

 vintage_net_mobile

 v0.10.3

 Table of contents

 	VintageNetMobile

 	Changelog

 	Modules

 	VintageNetMobile

 	VintageNetMobile.ASUCalculator

 	VintageNetMobile.CellMonitor

 	VintageNetMobile.ExChat

 	VintageNetMobile.Modem

 	VintageNetMobile.Modem.HuaweiE3372

 	VintageNetMobile.Modem.HuaweiE3372.Modeswitch

 	VintageNetMobile.Modem.QuectelBG96

 	VintageNetMobile.Modem.QuectelEC25

 	VintageNetMobile.Modem.SierraHL8548

 	VintageNetMobile.Modem.UbloxTOBYL2

 	VintageNetMobile.ModemInfo

 	VintageNetMobile.SignalMonitor

VintageNetMobile

[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: Coverage Status]
This library provides a VintageNet technology for using cellular modems.
Currently, it supports the following modems:
	Quectel BG96 - VintageNetMobile.Modem.QuectelBG96
	Quectel EC25 - VintageNetMobile.Modem.QuectelEC25
	u-blox TOBY L2 - VintageNetMobile.Modem.UbloxTOBYL2
	Sierra Wireless HL8548 - VintageNetMobile.Modem.SierraHL8548
	Huawei E3372 - VintageNetMobile.Modem.HuaweiE3372
	[ZTE MF833V] - does not need mobile driver, works with VintageNetEthernet when modem is configured to auto-connect

See the "Custom Modems" section for adding new modules.
To use this library, first add it to your project's dependency list:
def deps do
 [
 {:vintage_net_mobile, "~> 0.1.2"}
]
end
You will then need to configure VintageNet. All cellular modems currently show
up on "ppp0", so configurations look like this:
VintageNet.configure("ppp0", %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: your_modem,
 service_providers: your_service_providers
 }
 })
The :modem key should be set to your modem implementation. Cellular modems
tend to be very similar. If vintage_net_mobile doesn't support your modem, see
the customizing section. It may just be a copy/paste away.
The :service_providers key should be set to information provided by each of
your service providers. It is common that this is a list of one item.
Circumstances may require you to list more than one, though. Additionally, modem
implementations may require more information. (It's also possible to hard-code
the service provider in the modem implementation as a hack. In that case, this
key isn't used and should be set to an empty list. This is useful when your
cellular modem provides instructions that magically work and the AT commands
that they give are confusing.)
Information for each service provider is a map with some or all of the following
fields:
	:apn (required) - e.g., "access_point_name"
	:usage (optional) - :eps_bearer (LTE) or :pdp (UMTS/GPRS)

Your service provider should provide you with the information that you need to
connect. Often it is just an APN. The Gnome project provides a database of
service provider
information
that may also be useful.
Here's an example with a service provider list:
 %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: your_modem,
 service_providers: [
 %{apn: "wireless.twilio.com"}
]
 }
 }
VintageNet Properties
In addition to the common vintage_net properties for all interface types, this
technology reports one or more of the following:
	Property	Values	Description
	signal_asu	0-31,99	Reported Arbitrary Strength Unit (ASU)
	signal_4bars	0-4	The signal level in "bars"
	signal_dbm	-144 - -44	The signal level in dBm. Interpretation depends on the connection technology.
	signal_rssi	0-31 or 99	An integer between 0-31 or 99
	lac	0-65533	The Location Area Code (lac) for the current cell
	cid	0-268435455	The Cell ID (cid) for the current cell
	mcc	0-999	Mobile Country Code for the network
	mnc	0-999	Mobile Network Code for the network
	network	string	The network operator's name
	access_technology	string	The technology currently in use to connect to the network
	band	string	The frequency band in use
	channel	integer	An integer that indicates the channel that's in use
	iccid	string	The Integrated Circuit Card Identifier (ICCID)
	imsi	string	The International Mobile Subscriber Identity (IMSI)

Please check your modem implementation for which properties it supports or run
VintageNet.get_by_prefix(["interface", "ppp0"]) and see what happens.
Custom modems
VintageNetMobile allows you add custom modem implementations if the built-in
ones don't work for you. See the VintageNetMobile.Modem behaviour.
In order to implement a modem, you will need:
	Instructions for connecting to the modem via your Linux. Sometimes this
involves usb_modeswitch or knowing which serial ports the modem exposes.
	Example chat scripts. These are lists of AT commands and their expected
responses for configuring the service provider and entering PPP mode.
	(Optional) Instructions for checking the signal strength when connected.

