

 vintage_net

 v0.10.1

 Table of contents

 	README

 	VintageNet Cookbook

 	Changelog

 	Modules

 	VintageNet

 	VintageNet.IP

 	VintageNet.IP.DhcpdConfig

 	VintageNet.IP.DnsdConfig

 	VintageNet.IP.IPv4Config

 	VintageNet.Interface

 	VintageNet.Interface.Classification

 	VintageNet.Interface.CommandRunner

 	VintageNet.Interface.EAPStatus

 	VintageNet.Interface.IfupDaemon

 	VintageNet.Interface.InternetConnectivityChecker

 	VintageNet.Interface.InternetTester

 	VintageNet.Interface.LANConnectivityChecker

 	VintageNet.Interface.RawConfig

 	VintageNet.InterfaceRenamer

 	VintageNet.InterfacesMonitor

 	VintageNet.NameResolver

 	VintageNet.OSEventDispatcher.UdhcpcHandler

 	VintageNet.OSEventDispatcher.UdhcpdHandler

 	VintageNet.Persistence

 	VintageNet.Persistence.FlatFile

 	VintageNet.Persistence.Null

 	VintageNet.PowerManager

 	VintageNet.PowerManager.PMControl

 	VintageNet.PowerManager.Supervisor

 	VintageNet.PredictableInterfaceName

 	VintageNet.PropertyTable

 	VintageNet.Route.Calculator

 	VintageNet.Route.IPRoute

 	VintageNet.Route.InterfaceInfo

 	VintageNet.Route.Properties

 	VintageNet.RouteManager

 	VintageNet.Technology

 	VintageNet.Technology.Null

[image: VintageNet Logo]
[image: Hex version]
[image: API docs]
[image: CircleCI]
[image: Coverage Status]
NOTE: If you've been using vintage_net v0.6.x or earlier, we split
out network technology support out to separate libraries in v0.7.0. You'll
need to add those libraries to your mix dependency list and rename some
atoms. Configurations stored on deployed devices will be automatically
updated. See the v0.7.0 release
notes
for details.

VintageNet is network configuration library built specifically for Nerves
Project devices. It has the following features:
	Ethernet and WiFi support included. Extendible to other technologies
	Default configurations specified in your Application config
	Runtime updates to configurations are persisted and applied on next boot
(configurations are obfuscated by default to hide WiFi passphrases)
	Simple subscription to network status change events
	Connect to multiple networks at a time and prioritize which interfaces are
used (Ethernet over WiFi over cellular)
	Internet connection monitoring and failure detection
	Predictable network interface names

TL;DR: Don't care about any of this and just want the string to copy/paste
to set up networking? See the VintageNet Cookbook.

The following network configurations are supported:
	[x] Wired Ethernet, IPv4 DHCP
	[x] Wired Ethernet, IPv4 static IP
	[x] WiFi password-less and WEP
	[x] WPA2 PSK and EAP
	[x] USB gadget mode Ethernet, IPv4 DHCP server to supply host IP address
	[x] Cellular networks (see vintage_net_mobile for details)
	[x] WiFi AP mode
	[] IPv6 - Partially supported. SLAAC configuration works.

vintage_net takes a different approach to networking from nerves_network.
Its focus is on building and applying network configurations. Where
nerves_network provided configurable state machines, vintage_net turns
human-readable configurations into everything from configuration files and calls
to ip to starting up networking GenServers
and routing table updates. This makes it easier to add support for new network
technologies and features. While Elixir and Erlang were great to implement
network protocols in, it was frequently more practical to reuse embedded Linux
implementations. Importantly, though, vintage_net monitors Linux daemons under
its OTP supervision tree so failures on both the "C" and Elixir sides propagate
in the expected ways.
Another important difference is that VintageNet doesn't attempt to make
incremental modifications to configurations. It completely tears down an
interface's connection and then brings up new configurations in a fresh state.
Network reconfiguration is assumed to be an infrequent event so while this can
cause a hiccup in the network connectivity, it removes state machine code that
made nerves_network hard to maintain.
Installation
First, if you're modifying an existing project, you will need to remove
nerves_network and nerves_init_gadget. vintage_net doesn't work with
either of them. You'll get an error if any project references those packages.
There are two routes to integrating vintage_net:
	Use nerves_pack. nerves_pack is like
nerves_init_gadget, but for vintage_net.
	Copy and paste from
vintage_net_example

The next step is to make sure that your Nerves system is compatible. The
official Nerves systems released after 12/11/2019 work without modification. If
rolling your own Nerves port, you will need the following Linux kernel options
enabled:
	CONFIG_IP_ADVANCED_ROUTER=y
	CONFIG_IP_MULTIPLE_TABLES=y

Then make sure that you have the following Busybox options enabled:
	CONFIG_IFCONFIG=y - ifconfig ifconfig
	CONFIG_UDHCPC=y - udhcpc DHCP Client
	CONFIG_UDHCPD=y - udhcpd DHCP Server (optional)

Finally, you'll need to choose what network connection technologies that you
want available in your firmware. If using nerves_pack, you'll get support for
wired Ethernet, WiFi, and USB gadget networking automatically. Otherwise, add
one or more of the following to your dependency list:
	vintage_net_ethernet - Standard wired Ethernet
	vintage_net_wifi - Client configurations for 802.11 WiFi
	vintage_net_direct - Direct connections like those used for USB gadget
	vintage_net_mobile - Support for a few cellular modems

Configuration
VintageNet has many application configuration keys. Most defaults are fine. At
a minimum, you'll want to specify a default configuration and default regulatory
domain if using WiFi. In your main config.exs, add the following:
config :vintage_net,
 regulatory_domain: "US",
 config: [
 {"eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}}},
 {"wlan0", %{type: VintageNetWiFi}}
]
This sets the regulatory domain to the US (set to your ISO 3166-1 alpha-2
country code. This code is
passed on to the drivers for WiFi and other wireless networking technologies so
that they comply with local regulations. If you need a global default, set to
"00" or don't set at all. Unfortunately, this may mean that an access point
isn't visible if it is running on a frequency that's allowed in your country,
but not globally.
The config section is a list of network configurations. The one shown above
configures DHCP on wired Ethernet and minimally starts up a WiFi LAN so that
it's possible to scan for networks. The typical setup is to provide generic
defaults here. Static IP addresses, WiFi SSIDs and credentials are more
appropriately configured at run-time. VintageNet persists configurations too.
Details on network configuration are described later.
The following table describes the other application config keys.
	Key	Description
	config	A list of default network configurations
	tmpdir	Path to a temporary directory for VintageNet
	udhcpc_handler	Module for handling notifications from udhcpc
	resolvconf	Path to /etc/resolv.conf
	persistence	Module for persisting network configurations
	persistence_dir	Path to a directory for storing persisted configurations
	persistence_secret	A 16-byte secret or an MFA for getting a secret
	internet_host_list	IP address/ports to try to connect to for checking Internet connectivity. Defaults to a list of large public DNS providers. E.g., [{{1, 1, 1, 1}, 53}].
	regulatory_domain	ISO 3166-1 alpha-2 country (00 for global, US, etc.)
	additional_name_servers	List of DNS servers to be used in addition to any supplied by an interface. E.g., [{1, 1, 1, 1}, {8, 8, 8, 8}]

Network interface configuration
VintageNet supports several network technologies out of the box and
third-party libraries can provide more via the VintageNet.Technology
behaviour.
Configurations are Elixir maps. These are specified in three places:
	The vintage_net application config (e.g., your config.exs)
	Locally saved configuration (see the VintageNet.Persistence behaviour for
replacing the default)
	Calling VintageNet.configure/2 to change the configuration at run-time

When vintage_net starts, it applies saved configurations first and if any
thing is wrong with those configs, it reverts to the application config. A good
practice is to have safe defaults for all network interfaces in the application
config.
The only required key in the configuration maps is :type. All other keys
follow from the type. :type should be set to a module that implements the
VintageNet.Technology behaviour. The following are common technologies:
	VintageNetEthernet - Standard wired Ethernet
	VintageNetWiFi - Client configurations for 802.11 WiFi
	VintageNetDirect - Direct connections like those used for USB gadget
connections
	VintageNet.Technology.Null - An empty configuration useful for turning off a
configuration

See the links above for specific documentation.
Persistence
By default, VintageNet stores network configuration to disk. If you are
migrating from nerves_network you may already have a persistence
implementation. To disable the default persistence, configure vintage_net as
follows:
config :vintage_net,
 persistence: VintageNet.Persistence.Null
Debugging
Debugging networking issues is not fun. When you're starting out with
vintage_net, it is highly recommended to connect to your target using a method
that doesn't require networking to work. This could be a UART connection to an
IEx console on a Nerves device or maybe just hooking up a keyboard and monitor.
If having trouble, first check VintageNet.info() to verify the configuration
and connection status:
iex> VintageNet.info
VintageNet 0.3.0

All interfaces: ["eth0", "lo", "tap0", "wlan0"]
Available interfaces: ["eth0", "wlan0"]

Interface eth0
 Type: VintageNetEthernet
 Present: true
 State: :configured
 Connection: :internet
 Configuration:
 %{ipv4: %{method: :dhcp}, type: VintageNetEthernet}

Interface wlan0
 Type: VintageNetWiFi
 Present: true
 State: :configured
 Connection: :internet
 Configuration:
 %{
 ipv4: %{method: :dhcp},
 type: VintageNetWiFi,
 wifi: %{
 key_mgmt: :wpa_psk,
 mode: :infrastructure,
 psk: "******",
 ssid: "MyLAN"
 }
 }
If you're using Toolshed, try running
the following:
iex> ifconfig
lo: flags=[:up, :loopback, :running]
 inet 127.0.0.1 netmask 255.0.0.0
 inet ::1 netmask ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
 hwaddr 00:00:00:00:00:00

eth0: flags=[:up, :broadcast, :running, :multicast]
 inet 192.168.9.131 netmask 255.255.255.0 broadcast 192.168.9.255
 inet fe80::6264:5ff:fee1:4045 netmask ffff:ffff:ffff:ffff::
 hwaddr 60:64:05:e1:40:45

wlan0: flags=[:up, :broadcast, :running, :multicast]
 inet 192.168.9.175 netmask 255.255.255.0 broadcast 192.168.9.255
 inet fe80::20c:e7ff:fe11:3d46 netmask ffff:ffff:ffff:ffff::
 hwaddr 00:0c:e7:11:3d:46
Or ping:
iex> ping "nerves-project.com"
Press enter to stop
Response from nerves-project.com (96.126.123.244): time=48.87ms
Response from nerves-project.com (96.126.123.244): time=42.856ms
Response from nerves-project.com (96.126.123.244): time=43.097ms
You can also specify an interface to use with ping:
iex> ping "nerves-project.com", ifname: "wlan0"
Press enter to stop
Response from nerves-project.com (96.126.123.244): time=57.817ms
Response from nerves-project.com (96.126.123.244): time=46.796ms

iex> ping "nerves-project.com", ifname: "eth0"
Press enter to stop
Response from nerves-project.com (96.126.123.244): time=47.923ms
Response from nerves-project.com (96.126.123.244): time=48.688ms
If it looks like nothing is working, check the logs. On Nerves devices, this
is frequently done by calling RingLogger.next or RingLogger.attach.
At a last resort, please open a GitHub issue. We would be glad to help. We only
have one ask and that is that you get us started with an improvement to our
documentation or code so that the next person to run into the issue will have an
easier time. Thanks!
Properties
VintageNet maintains a key/value store for retrieving information on
networking information:
iex> VintageNet.get(["interface", "eth0", "connection"])
:internet

iex> VintageNet.get_by_prefix([])
[
 {["interface", "eth0", "connection"], :internet},
 {["interface", "eth0", "state"], :configured},
 {["interface", "eth0", "type"], VintageNetEthernet},
 {["interface", "wlan0", "connection"], :internet},
 {["interface", "wlan0", "state"], :configured},
 {["interface", "wlan0", "type"], VintageNetWiFi}
]
You can also subscribe to keys and receive a message every time it or one its
child keys changes:
iex> VintageNet.subscribe(["interface", "eth0"])
:ok

iex> flush
{VintageNet, ["interface", "eth0", "state"], :configuring, :configured, %{}}
The message format is {VintageNet, name, old_value, new_value, metadata}
Global properties
	Property	Values	Description
	available_interfaces	[eth0, ...]	Currently available network interfaces in priority order. E.g., the first one is used by default
	connection	:disconnected, :lan, :internet	The overall network connection status. This is the best status of all interfaces.

Common network interface properties
All network interface properties can be found under ["interface", ifname] in
the PropertyTable. The following table lists out properties common to all
interfaces:
	Property	Values	Description
	type	VintageNetEthernet, etc.	The type of the interface
	config	%{...}	The configuration for this interface
	state	:configured, :configuring, etc.	The state of the interface from VintageNet's point of view.
	hw_path	"/devices/platform/ocp/4a100000.ethernet"	This is how Linux internally views the connections going to the interface.
	connection	:disconnected, :lan, :internet	This provides a determination of the Internet connection status
	lower_up	true or false	This indicates whether the physical layer is "up". E.g., a cable is connected or WiFi associated
	mac_address	"11:22:33:44:55:66"	The interface's MAC address as a string
	addresses	[address_info]	This is a list of all of the addresses assigned to this interface

Specific types of interfaces provide more parameters.
Predictable network interface names
When using more than one of the same type of interface, it's possible for Linux
to reorder their naming. For example, if you have two USB WiFi adapters, one
will be named wlan0 and the other wlan1. Which one is first depends on
things like when the adapter is found and when kernel modules are loaded. This
can vary between boots and cause a lot of confusion.
The solution is to rename network interfaces based on characteristics of the
interface - such as how it's connected. Then application software refers to the
new name rather than names like wlan0. This is a common problem, and
VintageNet provides support for automatically renaming network interfaces.
If you're used to systemd's approach to naming interfaces, be aware that
VintageNet's approach is different: systemd has an
algorithm
for generating names (e.g., enp4s0) automatically. VintageNet requires you to
provide the names to use (e.q., internet0, lan0, etc.) and how they map to
hardware. If VintageNet is confronted with a network interface that is connected
in a way that it doesn't know about, it will do nothing.
IMPORTANT: Do not mix and match predictable interface names and
non-predictable interface names (wlan*, eth*, usb*, wwan*). It is
confusing and VintageNet will fight you.

