provided many
reference implementations and is helping set the future expansion of
the foldable class lineage in Witchcraft.
Interested in learning more of the underlying ideas? The maintainers can heavily
recommend Conceptual Mathematics,
Category Theory for the Sciences,
and Categories for the Working Mathematician.
Reading these books probably won't change your code overnight. Some people call it
"general abstract nonsense"
for a reason. That said, it does provide a nice framework for thinking about
these abstract ideas, and is a recommended pursuit for all that are curious.
Credits
Logo
A big thank you to Brandon Labbé for creating
the project logo.
Sponsor
Robot Overlord sponsors much of the development of Witchcraft,
and dogfoods the library in real-world applications.

Witchcraft

Top level module
Hierarchy
Semigroupoid Semigroup Setoid Foldable Functor -----------┐
 ↓ ↓ ↓ ↓ ↙ ↓ ↘ |
 Category Monoid Ord Traversable Apply Bifunctor |
 ↓ ↙ ↘ ↓
 Arrow Applicative Chain Extend
 ↘ ↙ ↓
 Monad Comonad
use Witchcraft
There is a convenient use macro to import all functions in the library.
use Witchcraft
This recursively calls use on all children modules.
Any options passed to use will be passed down to all dependencies.
use Witchcraft, except: [right_fold: 2]
If you would like to not override the functions and operators from Kernel,
you can pass the special option override_kernel: false.
use Witchcraft, override_kernel: false
This same style of use is also available on all submodules, and follow
the dependency chart (above).

Witchcraft.Applicative

Applicative extends Apply with the ability to lift value into a
particular data type or "context".
This fills in the connection between regular function application and Apply
 data --------------- function ---------------> result
 | | |
 of(Container, data) of(Container, function) of(Container, result)
 ↓ ↓ ↓
%Container<data> --- %Container<function> ---> %Container<result>
Type Class
An instance of Witchcraft.Applicative must also implement Witchcraft.Apply,
and define Witchcraft.Applicative.of/2.
 Functor [map/2]
 ↓
 Apply [convey/2]
 ↓
 Applicative [of/2]

 Anchor for this section

 Summary

 Types

 t()

 Functions

 of(sample)

 Partially apply of/2, generally as a way to bring many values into the same context.

 of(sample, to_wrap)

 Bring a value into the same data type as some sample

 pure(sample, to_wrap)

 Alias for of/2, for cases that this helps legibility or style.

 to(to_wrap)

 Prime a value to be brought into other data types

 to(to_wrap, sample)

 of/2 with arguments reversed.

 unit(sample, to_wrap)

 Alias for of/2, for cases that this helps legibility or style

 wrap(sample, to_wrap)

 Alias for of/2, for cases that this helps legibility or style.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: any()

 Anchor for this section

Functions

 Link to this function

 of(sample)

 View Source

 Specs

 of(t()) :: (any() -> t())

Partially apply of/2, generally as a way to bring many values into the same context.

 Examples

iex> {"very example", "much wow"}
...> |> of()
...> |> Witchcraft.Functor.across([42, "hello", [1, 2, 3]])
[{"", 42}, {"", "hello"}, {"", [1, 2, 3]}]

 Link to this function

 of(sample, to_wrap)

 View Source

 Specs

 of(t(), any()) :: t()

Bring a value into the same data type as some sample

 Examples

iex> of([], 42)
[42]

iex> of([1, 2, 3], 42)
[42]

iex> of({"a", "b", 155}, 42)
{"", "", 42}

iex> of(fn -> nil end, 42).(55)
42

iex> of(fn(a, b, c) -> a + b - c end, 42).(55)
42

iex> import Witchcraft.Apply
...>
...> []
...> |> of(&+/2)
...> |> provide([1, 2, 3])
...> |> ap(of([], 42))
[43, 44, 45]

 Link to this function

 pure(sample, to_wrap)

 View Source

 Specs

 pure(t(), any()) :: t()

Alias for of/2, for cases that this helps legibility or style.

 Example

iex> pure({"ohai", "thar"}, 42)
{"", 42}

iex> [] |> pure(42)
[42]

 Link to this function

 to(to_wrap)

 View Source

 Specs

 to(any()) :: (t() -> t())

Prime a value to be brought into other data types

 Example

iex> make = to(42)
...> make.({"ohai", "thar"})
{"", 42}
...> make.([])
[42]

 Link to this function

 to(to_wrap, sample)

 View Source

 Specs

 to(any(), t()) :: t()

of/2 with arguments reversed.

