

 vintage_net_wizard

 v0.4.3

 Table of contents

 	VintageNet WiFi Configuration Wizard

 	JSON API

 	Changelog

 	Modules

 	VintageNetWizard

 	VintageNetWizard.APMode

 	VintageNetWizard.Backend

 	VintageNetWizard.Backend.Default

 	VintageNetWizard.Backend.Mock

 	VintageNetWizard.BackendServer

 	VintageNetWizard.Callbacks

 	VintageNetWizard.Web.Endpoint

 	VintageNetWizard.WiFiConfiguration

VintageNet WiFi Configuration Wizard
[image: CircleCI]
[image: Coverage Status]
[image: Hex version]
This is a WiFi configuration wizard that uses
VintageNet. It is intended
for use in Nerves-based devices that don't have a display for configuring WiFi.
Here's the intended use:
	On device initialization, if WiFi hasn't been configured, configure WiFi to
AP mode and start a webserver
	A user connects to the access point and opens a web browser. The only
website they can go to in the configuration utility.
	The configuration utility shows a list of access points and the user can
select one or more or enter information for a hidden access point
	The user applies the configuration and the device stops AP mode and connects
to the access point.

VintageNet persists WiFi configuration so the device will be able to connect
after reboots and power outages. To change the configuration later, a user needs
to take a device-specific action like hold down a button for 5 seconds. This
library has an example project for the Raspberry Pi for use as a demo.
[image: see it in action]
Features
	[x] - Simple web-based configuration utility
	[x] - WiFi scanning while in AP mode
	[x] - JSON REST-based API to support smartphone app-based configuration
	[x] - Captive portal detection
	[x] - WPA PSK configuration
	[] - WPA EAP configuration
	[x] - Hidden AP configuration
	[x] - Multiple AP selection (device tries access points in order until one
works)
	[] - Custom styling and branding

Supported WiFi adapters
Not all WiFi adapters support AP mode. Here are the ones that we've used:
	Raspberry Pis with built-in WiFi modules (like the RPi 3, 4 and Zero W)
	RT5370-based USB modules
	Edimax EW-7612UAn V2 (See note)

It is highly likely that other modules work. We have not had any luck with
other Realtek RTL8192c (in the popular Edimax EW7811Un) or MediaTek MT7601u (in
lots of brands).
NOTE: For the Edimax EW-7612UAn V2 to work, you'll need to create a custom
Nerves system with CONFIG_RTL8192CU=m in the linux-x.xx.defconfig as well as
BR2_PACKAGE_LINUX_FIRMWARE=y and BR2_PACKAGE_LINUX_FIRMWARE_RTL_81XX=y in
nerves_defconfig.
Configuration
It is expected that you're using
VintageNet already. If
you're not, see that project first.
VintageNetWizard is an OTP application so it's mostly self-contained. Add it
to your mix dependencies like so:
 {:vintage_net_wizard, "~> 0.4"}
The configuration wizard is not started by default to allow for more control
over business specific situations. You will need to add a call in your code
when you want the device placed into AP mode and the wizard started:
defmodule MyApp do
 use Application