Before switching to predictable names, find out how your network interfaces are
connected. For example, this device has an Ethernet interface and two USB WiFi
dongles:
iex> VintageNet.match(["interface", :_, "hw_path"])
[
 {["interface", "eth0", "hw_path"], "/devices/platform/ocp/4a100000.ethernet"},
 {["interface", "lo", "hw_path"], "/devices/virtual"},
 {["interface", "wlan0", "hw_path"], "/devices/platform/ocp/47400000.usb/47401c00.usb/musb-hdrc.1/usb2/2-1/2-1:1.0"},
 {["interface", "wlan1", "hw_path"], "/devices/platform/ocp/47400000.usb/47401400.usb/musb-hdrc.0/usb1/1-1/1-1:1.4"}
]
Now update your config.exs with the mappings with the :ifnames key. Be sure
to also update the default configuration with the new interface names.
Continuing the example, imagine that one WiFi adapter supports 802.11 meshing
and it's guaranteed to be in one USB port on the device. The other USB port can
have any of a few types of USB WiFi modules. We need to use predictable naming
in this case so that meshing is only setup on the adapter that supports it.
config :vintage_net,
 ifnames: [
 %{
 hw_path: "/devices/platform/ocp/4a100000.ethernet",
 ifname: "ethernet0"
 },
 %{
 hw_path: "/devices/platform/ocp/47400000.usb/47401c00.usb/musb-hdrc.1/usb2/2-1/2-1:1.0",
 ifname: "primary_wifi"
 },
 %{
 hw_path: "/devices/platform/ocp/47400000.usb/47401400.usb/musb-hdrc.0/usb1/1-1/1-1:1.4",
 ifname: "mesh_wifi"
 }
],
 config: [
 {"ethernet0", %{type: VintageNetEthernet}},
 {"primary_wifi", %{type: VintageNetWiFi}},
 {"mesh_wifi", %{type: VintageNetWiFi}}
]
IMPORTANT: VintageNet has rules about renaming interfaces to prevent confusing
errors. Below is a list of reasons it will not rename an interface

	hw_path matches /devices/virtual (such as lo0, ppp0 etc.)
	A second interface's hw_path matches an interface that has already been
renamed. This should never happen.

Power Management
Some devices require additional work to be done for them to become available.
Examples of this are:
	Setting a GPIO to enable power to the module
	Loading a Linux kernel module that is not automatically loaded via the
default mechanisms
	Running usb_modeswitch to change the USB interface to the appropriate state
	Performing an initialization step such as loading firmware

Similarly, when the network interface is no longer being used, it can be nice to
undo any steps above.
This process is referred to as power management in VintageNet even though the
implementation may not actually affect power use. To use it, implement the
VintageNet.PowerManager behaviour and register the implementation in your
config.exs.
Additionally, VintageNet runs a watchdog-like service for network devices that
supply VintageNet.PowerManager implementations. If the watchdog is not pet
within the timeout period (user-specified and defaults to 60 seconds),
VintageNet powers the device off and and on. The VintageNet power management
code supports mandatory minimum on and off times to prevent damage to hardware
and also minimize pointless power cycling of hardware.
While many network devices are fairly reliable and powering off and on seems
unnecessary, it can save a trip to the field or a full device reboot.
VintageNet.info/1 shows the power management state for network interfaces that
are using this feature.

VintageNet Cookbook
Not sure what to pass to vintage_net? Take a look below for example
configurations.
Compile-time vs. run-time
The examples below all show the options to pass. Where you copy those depends on
whether you want the configuration to be a built-in default (i.e., compile-time)
or whether you want to change it at run-time.
For compile-time, add something like the following to your config.exs:
config :vintage_net,
 config: [
 {"eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}}},
]
But replace "eth0" with the interface and the map with the desired
configuration from below.
For run-time, call
VintageNet.configure
like this:
VintageNet.configure("eth0", %{type: VintageNetEthernet, ipv4: %{method: :dhcp}})
To see the current configuration at an IEx prompt, type:
iex> VintageNet.info
Network interface names
In order to configure a network interface, you will need to know its name.
vintage_net passes names through from Nerves or embedded Linux depending on
where it's being run. The following names are common:
	"eth0" - The first wired Ethernet interface
	"wlan0" - The first WiFi interface
	"usb0" - The first virtual Ethernet interface over a USB cable

The operating system assigns network interface names as it discovers them. If
you're running on a device with multiple of the same type of interface, the
device names may be renamed to make them deterministic. An example is "enp6s0"
where the p6 and s0 indicate where the adapter and Ethernet connector
location. Running ifconfig on Linux and Nerves can help find these if you are
unsure.
Wired Ethernet
To use, make sure that you're either using
nerves_pack or have
:vintage_net_ethernet in your deps:
 {:vintage_net_ethernet, "~> 0.8"}
Wired Ethernet with DHCP
This is regular wired Ethernet - nothing fancy:
%{type: VintageNetEthernet, ipv4: %{method: :dhcp}}
Wired Ethernet with a static IP
Update the parameters below as appropriate:
%{
 type: VintageNetEthernet,
 ipv4: %{
 method: :static,
 address: "192.168.9.232",
 prefix_length: 24,
 gateway: "192.168.9.1",
 name_servers: ["1.1.1.1"]
 }
}
See
VintageNet.IP.IPv4Config
for other options. If you're interfacing with other Erlang and Elixir libraries,
you may find passing IP tuples more convenient than passing strings. That works
too.
WiFi
To use, make sure that you're either using
nerves_pack or have
:vintage_net_wifi in your deps:
 {:vintage_net_wifi, "~> 0.8"}
Normal password-protected WiFi (WPA2 PSK)
Most password-protected home networks use WPA2 authentication and pre-shared
keys.
%{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 }
]
 },
 ipv4: %{method: :dhcp},
}
If you're regularly switching between multiple networks, you can list them all
under the :networks key. Note that it's currently not possible to mix networks
that require static IP addresses with those that use DHCP.
%{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_psk,
 ssid: "my_network_ssid",
 psk: "a_passphrase_or_psk"
 },
 %{
 key_mgmt: :wpa_psk,
 ssid: "another_ssid",
 psk: "a_passphrase_or_psk"
 },
 ...
]
 },
 ipv4: %{method: :dhcp},
}
Enterprise WiFi (PEAPv0/EAP-MSCHAPV2)
Protected EAP (PEAP) is a common authentication protocol for enterprise WiFi networks.
%{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 key_mgmt: :wpa_eap,
 ssid: "my_network_ssid",
 identity: "username",
 password: "password",
 eap: "PEAP",
 phase2: "auth=MSCHAPV2"
 }
]
 },
 ipv4: %{method: :dhcp}
}
Enterprise WiFi (EAP-TLS)
TBD
Access point WiFi
Some WiFi modules can be run in access point mode. This makes it possible to
create configuration wizards and captive portals. Configuration of this is more
involved. Here is a basic configuration:
%{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 networks: [
 %{
 mode: :ap,
 ssid: "test ssid",
 key_mgmt: :none
 }
]
 },
 ipv4: %{
 method: :static,
 address: "192.168.24.1",
 netmask: "255.255.255.0"
 },
 dhcpd: %{
 start: "192.168.24.2",
 end: "192.168.24.10"
 }
}
See the
vintage_net_wizard
for an example of a project that uses AP mode and a web server for WiFi
configuration.
Bridged Mesh WiFi
In addition to infrastructure and AP modes, some WiFi modules can form a mesh.
VintageNet supports the configuration of 802.11s meshes.
While this is the standardize way of forming WiFi meshes, it is not the same as that implemented
by many access points that advertise WiFi meshing. It also uses the 802.11s routing protocol HWMP. (This is
not B.A.T.M.A.N.).
This section describes two configuration: the first is for the mesh gate and the second is for the mesh
devices. The mesh gate bridges the mesh network to the network that connects to the Internet. Mesh
nodes behave similar to normal clients: after connecting to the network, they request an IP address using
DHCP. The DHCP request gets routed through the mesh gate and to the DHCP server on the non-mesh
LAN. It's possible to have multiple mesh gates. Routing through the mesh and the mesh gate is
transparent.
The following configuration is for a mesh gate with one WiFi interface used for the mesh network and a wired network interface, eth0, that connects it to the LAN:
mesh0_config = %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 user_mpm: 1,
 # mesh creates a "virtual" interface based on
 # this interface name
 root_interface: "wlan0",
 networks: [
 %{
 key_mgmt: :none,
 ssid: "my-mesh",
 frequency: 2432,
 mode: :mesh
 }
]
 },
 # we don't need an ip address on the mesh interface
 ipv4: %{method: :disabled},
}

Bridge configured to bridge eth0 and mesh0 together
br0_config = %{
 type: VintageNetBridge,
 ipv4: %{method: :dhcp},
 vintage_net_bridge: %{
 interfaces: ["eth0", "mesh0"]
 }
}

eth0_config = %{
 type: VintageNetEthernet,
 # the bridge handles ip addressing
 ipv4: %{method: :disabled},
}

VintageNet.configure("mesh0", mesh0_config)
VintageNet.configure("br0", br0_config)
VintageNet.configure("eth0", eth0_config)
This configuration is for devices on the mesh:
mesh0_config = %{
 type: VintageNetWiFi,
 vintage_net_wifi: %{
 user_mpm: 1,
 # mesh creates a "virtual" interface based on
 # this interface name
 root_interface: "wlan0",
 networks: [
 %{
 key_mgmt: :none,
 ssid: "my-mesh",
 frequency: 2432,
 mode: :mesh
 }
]
 },
 # the mesh is bridged on the other
 # device, so we can use dhcp now
 ipv4: %{method: :dhcp},
}
VintageNet.configure("mesh0", mesh0_config)
Network interaction
Share WAN with other networks
For sharing your WAN connection (e.g. internet access) with other networks
iptables must be installed. Currently this means building a custom nerves
system. Once this is done
the following commands need to be called on each boot:
wan = "eth0"
cmd "sysctl -w net.ipv4.ip_forward=1"
cmd "iptables -t nat -A POSTROUTING -o #{wan} -j MASQUERADE"
Only needed if the connection is blocked otherwise (like a default policy of DROP)
cmd "iptables -A INPUT -i #{wan} -m state --state RELATED,ESTABLISHED -j ACCEPT"
Common tasks
Temporarily disable WiFi
VintageNet persists configurations by default. Sometimes you just want to
disable a network temporarily and then if the device reboots, it reboots to the
old configuration. The :persist option let's you do this:
VintageNet.deconfigure("wlan0", persist: false)
To get the old configuration back, you have to call VintageNet.configure/3
with it again (or restart VintageNet or reboot).
Perform some initialization to turn on a network interface
VintageNet waits for network interfaces to appear before doing any work. If
you need to perform some work to make the network interface show up, that has to
be done elsewhere. If you let VintageNet know about this work and allow it to
turn the network interface off too, it can "cycle power" to the interface to get
it back to a clean state when needed. Here's how:
defmodule MyPowerManager do
 @behaviour VintageNet.PowerManager

 @reset_n_gpio 4
 @power_on_hold_time 5 * 60000
 @min_powered_off_time 5000

 defstruct reset_n: nil

 @impl VintageNet.PowerManager
 def init(_args) do
 {:ok, reset_n} = Circuits.GPIO.open(@reset_n_gpio, :output)
 {:ok, %__MODULE__{reset_n: reset_n}}
 end

 @impl VintageNet.PowerManager
 def power_on(state) do
 # Do whatever is necessary to turn the network interface on
 Circuits.GPIO.write(state.reset_n, 1)
 {:ok, state, @power_on_hold_time}
 end

 @impl VintageNet.PowerManager
 def start_powering_off(state) do
 # If there's a graceful power off, start it here and return
 # the max time it takes.
 {:ok, state, 0}
 end

 @impl VintageNet.PowerManager
 def power_off(state) do
 # Disable the network interface
 Circuits.GPIO.write(state.reset_n, 0)
 {:ok, state, @min_powered_off_time}
 end
Then add the following to your config.exs:
config :vintage_net, power_managers: [{MyPowerManager, ifname: "wlan0"}]
VintageNet determines whether devices are ok by use of a watchdog. VintageNet
and its technology implementations pet the watchdog by calling
VintageNet.PowerManager.PMControl.pet_watchdog/1. This may be insufficient for
your application. Options include calling that function in your code regularly
or modifying the :watchdog_timeout in the power manager spec in your
config.exs.
See VintageNet.PowerManager for details.

Changelog
v0.10.1
	Improvements	There's now an :additional_name_servers global configuration key so that
it's possible to force name servers to always be in the list to use. For
example, if you don't trust that you'll always get good name servers from
DHCP, you can add a few public name servers to this list.
	/etc/resolv.conf now has nice comments on where configuration items come
from. Thanks to Connor Rigby for this idea and implementation.

v0.10.0
This release is mostly backwards compatible. If you have created your own
VintageNet technology, you may need to update your unit tests. If you are an end
user of VintageNet, your code should continue to work unmodified.
	Improvements
	The Internet connectivity check logic now supports a list of IP addresses
instead of just one. The default has been updated to include major public
DNS providers. The code checks them in succession until one responds. See
:internet_host_list config key in the README.md if you need to change it.
	Only start udhcpc/udhcpd when the network interface is up. This removes
pointless attempts to get an IP address and their associated logs. It
reduces connection time for wired Ethernet but doesn't affect WiFI.

