

 Uptight

 v0.2.10-rc

 Table of contents

 	Modules

 	Uptight

 	Uptight.Assertions

 	Uptight.Assertions.Formatter

 	Uptight.Base

 	Uptight.Base.Sixteen

 	Uptight.Base.SixtyFour

 	Uptight.Base.ThirtyTwo

 	Uptight.Base.Urlsafe

 	Uptight.Binary

 	Uptight.Fold

 	Uptight.Result

 	Uptight.Result.Err

 	Uptight.Result.Ok

 	Uptight.Text

 	Uptight.Trace

 	Uptight.AssertionError

 	Uptight.MultiError

Uptight

Facilities for tightening loosey goosey types.

 Anchor for this section

 Summary

 Functions

 into_text_or_urlsafe(x)

 tighten(x)

 Anchor for this section

Functions

 Link to this function

 into_text_or_urlsafe(x)

 Specs

 into_text_or_urlsafe(binary()) :: Uptight.Text.t() | Uptight.Base.Urlsafe.t()

 Link to this function

 tighten(x)

 Specs

 tighten(any()) :: any()

Uptight.Assertions

This module contains a set of assertion functions that are
imported by default into your test cases.
In general, a developer will want to use the general
assert macro in tests. This macro introspects your code
and provides good reporting whenever there is a failure.
For example, assert some_fun() == 10 will fail (assuming
some_fun() returns 13):
Comparison (using ==) failed in:
code: assert some_fun() == 10
left: 13
right: 10
This module also provides other convenience functions
like assert_in_delta and assert_raise to easily handle
other common cases such as checking a floating-point number
or handling exceptions.

 Anchor for this section

 Summary

 Functions

 assert(assertion)

 Asserts its argument is a truthy value.

 assert(value, message)

 Asserts value is truthy, displaying the given message otherwise.

 assert_in_delta(value1, value2, delta, message \\ nil)

 Asserts that value1 and value2 differ by no more than delta.

 assert_raise(exception, function)

 Asserts the exception is raised during function execution.
Returns the rescued exception, fails otherwise.

 assert_raise(exception, message, function)

 Asserts the exception is raised during function execution with
the expected message, which can be a Regex or an exact String.
Returns the rescued exception, fails otherwise.

 assert_receive(pattern, timeout \\ nil, failure_message \\ nil)

 Asserts that a message matching pattern was or is going to be received
within the timeout period, specified in milliseconds.

 assert_received(pattern, failure_message \\ nil)

 Asserts that a message matching pattern was received and is in the
current process' mailbox.

 catch_error(expression)

 Asserts expression will cause an error.

 catch_exit(expression)

 Asserts expression will exit.

 catch_throw(expression)

 Asserts expression will throw a value.

 flunk(message \\ "Flunked!")

 Fails with a message.

 refute(assertion)

 A negative assertion, expects the expression to be false or nil.

 refute(value, message)

 Asserts value is nil or false (that is, value is not truthy).

 refute_in_delta(value1, value2, delta, message \\ nil)

 Asserts value1 and value2 are not within delta.

 refute_receive(pattern, timeout \\ nil, failure_message \\ nil)

 Asserts that a message matching pattern was not received (and won't be received)
within the timeout period, specified in milliseconds.

 refute_received(pattern, failure_message \\ nil)

 Asserts a message matching pattern was not received (i.e. it is not in the
current process' mailbox).

 Anchor for this section

Functions

 Link to this macro

 assert(assertion)

 (macro)

Asserts its argument is a truthy value.
assert introspects the underlying expression and provides
good reporting whenever there is a failure. For example,
if the expression uses the comparison operator, the message
will show the values of the two sides. The assertion
assert 1 + 2 + 3 + 4 > 15
 will fail with the message:
Assertion with > failed
code: assert 1 + 2 + 3 + 4 > 15
left: 10
right: 15
Similarly, if a match expression is given, it will report
any failure in terms of that match. Given
assert [1] = [2]
you'll see:
match (=) failed
code: assert [1] = [2]
left: [1]
right: [2]
Keep in mind that assert does not change its semantics
based on the expression. In other words, the expression
is still required to return a truthy value. For example,
the following will fail:
assert nil = some_function_that_returns_nil()
Even though the match works, assert still expects a truth
value. In such cases, simply use Kernel.==/2 or
Kernel.match?/2.

