

    

        Uploadex

        v3.0.0



    



  

    Table of contents

    
      



            	Uploadex





  	Modules
    

    	Uploadex


    	Uploadex.Context


    	Uploadex.FileProcessing


    	Uploadex.FileStorage


    	Uploadex.Files


    	Uploadex.Resolver


    	Uploadex.S3Storage


    	Uploadex.Storage


    	Uploadex.TestStorage


    	Uploadex.Testing


    	Uploadex.Upload


    	Uploadex.Uploader


    

  



      

    


  

    
Uploadex
    

Uploadex is an Elixir library for handling uploads that integrates well with Ecto, Phoenix and Absinthe.
Documentation can be found at https://hexdocs.pm/uploadex.
Migrating from v2 to v3
	In you uploader, change @behaviour Uploadex.Uploader to use Uploadex
	Remove all config :uploadex from your configuration files
	Change all direct functions calls from Uploadex.Resolver, Uploadex.Files and Uploadex to your Uploader module

Installation
The package can be installed by adding uploadex to your list of dependencies in mix.exs:
def deps do
  [
    {:uploadex, "~> 3.0.0"},
    # S3 dependencies(required for S3 storage only)
    {:ex_aws, "~> 2.1"},
    {:ex_aws_s3, "~> 2.0.2"},
    {:sweet_xml, "~> 0.6"},
  ]
end
If you don't want to use the release candiate, go to the latest stable version documentation.
Usage
Follow these steps to use Uploadex:
1: Uploader
This library relies heavily on pattern matching for configuration, so the first step is to define your Uploader configuration module:
defmodule MyApp.Uploader do
  @moduledoc false

  use Uploadex,
    repo: MyApp.Repo # only necessary if using the functions from Uploadex.Context

  alias MyAppWeb.Endpoint

  @impl true
  def get_fields(%User{}), do: :photo
  def get_fields(%Company{}), do: [:photo, :logo]

  @impl true
  def default_opts(Uploadex.FileStorage), do: [base_path: Path.join(:code.priv_dir(:my_app), "static/"), base_url: Endpoint.url()]
  def default_opts(Uploadex.S3Storage), do: [bucket: "my_bucket", region: "sa-east-1", upload_opts: [acl: :public_read]]

  @impl true
  def storage(%User{id: id}, :photo), do: {Uploadex.FileStorage, directory: "/uploads/users/#{id}"}
  def storage(%Company{id: id}, :photo), do: {Uploadex.S3Storage, directory: "/thumbnails/#{id}"}
  def storage(%Company{}, :logo), do: {Uploadex.S3Storage, directory: "/logos"}

  # Optional:
  @impl true
  def accepted_extensions(%User{}, :photo), do: ~w(.jpg .png)
  def accepted_extensions(_any, _field), do: :any
end
This example shows the configuration for the Uploadex.FileStorage and Uploadex.S3Storage implementations, but you are free to implement your own Storage.
Note: To avoid too much metaprogramming magic, the use in this module is very simple and, in fact, optional. If you wish to do so, you can just define the @behaviour Uploadex.Uploader instead of the use and then call all lower level modules directly, passing your Uploader module as argument. The use makes life much easier, though!
2: Ecto Migration
A string field is required in the database to save the file reference.
The example below shows what would be needed to have a field to upload.
defmodule MyApp.Repo.Migrations.AddPhotoToUsers do
  use Ecto.Migration

  def change do
    alter table(:users) do
      add :photo, :string
    end
  end
end
3: Schema
In your schema, use the Ecto Type Uploadex.Upload:
schema "users" do
  field :name, :string
  field :photo, Uploadex.Upload
end

# No special cast is needed, and casting does not have any side effects.
def create_changeset(%User{} = user, attrs) do
  user
  |> cast(attrs, [:name, :photo])
end
4: Configuration
Depending on which features you are using, you may need extra configurations:
Temporary Files
If you are using get_temporary_file or get_temporary_files, you need to configure task_after:
config :task_after, global_name: TaskAfter
S3 Configuration
If you are using the S3 adapter, add this to your configuration file. For more information access the ex_aws_s3 documentation:
config :ex_aws, :s3,
  access_key_id: "key",
  secret_access_key: "secret",
  region: "us-east-1",
  host: "localhost",
  port: "9000",
  scheme: "http://"

config :my_project, :uploads,
  bucket: "uploads",
  region: "us-east-1"
5: Enjoy!
Now, you can use your defined Uploader to handle your records with their files!
The use Uploadex line in your Uploader module will import 3 groups of functions:
Context
  The highest level functions are context helpers (see Context for more documentation), which will allow you to easily create, update and delete your records with associated files:
  defmodule MyApp.Accounts do
    alias MyApp.Accounts.User
    alias MyApp.MyUploader

    def create_user(attrs) do
      %User{}
      |> User.create_changeset(attrs)
      |> MyUploader.create_with_file()
    end

    def update_user(%User{} = user, attrs) do
      user
      |> User.update_changeset(attrs)
      |> MyUploader.update_with_file(user)
    end