	Bug fixes
	Replace Crypto API calls that are no longer included with OTP 24.
	Redact SAE passwords

v0.9.3
	Bug fixes	Be more robust to PowerManager.init/1 failures. While this function
shouldn't raise, the effect of it raising was particularly destructive to
VintageNet and took down networking.
	Update gen_state_machine dependency to let the 3.0.0 release be used.

v0.9.2
	Bug fixes	Handle missing commands as errors rather than raising. This makes it
a little easier test vintage_net and libraries that use it.
	Fixes @doc tag warnings during compile time

v0.9.1
	Bug fixes	This fixes an issue where system networking binaries were not being resolved
according to vintage_net's view of the PATH. vintage_net looks in the
standard directories by default, but it's possible to restrict or add
locations.

v0.9.0
This release contains improvements that will not affect you unless you are
using a custom VintageNet.Technology implementation.
	New features
	Add power management support. This adds support for powering on and off
network devices and also enables VintageNet to restart devices that are
not working (if allowed). See VintageNet.PowerManager for details.

	Breaking changes
	Paths to networking programs like wpa_supplicant are no longer passed as
opts during configuration. I.e., :bin_wpa_supplicant, :bin_ip, etc. This
was not a generally useful feature since it wasn't possible to include all
possible programs. A future plan is to add support for verifying that
networking programs exist before trying to configure an interface. Programs
should be passed as strings now.
	Support for the :busybox hex package has been removed. This was useful
when networking programs were unavailable on a system, but all official
Nerves systems have included them for the past year and :busybox required
maintenance to keep working and up-to-date.

v0.8.0
	New features
	[Breaking change for technology implementors] Decouple the network interface
name from the one a network technology uses. For example, cellular modems
can now have vintage_net wait for wwan0 to appear before setting up a
PPP interface (like ppp0). All network technology implementations need to
be updated to provide RawConfigs that list the network interfaces they
need to start. This is hard to miss since you'll get a compile error if it
affects you.
	Deterministic interface naming support - If you have a device with multiple
network interfaces of the same type (e.g., multiple WiFi adapters) it is
possible for them to switch between being assigned wlan0 and wlan1
under some conditions. This feature allows you to map their hardware
location to a name of your choosing. See the README.md for details.
	Add the "hw_path" property - For example, {["interface", "eth0", "hw_path"], "/devices/platform/ocp/4a100000.ethernet"}

	Bug fixes
	Stop network interface management GenServers before running the "down"
commands. This is most noticeable in reduced log noise on network hiccups
and device removals.

v0.7.9
	Bug fixes	Fix IP address being reported for PPP connections. Previously, it was the
remote end of the PPP connection rather than the local end.
	Fix missing IPv6 address reports. Depending on when IPv6 addresses were set
on network interfaces, they might not have been reported. Note that IPv6
isn't officially supported by VintageNet yet.

v0.7.8
	Improvements
	Store an interface's configuration in the ["interface", ifname, "config"]
property. This makes it possible to subscribe to configuration changes (like
any other property).
	Print out IP addresses with VintageNet.info/0

	Bug fixes
	Fixed VintageNet.get_configuration/1 to return the configuration that will
be applied even if it's not the configuration that's currently applied.
The previous semantics would break code that made decisions based on the
current configurations.

v0.7.7
	Improvements	Added time-in-state to VintageNet.info. This lets you see if a connection
has bounced at a glance without digging through the logs.

v0.7.6
	Bug fixes	Ensure that Technology.normalize/1 is always called. Previously, this
wasn't guaranteed, and it could result in a surprise when an unnormalized
configuration got saved.
	Remove duplicate resolv.conf entries on multi-homed devices
	Fix warnings found by Elixir 1.10

v0.7.5
	Bug fixes	Fix routing table error when configuring multiple interfaces of the same
type.
	Fix VintageNet.info for when it's called before vintage_net is loaded.

v0.7.4
	Bug fixes	Fix VintageNet.info crash when displaying AP mode configurations
	Save configurations using the :sync flag to reduce the chance that they're
lost on ungraceful power offs. I.e., people pulling the power cable after
device configuration.

v0.7.3
	Improvements	Scrub VintageNet.info/0 output to avoid accidental disclosure of WiFi
credentials
	Support options to deconfigure/2 to mirror those on configure/2
	Prefix udhcpc logs with interface to more easily blame problematic
networks
	Support IPv4 /32 subnets
	Various documentation fixes and improvements

v0.7.2
	Bug fix	Remove noisy log message introduced in v0.7.1

v0.7.1
This release fixes an issue where the Internet-connectivity checking code could
crash. It was automatically restarted, but that had a side effect of delaying a
report that the device was connected AND breaking mdns_lite. Both the crash
and the restart issue were fixed. The mdns_lite side effect was due to its
multicast group membership being lost so this would affect other multicast-using
code.
	Bug fixes
	Fix :timeout_value crash in the InternetConnectivityChecker
	Force clear IPv4 addresses when the DHCP notifies a deconfig event. This
occurs on a restart and is quickly followed by a renew. However, if
applications don't see this, bounce and don't register their multicast
listeners on affected IPv4 address again, they'll lose the subscription.

	Improvements
	Added check for nerves_network and nerves_init_gadget. If your project
pulls these in, it will get a moderately friendly notice to remove them.

v0.7.0
This release moves network technology implementations (WiFi, wired Ethernet,
etc.) into their own projects. This means that they can evolve at their own
pace. It also means that we're finally ready to support the
VintageNet.Technology behaviour as part of the public API so that VintageNet
users can add support for network technologies that we haven't gotten to yet.
IMPORTANT: This change is not backwards compatible. You will need to update
existing projects to bring in a new dependency. The runtime is backwards
compatible. I.e., If you have a networking configuration saved in VintageNet, it
will be updated on load. It won't be re-saved, so if you need to revert an
update, it will still work. The next save, though, will use the new naming.
If you're using VintageNet.Technology.Gadget, do the following:
	Add {:vintage_net_direct, "~> 0.7.0"} to your mix.exs dependencies.
You'll notice that references to "gadget" have been replaced with the word
"direct". We think the new naming is more accurate.
	Replace all references to VintageNet.Technology.Gadget in your code to
VintageNetDirect. Be aware of aliases and configuration.
	If you passed options when configuring the network, the :gadget key is
now :vintage_net_direct. Most users don't pass options.

If you're using VintageNet.Technology.Ethernet, do the following:
	Add {:vintage_net_ethernet, "~> 0.7.0"} to your mix.exs dependencies.
	Replace all references to VintageNet.Technology.Ethernet in your code to
VintageNetEthernet. Be aware of aliases and configuration.

If you're using VintageNet.Technology.WiFi, do the following:
	Add {:vintage_net_wifi, "~> 0.7.0"} to your mix.exs dependencies.
	Replace all references to VintageNet.Technology.WiFi in your code to
VintageNetWiFi. Be aware of aliases and configuration. Also, the "F" is
capital.
	The :wifi key in the network configuration is now :vintage_net_wifi.

v0.6.6
	Bug fixes
	Fix warning from Dialyzer when making wild card subscriptions. Code was also
added to more thoroughly validate properties paths to raise on subtle issues
that won't do what the programmer intends.

	New features
	Added VintageNet.match/1 to support "gets" on properties using wildcards.

v0.6.5
	New features	Support wild card subscriptions to properties. This makes it possible to
subscribe to things like ["interface", :_, "addresses"] where the :_
indicates that any value in the second position should match. That
particular subscription would send a message whenever an IP address anywhere
gets added, changed, or removed.

v0.6.4
	Improvements	Added the ["interface", ifname, "eap_status"] property for EAP
events. EAP is currently only supported on WiFi, but is anticipated for
wired Ethernet too.

v0.6.3
This release renames the WiFi mode names. The old names still work so it's a
backwards compatible update. The new names are :ap and :infrastructure
instead of :host and :client. These names match the mode names in the IEEE
specifications and usage elsewhere.
	New features	Support static IPv4 configurations for a default gateway and list of name
resolvers. See :gateway and :name_servers parameters.
	Support ad-hoc WiFi networking (IBSS mode)

v0.6.2
	New features	Support running a simple DNS server on an interface. This was added for WiFi
AP mode configuration and could be useful for other scenarios.
	Support DHCP server response options
	Support disabling configuration persistence on a per-call basis. This is for
temporary configurations where a reboot should not preserve the setting. For
example, VintageNet.configure("wlan0", config, persist: false)

v0.6.1
	New features	Add a current_ap property for WiFi interfaces so that programs can get
information about the currently associated access point
	Support running a DHCP server on wired Ethernet interfaces
	Expose VintageNet.WiFi.WPA2.validate_passphrase/1 so that applications can
reuse the WiFI passphrase validation logic. This logic follows IEEE Std
802.11i-2004 and validates things like proper length and character set

v0.6.0
IMPORTANT: This release contains a LOT of changes. VintageNet is still pre-1.0
and we're actively making API changes as we gain real world experience with it.
Please upgrade carefully.
	Incompatible changes
	All IP addresses are represented as tuples. You can still specify IP
addresses as strings, like "192.168.1.1", but it will be converted to tuple
form. When you get the configuration, you'll see IP addresses as tuples.
This means that if you save your configuration and revert to a previous
version of VintageNet, the settings won't work.
	WiFi network configuration is always under the :networks key. This was
inconsistent. Configuration normalization will update old saved
configurations.
	Support for the IPv4 broadcast IP address has been removed. Existing support
was incomplete and slightly confusing, so we decided to remove it for now.
	All IP address subnets are represented by their prefix length. For example,
255.255.255.0 is recorded as a subnet with prefix length 24. Configuration
normalization converts subnet masks to prefix length now.

	New features
	USB gadget support - See VintageNet.Technology.Gadget. It is highly likely
that we'll refactor USB gadget support to its own project in the future.
	Add :verbose key to configs for enabling debug messages from third party
applications. Currently :verbose controls debug output from
wpa_supplicant.
	Allow users to pass additional options to MuonTrap so that it's possible
to run network daemons in cgroups (among other things)

	Bug fixes
	Networking daemons should all be supervised now. For example, udhcpc
previously was started by ifup and under many conditions, it was possible
to get numerous instances started simultaneously. Plus failures weren't
detected.
	No more killall calls to cleanup state. This had prevented network
technologies from being used on multiple interfaces.
	No more ifupdown. This was very convenient for getting started, but has
numerous flaws. Search the Internet for rants. This was replaced with direct
calls to ip link and ip addr and adding network daemons to supervision
trees.

	Known issues
	Static IP addressing is still not implemented. It's only implemented enough
for WiFi AP mode and USB gadget mode to work. We hope to fix this soon.
	It's not possible to temporarily configure network settings. At the moment,
if persistence is enabled (the default), configuration updates are always
saved.

v0.5.1
	Bug fixes
	Add missing PSK conversion when configuring multiple WiFi networks. This
fixes a bug where backup networks wouldn't connect.

	Improvements
	Don't poll WiFi networks that are configured for AP mode for Internet. They
will never have it.
	Reduce the number of calls to update routing tables. Previously they were
unnecessarily updated on DHCP failures due to timeouts. This also removes
quite a bit of noise from the log.
	Filter out interfaces with "Null" technologies on them from the configured
list. They really aren't configured so it was confusing to see them.

v0.5.0
Backwards incompatible change: The WiFi access point property (e.g.,
["interfaces", "wlan0", "access_points"]) is now a simple list of access point
structs. It was formerly a map and code using this property will need to be
updated.
v0.4.1
	Improvements	Support run-time configuration of regulatory domain
	Error message improvement if build system is missing pkg-config

v0.4.0
Build note: The fix to support AP scanning when in AP-mode (see below) required
pulling in libnl-3. All official Nerves systems have it installed since it is
required by the wpa_supplicant. If you're doing host builds on Linux, you'll
need to run apt install libnl-genl-3-dev.
	New features
	Report IP addresses in the interface properties. It's now possible to listen
for IP address changes on interfaces. IPv4 and IPv6 addresses are reported.
	Support scanning for WiFi networks when an WiFi module is in AP mode. This
lets you make WiFi configuration wizards. See the vintage_net_wizard
project.
	Add interface MAC addresses to the interface properties

	Bug fixes
	Some WiFi adapters didn't work in AP mode since their drivers didn't support
the P2P interface. Raspberry Pis all support the P2P interface, but some USB
WiFi dongles do not. The wpa_supplicant interface code was updated to use
fallback to the non-P2P interface in AP mode if it wasn't available.

v0.3.1
	New features	Add null persistence implementation for devices migrating from Nerves
Network that already have a persistence strategy in place

v0.3.0
	New features
	Support the busybox hex.pm package to bring in networking support if not
present in the Nerves system image. This enables use with the minimal
official Nerves images.
	Add Unix domain socket interface to the wpa_supplicant. This enables
much faster scanning of WiFi networks and other things like collecting
attached clients when in AP-mode and pinging the supplicant to make sure
it's running.
	Log output of commandline-run applications so that error messages don't get
lost.
	Provide utilities for reporting WiFi signal strength as a percent to end
users.