 Link to this function

 assert(value, message)

Asserts value is truthy, displaying the given message otherwise.

 Examples

assert false, "it will never be true"

assert x == :foo, "expected x to be foo"

assert match?({:ok, _}, x), "expected x to match {:ok, _}"

 Link to this function

 assert_in_delta(value1, value2, delta, message \\ nil)

Asserts that value1 and value2 differ by no more than delta.
This difference is inclusive, so the test will pass if the difference
and the delta are equal.

 Examples

assert_in_delta 1.1, 1.5, 0.2
assert_in_delta 10, 15, 2
assert_in_delta 10, 15, 5

 Link to this function

 assert_raise(exception, function)

Asserts the exception is raised during function execution.
Returns the rescued exception, fails otherwise.

 Examples

assert_raise ArithmeticError, fn ->
 1 + "test"
end

 Link to this function

 assert_raise(exception, message, function)

Asserts the exception is raised during function execution with
the expected message, which can be a Regex or an exact String.
Returns the rescued exception, fails otherwise.

 Examples

assert_raise ArithmeticError, "bad argument in arithmetic expression", fn ->
 1 + "test"
end

assert_raise RuntimeError, ~r/^today's lucky number is 0\.\d+!$/, fn ->
 raise "today's lucky number is #{:rand.uniform()}!"
end

 Link to this macro

 assert_receive(pattern, timeout \\ nil, failure_message \\ nil)

 (macro)

Asserts that a message matching pattern was or is going to be received
within the timeout period, specified in milliseconds.
Unlike assert_received, it has a default timeout
of 100 milliseconds.
The pattern argument must be a match pattern. Flunks with failure_message
if a message matching pattern is not received.

 Examples

assert_receive :hello
Asserts against a larger timeout:
assert_receive :hello, 20_000
You can also match against specific patterns:
assert_receive {:hello, _}

x = 5
assert_receive {:count, ^x}

 Link to this macro

 assert_received(pattern, failure_message \\ nil)

 (macro)

Asserts that a message matching pattern was received and is in the
current process' mailbox.
The pattern argument must be a match pattern. Flunks with failure_message
if a message matching pattern was not received.
Timeout is set to 0, so there is no waiting time.

 Examples

send(self(), :hello)
assert_received :hello

send(self(), :bye)
assert_received :hello, "Oh No!"
** (Uptight.AssertionError) Oh No!
You can also match against specific patterns:
send(self(), {:hello, "world"})
assert_received {:hello, _}

 Link to this macro

 catch_error(expression)

 (macro)

Asserts expression will cause an error.
Returns the error or fails otherwise.

 Examples

assert catch_error(error(1)) == 1

 Link to this macro

 catch_exit(expression)

 (macro)

Asserts expression will exit.
Returns the exit status/message of the current process or fails otherwise.

 Examples

assert catch_exit(exit(1)) == 1
To assert exits from linked processes started from the test, trap exits
with Process.flag/2 and assert the exit message with assert_receive/2.
Process.flag(:trap_exit, true)
pid = spawn_link(fn -> Process.exit(self(), :normal) end)
assert_receive {:EXIT, ^pid, :normal}

 Link to this macro

 catch_throw(expression)

 (macro)

Asserts expression will throw a value.
Returns the thrown value or fails otherwise.

 Examples

assert catch_throw(throw(1)) == 1

 Link to this function

 flunk(message \\ "Flunked!")

 Specs

 flunk(String.t()) :: no_return()

Fails with a message.

 Examples

flunk("This should raise an error")

 Link to this macro

 refute(assertion)

 (macro)

A negative assertion, expects the expression to be false or nil.
Keep in mind that refute does not change the semantics of
the given expression. In other words, the following will fail:
refute {:ok, _} = some_function_that_returns_error_tuple()
The code above will fail because the = operator always fails
when the sides do not match and refute/2 does not change it.
The correct way to write the refutation above is to use
Kernel.match?/2:
refute match?({:ok, _}, some_function_that_returns_error_tuple())

 Examples

refute age < 0

 Link to this function

 refute(value, message)

Asserts value is nil or false (that is, value is not truthy).