 def start(_type, _args) do
 if should_start_wizard?() do
 VintageNetWizard.run_wizard
 end
 # ...
 Supervisor.start_link(children, opts)
 end
end
This will be sufficient to try it out on a device that hasn't been configured
yet. You will want to add a mechanism for forcing the wizard the run WiFi
configuration again, such as holding a button for 5+ seconds. Take a look at
Running the example section for steps on setting up
a button and running a quick example firmware on a device.
UI Customization
VintageNetWizard allows you to add customization to the UI. The three UI
items that can be customized are: :title, :title_color, and
:button_color.
VintageNetWizard.run_wizard(
 ui: [title: "My WiFi Wizard", title_color: "red", button_color: "#F0F0AD"]
)
Each configuration option is optional and will fall back to
VintageNetWizards default colors and title.
DNS in AP-mode
When the wizard is running, users go to either http://192.168.0.1/ or
http://wifi.config/ to access the web user interface. The latter can be
changed via the config.exs:
config :vintage_net_wizard,
 dns_name: "my-wifi-config.com"
Port
VintageNetWizard starts a webserver on port 80 by default. If port 80 is
not available on your device or you would prefer a different port, add the
following to your config.exs:
config :vintage_net_wizard,
 port: 4001
If SSL is enabled the default port is 443.
SSL
To use SSL with the web UI, you can pass SSL options to
VintageNetWizard.run_wizard/1:
VintageNetWizard.run_wizard(ssl: [keyfile: "/path/to/key.pem", certfile: "/path/to/cert.pem"])
To see all available options see Plug.SSL.configure/1 and Erlang's :ssl
module.
Device Info
If you want to display extra data about the device in the footer of the UI you
can pass in a list of key-value pairs to VintageNetWizard.run_wizard/1:
VintageNetWizard.run_wizard(device_info: [{"Serial number", "1234"}, {"Version", "0.1.0"}])
The first item in the key-value pair is display name of the info and the second
item will be the value of the item.
Interface name
VintageNetWizard uses "wlan0" by default. If you have more than one wireless
LAN or the interface is called something else, pass the appropriate interface
name to VintageNetWizard.run_wizard/1 to use it:
VintageNetWizard.run_wizard(ifname: "wlan1")
Backends
Backends control how VintageNetWizard configures the network. The default
backend changes the network configuration as you would expect. This can get in
the way of development and can be disabled by using the
VintageNetWizard.Backend.Mock backend:
config :vintage_net_wizard,
 backend: VintageNetWizard.Backend.Mock
Captive Portal
Captive portal is enabled by default. If using a port other than 80 then all
traffic on port 80 will be captured and redirected to the specified wizard
address in order to trigger the portal.
You can disable captive portal in your configuration:
config :vintage_net_wizard, captive_portal: false
Inactivity Timeout
After a set mount of time of inactivity the wizard will timeout and shut down
the server. This prevents a device using the wizard to infinitely be in AP mode.
The default timeout is 10 minutes, but can be configured:
config :vintage_net_wizard,
 inactivity_timeout: <timeout in minutes>
JSON API
It is possible to write a smartphone app to configure your device using an API
endpoint. Documentation for the API is in json-api.md.
Running the example
The example builds a Nerves firmware image for supported Nerves devices
 that demonstrates the wizard. The wizard will run on
the first boot and also after a button has been held down for 5 seconds.
For the button to work, you'll need to wire up a button to GPIO 17/pin 11 and
3v3/pin 1 on the Raspberry Pi's GPIO header. See the image below for the
location:
[image: Raspberry Pi Pinout from pinout.xyz]
If you don't have a button, you can use a jumper wire to temporarily connect 3v3
power to pin 11. If you have a Raspberry Pi hat with a button connected to a
different GPIO pin, you can specify with pin to use in your config:
config :wizard_example, gpio_pin: 27
The next step is to build the firmware. Make sure that you've installed Nerves
and run the following:
cd example

Set the target to rpi0, rpi3, or rpi4 depending on what you have
export MIX_TARGET=rpi3
mix deps.get
mix firmware

Insert a MicroSD card or whatever media your board takes
mix burn
Place the MicroSD card in the Raspberry Pi and power it on. You should see a
WiFi access point appear with the SSID "nerves-1234" where "1234" are part of
the device's serial number. Connect to the access point and then point your web
browser at http://wifi.config or
http://192.168.0.1/. If you've configured an SSL
certificate, it's possible to use https. You may also need to change the
:dns_name configuration to match the name on your SSL certificate.
The SSID defaults to the hostname of the device, and you can change the SSID via
the config.exs:
config :vintage_net_wizard,
 ssid: "MY_SSID"
Stop callback
If your application runs a webserver or has other functionality that is
incompatible with the wizard, you can use the :on_exit option to
VintageNetWizard.run_wizard/1 to register a completion callback. The callback
has the form, {module, function, args}. Here's an example:
defmodule MyApp do
 def start_wizard() do
 VintageNetWizard.run_wizard(
 on_exit: {__MODULE__, :handle_on_exit, []}
)
 end

