

 WebSock

 v0.4.1

 Table of contents

 	Modules

 	WebSock

WebSock behaviour

Defines a behaviour which defines an interface for web servers to flexibly host WebSocket
applications. Also provides a consistent upgrade facility to upgrade Plug.Conn requests to
WebSock connections for supported servers.
WebSocket connections go through a well defined lifecycle mediated by WebSock:
	This step is outside the scope of the WebSock API. A client will
attempt to Upgrade an HTTP connection to a WebSocket connection by passing
a specific set of headers in an HTTP request. An application may choose to
determine the feasibility of such an upgrade request however it pleases
	An application will then signal an upgrade to be performed by calling WebSock.upgrade/4, passing
in the Plug.Conn to upgrade, along with the WebSock compliant handler module which
will handle the connection once it is upgraded
	The underlying server will then attempt to upgrade the HTTP connection to a WebSocket connection
	Assuming the WebSocket connection is successfully negotiated, WebSock will
call WebSock.init/1 on the configured handler to allow the application to perform any necessary
tasks now that the WebSocket connection is live
	WebSock will call the configued handler's WebSock.handle_in/2 callback
whenever data is received from the client
	WebSock will call the configued handler's WebSock.handle_info/2 callback
whenever other processes send messages to the handler process
	The WebSock implementation can send data to the client by returning
a {:push,...} tuple from any of the above handle_* callback
	At any time, WebSock.terminate/2 may be called to indicate a close, error or
timeout condition

 Anchor for this section

 Summary

 Types

 close_reason()

 Details about why a connection was closed

 connection_opt()

 The type of a supported connection option

 control_opcode()

 Possible control frame types

 data_opcode()

 Possible data frame types

 handle_result()

 The result as returned from init, handle_in, handle_control & handle_info calls

 impl()

 The type of an implementing module

 message()

 The structure of a sent or received WebSocket message body

 opcode()

 All possible frame types

 state()

 The type of state passed into / returned from WebSock callbacks

 Callbacks

 handle_control({}, state)

 Called by WebSock when a ping or pong frame has been received from the client. Note that
implementations SHOULD NOT send a pong frame in response; this MUST be automatically done by the
web server before this callback has been called.

 handle_in({}, state)

 Called by WebSock when a frame is received from the client. WebSock will only call this function
once a complete frame has been received (that is, once any continuation frames have been
received).

 handle_info(term, state)

 Called by WebSock when the socket process receives a GenServer.handle_info/2 call which was
not otherwise processed by the server implementation.

 init(term)

 Called by WebSock after a WebSocket connection has been established (that is, after the server
has accepted the connection & the WebSocket handshake has been successfully completed).
Implementations can use this callback to perform tasks such as subscribing the client to any
relevant subscriptions within the application, or any other task which should be undertaken at
the time the connection is established

 terminate(reason, state)

 Called by WebSock when a connection is closed. reason may be one of the following

 Functions

 upgrade(conn, websock, state, opts)

 Upgrades the provided Plug.Conn connection request to a WebSock connection using the
provided WebSock compliant module as a handler.

 Anchor for this section

Types

 Link to this type

 close_reason()

 View Source

 @type close_reason() :: :normal | :remote | :shutdown | :timeout | {:error, term()}

Details about why a connection was closed

 Link to this type

 connection_opt()

 View Source

 @type connection_opt() ::
 {:compress, boolean()}
 | {:timeout, timeout()}
 | {:max_frame_size, non_neg_integer()}
 | {:fullsweep_after, non_neg_integer()}

The type of a supported connection option

 Link to this type

 control_opcode()

 View Source

 @type control_opcode() :: :ping | :pong

Possible control frame types

 Link to this type

 data_opcode()

 View Source

 @type data_opcode() :: :text | :binary

Possible data frame types

 Link to this type

 handle_result()

 View Source

 @type handle_result() ::
 {:push, {opcode(), message()}, state()}
 | {:reply, term(), {opcode(), message()}, state()}
 | {:ok, state()}
 | {:stop, term(), state()}

The result as returned from init, handle_in, handle_control & handle_info calls

 Link to this type

 impl()

 View Source

 @type impl() :: module()

The type of an implementing module

 Link to this type

 message()

 View Source

 @type message() :: iodata() | nil

The structure of a sent or received WebSocket message body

 Link to this type

 opcode()

 View Source

 @type opcode() :: data_opcode() | control_opcode()

All possible frame types

 Link to this type

 state()