	Bug fixes
	Support scanning WiFi access points with Unicode names (emoji, etc. in their
SSIDs)
	Allow internet connectivity pings to be missed 3 times in a row before
deciding that the internet isn't reachable. This avoids transients due to
the random dropped packet.
	Reduce externally visible transients due to internal GenServers crashing and
restarting - also addressed the crashes
	Support configure while configuring - let's you cancel a configuration that
takes a long time to apply and apply a new one

v0.2.4
	New features	Listen for interface additions and physical layer notifications so that
routing and status updates can be made much more quickly
	Add lower_up to the interface properties

v0.2.3
	Bug fixes	This release fixes supervision issues so that internal VintageNet crashes
can be recovered
	VintageNet.get_configuration/1 works now
	"available_interfaces" is updated again

v0.2.2
	Bug fixes	Fix local LAN routing

v0.2.1
	New features	Expose summary status of whether the whole device is
disconnected, LAN-connected, or Internet-connected

v0.2.0
	New features
	Support WiFi AP mode - see README.md for example

	Bug fixes
	Alway update local routes before default routes to avoid getting errors when
Linux detects a table entry that cannot be routed

v0.1.0
Initial release to hex.

VintageNet

VintageNet is network configuration library built specifically for Nerves
Project devices. It has the following features:
	Ethernet and WiFi support included. Extendible to other technologies
	Default configurations specified in your Application config
	Runtime updates to configurations are persisted and applied on next boot (can
be disabled)
	Simple subscription to network status change events
	Connect to multiple networks at a time and prioritize which interfaces are
used (Ethernet over WiFi over cellular)
	Internet connection monitoring and failure detection (currently slow and
simplistic)

See
github.com/nerves-networking/vintage_net
for more information.

 Anchor for this section

 Summary

 Types

 any_ip_address()

 IP addresses in VintageNet can be specified as strings or tuples

 configure_options()

 Valid options for VintageNet.configure/3

 ifname()

 A name for the network interface

 info_options()

 Valid options for VintageNet.info/1

 ipv4_prefix_length()

 The number of bits to use for an IPv4 subnet

 ipv6_prefix_length()

 The number of bits to use for an IPv6 subnet

 prefix_length()

 The number of IP address bits for the subnet

 Functions

 all_interfaces()

 Return a list of all interfaces on the system

 configuration_valid?(ifname, config)

 Check if this is a valid configuration

 configure(ifname, config, options \\ [])

 Update the configuration of a network interface

 configured_interfaces()

 Return a list of configured interface

 deconfigure(ifname, options \\ [])

 Deconfigure settings for a specified interface.

 get(name, default \\ nil)

 Get the current value of a network property

 get_by_prefix(prefix)

 Get a list of all properties matching the specified prefix

 get_configuration(ifname)

 Return the settings for the specified interface

 info(options \\ [])

 Print the current network status

 ioctl(ifname, command, args \\ [])

 Run a command on a network interface

 match(pattern)

 Get a list of all properties matching a pattern

 max_interface_count()

 Return the maximum number of interfaces controlled by VintageNet

 scan(ifname)

 Initiate an access point scan on a wireless interface

 subscribe(name)

 Subscribe to property change messages

 unsubscribe(name)

 Stop subscribing to property change messages

 verify_system(opts \\ nil)

 Check that the system has the required programs installed

 Anchor for this section

Types

 Link to this type

 any_ip_address()

 View Source

 Specs

 any_ip_address() :: String.t() | :inet.ip_address()

IP addresses in VintageNet can be specified as strings or tuples
While VintageNet uses IP addresses in tuple form internally, it can be
cumbersome to always convert to tuple form in practice. The general rule is
that VintageNet is flexible in how it accepts IP addresses, but if you get an
address from a VintageNet API, it will be in tuple form.

 Link to this type

 configure_options()

 View Source

 Specs

 configure_options() :: [{:persist, boolean()}]

Valid options for VintageNet.configure/3
	:persist - Whether or not to save the configuration (defaults to true)

 Link to this type

 ifname()

 View Source

 Specs

 ifname() :: String.t()

A name for the network interface
Names depend on the device drivers and any software that may rename them.
Typical names on Nerves are:
	"eth0", "eth1", etc. for wired Ethernet interfaces
	"wlan0", etc. for WiFi interfaces
	"ppp0" for cellular modems
	"usb0" for gadget USB virtual Ethernet interfaces

 Link to this type

 info_options()

 View Source

 Specs

 info_options() :: {:redact, boolean()}

Valid options for VintageNet.info/1
	:redact - Whether to hide passwords and similar information from the output (defaults to true)

 Link to this type

 ipv4_prefix_length()

 View Source

 Specs

 ipv4_prefix_length() :: 0..32

The number of bits to use for an IPv4 subnet
For example, if you have a subnet mask of 255.255.255.0, then the prefix
length would be 24.

 Link to this type

 ipv6_prefix_length()

 View Source

 Specs

 ipv6_prefix_length() :: 0..128

The number of bits to use for an IPv6 subnet

 Link to this type

 prefix_length()

 View Source

 Specs

 prefix_length() :: ipv4_prefix_length() | ipv6_prefix_length()

The number of IP address bits for the subnet

 Anchor for this section

Functions

 Link to this function

 all_interfaces()

 View Source

 Specs

 all_interfaces() :: [ifname()]

Return a list of all interfaces on the system

 Link to this function

 configuration_valid?(ifname, config)

 View Source

 Specs

 configuration_valid?(ifname(), map()) :: boolean()

Check if this is a valid configuration
This runs the validation routines for a settings map, but doesn't try to
apply them.

 Link to this function

 configure(ifname, config, options \\ [])

 View Source

 Specs

 configure(ifname(), map(), configure_options()) :: :ok | {:error, any()}

Update the configuration of a network interface
Configurations are validated and normalized before being applied. This means
that type errors and missing required fields will be caught and old or
redundant ways of specifying configurations will be fixed. Call
get_configuration/1 to see how what changes, if any, were made as part of
the normalization process.
After validation, the configuration is optionally persisted and applied.
See the VintageNet documentation for configuration examples or your
VintageNet.Technology provider's docs.
Options:
	:persist - set to false to avoid persisting this configuration. System
restarts will revert to the previous configuration.

 Link to this function

 configured_interfaces()

 View Source

 Specs

 configured_interfaces() :: [ifname()]

Return a list of configured interface

 Link to this function

 deconfigure(ifname, options \\ [])

 View Source

 Specs

 deconfigure(ifname(), configure_options()) :: :ok | {:error, any()}

Deconfigure settings for a specified interface.
Supports same options as configure/3

 Link to this function

 get(name, default \\ nil)

 View Source

 Specs

 get(VintageNet.PropertyTable.property(), VintageNet.PropertyTable.value()) ::
 VintageNet.PropertyTable.value()

Get the current value of a network property
See get_by_prefix/1 for exact prefix matches (i.e., get all properties for one
interface) and match/1 to run wildcard matches (i.e., get a specific
property for all interfaces).

 Link to this function

 get_by_prefix(prefix)

 View Source

 Specs

 get_by_prefix(VintageNet.PropertyTable.property()) :: [
 {VintageNet.PropertyTable.property(), VintageNet.PropertyTable.value()}
]

Get a list of all properties matching the specified prefix
To get a list of all known properties and their values, call
VintageNet.get_by_prefix([])

 Link to this function

 get_configuration(ifname)

 View Source

 Specs

 get_configuration(ifname()) :: map()

Return the settings for the specified interface

 Link to this function

 info(options \\ [])

 View Source

 Specs

 info([info_options()]) :: :ok

Print the current network status
Options include:
	:redact - Set to false to print out passwords

 Link to this function

 ioctl(ifname, command, args \\ [])

 View Source

 Specs

 ioctl(ifname(), atom(), any()) :: :ok | {:ok, any()} | {:error, any()}

Run a command on a network interface
Commands are mostly network interface-specific. Also see the VintageNet
PropertyTable fo getting status or registering for status changes.

 Link to this function

 match(pattern)

 View Source

 Specs

 match(VintageNet.PropertyTable.property_with_wildcards()) :: [
 {VintageNet.PropertyTable.property(), VintageNet.PropertyTable.value()}
]

Get a list of all properties matching a pattern
Patterns are list of strings that optionally specify :_ at
a position in the list to match any value.

 Link to this function

 max_interface_count()

 View Source

 Specs

 max_interface_count() :: 1..100

Return the maximum number of interfaces controlled by VintageNet
Internal constraints mean that VintageNet can't manage an arbitrary number of
interfaces and knowing the max can reduce some processing. The limit is set
by the application config. Unless you need over 100 network interfaces,
VintageNet's use of the Linux networking API is not likely to be an issue,
though.

 Link to this function

 scan(ifname)

 View Source

 Specs

 scan(ifname()) :: :ok | {:error, any()}

Initiate an access point scan on a wireless interface
The scan results are posted asynchronously to the ["interface", ifname, "wifi", "access_points"]
property as they come in. It appears that there's some variation in how scanning
is implemented on WiFi adapters. One strategy that seems to work is to call scan/1 every
10 seconds or so while prompting a user to pick a WiFi network.
This is a utility function for calling the :scan ioctl.

 Link to this function

 subscribe(name)

 View Source

 Specs

 subscribe(VintageNet.PropertyTable.property_with_wildcards()) :: :ok

Subscribe to property change messages
Messages have the form:
{VintageNet, property_name, old_value, new_value, metadata}
Subscriptions are prefix matches. For example, to get notified whenever a property
changes on "wlan0", run this:
VintageNet.subscribe(["interface", "wlan0"])
It's also possible to match with wildcards using :_. For example, to
get notified whenever an IP address in the system changes, do this:
VintageNet.subscribe(["interface", :_, "addresses"])

 Link to this function

 unsubscribe(name)

 View Source

 Specs

 unsubscribe(VintageNet.PropertyTable.property_with_wildcards()) :: :ok

Stop subscribing to property change messages

 Link to this function

 verify_system(opts \\ nil)

 View Source

 Specs

 verify_system(keyword() | nil) :: :ok | {:error, String.t()}

Check that the system has the required programs installed
NOTE: This isn't completely implemented yet!

VintageNet.IP

This module contains utilities for handling IP addresses.
By far the most important part of handling IP addresses is to
pay attention to whether your addresses are names, IP addresses
as strings or IP addresses at tuples. This module doesn't resolve
names. While IP addresses in string form are convenient to type,
nearly all Erlang and Elixir code uses IP addresses in tuple
form.

 Anchor for this section

 Summary

 Functions

 cidr_to_string(ipa, bits)

 Convert an IP address w/ prefix to a CIDR-formatted string

 ip_to_string(ipa)

 Convert an IP address to a string

 ip_to_tuple(ipa)

 Convert an IP address to tuple form

 ip_to_tuple!(ipa)

 Raising version of ip_to_tuple/1

 prefix_length_to_subnet_mask(atom, len)

 Convert an IPv4 or IPv6 prefix length to a subnet mask.

 subnet_mask_to_prefix_length(subnet_mask)

 Convert an IPv4 subnet mask to a prefix length.

 to_subnet(arg, subnet_bits)

 Utility function to trim an IP address to its subnet

 Anchor for this section

Functions

 Link to this function

 cidr_to_string(ipa, bits)

 View Source

 Specs

 cidr_to_string(:inet.ip_address(), VintageNet.prefix_length()) :: String.t()

Convert an IP address w/ prefix to a CIDR-formatted string
Examples:
iex> VintageNet.IP.cidr_to_string({192, 168, 0, 1}, 24)
"192.168.0.1/24"

 Link to this function

 ip_to_string(ipa)

 View Source

 Specs

 ip_to_string(VintageNet.any_ip_address()) :: String.t()

Convert an IP address to a string
Examples:
iex> VintageNet.IP.ip_to_string({192, 168, 0, 1})
"192.168.0.1"

iex> VintageNet.IP.ip_to_string("192.168.9.1")
"192.168.9.1"

iex> VintageNet.IP.ip_to_string({65152, 0, 0, 0, 0, 0, 0, 1})
"fe80::1"

 Link to this function

 ip_to_tuple(ipa)

 View Source

 Specs

 ip_to_tuple(VintageNet.any_ip_address()) ::
 {:ok, :inet.ip_address()} | {:error, String.t()}

Convert an IP address to tuple form
Examples:
iex> VintageNet.IP.ip_to_tuple("192.168.0.1")
{:ok, {192, 168, 0, 1}}

iex> VintageNet.IP.ip_to_tuple({192, 168, 1, 1})
{:ok, {192, 168, 1, 1}}

iex> VintageNet.IP.ip_to_tuple("fe80::1")
{:ok, {65152, 0, 0, 0, 0, 0, 0, 1}}

iex> VintageNet.IP.ip_to_tuple({65152, 0, 0, 0, 0, 0, 0, 1})
{:ok, {65152, 0, 0, 0, 0, 0, 0, 1}}

iex> VintageNet.IP.ip_to_tuple("bologna")
{:error, "Invalid IP address: bologna"}

 Link to this function

 ip_to_tuple!(ipa)

 View Source

 Specs

 ip_to_tuple!(VintageNet.any_ip_address()) :: :inet.ip_address()

Raising version of ip_to_tuple/1

 Link to this function

 prefix_length_to_subnet_mask(atom, len)

 View Source

 Specs

 prefix_length_to_subnet_mask(:inet | :inet6, VintageNet.prefix_length()) ::
 :inet.ip_address()

Convert an IPv4 or IPv6 prefix length to a subnet mask.
Examples:
iex> VintageNet.IP.prefix_length_to_subnet_mask(:inet, 24)
{255, 255, 255, 0}

iex> VintageNet.IP.prefix_length_to_subnet_mask(:inet, 28)
{255, 255, 255, 240}

iex> VintageNet.IP.prefix_length_to_subnet_mask(:inet6, 64)
{65535, 65535, 65535, 65535, 0, 0, 0, 0}

 Link to this function

 subnet_mask_to_prefix_length(subnet_mask)

 View Source

 Specs

 subnet_mask_to_prefix_length(:inet.ip_address()) ::
 {:ok, VintageNet.prefix_length()} | {:error, String.t()}

Convert an IPv4 subnet mask to a prefix length.
Examples:
iex> VintageNet.IP.subnet_mask_to_prefix_length({255, 255, 255, 0})
{:ok, 24}

iex> VintageNet.IP.subnet_mask_to_prefix_length({192, 168, 1, 1})
{:error, "{192, 168, 1, 1} is not a valid IPv4 subnet mask"}

 Link to this function

 to_subnet(arg, subnet_bits)

 View Source

 Specs

 to_subnet(:inet.ip_address(), VintageNet.prefix_length()) :: :inet.ip_address()

Utility function to trim an IP address to its subnet
Examples:
iex> VintageNet.IP.to_subnet({192, 168, 1, 50}, 24)
{192, 168, 1, 0}

iex> VintageNet.IP.to_subnet({192, 168, 255, 50}, 22)
{192, 168, 252, 0}

iex> VintageNet.IP.to_subnet({64768, 43690, 0, 0, 4144, 58623, 65276, 33158}, 64)
{64768, 43690, 0, 0, 0, 0, 0, 0}

VintageNet.IP.DhcpdConfig

This is a helper module for VintageNet.Technology implementations that use
a DHCP server.
DHCP server parameters are:
	:start - Start of the lease block
	:end - End of the lease block
	:max_leases - The maximum number of leases
	:decline_time - The amount of time that an IP will be reserved (leased to nobody)
	:conflict_time -The amount of time that an IP will be reserved
	:offer_time - How long an offered address is reserved (seconds)
	:min_lease - If client asks for lease below this value, it will be rounded up to this value (seconds)
	:auto_time - The time period at which udhcpd will write out leases file.
	:static_leases - list of {mac_address, ip_address}
	:options - a map DHCP response options to set. See below.