 def handle_on_exit() do
 Logger.info("VintageNetWizard stopped")
 end
end
Development
It's possible to work on the wizard locally and without using Nerves or changing
the network settings of your development machine:
$ mix deps.get
$ iex -S mix

iex> VintageNetWizard.run_wizard

07:49:00.710 [info] Go to http://localhost:4001/
:ok
Look in lib/vintage_net_wizard/backend/mock.ex if you need to change anything
for your testing.

JSON API
Endpoints
	Get Access Points
	Configure SSID Priority
	Configure an SSID
	Delete an SSID configuration
	Get Configurations
	Get Configuration Status
	Apply
	Complete the Configuration Process

Get access points
This request returns a list of known access points and their properties. Hidden
access points are not returned.
Path: /api/v1/access_points
Method: GET
Response: Array AccessPoint
Response Code: 200
Response
[
 {
 "ssid": "Free WiFi!",
 "frequency": 2437,
 "band": "wifi_2_4_ghz",
 "channel": 6,
 "flags": ["ess"],
 "signal_percent": 100,

 },
 {
 "ssid": "Imperial Star Destroyer",
 "frequency": 5755,
 "band": "wifi_5_ghz",
 "channel": 151,
 "flags": ["wpa2_psk_ccmp", "ess"],
 "signal_percent": 75
 }
]
Configure SSID priority
This endpoint takes a list of SSIDs. Each SSID is tried in order until a
successful connection is made. It is not required to list all configured SSIDs.
Path: /api/v1/ssids
Method: PUT
Request: Array String
Response: Empty
Response Code: 204
Example
Request
[
 "Millennium Falcon",
 "Death Star",
 "TIE-fighter-01",
 "lukes-lightsaber"
]
Configure an SSID
Set connection parameters for an SSID.
Path: /api/v1/<ssid>/configuration
Method: PUT
Request: WiFiConfiguration
Response: Empty
Response Code: 204
Example
Request
/api/v1/millennium-falcon/configuration
{
 "key_mgmt": "wpa_psk",
 "password": "Chewbacca"
}
Errors
If the configuration is passed is invalid the endpoint will return with a 400
status with one of the below errors:
{
 "error": "password_required",
 "message": "A password is required for wpa_psk access points."
}
If the configuration is provide a key_mgmt field and there is no provided
password.
{
 "error": "password_too_short",
 "message": "The minimum length for a password is 8."
}
If the password is less than 8 characters long as outlined in the
IEEE Std 802.11i-2004 specification.
{
 "error": "invalid_characters",
 "message": "The password provided has invalid characters."
}
If the password contains characters that are not valid ASCII.
{
 "error": "password_too_long",
 "message": "The maximum length for a password is 63."
}
If the password is greater than 63 characters long as outlined in the
IEEE Std 802.11i-2004 specification.
Delete an SSID configuration
Delete the configuration attached to an SSID
Path: /api/v1/<ssid>/configuration
Method: DELETE
Request: Empty
Response: Empty
Response Code: 200
Get configurations
Get the current known configurations.
Path: /api/v1/configurations
Method: GET
Request: Empty
Response: Array WiFiConfiguration - Passwords are filtered
Response Code: 200
Request
[
 {
 "ssid": "Millennium Falcon",
 "key_mgmt": "wpa_psk"
 }
]
Get configuration status
Get the current status of the configuration. This is useful after using
the /api/v1/apply endpoint to figure out if the configurations that
were provided work or not.
Path: /api/v1/configuration/status
Method: GET
Request: Empty
Response: ConfigurationStatus
Response Code: 200
Apply
A POST to this endpoint applies the configuration and attempts to connect to the
configured WiFi networks. This will return back to AP mode and you can use the
/api/v1/configuration/status endpoint to get whether or not the configuration
worked or not.
Path: /api/v1/apply
Method: POST
Request: Empty
Response: Empty
Response Code: 202
Complete the configuration process
Finalize the configuration process. This will apply the configuration and
not return to AP mode.
Path: /api/v1/complete
Method: GET
Request: Empty
Response: Empty
Response Code: 202
Types
AccessPoint
{
 "ssid": String,
 "signal_percent": 0..100,
 "frequency": Integer,
 "band": Band,
 "channel": Integer,
 "flags": Flags
}
Band
This is the WiFi radio band that the access point is using.
"wifi_2_4_ghz"
"wifi_5_ghz"
"unknown"
Flags
Flags are reported by access points. They can be used to know whether a password
is required to join the network. For example, a password is required for access
points with "wpa2_psk_*".
"wpa2_psk_ccmp" - WPA2 security with a pre-shared key is supported
"wpa2_eap_ccmp" - WPA2 security with enterprise security is supported
"wpa2_psk_ccmp_tkip" - WPA2 security with a pre-shared key is supported
"wpa_psk_ccmp_tkip" - WPA security with a pre-shared key is supported
"ibss" - A long legged wading bird
"mesh" - Mesh network supported
"ess" - Extended service set network
"p2p" - This is a peer-to-peer WiFi connection
"wps" - WiFi Protected Setup supported
"rsn_ccmp" - Robust secure network
KeyManagement
Key management tells the device what kind of WiFi security method it should use
when connecting to an access point. Sometimes this can be determined from the
Flags. To connect to a hidden access point, the user will need to say whether
a password is needed.
"none" - No security
"wpa_psk" - WPA or WPA2 with a pre-shared key
WiFiConfiguration
This specifies how to connect to one WiFi access point. The ssid and
key_mgmt fields are required. Depending on the key_mgmt, password may be
needed.
{
 "ssid": String,
 "key_mgmt": KeyManagement,
 "password": Optional String
}
ConfigurationStatus
not_configured - No configuration attempts have taken place
good - A configuration was applied and is working
bad - A configuration was applied and is not working