    def delete_user(%User{} = user) do
      MyUploader.delete_with_file(user)
    end
  end
Resolver
  There are also functions to help you easily fetch the files in Absinthe schemas:
  object :user do
    field :photo_url, :string, resolve: MyUploader.get_file_url(:photo)
  end

  object :user do
    field :photos, list_of(:string), resolve: MyUploader.get_files_url(:photos)
  end
  See Resolver for more documentation.
Files
If you need more flexibility, you can use the lower-level functions defined in Files, which provide some extra functionalities, such as get_temporary_file, useful when the files are not publicly available.
Some examples:
{:ok, %User{}} = MyUploader.store_files(user)
{:ok, %User{}} = MyUploader.delete_files(user)
{:ok, %User{}} = MyUploader.delete_previous_files(user, user_after_change)
{:ok, files} = MyUploader.get_files_url(user, :photos)
Testing
For knowing how to test with Uploadex, check the hexdocs of the Testing module.
Motivation
Even though there already exists a library for uploading files that integrates with ecto (https://github.com/stavro/arc_ecto), this library was created because:
	arc_ecto does not support upload of binary files
	Uploadex makes it easier to deal with records that contain files without having to manage those files manually on every operation
	Using uploadex, the changeset operations have no side-effects and no special casting is needed
	Uploadex offers more flexibility by allowing to define different storage configurations for each struct (or even each field in a struct) in the application
	Uploadex does not rely on global configuration, which makes it easier to work in umbrella applications




  

    
Uploadex 
    



      
Imports functions from Files, Context and Resolver modules, passing itself as a parameter for configuration.

      





  

    
Uploadex.Context 
    



      
Context Helper functions for handling files.
Note that all functions in this module require the Uploader as an argument. You are free to call them like that:
iex> Uploadex.Context.create_with_file(changeset, Repo, MyUploader)
{:ok, %User{}}
However, by doing use Uploadex, repo: Repo in your uploader, you can call these functions directly through the uploader to avoid having to pass these
extra arguments around:
iex> MyUploader.create_with_file(changeset)
{:ok, %User{}}

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          create_with_file(changeset, repo, uploader, opts \\ [])

        


          Inserts the changeset and store the record files in a database transaction,
so if the files fail to be stored the record will not be created.



      


      
        
          delete_with_file(record_or_changeset, repo, uploader, opts \\ [])

        


          Deletes the record and all of its files.
This is not in a database transaction, since the delete operation never returns errors.



      


      
        
          update_with_file(changeset, previous_record, repo, uploader, opts \\ [])

        


          Updates the record and its files in a database transaction,
so if the files fail to be stored the record will not be created.



      


      
        
          update_with_file_keep_previous(changeset, repo, uploader, opts \\ [])

        


          Similar to update_with_file/3, but does not delete previous files.



      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    create_with_file(changeset, repo, uploader, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create_with_file(Ecto.Changeset.t(), module(), Uploadex.Uploader.t(), keyword()) ::
  {:ok, any()} | {:error, any()}


      


Inserts the changeset and store the record files in a database transaction,
so if the files fail to be stored the record will not be created.

  



    

  
    
      
      Link to this function
    
    delete_with_file(record_or_changeset, repo, uploader, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec delete_with_file(any(), module(), Uploadex.Uploader.t(), keyword()) ::
  {:ok, any()} | {:error, any()}


      


Deletes the record and all of its files.
This is not in a database transaction, since the delete operation never returns errors.

  



    

  
    
      
      Link to this function
    
    update_with_file(changeset, previous_record, repo, uploader, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update_with_file(
  Ecto.Changeset.t(),
  any(),
  module(),
  Uploadex.Uploader.t(),
  keyword()
) ::
  {:ok, any()} | {:error, any()}


      


Updates the record and its files in a database transaction,
so if the files fail to be stored the record will not be created.
This function also deletes files that are no longer referenced.

  



    

  
    
      
      Link to this function
    
    update_with_file_keep_previous(changeset, repo, uploader, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update_with_file_keep_previous(
  Ecto.Changeset.t(),
  module(),
  Uploadex.Uploader.t(),
  keyword()
) ::
  {:ok, any()} | {:error, any()}


      


Similar to update_with_file/3, but does not delete previous files.

  


        

      



  

    
Uploadex.FileProcessing 
    



      
Process files in Base64

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          processed_binary()

        


      


  


  
    
      Functions
    


      
        
          process_binary(image_binary)

        


          If it's in base64, decode it. Otherwise, do not try to process the file.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    processed_binary()


      
       
       View Source
     


  


  

      

          @type processed_binary() :: %{binary: String.t(), content_type: String.t()}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    process_binary(image_binary)


      
       
       View Source
     


  


  

      

          @spec process_binary(String.t()) :: {:ok, processed_binary()} | {:error, String.t()}


      


If it's in base64, decode it. Otherwise, do not try to process the file.