 View Source

 @type state() :: term()

The type of state passed into / returned from WebSock callbacks

 Anchor for this section

Callbacks

 Link to this callback

 handle_control({}, state)

 View Source

 (optional)

 @callback handle_control(
 {message(), [{:opcode, control_opcode()}]},
 state()
) :: handle_result()

Called by WebSock when a ping or pong frame has been received from the client. Note that
implementations SHOULD NOT send a pong frame in response; this MUST be automatically done by the
web server before this callback has been called.
Despite the name of this callback, it is not called for connection close frames even though they
are technically control frames. WebSock will handle any received connection
close frames and issue calls to terminate/2 as / if appropriate
This callback is optional
The return value from this callback is handled as described in handle_in/2

 Link to this callback

 handle_in({}, state)

 View Source

 @callback handle_in(
 {message(), [{:opcode, data_opcode()}]},
 state()
) :: handle_result()

Called by WebSock when a frame is received from the client. WebSock will only call this function
once a complete frame has been received (that is, once any continuation frames have been
received).
The return value from this callback are processed as follows:
	{:push, {opcode(), message()}, state()}: The indicated message is sent to the client. The
indicated state value is used to update the socket's current state
	{:reply, term(), {opcode(), message()}, state()}: The indicated message is sent to the client. The
indicated state value is used to update the socket's current state. The second element of the
tuple has no semantic meaning in this context and is ignored. This return tuple is included
here solely for backwards compatiblity with the Phoenix.Socket.Transport behaviour; it is in
all respects semantically identical to the {:push, ...} return value previously described
	{:ok, state()}: The indicated state value is used to update the socket's current state
	{:stop, reason :: term(), state()}: The connection will be closed based on the indicated
reason. If reason is :normal, terminate/2 will be called with a reason value of
:normal. In all other cases, it will be called with {:error, reason}. Server
implementations should also use this value when determining how to close the connection with
the client

 Link to this callback

 handle_info(term, state)

 View Source

 @callback handle_info(term(), state()) :: handle_result()

Called by WebSock when the socket process receives a GenServer.handle_info/2 call which was
not otherwise processed by the server implementation.
The return value from this callback is handled as described in handle_in/2

 Link to this callback

 init(term)

 View Source

 @callback init(term()) :: handle_result()

Called by WebSock after a WebSocket connection has been established (that is, after the server
has accepted the connection & the WebSocket handshake has been successfully completed).
Implementations can use this callback to perform tasks such as subscribing the client to any
relevant subscriptions within the application, or any other task which should be undertaken at
the time the connection is established
The return value from this callback is handled as described in handle_in/2

 Link to this callback

 terminate(reason, state)

 View Source

 @callback terminate(reason :: close_reason(), state()) :: any()

Called by WebSock when a connection is closed. reason may be one of the following:
	:normal: The local end shut down the connection normally, by returning a {:stop, :normal, state()} tuple from one of the WebSock.handle_* callbacks
	:remote: The remote end shut down the connection
	:shutdown: The local server is being shut down
	:timeout: No data has been sent or received for more than the configured timeout duration
	{:error, reason}: An error ocurred. This may be the result of error
handling in the local server, or the result of a WebSock.handle_* callback returning a {:stop, reason, state} tuple where reason is any value other than :normal

The return value of this callback is ignored

 Anchor for this section

Functions

 Link to this function

 upgrade(conn, websock, state, opts)

 View Source

 @spec upgrade(Plug.Conn.t(), impl(), state(), [connection_opt()]) :: Plug.Conn.t()

Upgrades the provided Plug.Conn connection request to a WebSock connection using the
provided WebSock compliant module as a handler.
This function returns the passed conn set to an :upgraded state.
The provided state value will be used as the argument for init/1 once the WebSocket
connection has been successfully negotiated.
The opts keyword list argument allows a number of options to be set on the WebSocket
connection. Not all options may be supported by the underlying HTTP server. Possible values are
as follows:
	timeout: The number of milliseconds to wait after no client data is received before
closing the connection. Defaults to 60_000
	compress: Whether or not to accept negotiation of a compression extension with the client.
Defaults to false
	max_frame_size: The maximum frame size to accept, in octets. If a frame size larger than this
is received the connection will be closed. Defaults to :infinity
	:fullsweep_after: The maximum number of garbage collections before forcing a fullsweep of
the WebSocket connection process. Setting this option requires OTP 24 or newer

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