DHCP response options are (see RFC 2132 for details):
	:dns - IP_LIST
	:domain - STRING - [0x0f] client's domain suffix
	:hostname - STRING
	:mtu - NUM
	:router - IP_LIST
	:search - STRING_LIST - [0x77] search domains
	:serverid - IP (defaults to the interface's IP address)
	:subnet - IP

Options may also be passed in as integers. These are passed directly to the DHCP server
and their values are strings that are not interpreted by VintageNet. Use this to support
custom DHCP header options.

 Anchor for this section

 Summary

 Functions

 add_config(raw_config, arg2, opts)

 Add udhcpd configuration commands for running a DHCP server

 normalize(config)

 Normalize the DHCPD parameters in a configuration.

 Anchor for this section

Functions

 Link to this function

 add_config(raw_config, arg2, opts)

 View Source

 Specs

 add_config(VintageNet.Interface.RawConfig.t(), map(), keyword()) ::
 VintageNet.Interface.RawConfig.t()

Add udhcpd configuration commands for running a DHCP server

 Link to this function

 normalize(config)

 View Source

 Specs

 normalize(map()) :: map()

Normalize the DHCPD parameters in a configuration.

VintageNet.IP.DnsdConfig

This is a helper module for VintageNet.Technology implementations that use
the Busybox DNS server.
DNS functionality is only supported for IPv4 configurations using static IP
addresses.
DNS server parameters are:
	:port - The port to use (defaults to 53)
	:ttl - DNS record TTL in seconds (defaults to 120)
	:records - DNS A records (required)

The :records option is a list of name/IP address tuples. For example:
[{"example.com", {1, 2, 3, 4}}]
Only IPv4 addresses are supported. Addresses may be specified as strings or
tuples, but will be normalized to tuple form before being applied.

 Anchor for this section

 Summary

 Functions

 add_config(raw_config, arg2, opts)

 Add dnsd configuration commands for running a DNSD server

 normalize(config)

 Normalize the DNSD parameters in a configuration.

 Anchor for this section

Functions

 Link to this function

 add_config(raw_config, arg2, opts)

 View Source

 Specs

 add_config(VintageNet.Interface.RawConfig.t(), map(), keyword()) ::
 VintageNet.Interface.RawConfig.t()

Add dnsd configuration commands for running a DNSD server

 Link to this function

 normalize(config)

 View Source

 Specs

 normalize(map()) :: map()

Normalize the DNSD parameters in a configuration.

VintageNet.IP.IPv4Config

This is a helper module for VintageNet.Technology implementations that use
IPv4.
IPv4 configuration is specified under the :ipv4 key in the configuration map.
Fields include:
	:method - :dhcp, :static, or :disabled

The :dhcp method currently has no additional fields.
The :static method uses the following fields:
	:address - the IP address
	:prefix_length - the number of bits in the IP address to use for the subnet (e.g., 24)
	:netmask - either this or prefix_length is used to determine the subnet. If you
have a choice, use prefix_length
	:gateway - the default gateway for this interface (optional)
	:name_servers - a list of DNS servers (optional)
	:domain - DNS search domain (optional)

Configuration normalization converts :netmask to :prefix_length.

 Anchor for this section

 Summary

 Functions

 add_config(raw_config, config, opts)

 Add IPv4 configuration commands for supporting static and dynamic IP addressing

 normalize(config)

 Normalize the IPv4 parameters in a configuration.

 Anchor for this section

Functions

 Link to this function

 add_config(raw_config, config, opts)

 View Source

 Specs

 add_config(VintageNet.Interface.RawConfig.t(), map(), keyword()) ::
 VintageNet.Interface.RawConfig.t()

Add IPv4 configuration commands for supporting static and dynamic IP addressing

 Link to this function

 normalize(config)

 View Source

Normalize the IPv4 parameters in a configuration.

VintageNet.Interface

Manage a network interface at a very high level
This module handles configuring network interfaces, making sure that configuration failures
get retried, and then cleaning up after it's not needed.
The actual code that supplies the configuration implements the VintageNet.Technology
behaviour.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 configure(ifname, config, options \\ [])

 Set a configuration on an interface

 deconfigure(ifname, options \\ [])

 Deconfigure the interface

 ioctl(ifname, command, args)

 Run an I/O command on the specified interface

 start_link(ifname)

 Start up an interface

 stop(ifname)

 Stop the interface

 to_raw_config(ifname, config)

 Convert a configuration to a raw one

 wait_until_configured(ifname)

 Wait for the interface to be configured

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 configure(ifname, config, options \\ [])

 View Source

 Specs

 configure(VintageNet.ifname(), map(), VintageNet.configure_options()) ::
 :ok | {:error, any()}

Set a configuration on an interface
Configurations with invalid parameters raise exceptions. It's
still possible that network configurations won't work even if they
don't raise, but it should be due to something in the environment.
For example, a network cable isn't plugged in or a WiFi access point
is out of range.

 Link to this function

 deconfigure(ifname, options \\ [])

 View Source

 Specs

 deconfigure(VintageNet.ifname(), VintageNet.configure_options()) ::
 :ok | {:error, any()}

Deconfigure the interface
This doesn't exit this GenServer, but the interface
won't be usable in any real way until it's configured
again.
This function is not normally called.

 Link to this function

 ioctl(ifname, command, args)

 View Source

 Specs

 ioctl(VintageNet.ifname(), atom(), any()) ::
 :ok | {:ok, any()} | {:error, any()}

Run an I/O command on the specified interface

 Link to this function

 start_link(ifname)

 View Source

 Specs

 start_link(VintageNet.ifname()) :: GenServer.on_start()

Start up an interface
Parameters:
	ifname - which interface

 Link to this function

 stop(ifname)

 View Source

 Specs

 stop(VintageNet.ifname()) :: :ok

Stop the interface
Note that this doesn't deconfigure it.

 Link to this function

 to_raw_config(ifname, config)

 View Source

 Specs

 to_raw_config(VintageNet.ifname(), map()) ::
 {:ok, VintageNet.Interface.RawConfig.t()} | {:error, any()}

Convert a configuration to a raw one
This can be used to validate a configuration without applying it.

 Link to this function

 wait_until_configured(ifname)

 View Source

 Specs

 wait_until_configured(VintageNet.ifname()) :: :ok

Wait for the interface to be configured

VintageNet.Interface.Classification

Module for classifying and prioritizing network interfaces

 Anchor for this section

 Summary

 Types

 connection_status()

 Interface connection status

 interface_type()

 Categorize interfaces based on their technology

 prioritization()

 Prioritization for using default gateways

 weight()

 A weight used to disambiguate interfaces that would otherwise have the same priority

 Functions

 compute_metric(type, status, weight, prioritization)

 Compute the routing metric for an interface with a status

 default_prioritization()

 Return a reasonable default for prioritizing interfaces

 to_instance(ifname)

 Extract a number out of an interface name

 to_type(arg1)

 Classify a network type based on its name

 Anchor for this section

Types

 Link to this type

 connection_status()

 View Source

 Specs

 connection_status() :: :lan | :internet | :disconnected

Interface connection status
	:disconnected - The interface doesn't exist or it's not connected
	:lan - The interface is connected to the LAN, but may not be able
reach the Internet
	:internet - Packets going through the interface should be able to
reach the Internet

 Link to this type

 interface_type()

 View Source

 Specs

 interface_type() :: :ethernet | :wifi | :mobile | :local | :unknown

Categorize interfaces based on their technology

 Link to this type

 prioritization()

 View Source

 Specs

 prioritization() :: {interface_type() | :_, connection_status() | :_}

Prioritization for using default gateways
Examples
	{:ethernet, :internet} - Wired ethernet that's Internet connected
	{:ethernet, :_} - Wired ethernet with any status
	{:_, :internet} - Any Internet-connected network interface

 Link to this type

 weight()

 View Source

 Specs

 weight() :: 0..9

A weight used to disambiguate interfaces that would otherwise have the same priority
Low weights are higher priority.

 Anchor for this section

Functions

 Link to this function

 compute_metric(type, status, weight, prioritization)

 View Source

 Specs

 compute_metric(interface_type(), connection_status(), weight(), [
 prioritization()
]) :: pos_integer() | :disabled

Compute the routing metric for an interface with a status
This uses the prioritization list to figure out what number should
be used for the Linux routing table metric. It could also be :disabled
to indicate that a route shouldn't be added to the Linux routing tables
at all.

 Link to this function

 default_prioritization()

 View Source

 Specs

 default_prioritization() :: [prioritization()]

Return a reasonable default for prioritizing interfaces
The logic is that Internet-connected interfaces are prioritized first
and after than Ethernet is preferred over WiFi and WiFi over LTE.

 Link to this function

 to_instance(ifname)

 View Source

 Specs

 to_instance(VintageNet.ifname()) :: non_neg_integer()

Extract a number out of an interface name
The result is the interface index for most interfaces seen
on Nerves (eth0, eth1, ...), and something quite imperfect when using predictable
interface naming (enp6s0, enp6s1).
This is currently used to order priorities when there are two
interfaces available of the same type that cannot be differentiated
by other means. It has the one property of being easy to explain.

 Link to this function

 to_type(arg1)

 View Source

 Specs

 to_type(VintageNet.ifname()) :: interface_type()

Classify a network type based on its name
Examples
iex> Classification.to_type("eth0")
:ethernet

iex> Classification.to_type("wlp5s0")
:wifi

iex> Classification.to_type("ppp0")
:mobile

VintageNet.Interface.CommandRunner

The CommandRunner module runs commands specified in RawConfigs
See the RawConfig documentation for where lists of commands
are specified. The following commands are supported:
	{:run, command, args} - Run a system command
	{:run_ignore_exit, command, args} - Same as :run, but without the exit status check
	{:fun, module, function_name, args} - Run a function by MFA
	{:fun, fun} - Run a function. Using the MFA form is preferred since it's easier to verfiy in unit tests.

CommandRunner also implements RawConfig's file creation and
cleanup logic.

 Anchor for this section

 Summary

 Functions

 create_files(file_contents)

 Create a list of files

 remove_files(file_contents)

 Remove a list of files

 run(arg1)

 Run one or more commands

 Anchor for this section

Functions

 Link to this function

 create_files(file_contents)

 View Source

 Specs

 create_files([VintageNet.Interface.RawConfig.file_contents()]) :: :ok

Create a list of files

 Link to this function

 remove_files(file_contents)

 View Source

 Specs

 remove_files([VintageNet.Interface.RawConfig.file_contents()]) :: :ok

Remove a list of files

 Link to this function

 run(arg1)

 View Source

 Specs

 run(
 [VintageNet.Interface.RawConfig.command()]
 | VintageNet.Interface.RawConfig.command()
) :: :ok | {:error, any()}

Run one or more commands
See the module docs for documentation on commands.

VintageNet.Interface.EAPStatus

Status of an EAP connection.
Keys
	status Status of the connection.	:started - the AP was assosiated and EAP is started.
	:success - the EAP connection was successful
	:failure - the EAP connection failed.

	method - EAP method used to authenticate. See the typespec for available values.
	timestamp - DateTime of the most recent EAP event.
	remote_certificate_verified? - if the cert was verified by the EAP server.