 Example

iex> to(42, {"ohai", "thar"})
{"", 42}

iex> 42 |> to([])
[42]

42 |> to(%Algae.Id{})
#=> %Algae.Id{id: 42}

 Link to this function

 unit(sample, to_wrap)

 View Source

 Specs

 unit(t(), any()) :: t()

Alias for of/2, for cases that this helps legibility or style

 Example

iex> unit({":)", ":("}, 42)
{"", 42}

iex> [] |> unit(42)
[42]

 Link to this function

 wrap(sample, to_wrap)

 View Source

 Specs

 wrap(t(), any()) :: t()

Alias for of/2, for cases that this helps legibility or style.

 Example

iex> wrap({":|", "^.~"}, 42)
{"", 42}

iex> [] |> wrap(42)
[42]

Witchcraft.Applicative.Proto protocol

Protocol for the Elixir.Witchcraft.Applicative type class
For this type class's API, please refer to Elixir.Witchcraft.Applicative

 Anchor for this section

 Summary

 Types

 t()

 Functions

 of(sample, to_wrap)

 Bring a value into the same data type as some sample

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: term()

 Anchor for this section

Functions

 Link to this function

 of(sample, to_wrap)

 View Source

 Specs

 of(Witchcraft.Applicative.t(), any()) :: Witchcraft.Applicative.t()

Bring a value into the same data type as some sample

 Examples

iex> of([], 42)
[42]

iex> of([1, 2, 3], 42)
[42]

iex> of({"a", "b", 155}, 42)
{"", "", 42}

iex> of(fn -> nil end, 42).(55)
42

iex> of(fn(a, b, c) -> a + b - c end, 42).(55)
42

iex> import Witchcraft.Apply
...>
...> []
...> |> of(&+/2)
...> |> provide([1, 2, 3])
...> |> ap(of([], 42))
[43, 44, 45]

Witchcraft.Apply

An extension of Witchcraft.Functor, Apply provides a way to apply arguments
to functions when both are wrapped in the same kind of container. This can be
seen as running function application "in a context".
For a nice, illustrated introduction,
see Functors, Applicatives, And Monads In Pictures.
Graphically
If function application looks like this
data |> function == result
and a functor looks like this
%Container<data> ~> function == %Container<result>
then an apply looks like
%Container<data> ~>> %Container<function> == %Container<result>
which is similar to function application inside containers, plus the ability to
attach special effects to applications.
 data --------------- function ---------------> result
%Container<data> --- %Container<function> ---> %Container<result>
This lets us do functorial things like
	continue applying values to a curried function resulting from a Witchcraft.Functor.lift/2
	apply multiple functions to multiple arguments (with lists)
	propogate some state (like Nothing
in Algae.Maybe)

but now with a much larger number of arguments, reuse partially applied functions,
and run effects with the function container as well as the data container.
Examples
iex> ap([fn x -> x + 1 end, fn y -> y * 10 end], [1, 2, 3])
[2, 3, 4, 10, 20, 30]

iex> [100, 200]
...> |> Witchcraft.Functor.lift(fn(x, y, z) -> x * y / z end)
...> |> provide([5, 2])
...> |> provide([100, 50])
[5.0, 10.0, 2.0, 4.0, 10.0, 20.0, 4.0, 8.0]
↓ ↓
100 * 5 / 100 200 * 5 / 50

iex> import Witchcraft.Functor
...>
...> [100, 200]
...> ~> fn(x, y, z) ->
...> x * y / z
...> end <<~ [5, 2]
...> <<~ [100, 50]
[5.0, 10.0, 2.0, 4.0, 10.0, 20.0, 4.0, 8.0]
↓ ↓
100 * 5 / 100 200 * 5 / 50