Changelog
v0.4.3
	Enhancements	Improve mobile experience. Thanks to Ole Michaelis for this update.

v0.4.2
	Bug Fixes	Fix a runtime error on the apply page.
	Fix "undefined" as the wizard name during application of configuration in the
dynamic content.

v0.4.1
	Enhancements
	Can add some custom branding to the UI such as page title, title color, and
button color.
	Will display pre-existing configurations on the configuration page.
	Update example app to use nerves_pack and updated nerves systems.

	Bug Fixes
	Fix a bug where starting VintageNetWizard would delete any pre-existing
configurations.

v0.4.0
This release has several changes to UI text to reduce jargon and make some
elements configurable. In particular, the title and footer are now configurable.
Given the breadth of styling and UI updates that have been proposed, it is
likely for the configuration mechanism to change again.
	New features	The title for the UI was changed from "VintageNetWizard" to "WiFi Setup Wizard".
	The footer is now empty by default. See WizardExample.Button for how to
replicate the previous information in your project.
	An idle timer will now exit the wizard on inactivity. The default inactivity
timeout is 10 minutes. This prevents accidental button presses, etc. from
entering the wizard and remaining there forever.

v0.3.0
This release has modifications to support vintage_net v0.9.1. It contains no
functional changes.
v0.2.4
This release is mostly documentation updates and code refactoring without any
core usage changes. It also updates dependencies, including vintage_net_wifi
to allow vintage_net v0.8 if desired.
v0.2.3
	Enhancements	Support disabling captive portal

v0.2.2
	New Features
	Support captive portal detection (thanks to @jmerriweather!)