 Examples

refute true, "This will obviously fail"

 Link to this function

 refute_in_delta(value1, value2, delta, message \\ nil)

Asserts value1 and value2 are not within delta.
This difference is exclusive, so the test will fail if the difference
and the delta are equal.
If you supply message, information about the values will
automatically be appended to it.

 Examples

refute_in_delta 1.1, 1.2, 0.2
refute_in_delta 10, 11, 2

 Link to this macro

 refute_receive(pattern, timeout \\ nil, failure_message \\ nil)

 (macro)

Asserts that a message matching pattern was not received (and won't be received)
within the timeout period, specified in milliseconds.
The pattern argument must be a match pattern. Flunks with failure_message
if a message matching pattern is received.

 Examples

refute_receive :bye
Refute received with an explicit timeout:
refute_receive :bye, 1000

 Link to this macro

 refute_received(pattern, failure_message \\ nil)

 (macro)

Asserts a message matching pattern was not received (i.e. it is not in the
current process' mailbox).
The pattern argument must be a match pattern. Flunks with failure_message
if a message matching pattern was received.
Timeout is set to 0, so there is no waiting time.

 Examples

send(self(), :hello)
refute_received :bye

send(self(), :hello)
refute_received :hello, "Oh No!"
** (Uptight.AssertionError) Oh No!

Uptight.Assertions.Formatter

Helper functions for formatting and the formatting protocols.
Formatters are GenServers specified during Uptight configuration
that receive a series of events as casts.
The following events are possible:
	{:suite_started, opts} -
the suite has started with the specified options to the runner.

	{:suite_finished, times_us} -
the suite has finished. Returns several measurements in microseconds
for running the suite. See t:times_us for more information.

	{:module_started, test_module} -
a test module has started. See Uptight.TestModule for details.

	{:module_finished, test_module} -
a test module has finished. See Uptight.TestModule for details.

	{:test_started, test} -
a test has started. See Uptight.Test for details.

	{:test_finished, test} -
a test has finished. See Uptight.Test for details.

	{:sigquit, [test | test_module]} -
the VM is going to shutdown. It receives the test cases (or test
module in case of setup_all) still running.

The formatter will also receive the following events but they are deprecated
and should be ignored:
	{:case_started, test_module} -
a test module has started. See Uptight.TestModule for details.

	{:case_finished, test_module} -
a test module has finished. See Uptight.TestModule for details.

The full Uptight configuration is passed as the argument to GenServer.init/1 callback when the
formatters are started. If you need to do runtime configuration of a
formatter, you can only do it when you run ExUnit by using ExUnit.configure/1
or ExUnit.start/1, and this will then be included in the options passed to
the GenServer.init/1 callback.

 Anchor for this section

 Summary

 Types

 id()

 times_us()

 The times spent on several parts of the test suite.

 Functions

 format_filters(filters, type)

 Formats filters used to constrain cases to be run.

 format_test_all_failure(test_module, failures, counter, width, formatter)

 Receives a test module and formats its failure.

 format_times(times)

 Formats time taken running the test suite.

 Anchor for this section

Types

 Link to this type

 id()

 Specs

 id() :: term()

 Link to this type

 times_us()

 Specs

 times_us() :: %{
 run: pos_integer(),
 async: pos_integer() | nil,
 load: pos_integer() | nil
}

The times spent on several parts of the test suite.
The following properties can be computed:
sync = run - (async || 0)
total = run + (load || 0)
async is nil when there are no async tests.
load is nil when the test suite is running and loading
tests concurrently.

 Anchor for this section

Functions

 Link to this function

 format_filters(filters, type)

 Specs

 format_filters(
 keyword(),
 atom()
) :: String.t()

Formats filters used to constrain cases to be run.

 Examples

iex> format_filters([run: true, slow: false], :include)
"Including tags: [run: true, slow: false]"

 Link to this function

 format_test_all_failure(test_module, failures, counter, width, formatter)

Receives a test module and formats its failure.

 Link to this function

 format_times(times)

 Specs

 format_times(times_us()) :: String.t()

Formats time taken running the test suite.