%Algae.Maybe.Just{just: 42}
~> fn(x, y, z) ->
 x * y / z
end <<~ %Algae.Maybe.Nothing{}
 <<~ %Algae.Maybe.Just{just: 99}
#=> %Algae.Maybe.Nothing{}
convey vs ap
convey and ap essentially associate in opposite directions. For example,
large data is usually more efficient with ap, and large numbers of
functions are usually more efficient with convey.
It's also more consistent consistency. In Elixir, we like to think of a "subject"
being piped through a series of transformations. This places the function argument
as the second argument. In Witchcraft.Functor, this was of little consequence.
However, in Apply, we're essentially running superpowered function application.
ap is short for apply, as to not conflict with Kernel.apply/2, and is meant
to respect a similar API, with the function as the first argument. This also reads
nicely when piped, as it becomes [funs] |> ap([args1]) |> ap([args2]),
which is similar in structure to fun.(arg2).(arg1).
With potentially multiple functions being applied over potentially
many arguments, we need to worry about ordering. convey not only flips
the order of arguments, but also who is in control of ordering.
convey typically runs each function over all arguments (first_fun ⬸ all_args),
and ap runs all functions for each element (first_arg ⬸ all_funs).
This may change the order of results, and is a feature, not a bug.
iex> [1, 2, 3]
...> |> convey([&(&1 + 1), &(&1 * 10)])
[
 2, 10, # [(1 + 1), (1 * 10)]
 3, 20, # [(2 + 1), (2 * 10)]
 4, 30 # [(3 + 1), (3 * 10)]
]

iex> [&(&1 + 1), &(&1 * 10)]
...> |> ap([1, 2, 3])
[
 2, 3, 4, # [(1 + 1), (2 + 1), (3 + 1)]
 10, 20, 30 # [(1 * 10), (2 * 10), (3 * 10)]
]
Type Class
An instance of Witchcraft.Apply must also implement Witchcraft.Functor,
and define Witchcraft.Apply.convey/2.
Functor [map/2]
 ↓
 Apply [convey/2]

 Anchor for this section

 Summary

 Types

 fun()

 t()

 Functions

 wrapped_funs <<~ wrapped

 Operator alias for ap/2

 wrapped ~>> wrapped_funs

 Operator alias for reverse_ap/2, moving in the pipe direction

 ap(wrapped_funs, wrapped)

 Reverse arguments and sequencing of convey/2.

 async_ap(wrapped_funs, wrapped_args)

 Async version of ap/2

 async_convey(wrapped_args, wrapped_funs)

 Async version of convey/2

 async_lift(a, b, fun)

 Extends Functor.async_lift/2 to apply arguments to a binary function

 async_lift(a, b, c, fun)

 Extends async_lift to apply arguments to a ternary function

 async_lift(a, b, c, d, fun)

 Extends async_lift to apply arguments to a quaternary function

 async_over(fun, a, b)

 Extends async_over to apply arguments to a binary function

 async_over(fun, a, b, c)

 Extends async_over to apply arguments to a ternary function

 async_over(fun, a, b, c, d)

 Extends async_over to apply arguments to a ternary function

 convey(wrapped_args, wrapped_funs)

 Pipe arguments to functions, when both are wrapped in the same
type of data structure.

 following(wrapped_a, wrapped_b)

 Sequence actions, replacing the last argument with the first argument's values

 hose(wrapped_args, wrapped_funs)

 Alias for convey/2.

 lift(a, b, fun)

 Extends Functor.lift/2 to apply arguments to a binary function

 lift(a, b, c, fun)

 Extends lift to apply arguments to a ternary function

 lift(a, b, c, d, fun)

 Extends lift to apply arguments to a quaternary function

 over(fun, a, b)

 Extends over to apply arguments to a binary function

 over(fun, a, b, c)

 Extends over to apply arguments to a ternary function

 over(fun, a, b, c, d)

 Extends over to apply arguments to a ternary function

 provide(funs, args)

 Same as ap/2, but with all functions curried.

 supply(args, funs)

 Same as convey/2, but with all functions curried.

 then(wrapped_a, wrapped_b)

 Sequence actions, replacing the first/previous values with the last argument

 Anchor for this section

Types

 Link to this type

 fun()

 View Source

 Specs

 fun() :: any()

 Link to this type

 t()

 View Source

 Specs

 t() :: any()

 Anchor for this section

Functions

 Link to this function

 wrapped_funs <<~ wrapped

 View Source

Operator alias for ap/2
Moves against the pipe direction, but in the order of normal function application

 Examples

iex> [fn x -> x + 1 end, fn y -> y * 10 end] <<~ [1, 2, 3]
[2, 3, 4, 10, 20, 30]

iex> import Witchcraft.Functor
...>
...> [100, 200]
...> ~> fn(x, y, z) -> x * y / z
...> end <<~ [5, 2]
...> <<~ [100, 50]
...> ~> fn x -> x + 1 end
[6.0, 11.0, 3.0, 5.0, 11.0, 21.0, 5.0, 9.0]

iex> import Witchcraft.Functor, only: [<~: 2]
...> fn(a, b, c, d) -> a * b - c + d end <~ [1, 2] <<~ [3, 4] <<~ [5, 6] <<~ [7, 8]
[5, 6, 4, 5, 6, 7, 5, 6, 8, 9, 7, 8, 10, 11, 9, 10]