	Bug Fixes
	Fix adding a network not shown in the AP list

	Enhancements
	Include the configuration status on the webpage
	Allow submitting the configuration without verifying it. (Useful when you want to configure networks that aren't nearby or confident the config is good)
	Better message page when configuration verification is running
	Better message when configuration fails
	Show WPA Enterprise option when adding a network not in the AP list

v0.2.1
Some fun doc updates and type fixes.
	Enhancements	Don't require internet connectivity to consider a WiFi config as successful

v0.2.0
This release contains updates to use vintage_net v0.7.0. This includes
depending on vintage_net_wifi and renaming keys used for the configuration.
Projects pulling this update should review the vintage_net release
notes.
	New features	Support customization of the SSID. In your config.exs, add the following:

config :vintage_net_wizard,
 ssid: "MY_SSID"
v0.1.7
	New features	Added VintageNetWizard.stop_wizard/0
	Added a callback so that users could be notified when configuration
completes

v0.1.6
	New features
	Added support for configuring WPA-EAP PEAP

	Bug fixes
	Fixed issue where the UI would ask for a password for some access points
that didn't have security.

v0.1.5
	Bug fixes	Fixed error when not using SSL
	Don't create invalid SSIDs if the hostname isn't set or is something really
long

v0.1.4
	Improvements	Better handle using Erlang :ssl options when starting the wizard

v0.1.3
	Improvements	Add dnsd to reduce connection time and allow users to connect via DNS names
(mDNS was also possible, but not as likely to work everywhere)

v0.1.2
	Improvements
	Actively update WiFi networks in the UI
	Validate WPA passphrases

	Bug fixes
	AP mode configuration is no longer persisted. If a device is rebooted when
running the wizard, it will start with the previous configuration.
	Fix SSL certificate paths

v0.1.1
	Improvements	Developer must now explicitly start the wizard server to place device into
AP mode. This prevents the device from starting up automatically in
and unwanted state.

v0.1.0
Initial release

VintageNetWizard

Documentation for VintageNetWizard.

 Anchor for this section

 Summary

 Functions

 run_if_unconfigured(opts \\ [])

 Conditionally run the wizard if there is no configurations present

 run_wizard(opts \\ [])

 Run the wizard.

 stop_wizard()

 Stop the wizard.

 wifi_configured?(ifname)

 Check if an interface has a configuration

 Anchor for this section

Functions

 Link to this function

 run_if_unconfigured(opts \\ [])

 View Source

 Specs

 run_if_unconfigured([VintageNetWizard.Web.Endpoint.opt()]) ::
 :ok | :configured | {:error, String.t()}

Conditionally run the wizard if there is no configurations present
This function is the same VintageNetWizard.run_wizard/1 however it will
first check if there are any configurations for the interface.
This is useful if you want a device to start the wizard only if there are no
configurations for the interface. When there are configurations found for the
interface this function returns :configured to let the consuming application
know that the wizard wasn't needed.
If you want more control on how to start the wizard or if you want to force
start the wizard you can call VintageNetWizard.run_wizard/1.

 Link to this function

 run_wizard(opts \\ [])

 View Source

 Specs

 run_wizard([VintageNetWizard.Web.Endpoint.opt()]) :: :ok | {:error, String.t()}

Run the wizard.
This means the WiFi module will be put into access point mode and the web
server will be started.
Options:
	:backend - Implementation for communicating with the network drivers (defaults to VintageNetWizard.Backend.Default)
	:captive_portal - Whether to run in captive portal mode (defaults to true)
	:device_info - A list of string tuples to render in a table in the footer (see README.md)
	:ifname - The network interface to use (defaults to "wlan0")
	:inactivity_timeout - Minutes to run before automatically stopping (defaults to 10 minutes)
	:on_exit - {module, function, args} tuple specifying callback to perform after stopping the server.
	:ssl - A Keyword list of :ssl.tls_server_options. See Plug.SSL.configure/1.
	:ui - a subset of UI configuration for title, title color, and button color.