One strategy is to see if there's an existing modem that looks similar to yours
and modify it.
Serial AT command debugging
When porting vintage_net_mobile to a new cell modem, it can be useful to
experiment with the modem directly. To do this, add a dependency to
elixircom, rebuild, and then on the
device, you can do things like this:
iex> Elixircom.run("/dev/ttyUSB2", speed: 115200)
Will allow you to run AT commands. To test everything is okay:
iex> Elixircom.run("/dev/ttyUSB2", speed: 115200)
type at and press enter

OK
Your modem should supply a complete list of AT commands. The following may be
useful:
	Command	Description
	at+csq	Signal Strength
	at+csq=?	Query supported signal strength format
	at+cfun?	Level of functionality
	at+cfun=?	Query supported functionality levels
	at+creg?	Check if the modem has registered to a provider.
	at+cgreg?	Same as above for some modems
	at+qccid	Query to obtain the Integrated Circuit Card Identifier
	at+cimi	Query to obtain the International Mobile Subscriber Identity

System requirements
These requirements are believed to be the minimum needed to be added to the
official Nerves systems.
Linux kernel
Enable PPP and drivers for your modem:
CONFIG_PPP=m
CONFIG_PPP_BSDCOMP=m
CONFIG_PPP_DEFLATE=m
CONFIG_PPP_FILTER=y
CONFIG_PPP_MPPE=m
CONFIG_PPP_MULTILINK=y
CONFIG_PPP_ASYNC=m
CONFIG_PPP_SYNC_TTY=m
CONFIG_USB_NET_CDC_NCM=m
CONFIG_USB_NET_HUAWEI_CDC_NCM=m
CONFIG_USB_NET_QMI_WWAN=m
CONFIG_USB_SERIAL_OPTION=m
Buildroot (nerves_defconfig)
Both pppd and usb_modeswitch are needed in the nerves_defconfig:
BR2_PACKAGE_USB_MODESWITCH=y
BR2_PACKAGE_PPPD=y
BR2_PACKAGE_PPPD_FILTER=y
Busybox
Add the following to your nerves_defconfig:
BR2_PACKAGE_BUSYBOX_CONFIG_FRAGMENT_FILES="${NERVES_DEFCONFIG_DIR}/busybox.fragment"
and then create busybox.fragment with the following:
CONFIG_MKNOD=y
CONFIG_WC=y

Changelog

v0.10.3
	Changes	Allow muontrap v1.0.0 to be used

v0.10.2
	Changes	Support vintage_net v0.11.x as well.

v0.10.1
	Bug fixes	vintage_net v0.10.4 had a fix to route setup to remove a DHCP renewal
hiccup and a routing API change that only affected this project. This
updates to the new API to remove a deprecation warning. That also means that
at least vintage_net v0.10.4 is required now and the deps force this.

v0.10.0
This release contains no code changes. It only updates the vintage_net
dependency to allow vintage_net v0.10.0 to be used.
v0.9.2
	New features
	Huawei E3372 support - Thanks to Hans Pagh for contributing his
implementation.

	Bug fixes
	Handle more types of CREG responses. This should reduce warnings from the
CellMonitor code

v0.9.1
	New features	Support non-default tty paths for Quectel modems

v0.9.0
	New features	Add initial support for using the VintageNet.PowerManagerto manage the
power to cellular modems. This allows VintageNet to power on and off a
modem as needed and if it becomes unresponsive. To use this, you will need
to provide an implementation of VintageNet.PowerManager that can control
the GPIO (or whatever) connections that enable power and can send
appropriate UART commands to power off. This only has been tested with
Quectel BG96 and EC25 modems, but should be applicable to all modems.
	Synchronize with vintage_net v0.9.0's networking program path API update

v0.8.0
(Skipping version numbers to make the version match vintage_net for ease of
remembering which versions are compatible.)
	New features
	Add :chatscript_additions option to the modem configuration to support
arbitrary chatscript lines so that application-specific customizations don't
require you to make a custom modem. Of course, if you have an option of
general interest, please continue to make PRs.
	Support vintage_net v0.8.0's required_ifnames API update. This cleans up
some modem detection for non-usb_modswitch modems. If you have a fork of
this project, you'll need to update it. See commit 06456c3bc/PR #66 for how
the supported modems were changed.