 Anchor for this section

 Summary

 Types

 method()

 Can be one of: as defined in eap_defs.h in the hostapd source.
NONE
IDENTITY
NOTIFICATION
NAK
MD5
OTP
GTC
TLS
LEAP
SIM
TTLS
AKA
PEAP
MSCHAPV2
TLV
TNC
FAST
PAX
PSK
SAKE
IKEV2
AKA_PRIME
GPSK
PWD
EKE
TEAP
EXPANDED

 t()

 Anchor for this section

Types

 Link to this type

 method()

 View Source

 Specs

 method() :: String.t()

Can be one of: as defined in eap_defs.h in the hostapd source.
NONE
IDENTITY
NOTIFICATION
NAK
MD5
OTP
GTC
TLS
LEAP
SIM
TTLS
AKA
PEAP
MSCHAPV2
TLV
TNC
FAST
PAX
PSK
SAKE
IKEV2
AKA_PRIME
GPSK
PWD
EKE
TEAP
EXPANDED

 Link to this type

 t()

 View Source

 Specs

 t() :: %VintageNet.Interface.EAPStatus{
 method: nil | method(),
 remote_certificate_verified?: boolean(),
 status: nil | :started | :failure | :success,
 timestamp: nil | DateTime.t()
}

VintageNet.Interface.IfupDaemon

Wrap MuonTrap.Daemon to start and stop a program based on whether the network is up
Unlike MuonTrap.Daemon, the arguments are called out in the child_spec so it looks like
this:
{VintageNet.Interface.IfupDaemon, ifname: ifname, command: program, args: arguments, opts: options]}

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 running?(server)

 Return whether the daemon is running

 start_link(init_args)

 Start the IfupDaemon

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 running?(server)

 View Source

 Specs

 running?(GenServer.server()) :: boolean()

Return whether the daemon is running

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(init_args()) :: GenServer.on_start()

Start the IfupDaemon

VintageNet.Interface.InternetConnectivityChecker

This GenServer monitors a network interface for Internet connectivity
Internet connectivity is determined by reachability to an IP address.
If that address is reachable then other this updates a property to
reflect that. Otherwise, the network interface is assumed to merely
have LAN connectivity if it's up.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(ifname)

 Start the connectivity checker GenServer

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(ifname)

 View Source

 Specs

 start_link(VintageNet.ifname()) :: GenServer.on_start()

Start the connectivity checker GenServer

VintageNet.Interface.InternetTester

This module contains functions for testing whether the Internet is available.
See the InternetConnectivityChecker for a GenServer that checks on regular
intervals and updates VintageNet properties as needed.

 Anchor for this section

 Summary

 Types

 ping_error_reason()

 Functions

 ping(ifname, arg)

 Check connectivity with another device

 Anchor for this section

Types

 Link to this type

 ping_error_reason()

 View Source

 Specs

 ping_error_reason() :: :if_not_found | :no_ipv4_address | :inet.posix()

 Anchor for this section

Functions

 Link to this function

 ping(ifname, arg)

 View Source

 Specs

 ping(VintageNet.ifname(), {VintageNet.any_ip_address(), non_neg_integer()}) ::
 :ok | {:error, ping_error_reason()}

Check connectivity with another device
The "ping" is really a TCP connection attempt from the specified interface to
an IP address and port. Failures to connect don't necessarily mean that the
Internet is down, but it's likely especially if the server that's specified
in the configuration is highly available.
Source IP-based routing is required for the TCP connect to go out the right
network interface. This is configured by default when using VintageNet.

VintageNet.Interface.LANConnectivityChecker

This GenServer monitors a network interface for LAN connectivity
Currently LAN connectivity simply looks to see if it's possible to
send a packet on the interface. It might or might not get to the
desired destination on the LAN, but it won't obviously fail.
This is an alternative to the InternetConnectivityChecker that
actively monitors reachability to a host.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(ifname)

 Start the connectivity checker GenServer

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(ifname)

 View Source

 Specs

 start_link(VintageNet.ifname()) :: GenServer.on_start()

Start the connectivity checker GenServer

VintageNet.Interface.RawConfig

Raw configuration for an interface
This struct contains the low-level instructions for how to configure and
deconfigure an interface.
Fields:
	:ifname - the name of the interface (e.g., "eth0")
	:type - the type of network interface (aka the module that created the config)
	:source_config - the configuration that generated this one
	:required_ifnames - a list of ifnames that need to exist before starting this configuration. (e.g. ["eth0"])
	:retry_millis - if bringing the interface up fails, wait this amount of time before retrying
	:files - a list of file path, content tuples
	:restart_strategy - the restart strategy for the list of child_specs. I.e., :one_for_one | :one_for_all | :rest_for_one
	:child_specs - a set of child_specs for GenServers to start up and supervise
	:up_cmd_millis - the maximum amount of time to allow the up command list to take
	:up_cmds - a list of commands to run to configure the interface
	:down_cmd_millis - the maximum amount of time to allow the down command list to take
	:down_cmds - a list of commands to run to bring the interface down
	:cleanup_files - additional files to delete (the files listed in files are deleted too)

 Anchor for this section

 Summary

 Types

 command()

 A command to run for RawConfig.up_cmds or RawConfig.down_cmds

 file_contents()

 t()

 Functions

 unimplemented_ioctl(_, _)

 Anchor for this section

Types

 Link to this type

 command()

 View Source

 Specs

 command() ::
 {:run, String.t(), [String.t()]}
 | {:run_ignore_errors, String.t(), [String.t()]}
 | {:fun, (() -> :ok | {:error, any()})}
 | {:fun, module(), atom(), list()}

A command to run for RawConfig.up_cmds or RawConfig.down_cmds

 Link to this type

 file_contents()

 View Source

 Specs

 file_contents() :: {Path.t(), String.t()}

 Link to this type

 t()

 View Source

 Specs

 t() :: %VintageNet.Interface.RawConfig{
 child_specs: [Supervisor.child_spec() | {module(), term()} | module()],
 cleanup_files: [Path.t()],
 down_cmd_millis: non_neg_integer(),
 down_cmds: [command()],
 files: [file_contents()],
 ifname: VintageNet.ifname(),
 required_ifnames: [VintageNet.ifname()],
 restart_strategy: Supervisor.strategy(),
 retry_millis: non_neg_integer(),
 source_config: map(),
 type: atom(),
 up_cmd_millis: non_neg_integer(),
 up_cmds: [command()]
}

 Anchor for this section

Functions

 Link to this function

 unimplemented_ioctl(_, _)

 View Source

VintageNet.InterfaceRenamer behaviour

Wrapper around the ip command for renaming interfaces

 Anchor for this section

 Summary

 Functions

 rename(ifname, rename_to)

 Renames an interface

 renamer()

 Callbacks

 rename_interface(arg1, arg2)

 Anchor for this section

Functions

 Link to this function

 rename(ifname, rename_to)

 View Source

Renames an interface

 Link to this function

 renamer()

 View Source

 Anchor for this section

Callbacks

 Link to this callback

 rename_interface(arg1, arg2)

 View Source

 Specs

 rename_interface(VintageNet.ifname(), VintageNet.ifname()) ::
 :ok | {:error, String.t()}

VintageNet.InterfacesMonitor

Monitor available interfaces
Currently this works by polling the system for what interfaces are visible.
They may or may not be configured.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 force_clear_ipv4_addresses(ifname)

 Force clear all addresses

 start_link(args)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 force_clear_ipv4_addresses(ifname)

 View Source

 Specs

 force_clear_ipv4_addresses(VintageNet.ifname()) :: :ok

Force clear all addresses
This is useful to notify everyone that an address should not be used
immediately. This can be used to fix a race condition where the blip
for an address going away to coming back isn't reported.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(any()) :: GenServer.on_start()

VintageNet.NameResolver

This module manages the contents of "/etc/resolv.conf".
This file is used by the C standard library and by Erlang for resolving
domain names. Since both C programs and Erlang can do resolution, debugging
problems in this area can be confusing due to varying behavior based on who's
resolving at the time. See the /etc/erl_inetrc file on the target to review
Erlang's configuration.
This module assumes exclusive ownership on "/etc/resolv.conf", so if any
other code in the system tries to modify the file, their changes will be lost
on the next update.
It is expected that each network interface provides a configuration. This
module will track configurations to network interfaces so that it can reflect
which resolvers are around. Resolver order isn't handled.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear(ifname)

 Clear all entries in "/etc/resolv.conf" that are associated with
the specified interface.

 clear_all()

 Completely clear out "/etc/resolv.conf".

 setup(ifname, domain, name_servers)

 Set the search domain and name server list for the specified interface.

 start_link(args)

 Start the resolv.conf manager.

 stop()

 Stop the resolv.conf manager.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 clear(ifname)

 View Source

 Specs

 clear(String.t()) :: :ok

Clear all entries in "/etc/resolv.conf" that are associated with
the specified interface.

 Link to this function

 clear_all()

 View Source

 Specs

 clear_all() :: :ok

Completely clear out "/etc/resolv.conf".

 Link to this function

 setup(ifname, domain, name_servers)

 View Source

 Specs

 setup(String.t(), String.t() | nil, [VintageNet.any_ip_address()]) :: :ok

Set the search domain and name server list for the specified interface.
This replaces any entries in the /etc/resolv.conf for this interface.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Start the resolv.conf manager.
Accepted args:
	resolvconf - path to the resolvconf file
	additional_name_servers - list of additional servers

 Link to this function

 stop()

 View Source

 Specs

 stop() :: :ok

Stop the resolv.conf manager.

VintageNet.OSEventDispatcher.UdhcpcHandler behaviour

A behaviour for handling notifications from udhcpc
Example
defmodule MyApp.UdhcpcHandler do
 @behaviour VintageNet.OSEventDispatcher.UdhcpcHandler

 @impl VintageNet.OSEventDispatcher.UdhcpcHandler
 def deconfig(ifname, data) do
 ...
 end
end
To have VintageNet invoke it, add the following to your config.exs:
config :vintage_net, udhcpc_handler: MyApp.UdhcpcHandler

 Anchor for this section

 Summary

 Types

 update_data()

 Update data is the unmodified environment variable strings from udhcpc

 Callbacks

 bound(arg1, update_data)

 Handle an assignment from the DHCP server

 deconfig(arg1, update_data)

 Deconfigure the specified interface

 leasefail(arg1, update_data)

 Handle a failure to get a lease

 nak(arg1, update_data)

 Handle a DHCP NAK

 renew(arg1, update_data)

 Handle the renewal of a DHCP lease

 Anchor for this section

Types

 Link to this type

 update_data()

 View Source

 Specs

 update_data() :: %{required(String.t()) => String.t()}

Update data is the unmodified environment variable strings from udhcpc
The following is an example of update data, but it really depends
on what udhcpc wants to send:
%{
 "broadcast" => "192.168.7.255",
 "dns" => "192.168.7.1",
 "domain" => "hunleth.lan",
 "hostname" => "nerves-9780",
 "interface" => "eth0",
 "ip" => "192.168.7.190",
 "lease" => "86400",
 "mask" => "24",
 "opt53" => "05",
 "opt58" => "0000a8c0",
 "opt59" => "00012750",
 "router" => "192.168.7.1",
 "serverid" => "192.168.7.1",
 "siaddr" => "192.168.7.1",
 "subnet" => "255.255.255.0"
}

 Anchor for this section

Callbacks

 Link to this callback

 bound(arg1, update_data)

 View Source

 Specs

 bound(VintageNet.ifname(), update_data()) :: :ok

Handle an assignment from the DHCP server

 Link to this callback

 deconfig(arg1, update_data)

 View Source

 Specs

 deconfig(VintageNet.ifname(), update_data()) :: :ok

Deconfigure the specified interface

 Link to this callback

 leasefail(arg1, update_data)

 View Source

 Specs

 leasefail(VintageNet.ifname(), update_data()) :: :ok

Handle a failure to get a lease

 Link to this callback

 nak(arg1, update_data)

 View Source

 Specs

 nak(VintageNet.ifname(), update_data()) :: :ok

Handle a DHCP NAK

 Link to this callback

 renew(arg1, update_data)

 View Source

 Specs

 renew(VintageNet.ifname(), update_data()) :: :ok

Handle the renewal of a DHCP lease

VintageNet.OSEventDispatcher.UdhcpdHandler behaviour

A behaviour for handling notifications from udhcpd
Example
defmodule MyApp.UdhcpdHandler do
 @behaviour VintageNet.OSEventDispatcher.UdhcpdHandler

 @impl VintageNet.OSEventDispatcher.UdhcpdHandler
 def lease_update(ifname, report_data) do
 ...
 end
end
To have VintageNet invoke it, add the following to your config.exs:
config :vintage_net, udhcpd_handler: MyApp.UdhcpdHandler

 Anchor for this section

 Summary

 Callbacks

 lease_update(arg1, arg2)

 The DHCP lease file was updated

 Anchor for this section

Callbacks

 Link to this callback

 lease_update(arg1, arg2)

 View Source

 Specs

 lease_update(VintageNet.ifname(), Path.t()) :: :ok

The DHCP lease file was updated

VintageNet.Persistence behaviour

Customize the way VintageNet saves and loads configurations

 Anchor for this section

 Summary

 Functions

 call(fun, args)

 Callbacks

 clear(ifname)

 Clear out a previously saved configuration

 enumerate()

 Enumerate the interfaces that have saved configurations

 load(ifname)

 Load the configuration of an interface

 save(ifname, config)

 Save the configuration for the specified interface

 Anchor for this section

Functions

 Link to this function

 call(fun, args)

 View Source

 Specs

 call(atom(), [any()]) :: any()

 Anchor for this section

Callbacks

 Link to this callback

 clear(ifname)

 View Source

 Specs

 clear(ifname :: String.t()) :: :ok

Clear out a previously saved configuration

 Link to this callback

 enumerate()

 View Source

 Specs

 enumerate() :: [String.t()]

Enumerate the interfaces that have saved configurations
This returns a list of interface names.

 Link to this callback

 load(ifname)

 View Source

 Specs

 load(ifname :: String.t()) :: {:ok, map()} | {:error, reason :: any()}

Load the configuration of an interface

 Link to this callback

 save(ifname, config)

 View Source

 Specs

 save(ifname :: String.t(), config :: map()) :: :ok | {:error, atom()}

Save the configuration for the specified interface

VintageNet.Persistence.FlatFile

Save and load configurations from flat files

VintageNet.Persistence.Null

Don't save or load configuration at all.

