vector v0.2.0 Vector

A library of two- and three-dimensional vector operations. All vectors are represented as tuples with either two or three elements.

Examples

iex> # Vector Tripple Product Identity
...> a = {2, 3, 1}
...> b = {1, 4, -2}
...> c = {-1, 2, 1}
...> Vector.equal(
...>   Vector.cross(Vector.cross(a, b), c),
...>   Vector.subtract(Vector.multiply(b, Vector.dot(a, c)), Vector.multiply(a, Vector.dot(b, c))))
true

Summary

Functions

Adds two vectors

Returns the basis vector for the given axis

Returns the scalar component for the axis given

Returns the cross product of two vectors AB

Returns the norm (magnitude) of the cross product of two vectors AB

Divide a vector by scalar value s

Returns the dot product of two vectors AB

Compares two vectors for euqality, with an optional tolerance

Multiply a vector by scalar value s

Returns the norm (magnitude) of a vector

Returns the square of the norm norm (magnitude) of a vector

Returns a new coordinate by projecting a given length distance from coordinate start along vector

Reverses a vector

Subtract vector B from vector A. Equivalent to Vector.add(A, Vector.revers(B))

Returns the unit vector parallel ot the given vector

Functions

add(arg1, arg2)

Adds two vectors

Examples

iex> Vector.add({3, -4}, {2, 1})
{5,-3}
iex> Vector.add({-2, 0, 5}, {0, 0, 0})
{-2, 0, 5}
iex> Vector.add({2, 1, -2}, Vector.reverse({2, 1, -2}))
{0, 0, 0}
basis(atom)

Returns the basis vector for the given axis

Examples

iex> Vector.basis(:x)
{1, 0, 0}
iex> Vector.basis(:y)
{0, 1, 0}
iex> Vector.component(Vector.basis(:y), :y)
1
component(arg, atom)

Returns the scalar component for the axis given

Examples

iex> Vector.component({3, -4}, :y)
-4
iex> Vector.component({-6, 0, 8}, :z)
8
iex> Vector.component({1, -2}, :z)
0
iex> Vector.component(Vector.basis(:x), :z)
0
cross(arg1, arg2)

Returns the cross product of two vectors AB

Examples

iex> Vector.cross({2, 3}, {1, 4})
{0, 0, 5}
iex> Vector.cross({2, 2, -1}, {1, 4, 2})
{8, -5, 6}
iex> Vector.cross({3, -3, 1}, {4, 9, 2})
{-15, -2, 39}
cross_norm(arg1, arg2)

Returns the norm (magnitude) of the cross product of two vectors AB

Examples

iex> Vector.cross_norm({2, 3}, {1, 4})
5
iex> Vector.cross_norm({1, 4}, {2, 2})
6
iex> Vector.cross_norm({2, 0, -1}, {0, 3, 3})
9.0
iex> Float.floor(:math.pow(Vector.cross_norm({2, 2, -1}, {1, 4, 2}), 2))
125.0
divide(arg, s)

Divide a vector by scalar value s

Examples

iex> Vector.divide({3, -4}, 2.5)
{1.2, -1.6}
iex> Vector.divide({-2, 0, 5}, -2)
{1.0, 0.0, -2.5}
dot(arg1, arg2)

Returns the dot product of two vectors AB

Examples

iex> Vector.dot({2, 3}, {1, 4})
14
iex> Vector.dot({1, 4}, {2, 2})
10
iex> Vector.dot({2, 0, -1}, {0, 3, 3})
-3
equal(a, b, tolerance \\ 0.0)

Compares two vectors for euqality, with an optional tolerance

Examples

iex> Vector.equal({3, -4}, {3, -4})
true
iex> Vector.equal({3, -4}, {3.0001, -3.9999})
false
iex> Vector.equal({3, -4}, {3.0001, -3.9999}, 0.001)
true
iex> Vector.equal({3, -4, 1}, {3.0001, -3.9999, 1.0}, 0.001)
true
multiply(arg, s)

Multiply a vector by scalar value s

Examples

iex> Vector.multiply({3, -4}, 2.5)
{7.5, -10.0}
iex> Vector.multiply({-2, 0, 5}, -2)
{4, 0, -10}
norm(arg)

Returns the norm (magnitude) of a vector

Examples

iex> Vector.norm({3, 4})
5.0
iex> Vector.norm({-1, 0})
1
iex> Vector.norm({0, -2, 0})
2
norm_squared(arg)

Returns the square of the norm norm (magnitude) of a vector

Examples

iex> Vector.norm_squared({3, 4})
25
iex> Vector.norm_squared({1, 0})
1
iex> Vector.norm_squared({2, 0, -1})
5
iex> Vector.norm_squared({-2, 3, 1})
14
project(vector, start, distance)

Returns a new coordinate by projecting a given length distance from coordinate start along vector

Examples

iex> Vector.project({3, -4}, {-1, 1}, 4)
{1.4, -2.2}
iex> Vector.project({-6, 0, 8}, {1, -2, 0.4}, 2.5)
{-0.5, -2.0, 2.4}
iex> Vector.project({-2, 1, 3}, {0, 0, 0}, 2.5) |> Vector.norm()
2.5
reverse(arg)

Reverses a vector

Examples

iex> Vector.reverse({3, -4})
{-3, 4}
iex> Vector.reverse({-2, 0, 5})
{2, 0, -5}
iex> Vector.cross_norm({-2, 3, 5}, Vector.reverse({-2, 3, 5}))
0
subtract(a, b)

Subtract vector B from vector A. Equivalent to Vector.add(A, Vector.revers(B))

Examples

iex> Vector.subtract({3, -4}, {2, 1})
{1,-5}
iex> Vector.subtract({-2, 0, 5}, {-3, 1, 2})
{1, -1, 3}
unit(v)

Returns the unit vector parallel ot the given vector

Examples

iex> Vector.unit({3, 4})
{0.6, 0.8}
iex> Vector.unit({8, 0, 6})
{0.8, 0.0, 0.6}
iex> Vector.unit({-2, 0, 0})
{-1.0, 0.0, 0.0}