	Bug fixes
	Cleaned up handling of PPP disconnections. Amazingly, OTP supervision could
recover some of this, but the logs were really ugly and more work was done
than needed.

v0.2.3
	Updates	Allow muontrap v0.6.0 to be used since the breaking change doesn't affect
vintage_net_mobile
	Force vintage_net v0.7.9 or later to pull in PPP IP address fix

v0.2.2
	New features	Added a "monitor" for reporting a SIM card's ICCID and IMSI. These are
useful for debugging issues with service providers. Currently this is
only available on the BG96, but can easily be added to other modems as
testing permits.

v0.2.1
This release has improvements and bug fixes throughout, but primarily for the
Quectel EC25 (LTE Cat 4 modem) and Quectel BG96 (LTE Cat M1/NB1 modem)
	New features	Network connection stats for the EC25 and BG96 modems. This lets you see how
the modem connected (GSM, UMTS, LTE, etc) and to which cell tower (cell id,
lac, mcc, mnc). This is useful for debug and geolocation.
	Improved signal strength reporting. The reports are now in ASU (arbitrary
strength units), dBm, and bars. Bars ranges from 0 bars (no connection) to 4
bars (strong signal) similar to a cell phone

v0.2.0
This release has significant changes to the configuration API and
VintageNetMobile.Modem behaviour. No migration from the old version is
supported. We don't expect to majorly change the API in future releases. Updates
will be more incremental. The plan is to add configuration migrations so that
devices in the field can continue to work between vintage_net_mobile updates.
To upgrade, find the module documentation for your modem. There will be a
configuration example that should look familiar.
v0.1.2
	Bug fix	Prevent VintageNet from trying to run ppp before a modem is ready.

v0.1.1
	Bug fixes	Fix a timing issue when VintageNet would try to call a VintageNetMobile
process before it was started

v0.1.0
Initial vintage_net_mobile release.

VintageNetMobile

Use cellular modems with VintageNet
This module is not intended to be called directly but via calls to VintageNet. Here's a
typical example:
VintageNet.configure(
 "ppp0",
 %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: VintageNetMobile.Modem.QuectelBG96,
 service_providers: [%{apn: "super"}]
 }
 }
)
The :modem key should be set to your modem implementation. Cellular modems
tend to be very similar. If vintage_net_mobile doesn't support your modem, see
the customizing section. It may just be a copy/paste away. See your modem
module for modem-specific options. The following keys are supported by all modems:
	:service_providers - This is a list of service provider information
	:chatscript_additions - This is a string (technically iodata) for custom
 modem initialization.

The :service_providers key should be set to information provided by each of
your service providers. It is common that this is a list of one item.
Circumstances may require you to list more than one, though. Additionally, modem
implementations may require more or less information depending on their
implementation. (It's possible to hard-code the service provider in the modem
implementation. In that case, this key isn't used and should be set to an empty
list. This is useful when your cellular modem provides instructions that
magically work and the AT commands that they give are confusing.)
Information for each service provider is a map with some or all of the following
fields:
	:apn (required) - e.g., "access_point_name"
	:usage (optional) - :eps_bearer (LTE) or :pdp (UMTS/GPRS)

Your service provider should provide you with the information that you need to
connect. Often it is just an APN. The Gnome project provides a database of
service provider
information
that may also be useful.
Here's an example with a service provider list:
 %{
 type: VintageNetMobile,
 modem: your_modem,
 vintage_net_mobile: %{
 service_providers: [
 %{apn: "wireless.twilio.com"}
],
 chatscript_additions: "OK AT"
 }
 }
Custom modems
VintageNetMobile allows you add custom modem implementations if the built-in
ones don't work for you. See the VintageNetMobile.Modem behaviour.
In order to implement a modem, you will need:
	Instructions for connecting to the modem via your Linux. Sometimes this
involves usb_modeswitch or knowing which serial ports the modem exposes.
	Example chat scripts. These are lists of AT commands and their expected
responses for configuring the service provider and entering PPP mode.
	(Optional) Instructions for checking the signal strength when connected.