 Examples

iex> format_times(%{run: 10000, async: nil, load: nil})
"Finished in 0.01 seconds (0.00s async, 0.01s sync)"

iex> format_times(%{run: 10000, async: nil, load: 20000})
"Finished in 0.03 seconds (0.02s on load, 0.00s async, 0.01s sync)"

iex> format_times(%{run: 10000, async: nil, load: 200_000})
"Finished in 0.2 seconds (0.2s on load, 0.00s async, 0.01s sync)"

iex> format_times(%{run: 100_000, async: 50000, load: 200_000})
"Finished in 0.3 seconds (0.2s on load, 0.05s async, 0.05s sync)"

Uptight.Base

Type wrappers for BaseN representations of binary data.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 binary_to_urlsafe(x)

 binary_to_urlsafe!(x)

 mk16(x)

 Perhaps, constructs a representation of a hex string.

 mk32(x)

 mk64(x)

 mk_url(x)

 mk_url!(x)

 new()

 new(x)

 Defensive constructor.

 new!(arg)

 raw_to_urlsafe(arg)

 raw_to_urlsafe!(arg)

 safe(binary)

 See Uptight.Base.binary_to_urlsafe/1.

 safe!(binary)

 See Uptight.Base.binary_to_urlsafe!/1.

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() ::
 Uptight.Base.Urlsafe.t()
 | Uptight.Base.SixtyFour.t()
 | Uptight.Base.ThirtyTwo.t()
 | Uptight.Base.Sixteen.t()

 Anchor for this section

Functions

 Link to this function

 binary_to_urlsafe(x)

 Specs

 binary_to_urlsafe(Uptight.Binary.t()) :: Uptight.Result.t()

 Link to this function

 binary_to_urlsafe!(x)

 Specs

 binary_to_urlsafe!(Uptight.Binary.t()) :: Uptight.Base.Urlsafe.t()

 Link to this function

 mk16(x)

 Specs

 mk16(binary()) :: Uptight.Result.t()

Perhaps, constructs a representation of a hex string.

 Example

iex> Uptight.Base.mk16("1337C0DE")
%Uptight.Result.Ok{ok: %Uptight.Base.Sixteen{encoded: "1337C0DE", raw: <<19, 55, 192, 222>>}}

 Link to this function

 mk32(x)

 Specs

 mk32(binary()) :: Uptight.Result.t()

 Link to this function

 mk64(x)

 Specs

 mk64(binary()) :: Uptight.Result.t()

 Link to this function

 mk_url(x)

 Specs

 mk_url(binary()) :: Uptight.Result.t()

 Link to this function

 mk_url!(x)

 Specs

 mk_url!(binary()) :: Uptight.Base.Urlsafe.t()

 Link to this function

 new()

 Specs

 new() :: t()

 Link to this function

 new(x)

 Specs

 new(binary()) :: Uptight.Result.t()

Defensive constructor.

 Examples

iex> Uptight.Base.new("0L/Ri9GJIG9sb2xvINGPINCy0L7QtNC40YLQtdC70Ywg0J3Qm9CeIQ==")
%Uptight.Result.Ok{
 ok: %Uptight.Base.SixtyFour{
 encoded: "0L/Ri9GJIG9sb2xvINGPINCy0L7QtNC40YLQtdC70Ywg0J3Qm9CeIQ==",
 raw: "пыщ ololo я водитель НЛО!"
 }
}

iex> Uptight.Base.new("0L/Ri9GJIG9sb2xvINGPINCy0L7QtNC40YLQtdC70Ywg0J3Qm9CeIQ==") |> Uptight.Result.is_ok?()
true

 Link to this function

 new!(arg)

 Specs

 new!(binary()) :: t()

 Link to this function

 raw_to_urlsafe(arg)

 Specs

 raw_to_urlsafe(binary()) :: Uptight.Result.t()

 Link to this function

 raw_to_urlsafe!(arg)

 Specs

 raw_to_urlsafe!(binary()) :: Uptight.Base.Urlsafe.t()

 Link to this function

 safe(binary)

 Specs

 safe(Uptight.Binary.t()) :: Uptight.Result.t()

See Uptight.Base.binary_to_urlsafe/1.

 Link to this function

 safe!(binary)

 Specs

 safe!(Uptight.Binary.t()) :: Uptight.Base.Urlsafe.t()

See Uptight.Base.binary_to_urlsafe!/1.