 Link to this function

 stop_wizard()

 View Source

 Specs

 stop_wizard() :: :ok | {:error, String.t()}

Stop the wizard.
This will apply the current configuration in memory and completely
stop the web and backend processes.

 Link to this function

 wifi_configured?(ifname)

 View Source

 Specs

 wifi_configured?(VintageNet.ifname()) :: boolean()

Check if an interface has a configuration

VintageNetWizard.APMode

This module contains utilities for configuration VintageNet in AP Mode

 Anchor for this section

 Summary

 Functions

 ap_mode_configuration(hostname, our_name)

 Return a configuration to put VintageNet into AP mode

 into_ap_mode(ifname)

 Change the WiFi module into access point mode

 ssid()

 Return SSID that is used for AP Mode

 Anchor for this section

Functions

 Link to this function

 ap_mode_configuration(hostname, our_name)

 View Source

 Specs

 ap_mode_configuration(String.t(), String.t()) :: map()

Return a configuration to put VintageNet into AP mode

 Link to this function

 into_ap_mode(ifname)

 View Source

 Specs

 into_ap_mode(VintageNet.ifname()) :: :ok | {:error, any()}

Change the WiFi module into access point mode

 Link to this function

 ssid()

 View Source

 Specs

 ssid() :: String.t()

Return SSID that is used for AP Mode

VintageNetWizard.Backend behaviour

Backends define the boundaries of getting access points, handling incoming
messages, and scanning the network

 Anchor for this section

 Summary

 Types

 configuration_status()

 device_info_name()

 device_info_value()

 opt()

 Callbacks

 access_points(state)

 Get all the access points that the backend knowns about

 apply(list, state)

 Apply the WiFi configurations

 complete(list, state)

 Perform final completion steps for the network configurations

 configuration_status(state)

 Return the configuration status of a configuration that has been applied

 handle_info(any, state)

 Handle any message the is received by another process

 init(arg1)

 Do any initialization work like subscribing to messages

 reset(state)

 Apply any actions required to set the backend back to an
initial default state

 start_scan(state)

 Start scanning for WiFi access points

 stop_scan(state)

 Stop the scan for WiFi access points

 Anchor for this section

Types

 Link to this type

 configuration_status()

 View Source

 Specs

 configuration_status() :: :not_configured | :good | :bad

 Link to this type

 device_info_name()

 View Source

 Specs

 device_info_name() :: String.t()

 Link to this type

 device_info_value()

 View Source

 Specs

 device_info_value() :: String.t()

 Link to this type

 opt()

 View Source

 Specs

 opt() ::
 {:device_info, [{device_info_name(), device_info_value()}]}
 | {:configurations, [map()]}

 Anchor for this section

Callbacks

 Link to this callback

 access_points(state)

 View Source

 Specs

 access_points(state :: any()) :: [VintageNetWiFi.AccessPoint.t()]

Get all the access points that the backend knowns about

 Link to this callback

 apply(list, state)

 View Source

 Specs

 apply([map()], state :: any()) ::
 {:ok, state :: any()} | {:error, :invalid_state}

Apply the WiFi configurations
The configurations passed are network configurations that can be passed into
the :network list in a VintageNetWiFi configuration.

 Link to this callback

 complete(list, state)

 View Source

 Specs

 complete([map()], state :: any()) :: {:ok, state :: any()}

Perform final completion steps for the network configurations

 Link to this callback

 configuration_status(state)

 View Source

 Specs

 configuration_status(state :: any()) :: configuration_status()

Return the configuration status of a configuration that has been applied

 Link to this callback

 handle_info(any, state)

 View Source

 Specs

 handle_info(any(), state :: any()) ::
 {:reply, any(), state :: any()} | {:noreply, state :: any()}

Handle any message the is received by another process
If you want the socket to send data to the client
return {:reply, message, state}, otherwise return
{:noreply, state}

 Link to this callback

 init(arg1)

 View Source

 Specs

 init(VintageNet.ifname()) :: state :: any()

Do any initialization work like subscribing to messages
Will be passed the interface name that the backend should use. By default
this will be "wlan0". If you want to use a different interface name you
can pass that in an option to VintageNetWizard.run_wizard/1.