One strategy is to see if there's an existing modem that looks similar to yours
and modify it.

 Anchor for this section

 Summary

 Types

 mobile_options()

 The :vintage_net_mobile option in the configuration map

 rat()

 Radio Access Technology (RAT)

 service_provider_info()

 Information about a service provider

 Anchor for this section

Types

 Link to this type

 mobile_options()

 View Source

 Specs

 mobile_options() :: %{
 :service_providers => service_provider_info(),
 optional(:chatscript_additions) => iodata(),
 optional(any()) => any()
}

The :vintage_net_mobile option in the configuration map
Only the :service_providers key must be specified. Modems may
add keys of their own.

 Link to this type

 rat()

 View Source

 Specs

 rat() :: :gsm | :td_scdma | :wcdma | :lte | :cdma | :lte_cat_nb1 | :lte_cat_m1

Radio Access Technology (RAT)
These define how to connect to the cellular network.

 Link to this type

 service_provider_info()

 View Source

 Specs

 service_provider_info() :: %{
 :apn => String.t(),
 optional(:usage) => :eps_bearer | :pdp
}

Information about a service provider
	:apn (required) - e.g., "access_point_name"
	:usage (optional) - :eps_bearer (LTE) or :pdp (UMTS/GPRS)

VintageNetMobile.ASUCalculator

Convert raw ASU values to friendlier units
See https://en.wikipedia.org/wiki/Mobile_phone_signal#ASU for
more information.
The following conversions are done:
	dBm
	Number of "bars" out of 4 bars

 Anchor for this section

 Summary

 Types

 bars()

 Number of bars out of 4 to show in a UI

 dbm()

 dBm

 gsm_asu()

 GSM ASU values

 lte_asu()

 LTE ASU values

 umts_asu()

 UMTS ASU values

 Functions

 from_gsm_asu(asu)

 Compute signal level numbers from a GSM ASU

 Anchor for this section

Types

 Link to this type

 bars()

 View Source

 Specs

 bars() :: 0..4

Number of bars out of 4 to show in a UI

 Link to this type

 dbm()

 View Source

 Specs

 dbm() :: neg_integer()

dBm

 Link to this type

 gsm_asu()

 View Source

 Specs

 gsm_asu() :: 0..31 | 99

GSM ASU values
ASU values map to RSSI. 99 means unknown

 Link to this type

 lte_asu()

 View Source

 Specs

 lte_asu() :: 0..97

LTE ASU values
ASU values map to RSRP
https://arimas.com/78-rsrp-and-rsrq-measurement-in-lte/

 Link to this type

 umts_asu()

 View Source

 Specs

 umts_asu() :: 0..90 | 255

UMTS ASU values
ASU values map to RSCP

 Anchor for this section

Functions

 Link to this function

 from_gsm_asu(asu)

 View Source

 Specs

 from_gsm_asu(gsm_asu()) :: %{asu: gsm_asu(), dbm: dbm(), bars: bars()}

Compute signal level numbers from a GSM ASU
The AT+CSQ command should report ASU values in this format.

VintageNetMobile.CellMonitor

Monitor cell network information
This monitor queries the modem for cell network information and posts it to
VintageNet properties.
The following properties are reported:
	Property	Values	Description
	lac	0-65533	The Location Area Code (lac) for the current cell
	cid	0-268435455	The Cell ID (cid) for the current cell
	mcc	0-999	Mobile Country Code for the network
	mnc	0-999	Mobile Network Code for the network
	network	string	The network operator's name
	access_technology	string	The technology currently in use to connect to the network
	band	string	The frequency band in use
	channel	integer	An integer that indicates the channel that's in use

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link([keyword()]) :: GenServer.on_start()

VintageNetMobile.ExChat

Send commands to your modem and get notifications
This module is used by the "monitor" modules for reporting modem and
connection status.
It can be handy to debug modems too. If you'd like to send commands and
receive notifications from the IEx prompt, here's what to do:
require Logger
RingLogger.attach
tty_name = "ttyUSB2" # set to your AT command interface
VintageNetMobile.ExChat.register(tty_name, "+", fn m -> Logger.debug("Got: " <> inspect(m)) end)
VintageNetMobile.ExChat.send(tty_name, "AT+CSQ")
To reset the registrations, VintageNet.deconfigure/2 and
VintageNet.configure/3 your modem.