 Link to this function

 wrapped ~>> wrapped_funs

 View Source

Operator alias for reverse_ap/2, moving in the pipe direction

 Examples

iex> [1, 2, 3] ~>> [fn x -> x + 1 end, fn y -> y * 10 end]
[2, 10, 3, 20, 4, 30]

iex> import Witchcraft.Functor
...>
...> [100, 50]
...> ~>> ([5, 2] # Note the bracket
...> ~>> ([100, 200] # on both `Apply` lines
...> ~> fn(x, y, z) -> x * y / z end))
[5.0, 10.0, 2.0, 4.0, 10.0, 20.0, 4.0, 8.0]

 Link to this function

 ap(wrapped_funs, wrapped)

 View Source

 Specs

 ap((... -> any()), t()) :: t()

Reverse arguments and sequencing of convey/2.
Conceptually this makes operations happen in
a different order than convey/2, with the left-side arguments (functions) being
run on all right-side arguments, in that order. We're altering the sequencing
of function applications.

 Examples

iex> ap([fn x -> x + 1 end, fn y -> y * 10 end], [1, 2, 3])
[2, 3, 4, 10, 20, 30]

For comparison
iex> convey([1, 2, 3], [fn x -> x + 1 end, fn y -> y * 10 end])
[2, 10, 3, 20, 4, 30]

iex> [100, 200]
...> |> Witchcraft.Functor.lift(fn(x, y, z) -> x * y / z end)
...> |> ap([5, 2])
...> |> ap([100, 50])
[5.0, 10.0, 2.0, 4.0, 10.0, 20.0, 4.0, 8.0]
↓ ↓
100 * 5 / 100 200 * 5 / 50

 Link to this function

 async_ap(wrapped_funs, wrapped_args)

 View Source

 Specs

 async_ap((... -> any()), t()) :: t()

Async version of ap/2

 Examples

iex> [fn x -> x + 1 end, fn y -> y * 10 end]
...> |> async_ap([1, 2, 3])
[2, 3, 4, 10, 20, 30]

[
 fn x ->
 Process.sleep(500)
 x + 1
 end,
 fn y ->
 Process.sleep(500)
 y * 10
 end
]
|> async_ap(Enum.to_list(0..10_000))
#=> [1, 2, 3, 4, ...] in around a second

 Link to this function

 async_convey(wrapped_args, wrapped_funs)

 View Source

 Specs

 async_convey(t(), (... -> any())) :: t()

Async version of convey/2

 Examples

iex> [1, 2, 3]
...> |> async_convey([fn x -> x + 1 end, fn y -> y * 10 end])
[2, 10, 3, 20, 4, 30]

0..10_000
|> Enum.to_list()
|> async_convey([
 fn x ->
 Process.sleep(500)
 x + 1
 end,
 fn y ->
 Process.sleep(500)
 y * 10
 end
])
#=> [1, 0, 2, 10, 3, 30, ...] in around a second

 Link to this function

 async_lift(a, b, fun)

 View Source

 Specs

 async_lift(t(), t(), (... -> any())) :: t()

Extends Functor.async_lift/2 to apply arguments to a binary function

 Examples

iex> async_lift([1, 2], [3, 4], &+/2)
[4, 5, 5, 6]

iex> [1, 2]
...> |> async_lift([3, 4], &*/2)
[3, 6, 4, 8]

 Link to this function

 async_lift(a, b, c, fun)

 View Source

 Specs

 async_lift(t(), t(), t(), (... -> any())) :: t()

Extends async_lift to apply arguments to a ternary function

 Examples

iex> async_lift([1, 2], [3, 4], [5, 6], fn(a, b, c) -> a * b - c end)
[-2, -3, 1, 0, -1, -2, 3, 2]

 Link to this function

 async_lift(a, b, c, d, fun)

 View Source

 Specs

 async_lift(t(), t(), t(), t(), (... -> any())) :: t()