Uptight.Base.Sixteen

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(encoded \\ "", raw \\ <<>>)

 Positional constructor, with args in the same order as they were defined in

 new_partial()

 new_partial(encoded)

 new_partial(encoded, raw)

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Base.Sixteen{encoded: String.t(), raw: binary()}

 Anchor for this section

Functions

 Link to this function

 new(encoded \\ "", raw \\ <<>>)

 Specs

 new(
 String.t(),
 binary()
) :: t()

Positional constructor, with args in the same order as they were defined in

 Link to this function

 new_partial()

 Link to this function

 new_partial(encoded)

 Link to this function

 new_partial(encoded, raw)

Uptight.Base.SixtyFour

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(encoded \\ "", raw \\ <<>>)

 Positional constructor, with args in the same order as they were defined in

 new_partial()

 new_partial(encoded)

 new_partial(encoded, raw)

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Base.SixtyFour{encoded: String.t(), raw: binary()}

 Anchor for this section

Functions

 Link to this function

 new(encoded \\ "", raw \\ <<>>)

 Specs

 new(
 String.t(),
 binary()
) :: t()

Positional constructor, with args in the same order as they were defined in

 Link to this function

 new_partial()

 Link to this function

 new_partial(encoded)

 Link to this function

 new_partial(encoded, raw)

Uptight.Base.ThirtyTwo

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(encoded \\ "", raw \\ <<>>)

 Positional constructor, with args in the same order as they were defined in

 new_partial()

 new_partial(encoded)

 new_partial(encoded, raw)

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Base.ThirtyTwo{encoded: String.t(), raw: binary()}

 Anchor for this section

Functions

 Link to this function

 new(encoded \\ "", raw \\ <<>>)

 Specs

 new(
 String.t(),
 binary()
) :: t()

Positional constructor, with args in the same order as they were defined in

 Link to this function

 new_partial()

 Link to this function

 new_partial(encoded)

 Link to this function

 new_partial(encoded, raw)

Uptight.Base.Urlsafe

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(encoded \\ "", raw \\ <<>>)

 Positional constructor, with args in the same order as they were defined in

 new_partial()

 new_partial(encoded)

 new_partial(encoded, raw)

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Base.Urlsafe{encoded: String.t(), raw: binary()}

 Anchor for this section

Functions

 Link to this function

 new(encoded \\ "", raw \\ <<>>)

 Specs

 new(
 String.t(),
 binary()
) :: t()

Positional constructor, with args in the same order as they were defined in

 Link to this function

 new_partial()

 Link to this function

 new_partial(encoded)

 Link to this function

 new_partial(encoded, raw)

Uptight.Binary

Newtype wrapper for pure binary data.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new()

 Default Elixir.Uptight.Binary struct

 new(field)

 Constructor helper for piping

 new!(arg)

 un(binary)

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Binary{binary: binary()}

 Anchor for this section

Functions

 Link to this function

 new()

 Specs

 new() :: t()

Default Elixir.Uptight.Binary struct

 Link to this function

 new(field)

 Specs

 new(binary()) :: t()

Constructor helper for piping

 Link to this function

 new!(arg)

 Specs

 new!(binary()) :: t()

 Link to this function

 un(binary)

 Specs

 un(t()) :: binary()

Uptight.Fold

Foldable plus.

 Anchor for this section

 Summary

 Functions

 intercalate(foldable_semigroup, glue)

 Folds by gluing the elements. Constraints in typespec are fake and don't do anything except for suggesting required typeclasses.

 intersperse(foldable_semigroup, glue)

 Inserts glue between each pair of elements. Constraints in typespec are fake and don't do anything except for suggesting required typeclasses.

 right_glued(foldable_semigroup, glue)

 Anchor for this section

Functions

 Link to this function

 intercalate(foldable_semigroup, glue)

 Specs

 intercalate(
 Witchcraft.Foldable.t() | :and | Witchcraft.Semigroup.t(),
 Witchcraft.Monoid.t()
) :: Witchcraft.Monoid.t()

Folds by gluing the elements. Constraints in typespec are fake and don't do anything except for suggesting required typeclasses.