VintageNet.PowerManager behaviour

This is a behaviour for implementing platform-specific power management.
From VintageNet's point of view, network devices have the following
lifecycle:
off ---> on ---> powering-off ---> off
Power management does not necessarily mean controlling the power. The end
effect should be similar, since VintageNet will try to toggle the power off
and on if the network interface doesn't seem to be working. For example,
unloading the kernel module for the network device on "power off" and loading
it on "power on" may have the desired effect of getting a network interface
unstuck.
When a device is "on", VintageNet expects to be regularly told that the
device is working ok. Working ok is device dependent, but could be something
like the device has transmitted and received data. If VintageNet is not told
that the device is working for a long enough time, it will reset the device
by powering it off and then back on again.
VintageNet calls functions here based on how it wants to transition a device.
VintageNet maintains the device's power status internally, so implementations
can blindly do what VintageNet tells them too in most cases. Powering on and
off can be asynchronous to these function calls. VintageNet uses the presence
of the networking interface (like "wlan0") to determine when the device is
really available for networking.
The following timeouts are important to consider:
	time_to_power_off
	power_on_hold_time
	min_power_off_time
	watchdog_timeout

The time_to_power_off specifies the time in the powering-off state. This
is the maximum time to allow for a graceful shutdown. VintageNet won't bother
the device until that time has expired. That means that if there's a request
to use the device, it will wait the powering-off time before calling
finish_power_off and then it will power the device back on. Device app
notes may have recommendations for this time.
The power_on_hold_time specifies how much time a device should be in the
powered-on state before it is ok to power off again. This allows devices
some time to initialize and recover on their own.
The min_power_off_time specifies how long the device should remain powered
off before it is powered back on.
Finally, watchdog_timeout specifies how long to wait between notifications
that the device is ok. Code reports that a device is ok by calling
VintageNet.PowerManager.PMControl.pet_watchdog/1.
While normal Erlang supervision expects that it can restart processes
immediately and without regard to how long they have been running, bad things
can happen to hardware if too aggressively restarted. Devices also initialize
asynchronously so it's hard to know when they're fully available and some
flakiness may be naturally due to VintageNet not knowing how to wait for a
component to finish initialization. Please review your network device's power
management guidelines before too aggressively reducing hold times. Cellular
devices, in particular, want to signal their disconnection from the network
to the tower and flush any unsaved configuration changes to Flash before
power removal.
Here's an example for a cellular device with a reset line connected to it:
	power_on - De-assert the reset line. Return a power_on_hold_time of 10
minutes
	start_powering_off - Open the UART and send the power down command to the
modem. Return a time_to_power_off of 1 minute.
	power_off - Assert the reset line and return that power shouldn't be turned
back on for another 10 seconds.

PowerManager implementation lifetimes are the same as VintageNet's. In other
words, they start and end with VintageNet. This is unlike a network interface
which runs only as its existence and configuration allow. As such, VintageNet
needs to know about all PowerManager implementations in its application
environment. For example, add something like this to your config.exs:
config :vintage_net,
 power_managers: [{MyCellularPM, [ifname: "ppp0", watchdog_timeout: 60_000, reset_gpio: 123]}]
Each tuple is the implementation's module name and init arguments. VintageNet
requires :ifname to be set. If you're managing the power for an interface
with a dynamic name, enable predictable interface naming with VintageNet
and use that name. The watchdog_timeout parameter is optional and defaults
to one minute.

 Anchor for this section

 Summary

 Callbacks

 handle_info(msg, state)

 Handle other messages

 init(args)

 Initialize state for managing the power to the specified interface

 power_off(state)

 Power off the hardware

 power_on(state)

 Power on the hardware for a network interface

 start_powering_off(state)

 Start powering off the hardware for a network interface

 Anchor for this section

Callbacks

 Link to this callback

 handle_info(msg, state)

 View Source

 Specs

 handle_info(msg :: any(), state :: any()) :: {:noreply, new_state :: any()}

Handle other messages
All unknown messages sent to the power management GenServer come here. This
callback is similar to GenServer.handle_info/2.
To receive your own messages here, send them to self() in code run in any
of the other callbacks. Another option is to call
VintageNet.PowerManager.PMControl.send_message/2

 Link to this callback

 init(args)

 View Source

 Specs

 init(args :: keyword()) :: {:ok, state :: any()}

Initialize state for managing the power to the specified interface
This is called on start and if the power management GenServer restarts. It
should not assume that hardware is powered down.
IMPORTANT: VintageNet assumes that init/1 runs quickly and succeeds. Errors
and exceptions from calling init/1 are handled by disabling the PowerManager.
The reason is that VintageNet has no knowledge on how to recover and disabling
a power manager was deemed less bad that having supervision tree failures
propagate upwards to terminate VintageNet. Messages are logged if this does
happen.

 Link to this callback

 power_off(state)

 View Source

 Specs

 power_off(state :: any()) ::
 {:ok, next_state :: any(), min_off_time :: non_neg_integer()}

Power off the hardware
This function should finish powering off the network interface hardware. Since
this is called after the graceful power down should have completed, it should
forcefully turn off the power to the hardware.
The implementation also returns a time that power must remain off. power_on/1
won't be called until that time expires.

 Link to this callback

 power_on(state)

 View Source

 Specs

 power_on(state :: any()) ::
 {:ok, next_state :: any(), hold_time :: non_neg_integer()}

Power on the hardware for a network interface
The function should turn on power rails, deassert reset lines, load kernel
modules or do whatever else is necessary to make the interface show up in
Linux.
Failure handling is not supported by VintageNet yet, so if power up can fail
and the right handling for that is to try again later, then this function
should do that.
It is ok for this function to return immediately. When the network interface
appears, VintageNet will start trying to use it.
The return tuple should include the number of seconds VintageNet should wait
before trying to power down the module again. This value should be
sufficiently large to avoid getting into loops where VintageNet gives up on a
network interface before it has initialized. 10 minutes (600 seconds), for
example, is a reasonable setting.

 Link to this callback

 start_powering_off(state)

 View Source

 Specs

 start_powering_off(state :: any()) ::
 {:ok, next_state :: any(), time_to_power_off :: non_neg_integer()}

Start powering off the hardware for a network interface
This function should start a graceful shutdown of the network interface
hardware. It may return immediately. The return value specifies how long in
seconds VintageNet should wait before calling power_off/2. The idea is that
a graceful power off should be allowed some time to complete, but not
forever.

VintageNet.PowerManager.PMControl

Power management control GenServer
This GenServer runs a PowerManager implementation for a network device. It
provides the API for powering on and off a device and for signally that it's
working well.
Internally, it runs a state machine that translates power on and off requests
into actions sent to the PowerManager implementation. The state machine
handles the timing of actions so that hardware gets a chance to initialize
and isn't reset to quickly. PowerManager implementations specify times.
Since networking devices can sometimes hang or fail in unexpected ways, this
module can power them off and on to try to get them back in a good state.
This is implemented in terms of a watchdog. Code that can detect the network
device being in a good state should call pet_watchdog/1. For example, code
that checks internet connectivity could call pet_watchdog/1 since that's
a pretty good sign that the device works. Other checks are possible. If
pet_watchdog/1 isn't called, this module will restart the network device.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 force_reset(ifname)

 Force reset

 info(ifname)

 Return information about the specified power manager

 pet_watchdog(ifname)

 Pet watchdog

 power_off(ifname)

 Power off

 power_on(ifname)

 Power on

 safe_init(state)

 send_message(ifname, message)

 Send an arbitrary message to the power manager for an interface

 start_link(args)

 Start up a server

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 force_reset(ifname)

 View Source

Force reset
This is intended to be called based on human interaction. For example,
by a UI button or by a developer who knows or strongly suspects that
something is wrong with the network device it needs a reboot.
Resetting devices that have been powered off will NOT power them on.
Calling this automatically is not recommended especially if it is used
as an alternative to the watchdog mechanism. The reason is that it is
easier to identify where the device is working than it is to identify
every way it can fail. Also, force reset ignores minimum on times
since assumption is that if someone wants to reset, they're ready
to reset now.

 Link to this function

 info(ifname)

 View Source

 Specs

 info(VintageNet.ifname()) :: {:ok, map()} | :error

Return information about the specified power manager
NOTE: the map returned may change in the future

 Link to this function

 pet_watchdog(ifname)

 View Source

 Specs

 pet_watchdog(VintageNet.ifname()) :: :ok

Pet watchdog
Call this whenever the network connection is in a good state. If it has
not been called by the watchdog timeout, the device will be rebooted.

 Link to this function

 power_off(ifname)

 View Source

 Specs

 power_off(VintageNet.ifname()) :: :ok

Power off
This is called when VintageNet stops using an interface. The current state in
the power management state machine determines how this is handled. For
example, the power could already be off.

 Link to this function

 power_on(ifname)

 View Source

 Specs

 power_on(VintageNet.ifname()) :: :ok

Power on
This should be called whenever an interface should be powered on. It
can be called more than once. If you want the network interface to
be on, it is always safe to call this. An internal state machine will
ignore redundant calls.

 Link to this function

 safe_init(state)

 View Source

 Link to this function

 send_message(ifname, message)

 View Source

 Specs

 send_message(VintageNet.ifname(), any()) :: any()

Send an arbitrary message to the power manager for an interface
This will be received by the PowerManager's handle_info/2 callback.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Start up a server
This is intended to be called via VintageNet.PowerManager.Supervisor
Arguments:
	:impl - the module that implements PowerManager
	:impl_args - arguments to pass to the PowerManager's init/1 call

VintageNet.PowerManager.Supervisor

Supervision for all of the power management controllers

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(args)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(any()) :: Supervisor.on_start_child()

VintageNet.PredictableInterfaceName

Handles predictable interface names by subscribing to the property table and
renaming matching interface names based on the configuration in application
environment.

 Anchor for this section

 Summary

 Types

 hw_path_config()

 hw_path to a user supplied ifname mapping

 Functions

 built_in?(ifname)

 Return whether an ifname is a built-in one

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 precheck(ifname)

 Called before interface configuration.

 start_link(ifnames)

 Anchor for this section

Types

 Link to this type

 hw_path_config()

 View Source

 Specs

 hw_path_config() :: %{hw_path: Path.t(), ifname: VintageNet.ifname()}

hw_path to a user supplied ifname mapping

 Anchor for this section

Functions

 Link to this function

 built_in?(ifname)

 View Source

 Specs

 built_in?(VintageNet.ifname()) :: boolean()

Return whether an ifname is a built-in one
Built-in names start with eth, wlan, etc. and cannot be used
as interfaces names when using the predictable networking feature.
Examples:
iex> PredictableInterfaceName.built_in?("wlan0")
true

iex> PredictableInterfaceName.built_in?("eth50")
true

iex> PredictableInterfaceName.built_in?("lan")
false

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 precheck(ifname)

 View Source

 Specs

 precheck(VintageNet.ifname()) :: :ok | {:error, :not_predictable_interface_name}

Called before interface configuration.
First checks if vintage_net is configured to use predictable interface names,
if so checks the given ifname for "common" naming schemes.
Instead of a boolean this function returns :ok on success, and {:error, not_predictable_interface_name} on failure. This is done to allow usage in
with chains.

 Link to this function

 start_link(ifnames)

 View Source

 Specs

 start_link([hw_path_config()]) :: GenServer.on_start()

VintageNet.PropertyTable

PropertyTables are in-memory key-value stores
Users can subscribe to keys or groups of keys to be notified of changes.
Keys are hierarchically layed out with each key being represented as a list
for the path to the key. For example, to get the current state of the network
interface eth0, you would get the value of the key, ["net", "ethernet", "eth0"].
Values can be any Elixir data structure except for nil. nil is used to
identify non-existent keys. Therefore, setting a property to nil deletes
the property.
Users can get and listen for changes in multiple keys by specifying prefix
paths. For example, if you wants to get every network property, run:
PropertyTable.get_by_prefix(table, ["net"])
Likewise, you can subscribe to changes in the network status by running:
PropertyTable.subscribe(table, ["net"])
Properties can include metadata. PropertyTable only specifies that metadata
is a map.

 Anchor for this section

 Summary

 Types

 metadata()

 options()

 property()

 Properties

 property_value()

 property_with_wildcards()

 table_id()

 A table_id identifies a group of properties

 value()

 Functions

 child_spec(opts)

 Returns a specification to start a property_table under a supervisor.
See Supervisor.

 clear(table, name)

 Clear out a property

 clear_prefix(table, name)

 Clear out all properties under a prefix

 fetch_with_timestamp(table, name)

 Fetch a property with the time that it was set

 get(table, name, default \\ nil)

 Get the current value of a property

 get_by_prefix(table, prefix)

 Get a list of all properties matching the specified prefix

 match(table, pattern)

 Get a list of all properties matching the specified prefix

 put(table, name, value, metadata \\ %{})

 Update a property and notify listeners

 start_link(options)

 subscribe(table, name)

 Subscribe to receive events

 unsubscribe(table, name)

 Stop subscribing to a property

 Anchor for this section

Types

 Link to this type

 metadata()

 View Source

 Specs

 metadata() :: map()

 Link to this type

 options()

 View Source

 Specs

 options() :: [name: table_id(), properties: [property_value()]]

 Link to this type

 property()

 View Source

 Specs

 property() :: [String.t()]

Properties

 Link to this type

 property_value()

 View Source

 Specs

 property_value() :: {property(), value()}

 Link to this type

 property_with_wildcards()

 View Source

 Specs

 property_with_wildcards() :: [String.t() | :_]

 Link to this type

 table_id()

 View Source

 Specs

 table_id() :: atom()

A table_id identifies a group of properties

 Link to this type

 value()

 View Source

 Specs

 value() :: any()

 Anchor for this section

Functions

 Link to this function

 child_spec(opts)

 View Source

Returns a specification to start a property_table under a supervisor.
See Supervisor.