 Link to this callback

 reset(state)

 View Source

 Specs

 reset(state :: any()) :: state :: any()

Apply any actions required to set the backend back to an
initial default state

 Link to this callback

 start_scan(state)

 View Source

 Specs

 start_scan(state :: any()) :: state :: any()

Start scanning for WiFi access points

 Link to this callback

 stop_scan(state)

 View Source

 Specs

 stop_scan(state :: any()) :: state :: any()

Stop the scan for WiFi access points

VintageNetWizard.Backend.Default

The default backend implementation for target devices
This backend will be used if no other backend is configured in the
application configuration.

VintageNetWizard.Backend.Mock

A default backend for host machines.
This is useful for testing and local JavaScript development.

VintageNetWizard.BackendServer

Server for managing a VintageNet.Backend implementation

 Anchor for this section

 Summary

 Functions

 access_points()

 List out access points

 apply()

 Apply the configurations saved in the backend to
the system.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 child_spec(backend, ifname, opts \\ [])

 complete()

 configuration_state()

 Get the current state of the WiFi configuration

 configuration_status()

 Get the current configuration status

 configurations()

 Get a list of the current configurations

 delete_configuration(ssid)

 Delete the configuration by ssid

 device_info()

 Return information about the device for the web page's footer

 reset()

 Reset the backend to an initial default state.

 save(config)

 Save a network configuration to the backend

 set_priority_order(priority_order)

 Pass list of SSIDs (priority_order), sort the configurations
to match that order.

 start_link(backend, ifname, opts \\ [])

 start_scan()

 Start scanning for WiFi access points

 stop_scan()

 Stop scanning for WiFi access points

 subscribe()

 Subscribe to messages from the backend

 Anchor for this section

Functions

 Link to this function

 access_points()

 View Source

 Specs

 access_points() :: [VintageNetWiFi.AccessPoint.t()]

List out access points

 Link to this function

 apply()

 View Source

 Specs

 apply() :: :ok | {:error, :no_configurations}

Apply the configurations saved in the backend to
the system.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 child_spec(backend, ifname, opts \\ [])

 View Source

 Link to this function

 complete()

 View Source

 Specs

 complete() :: :ok

 Link to this function

 configuration_state()

 View Source

 Specs

 configuration_state() :: %VintageNetWizard.BackendServer.State{
 backend: term(),
 backend_state: term(),
 configurations: term(),
 device_info: term(),
 subscriber: term()
}

Get the current state of the WiFi configuration

 Link to this function

 configuration_status()

 View Source

Get the current configuration status

 Link to this function

 configurations()

 View Source

 Specs

 configurations() :: [map()]

Get a list of the current configurations

 Link to this function

 delete_configuration(ssid)

 View Source

 Specs

 delete_configuration(String.t()) :: :ok

Delete the configuration by ssid

 Link to this function

 device_info()

 View Source

 Specs

 device_info() :: [{String.t(), String.t()}]

Return information about the device for the web page's footer

 Link to this function

 reset()

 View Source

 Specs

 reset() :: :ok

Reset the backend to an initial default state.

 Link to this function

 save(config)

 View Source

 Specs

 save(map()) :: :ok | {:error, any()}

Save a network configuration to the backend
The network configuration is a map that can be included in the :network
field of a VintageNetWiFi configuration.

 Link to this function

 set_priority_order(priority_order)

 View Source

 Specs

 set_priority_order([String.t()]) :: :ok

Pass list of SSIDs (priority_order), sort the configurations
to match that order.