 Example

iex> Uptight.Result.new(fn -> Uptight.Fold.intercalate([1,2,3], "") end) |> Uptight.Result.is_err?()
true

iex> Uptight.Fold.intercalate(Witchcraft.Functor.map([1,2,3], &Uptight.Add.new/1), 1)
9

iex> Uptight.Fold.intercalate([], 1)
0

iex> Uptight.Fold.intercalate([Uptight.Text.new!("."), Uptight.Text.new!("a.out")], Uptight.Text.new!("/"))
%Uptight.Text{text: "./a.out"}

iex> Uptight.Fold.intercalate([Uptight.Text.new!(".")], Uptight.Text.new!("lol nvm"))
%Uptight.Text{text: "."}

 Link to this function

 intersperse(foldable_semigroup, glue)

 Specs

 intersperse(
 Witchcraft.Foldable.t() | :and | Witchcraft.Semigroup.t(),
 Witchcraft.Monoid.t()
) :: Witchcraft.Foldable.t() | :and | Witchcraft.Semigroup.t()

Inserts glue between each pair of elements. Constraints in typespec are fake and don't do anything except for suggesting required typeclasses.

 Example

iex> Uptight.Fold.intersperse([1,2,3], "the power of elixir")
[1, "the power of elixir", 2, "the power of elixir", 3]

iex> Uptight.Fold.intersperse([Uptight.Text.new!("."), Uptight.Text.new!("a.out")], Uptight.Text.new!("/"))
[%Uptight.Text{text: "."}, %Uptight.Text{text: "/"}, %Uptight.Text{text: "a.out"}]

iex> Uptight.Fold.intersperse([Uptight.Text.new!(".")], Uptight.Text.new!("lol nvm"))
[%Uptight.Text{text: "."}]

 Link to this function

 right_glued(foldable_semigroup, glue)

 Specs

 right_glued(
 Witchcraft.Foldable.t() | :and | Witchcraft.Semigroup.t(),
 Witchcraft.Monoid.t()
) :: Witchcraft.Foldable.t() | :and | Witchcraft.Semigroup.t()

Uptight.Result

Alternative Either. Differences from Alage Either:
	Overloaded new that takes a nullary function, runs it and if it raises an error, it returns Err holding Uptight.Trace, it returns Ok otherwise.
	As data, not biased neither towrards Ok nor Err, whereas Algae version is biased towards Right: https://github.com/witchcrafters/algae/blob/067e2b0a02c5c0c4183051807dfa733e2ee43fe4/lib/algae/either.ex#L140.
	As operation, biased neither towards Ok nor Err (unlike Algae version, which is biased towards Left). Thus, Result instances adhere to all the typeclass laws.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 cont(e, f)

 cont_end(res)

 from_ok(err)

 is_err?(_)

 is_ok?(_)

 new()

 new(f)

 Run failable function, capturing return value into Ok and a runtime error into Err.

 new_ok()

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: Uptight.Result.Ok.t() | Uptight.Result.Err.t()

 Anchor for this section

Functions

 Link to this function

 cont(e, f)

 Specs

 cont(t(), (any() -> any())) :: t()

 Link to this function

 cont_end(res)

 Specs

 cont_end(t()) :: t()

 Link to this function

 from_ok(err)

 Specs

 from_ok(t()) :: any()

 Link to this function

 is_err?(_)

 Specs

 is_err?(t()) :: boolean()

 Link to this function

 is_ok?(_)

 Specs

 is_ok?(t()) :: boolean()

 Link to this function

 new()

 Specs

 new() :: t()

 Link to this function

 new(f)

 Specs

 new((() -> any())) :: t()

Run failable function, capturing return value into Ok and a runtime error into Err.

 Examples

iex> Uptight.Result.new(fn () -> :erlang.system_flag(:backtrace_depth, 0); raise "oopsie" end) |> Uptight.Result.is_err?()
true

iex> Uptight.Result.new(fn () -> :erlang.system_flag(:backtrace_depth, 20); raise "is_err!" end) |> Uptight.Result.is_err?()
true

iex> Uptight.Result.new(fn () -> 42 end)
%Uptight.Result.Ok{ok: 42}

iex> Uptight.Result.new(fn () -> 42 end) |> Uptight.Result.is_ok?()
true

iex> Uptight.Result.new(fn () -> 42 end) |> Uptight.Result.is_err?()
false

 Link to this function

 new_ok()

 Specs

 new_ok() :: Uptight.Result.Ok.t()

Uptight.Result.Err

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new()

 Default Elixir.Uptight.Result.Err struct. Value defaults to :%{}.

 new(value)

 Helper for initializing struct with a specific value

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Result.Err{
 err: %Uptight.Trace{exception: any(), stacktrace: [any()]}
}

 Anchor for this section

Functions

 Link to this function

 new()

 Specs

 new() :: t()

Default Elixir.Uptight.Result.Err struct. Value defaults to :%{}.