 Anchor for this section

 Summary

 Types

 opt()

 The options for the ATCommand server are

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 register(tty_name, type, callback)

 Register a callback function for reports

 send(tty_name, command, options \\ [])

 Send a command to the modem

 send_best_effort(tty_name, command, options \\ [])

 Helper for sending commands to the modem as best effort

 start_link(opts)

 Anchor for this section

Types

 Link to this type

 opt()

 View Source

 Specs

 opt() ::
 {:speed, non_neg_integer()}
 | {:tty, String.t()}
 | {:uart, module()}
 | {:uart_opts, keyword()}

The options for the ATCommand server are:
	:speed - the speed of the serial connection
	:tty - the tty name for sending AT commands
	:uart - use an alternative UART-provider (for testing)
	:uart_opts - additional options to pass to UART.open

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 register(tty_name, type, callback)

 View Source

 Specs

 register(binary(), binary(), function()) :: :ok

Register a callback function for reports

 Link to this function

 send(tty_name, command, options \\ [])

 View Source

 Specs

 send(binary(), iodata(), VintageNetMobile.ExChat.Core.send_options()) ::
 {:ok, [binary()]} | {:error, any()}

Send a command to the modem
On success, this returns a list of the lines received back from the modem.

 Link to this function

 send_best_effort(tty_name, command, options \\ [])

 View Source

 Specs

 send_best_effort(
 binary(),
 iodata(),
 VintageNetMobile.ExChat.Core.send_options()
) :: :ok

Helper for sending commands to the modem as best effort
This function always succeeds. Failed commands log errors, but that's it. This
is useful for monitoring operations where intermittent failures should be logged,
but really aren't worth dealing with.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link([opt()]) :: GenServer.on_start()

VintageNetMobile.Modem behaviour

A behaviour for modem implementations

 Anchor for this section

 Summary

 Callbacks

 add_raw_config(t, config, opts)

 Update the raw configuration for the modem

 normalize(config)

 Normalize a modem configuration

 Anchor for this section

Callbacks

 Link to this callback

 add_raw_config(t, config, opts)

 View Source

 Specs

 add_raw_config(
 VintageNet.Interface.RawConfig.t(),
 config :: map(),
 opts :: keyword()
) :: VintageNet.Interface.RawConfig.t()

Update the raw configuration for the modem
The incoming raw configuration (first parameter) will have an initial generic
configuration that should be common to most modems. The second parameter is
the normalized VintageNet configuration and the final options are the ones
from VintageNet for determining file paths, etc.
Configuration errors raise exceptions, but it is good practice to catch the
errors in normalize/1.

 Link to this callback

 normalize(config)

 View Source

 Specs

 normalize(config :: map()) :: map()

Normalize a modem configuration
Modem implementations use this to update the :modem_opts key to a canonical
representation. This could be adding default fields, migrating old options,
or deriving parameters to that they need not be computed again.
Configuration errors raise exceptions.

VintageNetMobile.Modem.HuaweiE3372

Huawei E3372 support
BEWARE:
This modem will need a mode switch before you can connect, this can be done
using VintageNet's power management functionality like this:
 config :vintage_net, power_managers: [{VintageNetMobile.Modem.HuaweiE3372.Modeswitch, ifname: "ppp0"}]
With this in your configuration you can now do the following to connect with
the modem:
 VintageNet.configure("ppp0", %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: VintageNetMobile.Modem.HuaweiE3372,
 service_providers: [%{apn: "some apn"}]
 }
 })
BEWARE Currently none of the Signal, Cell and Modem monitors are working.

 Anchor for this section

 Summary

 Functions

 chatscript(service_provider)

 Anchor for this section

Functions

 Link to this function

 chatscript(service_provider)