 Link to this function

 clear(table, name)

 View Source

Clear out a property

 Link to this function

 clear_prefix(table, name)

 View Source

Clear out all properties under a prefix

 Link to this function

 fetch_with_timestamp(table, name)

 View Source

 Specs

 fetch_with_timestamp(table_id(), property()) ::
 {:ok, value(), integer()} | :error

Fetch a property with the time that it was set
Timestamps come from System.monotonic_time()

 Link to this function

 get(table, name, default \\ nil)

 View Source

 Specs

 get(table_id(), property(), value()) :: value()

Get the current value of a property

 Link to this function

 get_by_prefix(table, prefix)

 View Source

 Specs

 get_by_prefix(table_id(), property()) :: [{property(), value()}]

Get a list of all properties matching the specified prefix

 Link to this function

 match(table, pattern)

 View Source

 Specs

 match(table_id(), property_with_wildcards()) :: [{property(), value()}]

Get a list of all properties matching the specified prefix

 Link to this function

 put(table, name, value, metadata \\ %{})

 View Source

 Specs

 put(table_id(), property(), value(), metadata()) :: :ok

Update a property and notify listeners

 Link to this function

 start_link(options)

 View Source

 Specs

 start_link(options()) :: {:ok, pid()} | {:error, term()}

 Link to this function

 subscribe(table, name)

 View Source

 Specs

 subscribe(table_id(), property_with_wildcards()) :: :ok

Subscribe to receive events

 Link to this function

 unsubscribe(table, name)

 View Source

 Specs

 unsubscribe(table_id(), property_with_wildcards()) :: :ok

Stop subscribing to a property

VintageNet.Route.Calculator

This module computes the desired routing table contents
It's used by the RouteManager to update the Linux routing tables when interfaces
come online or change state. See the RouteManager docs for a discussion of how
routes are configured.
The functions in this module have no side effects so that it's easier
to test that routing scenarios result in correct Linux routing table
configurations.

 Anchor for this section

 Summary

 Types

 default_route()

 entries()

 entry()

 interface_infos()

 local_route()

 metric()

 rule()

 table_index()

 table_indices()

 Functions

 compute(table_indices, infos, prioritization)

 Compute a Linux routing table configuration

 init()

 Initialize state carried between calculations

 rule_table_index_range()

 Return the table indices used for routing based on source IP.

 Anchor for this section

Types

 Link to this type

 default_route()

 View Source

 Specs

 default_route() ::
 {:default_route, VintageNet.ifname(), :inet.ip_address(), metric(),
 table_index()}

 Link to this type

 entries()

 View Source

 Specs

 entries() :: [entry()]

 Link to this type

 entry()

 View Source

 Specs

 entry() :: rule() | default_route() | local_route()

 Link to this type

 interface_infos()

 View Source

 Specs

 interface_infos() :: %{
 required(VintageNet.ifname()) => VintageNet.Route.InterfaceInfo.t()
}

 Link to this type

 local_route()

 View Source

 Specs

 local_route() ::
 {:local_route, VintageNet.ifname(), :inet.ip_address(), metric(),
 table_index()}

 Link to this type

 metric()

 View Source

 Specs

 metric() :: 0..32767

 Link to this type

 rule()

 View Source

 Specs

 rule() :: {:rule, table_index(), :inet.ip_address()}

 Link to this type

 table_index()

 View Source

 Specs

 table_index() :: 0..255 | :main | :local | :default

 Link to this type

 table_indices()

 View Source

 Specs

 table_indices() :: %{required(VintageNet.ifname()) => table_index()}

 Anchor for this section

Functions

 Link to this function

 compute(table_indices, infos, prioritization)

 View Source

 Specs

 compute(table_indices(), interface_infos(), [
 VintageNet.Interface.Classification.prioritization()
]) :: {table_indices(), entries()}

Compute a Linux routing table configuration
The entries are ordered so that List.myers_difference/2 can be used to
minimize the routing table changes.

 Link to this function

 init()

 View Source

 Specs

 init() :: table_indices()

Initialize state carried between calculations

 Link to this function

 rule_table_index_range()

 View Source

Return the table indices used for routing based on source IP.

VintageNet.Route.IPRoute

This module knows how to invoke the ip command to modify the Linux routing tables

 Anchor for this section

 Summary

 Functions

 add_default_route(ifname, route, metric, table_index)

 Add a default route

 add_local_route(ifname, ip, subnet_bits, metric, table_index)

 Add a local route

 add_rule(ip_address, table_index)

 Add a source IP address -> routing table rule

 clear_a_local_route(ifname)

 Clear one local route generically

 clear_a_local_route(ifname, ip, subnet_bits, metric, table_index)

 Clear one local route

 clear_a_route()

 Clear one default route out of the main table for any interface

 clear_a_route(ifname, table_index \\ :main)

 Clear one default route that goes to the specified interface

 clear_a_rule(table_index)

 Clear out one rule

 clear_all_routes()

 Clear all routes on all interfaces

 clear_all_rules(table_index)

 Clear all rules that select the specified table or tables

 Anchor for this section

Functions

 Link to this function

 add_default_route(ifname, route, metric, table_index)

 View Source

 Specs

 add_default_route(
 VintageNet.ifname(),
 :inet.ip_address(),
 VintageNet.Route.Calculator.metric(),
 VintageNet.Route.Calculator.table_index()
) :: :ok | {:error, any()}

Add a default route

 Link to this function

 add_local_route(ifname, ip, subnet_bits, metric, table_index)

 View Source

 Specs

 add_local_route(
 VintageNet.ifname(),
 :inet.ip_address(),
 VintageNet.prefix_length(),
 VintageNet.Route.Calculator.metric(),
 VintageNet.Route.Calculator.table_index()
) :: :ok | {:error, any()}

Add a local route

 Link to this function

 add_rule(ip_address, table_index)

 View Source

 Specs

 add_rule(:inet.ip_address(), VintageNet.Route.Calculator.table_index()) ::
 :ok | {:error, any()}

Add a source IP address -> routing table rule

 Link to this function

 clear_a_local_route(ifname)

 View Source

 Specs

 clear_a_local_route(VintageNet.ifname()) :: :ok | {:error, any()}

Clear one local route generically

 Link to this function

 clear_a_local_route(ifname, ip, subnet_bits, metric, table_index)

 View Source

 Specs

 clear_a_local_route(
 VintageNet.ifname(),
 :inet.ip_address(),
 VintageNet.prefix_length(),
 VintageNet.Route.Calculator.metric(),
 VintageNet.Route.Calculator.table_index()
) :: :ok | {:error, any()}

Clear one local route

 Link to this function

 clear_a_route()

 View Source

 Specs

 clear_a_route() :: :ok | {:error, any()}

Clear one default route out of the main table for any interface

 Link to this function

 clear_a_route(ifname, table_index \\ :main)

 View Source

 Specs

 clear_a_route(VintageNet.ifname(), VintageNet.Route.Calculator.table_index()) ::
 :ok | {:error, any()}

Clear one default route that goes to the specified interface

 Link to this function

 clear_a_rule(table_index)

 View Source

 Specs

 clear_a_rule(VintageNet.Route.Calculator.table_index()) :: :ok | {:error, any()}

Clear out one rule

 Link to this function

 clear_all_routes()

 View Source

 Specs

 clear_all_routes() :: :ok

Clear all routes on all interfaces

 Link to this function

 clear_all_rules(table_index)

 View Source

 Specs

 clear_all_rules(VintageNet.Route.Calculator.table_index() | Enumerable.t()) ::
 :ok

Clear all rules that select the specified table or tables

VintageNet.Route.InterfaceInfo

Routing information for an interface

 Anchor for this section

 Summary

 Types

 t()

 Functions

 metric(info, prioritization)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %VintageNet.Route.InterfaceInfo{
 default_gateway: :inet.ip_address() | nil,
 interface_type: VintageNet.Interface.Classification.interface_type(),
 ip_subnets: [{:inet.ip_address(), VintageNet.prefix_length()}],
 status: VintageNet.Interface.Classification.connection_status(),
 weight: VintageNet.Interface.Classification.weight()
}

 Anchor for this section

Functions

 Link to this function

 metric(info, prioritization)

 View Source

 Specs

 metric(t(), [
 {:_ | :ethernet | :local | :mobile | :unknown | :wifi,
 :_ | :disconnected | :internet | :lan}
]) :: :disabled | pos_integer()

VintageNet.Route.Properties

This module contains helpers for updating the global routing properties.
These include:
	["available_interfaces"]
	["connection"]

 Anchor for this section

 Summary

 Functions

 update_available_interfaces(routes)

 Update the available_interfaces property based on the low level routes

 update_best_connection(infos)

 Update the overall connection status

 Anchor for this section

Functions

 Link to this function

 update_available_interfaces(routes)

 View Source

 Specs

 update_available_interfaces(VintageNet.Route.Calculator.entries()) :: :ok

Update the available_interfaces property based on the low level routes
This function orders interfaces based on metric just like Linux does

 Link to this function

 update_best_connection(infos)

 View Source

 Specs

 update_best_connection(VintageNet.Route.Calculator.interface_infos()) :: :ok

Update the overall connection status
:disconnected < :lan < :internet

VintageNet.RouteManager

This module manages the default route.
Devices with more than one network interface may have more than one
way of reaching the Internet. The routing table decides which interface
an IP packet should use by looking at the "default route" entries.
One interface is chosen.
Since not all interfaces are equal, we'd like Linux to pick the
fastest and lowest latency one. for example, one could
prefer wired Ethernet over WiFi and prefer WiFi over a cellular
connection. This module lets you specify an ordering for interfaces
and sets up the routes based on this ordering.
This module also handles networking failures. One failure that
Linux can't figure out on its own is whether an interface can
reach the Internet. Internet reachability is handled elsewhere
like in the ConnectivityChecker module. This module should be
told reachability status so that it can properly order default
routes so that the best reachable interface is used.
IMPORTANT: This module uses priority-based routing. Make sure the
following kernel options are enabled:
CONFIG_IP_ADVANCED_ROUTER=y
CONFIG_IP_MULTIPLE_TABLES=y

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 clear_route(ifname)

 Clear out the default gateway for an interface.

 set_connection_status(ifname, status)

 Set the connection status on an interface.

 set_prioritization(priorities)

 Set the order that default gateways should be used

 set_route(ifname, ip_subnets, route, status \\ :lan)

 Set the default route for an interface.

 start_link(args)

 Start the route manager.

 stop()

 Stop the route manager.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 clear_route(ifname)

 View Source

 Specs

 clear_route(VintageNet.ifname()) :: :ok

Clear out the default gateway for an interface.

 Link to this function

 set_connection_status(ifname, status)

 View Source

 Specs

 set_connection_status(
 VintageNet.ifname(),
 VintageNet.Interface.Classification.connection_status()
) :: :ok

Set the connection status on an interface.
Changing the connection status can re-prioritize routing. The
specified interface doesn't need to have a default route.

 Link to this function

 set_prioritization(priorities)

 View Source

 Specs

 set_prioritization([VintageNet.Interface.Classification.prioritization()]) ::
 :ok

Set the order that default gateways should be used
The list is ordered from highest priority to lowest

 Link to this function

 set_route(ifname, ip_subnets, route, status \\ :lan)

 View Source

 Specs

 set_route(
 VintageNet.ifname(),
 [{:inet.ip_address(), VintageNet.prefix_length()}],
 :inet.ip_address(),
 VintageNet.Interface.Classification.connection_status()
) :: :ok

Set the default route for an interface.
This replaces any existing routes on that interface

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Start the route manager.

 Link to this function

 stop()

 View Source

 Specs

 stop() :: :ok

Stop the route manager.

VintageNet.Technology behaviour

Technologies define how network interface types work
VintageNet comes with several built-in technologies, but more can be
added or existing ones modified by implementing the Technology behaviour.

 Anchor for this section

 Summary

 Callbacks

 check_system(opts)

 Check that the system has all of the required programs for this technology

 ioctl(arg1, command, args)

 Handle an ioctl that has been requested on the network interface

 normalize(config)

 Normalize a configuration

 to_raw_config(arg1, config, opts)

 Convert a technology-specific configuration to one for VintageNet

 Anchor for this section

Callbacks

 Link to this callback

 check_system(opts)

 View Source

 Specs

 check_system(opts :: keyword()) :: :ok | {:error, String.t()}

Check that the system has all of the required programs for this technology
This is intended to help identify missing programs without configuring a
network.

 Link to this callback

 ioctl(arg1, command, args)

 View Source

 Specs

 ioctl(VintageNet.ifname(), command :: atom(), args :: list()) ::
 :ok | {:ok, any()} | {:error, any()}

Handle an ioctl that has been requested on the network interface
The function runs isolated in its own process and only one ioctl is
guaranteed to be running at a time. VintageNet will handle crashes and
hangs and unceremoniously kill the ioctl if the user changes their mind and
reconfigures the network interface.
Ioctl support is optional. Examples of ioctls include:
	:scan - scan for WiFi networks
	:statistics - return a map of network statistics

 Link to this callback

 normalize(config)

 View Source

 Specs

 normalize(config :: map()) :: map()

Normalize a configuration
Technologies use this to update input configurations to a canonical
representation. This includes things like inserting default fields,
converting IP addresses passed in as strings to tuples, and deriving
parameters so that they need not be derived again in the future.
Configuration errors raise exceptions.

 Link to this callback

 to_raw_config(arg1, config, opts)

 View Source

 Specs

 to_raw_config(VintageNet.ifname(), config :: map(), opts :: keyword()) ::
 VintageNet.Interface.RawConfig.t()

Convert a technology-specific configuration to one for VintageNet
The config is the normalized configuration map (normalize/1 will have
been called at some point so the technology does not need to call it again).
The opts parameter contains VintageNet's application environment. This
contains potentially useful file paths and other information.
Configuration errors raise exceptions. Errors should be infrequent, though,
since VintageNet will call normalize/1 first and expects most errors to be
caught by it.

VintageNet.Technology.Null

An interface with this technology is unconfigured

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