 Link to this function

 new(value)

 Specs

 new(%Uptight.Trace{exception: any(), stacktrace: [any()]}) :: t()

Helper for initializing struct with a specific value

Uptight.Result.Ok

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new()

 Default Elixir.Uptight.Result.Ok struct. Value defaults to nil.

 new(value)

 Helper for initializing struct with a specific value

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Result.Ok{ok: any()}

 Anchor for this section

Functions

 Link to this function

 new()

 Specs

 new() :: t()

Default Elixir.Uptight.Result.Ok struct. Value defaults to nil.

 Link to this function

 new(value)

 Specs

 new(any()) :: t()

Helper for initializing struct with a specific value

Uptight.Text

Newtype for textual data.
It does what you expect, except it has one peculiarity:
	map just applies function to the underlying binary string as is
	right_fold and other folds from Foldable iterate through UTF-8 characters

This behaviour probably should be unified to work over UTF-8 characters one way or another and a custom class Newtype should be devised to provide naive fmap functionality.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new()

 Default Elixir.Uptight.Text struct

 new(field)

 Defensive constructor.

 new!(arg)

 Offensive constructor.

 un(text)

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Text{text: binary()}

 Anchor for this section

Functions

 Link to this function

 new()

 Specs

 new() :: t()

Default Elixir.Uptight.Text struct

 Link to this function

 new(field)

 Specs

 new(binary()) :: t()

Defensive constructor.

 Examples

iex> Uptight.Text.new(<<5555>>) |> Uptight.Result.is_err?()
true

iex> Uptight.Text.new(<<322>>)
%Uptight.Result.Ok{ok: %Uptight.Text{text: "B"}}

iex> Uptight.Text.new(<<228>>) |> Uptight.Result.is_err?()
true

iex> Uptight.Text.new("hello") |> Uptight.Result.from_ok() |> Witchcraft.Foldable.right_fold("", fn x, acc -> x <> acc end)
"olleh"

 Link to this function

 new!(arg)

 Specs

 new!(binary()) :: t()

Offensive constructor.

 Link to this function

 un(text)

 Specs

 un(t()) :: binary()

Uptight.Trace

Defdata for exception along with stacktrace.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 arity_or_args_to_int(xs)

 location_to_map(arg1)

 new(exception \\ nil, stacktrace \\ [])

 Positional constructor, with args in the same order as they were defined in

 new_partial()

 new_partial(exception)

 new_partial(exception, stacktrace)

 stacktrace_entry_to_map(arg)

 stacktrace_to_map(stacktrace)

 Anchor for this section

Types

 Link to this type

 t()

 Specs

 t() :: %Uptight.Trace{
 exception: any(),
 stacktrace: [Exception.stacktrace_entry()]
}

 Anchor for this section

Functions

 Link to this function

 arity_or_args_to_int(xs)

 Link to this function

 location_to_map(arg1)

 Link to this function

 new(exception \\ nil, stacktrace \\ [])

 Specs

 new(any(), [Exception.stacktrace_entry()]) :: t()

Positional constructor, with args in the same order as they were defined in

 Link to this function

 new_partial()

 Link to this function

 new_partial(exception)

 Link to this function

 new_partial(exception, stacktrace)

 Link to this function

 stacktrace_entry_to_map(arg)

 Link to this function

 stacktrace_to_map(stacktrace)

Uptight.AssertionError exception

Raised to signal an assertion error.

 Anchor for this section

 Summary

 Functions

 no_value()

 Indicates no meaningful value for a field.

 Anchor for this section

Functions

 Link to this function

 no_value()

Indicates no meaningful value for a field.

Uptight.MultiError exception

Raised to signal multiple errors happened in a test case.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