 View Source

VintageNetMobile.Modem.HuaweiE3372.Modeswitch

VintageNetMobile PowerManager to handle the HuaweiE3372 modem

VintageNetMobile.Modem.QuectelBG96

Quectel BG96 support
The Quectel BG96 is an LTE Cat M1/Cat NB1/EGPRS module. Here's an example
configuration:
VintageNet.configure(
 "ppp0",
 %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: VintageNetMobile.Modem.QuectelBG96,
 service_providers: [%{apn: "super"}]
 }
 }
)
Options:
	:modem - VintageNetMobile.Modem.QuectelBG96
	:service_providers - A list of service provider information (only :apn
providers are supported)
	:at_tty - A tty for sending AT commands on. This defaults to "ttyUSB2"
which works unless other USB serial devices cause Linux to set it to
something different.
	:ppp_tty - A tty for the PPP connection. This defaults to "ttyUSB2"
which works unless other USB serial devices cause Linux to set it to
something different.
	:scan - Set this to the order that radio access technologies should be
attempted when trying to connect. For example, [:lte_cat_m1, :gsm]
would prevent the modem from trying LTE Cat NB1 and potentially save some
time if you're guaranteed to not have Cat NB1 service.

If multiple service providers are configured, this implementation only
attempts to connect to the first one.
Example of supported properties:
iex> VintageNet.get_by_prefix(["interface", "ppp0"])
[
 {["interface", "ppp0", "addresses"],
 [
 %{
 address: {10, 64, 64, 64},
 family: :inet,
 netmask: {255, 255, 255, 255},
 prefix_length: 32,
 scope: :universe
 }
]},
 {["interface", "ppp0", "connection"], :internet},
 {["interface", "ppp0", "lower_up"], true},
 {["interface", "ppp0", "mobile", "access_technology"], "CAT-M1"},
 {["interface", "ppp0", "mobile", "band"], "LTE BAND 12"},
 {["interface", "ppp0", "mobile", "channel"], 5110},
 {["interface", "ppp0", "mobile", "cid"], 18677159},
 {["interface", "ppp0", "mobile", "lac"], 4319},
 {["interface", "ppp0", "mobile", "mcc"], 310},
 {["interface", "ppp0", "mobile", "mnc"], 410},
 {["interface", "ppp0", "mobile", "network"], "AT&T"},
 {["interface", "ppp0", "mobile", "signal_4bars"], 4},
 {["interface", "ppp0", "mobile", "signal_asu"], 25},
 {["interface", "ppp0", "mobile", "signal_dbm"], -63},
 {["interface", "ppp0", "present"], true},
 {["interface", "ppp0", "state"], :configured},
 {["interface", "ppp0", "type"], VintageNetMobile}
]
Required Linux kernel options
	CONFIG_USB_SERIAL=m
	CONFIG_USB_SERIAL_WWAN=m
	CONFIG_USB_SERIAL_OPTION=m
	CONFIG_USB_WDM=m
	CONFIG_USB_NET_QMI_WWAN=m

VintageNetMobile.Modem.QuectelEC25

Quectel EC25 support
The Quectel EC25 is a series of LTE Cat 4 modules. Here's an example
configuration:
VintageNet.configure(
 "ppp0",
 %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: VintageNetMobile.Modem.QuectelEC25,
 service_providers: [%{apn: "wireless.twilio.com"}]
 }
 }
)
Options:
	:modem - VintageNetMobile.Modem.QuectelEC25
	:service_providers - A list of service provider information (only :apn
providers are supported)
	:at_tty - A tty for sending AT commands on. This defaults to "ttyUSB2"
which works unless other USB serial devices cause Linux to set it to
something different.
	:ppp_tty - A tty for the PPP connection. This defaults to "ttyUSB2"
which works unless other USB serial devices cause Linux to set it to
something different.

If multiple service providers are configured, this implementation only
attempts to connect to the first one.
Example of supported properties:
iex> VintageNet.get_by_prefix(["interface", "ppp0"])
[
 {["interface", "ppp0", "addresses"],
 [
 %{
 address: {10, 64, 64, 64},
 family: :inet,
 netmask: {255, 255, 255, 255},
 prefix_length: 32,
 scope: :universe
 }
]},
 {["interface", "ppp0", "connection"], :internet},
 {["interface", "ppp0", "lower_up"], true},
 {["interface", "ppp0", "mobile", "access_technology"], "FDD LTE"},
 {["interface", "ppp0", "mobile", "band"], "LTE BAND 4"},
 {["interface", "ppp0", "mobile", "channel"], 2300},
 {["interface", "ppp0", "mobile", "cid"], 11303407},
 {["interface", "ppp0", "mobile", "lac"], 10234},
 {["interface", "ppp0", "mobile", "mcc"], 360},
 {["interface", "ppp0", "mobile", "mnc"], 200},
 {["interface", "ppp0", "mobile", "network"], "Twilio"},
 {["interface", "ppp0", "mobile", "signal_asu"], 21},
 {["interface", "ppp0", "mobile", "signal_4bars"], 4},
 {["interface", "ppp0", "mobile", "signal_dbm"], -71},
 {["interface", "ppp0", "present"], true},
 {["interface", "ppp0", "state"], :configured},
 {["interface", "ppp0", "type"], VintageNetMobile}
]
Required Linux kernel options
	CONFIG_USB_SERIAL=m
	CONFIG_USB_SERIAL_WWAN=m
	CONFIG_USB_SERIAL_OPTION=m
	CONFIG_USB_WDM=m
	CONFIG_USB_NET_QMI_WWAN=m