 Link to this function

 start_link(backend, ifname, opts \\ [])

 View Source

 Specs

 start_link(backend :: module(), VintageNet.ifname(), [
 VintageNetWizard.Backend.opt()
]) :: GenServer.on_start()

 Link to this function

 start_scan()

 View Source

 Specs

 start_scan() :: :ok

Start scanning for WiFi access points

 Link to this function

 stop_scan()

 View Source

 Specs

 stop_scan() :: :ok

Stop scanning for WiFi access points

 Link to this function

 subscribe()

 View Source

 Specs

 subscribe() :: :ok

Subscribe to messages from the backend

VintageNetWizard.Callbacks

 Anchor for this section

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 list()

 on_exit()

 start_link(callbacks)

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 list()

 View Source

 Link to this function

 on_exit()

 View Source

 Link to this function

 start_link(callbacks)

 View Source

VintageNetWizard.Web.Endpoint

Supervisor for the Web part of the VintageNet Wizard.

 Anchor for this section

 Summary

 Types

 opt()

 ui_opt()

 UI specific configuration

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_server(opts \\ [])

 Start the web server

 stop_server()

 Stop the web server

 Anchor for this section

Types

 Link to this type

 opt()

 View Source

 Specs

 opt() ::
 {:ssl, :ssl.tls_server_option()}
 | {:on_exit, {module(), atom(), list()}}
 | {:ifname, VintageNet.ifname()}
 | {:ui, [ui_opt()]}
 | VintageNetWizard.Backend.opt()

 Link to this type

 ui_opt()

 View Source

 Specs

 ui_opt() ::
 {:title, String.t()}
 | {:title_color, String.t()}
 | {:button_color, String.t()}

UI specific configuration
	:title - the title of the HTML pages that will be displayed to the user.
	:title_color - color of the title for branding purposes
	:button_color - color of the buttons for branding purposes

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_server(opts \\ [])

 View Source

 Specs

 start_server([opt()]) ::
 :ok | {:error, :already_started | :no_keyfile | :no_certfile}

Start the web server
If the web server is started then {:error, already_started} is returned.
Only one server can be running at a time.

 Link to this function

 stop_server()

 View Source

 Specs

 stop_server() :: :ok | {:error, :not_found}

Stop the web server

VintageNetWizard.WiFiConfiguration

Module for working with various WiFi configurations

 Anchor for this section

 Summary

 Types

 key_mgmt()

 Functions

 get_key_mgmt(map)

 Get the key_mgmt type from the particular WiFi Configuration

 json_to_network_config(params)

 Make a network config from a JSON request from the VintageNetWizard client

 key_mgmt_from_string(arg1)

 Convert a key_mgmt string into a key_mgmt

 security_name(map)

 Get a human friendly name for the type of security of a WiFiConfiguration

 timeout(map)

 Get the expected timeout in milisecs for a particular configuration

 Anchor for this section

Types

 Link to this type

 key_mgmt()

 View Source

 Specs

 key_mgmt() :: :none | :wpa_psk | :wpa_eap

 Anchor for this section

Functions

 Link to this function

 get_key_mgmt(map)

 View Source

 Specs

 get_key_mgmt(map()) :: key_mgmt()

Get the key_mgmt type from the particular WiFi Configuration

 Link to this function

 json_to_network_config(params)

 View Source

 Specs

 json_to_network_config(map()) ::
 {:ok, map()}
 | {:error, VintageNetWizard.WiFiConfiguration.Params.param_error()}

Make a network config from a JSON request from the VintageNetWizard client

 Link to this function

 key_mgmt_from_string(arg1)

 View Source

 Specs

 key_mgmt_from_string(String.t()) ::
 {:ok, key_mgmt()} | {:error, :invalid_key_mgmt}

Convert a key_mgmt string into a key_mgmt

 Link to this function

 security_name(map)

 View Source

 Specs

 security_name(%{key_mgmt: key_mgmt()}) :: String.t()

Get a human friendly name for the type of security of a WiFiConfiguration

 Link to this function

 timeout(map)

 View Source

 Specs

 timeout(%{key_mgmt: key_mgmt()}) :: 30000 | 75000

Get the expected timeout in milisecs for a particular configuration

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