Extends async_lift to apply arguments to a quaternary function

 Examples

iex> async_lift([1, 2], [3, 4], [5, 6], [7, 8], fn(a, b, c, d) -> a * b - c + d end)
[5, 6, 4, 5, 8, 9, 7, 8, 6, 7, 5, 6, 10, 11, 9, 10]

 Link to this function

 async_over(fun, a, b)

 View Source

 Specs

 async_over((... -> any()), t(), t()) :: t()

Extends async_over to apply arguments to a binary function

 Examples

iex> async_over(&+/2, [1, 2], [3, 4])
[4, 5, 5, 6]

iex> (&*/2)
...> |> async_over([1, 2], [3, 4])
[3, 4, 6, 8]

 Link to this function

 async_over(fun, a, b, c)

 View Source

 Specs

 async_over((... -> any()), t(), t(), t()) :: t()

 async_over((... -> any()), t(), t(), t()) :: t()

Extends async_over to apply arguments to a ternary function

 Examples

iex> fn(a, b, c) -> a * b - c end
iex> |> async_over([1, 2], [3, 4], [5, 6])
[-2, -3, -1, -2, 1, 0, 3, 2]

 Link to this function

 async_over(fun, a, b, c, d)

 View Source

Extends async_over to apply arguments to a ternary function

 Examples

iex> fn(a, b, c) -> a * b - c end
...> |> async_over([1, 2], [3, 4], [5, 6])
[-2, -3, -1, -2, 1, 0, 3, 2]

 Link to this function

 convey(wrapped_args, wrapped_funs)

 View Source

 Specs

 convey(t(), (... -> any())) :: t()

Pipe arguments to functions, when both are wrapped in the same
type of data structure.

 Examples

iex> [1, 2, 3]
...> |> convey([fn x -> x + 1 end, fn y -> y * 10 end])
[2, 10, 3, 20, 4, 30]

 Link to this function

 following(wrapped_a, wrapped_b)

 View Source

 Specs

 following(t(), t()) :: t()

Sequence actions, replacing the last argument with the first argument's values
This is essentially a sequence of actions forgetting the second argument

 Examples

iex> [1, 2, 3]
...> |> following([3, 4, 5])
...> |> following([5, 6, 7])
[
 1, 1, 1, 1, 1, 1, 1, 1, 1,
 2, 2, 2, 2, 2, 2, 2, 2, 2,
 3, 3, 3, 3, 3, 3, 3, 3, 3
]

iex> {1, 2, 3} |> following({4, 5, 6}) |> following({7, 8, 9})
{12, 15, 3}

 Link to this function

 hose(wrapped_args, wrapped_funs)

 View Source

 Specs

 hose(t(), (... -> any())) :: t()

Alias for convey/2.
Why "hose"?
	Pipes (|>) are application with arguments flipped
	ap/2 is like function application "in a context"
	The opposite of ap is a contextual pipe
	hoses are a kind of flexible pipe

Q.E.D.
[image:]

 Examples

iex> [1, 2, 3]
...> |> hose([fn x -> x + 1 end, fn y -> y * 10 end])
[2, 10, 3, 20, 4, 30]

 Link to this function

 lift(a, b, fun)

 View Source

 Specs

 lift(t(), t(), (... -> any())) :: t()

Extends Functor.lift/2 to apply arguments to a binary function

 Examples

iex> lift([1, 2], [3, 4], &+/2)
[4, 5, 5, 6]

iex> [1, 2]
...> |> lift([3, 4], &*/2)
[3, 6, 4, 8]

 Link to this function

 lift(a, b, c, fun)

 View Source

 Specs

 lift(t(), t(), t(), (... -> any())) :: t()

Extends lift to apply arguments to a ternary function

 Examples

iex> lift([1, 2], [3, 4], [5, 6], fn(a, b, c) -> a * b - c end)
[-2, -3, 1, 0, -1, -2, 3, 2]

 Link to this function

 lift(a, b, c, d, fun)

 View Source

 Specs

 lift(t(), t(), t(), t(), (... -> any())) :: t()

Extends lift to apply arguments to a quaternary function

 Examples

iex> lift([1, 2], [3, 4], [5, 6], [7, 8], fn(a, b, c, d) -> a * b - c + d end)
[5, 6, 4, 5, 8, 9, 7, 8, 6, 7, 5, 6, 10, 11, 9, 10]

 Link to this function

 over(fun, a, b)

 View Source

 Specs

 over((... -> any()), t(), t()) :: t()

Extends over to apply arguments to a binary function

 Examples

ie