VintageNetMobile.Modem.SierraHL8548

Sierra Wireless HL8548 modem
https://source.sierrawireless.com/resources/airprime/hardware_specs_user_guides/airprime_hl8548_and_hl8548-g_product_technical_specification/
The Sierra Wireless HL8548 is an industrial grade Embedded Wireless Module
that provides voice and data connectivity on GPRS, EDGE, WCDMA, HSDPA and
HSUPA networks.
Here's an example configuration:
VintageNet.configure(
 "ppp0",
 %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: VintageNetMobile.Modem.SierraHL8548,
 service_providers: [%{apn: "BROADBAND"}]
 }
 }
)

VintageNetMobile.Modem.UbloxTOBYL2

u-blox TOBY-L2 support
The u-blox TOBY-L2 is a series of LTE Cat 4 modules with HSPA+ and/or 2G
fallback. Here's an example configuration:
VintageNet.configure(
 "ppp0",
 %{
 type: VintageNetMobile,
 vintage_net_mobile: %{
 modem: VintageNetMobile.Modem.UbloxTOBYL2,
 service_providers: [
 %{apn: "lte-apn", usage: :eps_bearer},
 %{apn: "old-apn", usage: :pdp}
]
 }
 }
)
This implementation currently requires APNs to be annotated for whether
they are to be used on LTE (:eps_bearer) or on UMTS/GPRS (:pdp).
Required Linux kernel options
	CONFIG_USB_SERIAL=m
	CONFIG_USB_SERIAL_WWAN=m
	CONFIG_USB_SERIAL_OPTION=m

Required modem preparation
The Toby L2 is a composite USB device that can be configured to expose
various different interfaces. By default, it has one CDC ACM interface. This
implementation requires two, so you have to send it the following over a
tty interface (via Circuits.UART or externally):
AT+UUSBCONF=2
That command is saved NVRAM and only needs to be sent once. See section
"19.17 USB profiles configuration +UUSBCONF" in the u-blox AT commands
manual

VintageNetMobile.ModemInfo

Query the modem for device and SIM information
This monitor queries the modem for information about itself and its SIM and
posts it to VintageNet properties.
The following properties are reported:
	Property	Values	Description
	iccid	string	The Integrated Circuit Card Identifier (ICCID)
	imsi	string	The International Mobile Subscriber Identity (IMSI)

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link([keyword()]) :: GenServer.on_start()

VintageNetMobile.SignalMonitor

Monitor the cell signal levels
This monitor queries the modem for cell signal level information and posts it to
VintageNet properties.
The following properties are reported:
	Property	Values	Description
	signal_asu	0-31,99	This is the raw Arbitrary Strength Unit (ASU) reported. It's interpretation depends on the modem and possibly the connection technology.
	signal_4bars	0-4	The signal level in "bars" for presentation to a user.
	signal_dbm	-144 - -44	The signal level in dBm. Interpretation depends on the connection technology.

 Anchor for this section

 Summary

 Types

 opt()

 The options for the monitor are

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Anchor for this section

Types

 Link to this type

 opt()

 View Source

 Specs

 opt() ::
 {:signal_check_interval, non_neg_integer()}
 | {:ifname, String.t()}
 | {:tty, String.t()}

The options for the monitor are:
	:signal_check_interval - the number of milliseconds to wait before asking
the modem for the signal quality (default 5 seconds)
	:ifname - the interface name the mobile connection is using
	:tty - the tty name that is used to send AT commands

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link([opt()]) :: GenServer.on_start()

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