  


        

      



  

    
Uploadex.FileStorage 
    



      
Storage for Local Files.
Opts
	directory: String (required for all functions) - Relative to base_path
	base_path: String (required for all functions)
	base_url:  String (required for Uploadex.Storage.get_url/2)

To build the URL, base_path will be replaced by base_url.
Example
  To use this storage for your User record, define these functions in your Uploadex.Uploader implementation:
def default_opts(Uploadex.FileStorage), do: [base_path: :code.priv_dir(:my_app), base_url: Endpoint.url()]

def storage(%User{} = user, :photo), do: {Uploadex.FileStorage, directory: "/uploads/users"}

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          delete_file_after_delay(delay, path)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    delete_file_after_delay(delay, path)


      
       
       View Source
     


  


  


  


        

      



  

    
Uploadex.Files 
    



      
Functions to store and delete files.
Note that all functions in this module require the Uploader as an argument. You are free to call them like that:
iex> Uploadex.Files.store_files(user, MyUploader)
{:ok, %User{}}
However, by doing use Uploadex in your uploader, you can call these functions directly through the uploader to avoid having to pass this
extra argument around:
iex> MyUploader.store_files(user)
{:ok, %User{}}

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          record()

        


      


      
        
          record_field()

        


      


      
        
          status()

        


      


  


  
    
      Functions
    


      
        
          delete_files(record, uploader)

        


          Deletes all files for a record.



      


      
        
          delete_previous_files(new_record, previous_record, uploader)

        


          Deletes all files that changed.



      


      
        
          get_file_url(record, file, field, uploader)

        


      


      
        
          get_files_url(record, field, uploader)

        


      


      
        
          get_files_url(record, files, field, uploader)

        


      


      
        
          get_temporary_file(record, file, path, field, uploader)

        


      


      
        
          get_temporary_files(record, path, field, uploader)

        


      


      
        
          get_temporary_files(record, files, path, field, uploader)

        


      


      
        
          store_files(record, uploader)

        


          Stores all files of a record, as defined by the uploader.



      


      
        
          store_files(record, previous_record, uploader)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    record()


      
       
       View Source
     


  


  

      

          @type record() :: any()


      



  



  
    
      
      Link to this type
    
    record_field()


      
       
       View Source
     


  


  

      

          @type record_field() :: atom()


      



  



  
    
      
      Link to this type
    
    status()


      
       
       View Source
     


  


  

      

          @type status() :: :ok | :error


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    delete_files(record, uploader)


      
       
       View Source
     


  


  

      

          @spec delete_files(record(), Uploadex.Uploader.t()) ::
  {:ok, record()} | {:error, any()}


      


Deletes all files for a record.

  



  
    
      
      Link to this function
    
    delete_previous_files(new_record, previous_record, uploader)


      
       
       View Source
     


  


  

      

          @spec delete_previous_files(record(), record(), Uploadex.Uploader.t()) ::
  {:ok, record()} | {:error, any()}


      


Deletes all files that changed.

  



  
    
      
      Link to this function
    
    get_file_url(record, file, field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_file_url(record(), String.t(), record_field(), Uploadex.Uploader.t()) ::
  {status(), String.t() | nil}


      



  



  
    
      
      Link to this function
    
    get_files_url(record, field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_files_url(record(), record_field(), Uploadex.Uploader.t()) ::
  {status(), [String.t()]}


      



  



  
    
      
      Link to this function
    
    get_files_url(record, files, field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_files_url(
  record(),
  String.t() | [String.t()],
  record_field(),
  Uploadex.Uploader.t()
) ::
  {status(), [String.t()]}


      



  



  
    
      
      Link to this function
    
    get_temporary_file(record, file, path, field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_temporary_file(
  record(),
  String.t(),
  String.t(),
  record_field(),
  Uploadex.Uploader.t()
) ::
  String.t() | nil | {:error, String.t()}


      



  



  
    
      
      Link to this function
    
    get_temporary_files(record, path, field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_temporary_files(record(), String.t(), record_field(), Uploadex.Uploader.t()) ::
  [String.t()]


      



  



  
    
      
      Link to this function
    
    get_temporary_files(record, files, path, field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_temporary_files(
  record(),
  String.t() | [String.t()],
  String.t(),
  record_field(),
  Uploadex.Uploader.t()
) :: [String.t()]


      



  



  
    
      
      Link to this function
    
    store_files(record, uploader)


      
       
       View Source
     


  


  

      

          @spec store_files(record(), Uploadex.Uploader.t()) ::
  {:ok, record()} | {:error, any()}


      


Stores all files of a record, as defined by the uploader.
Files that are not maps are ignored, which allows for assigning an existing file to a record without recreating it, by simply passing it's filename.

  



  
    
      
      Link to this function
    
    store_files(record, previous_record, uploader)


      
       
       View Source
     


  


  

      

          @spec store_files(record(), record(), Uploadex.Uploader.t()) ::
  {:ok, record()} | {:error, any()}


      



  


        

      



  

    
Uploadex.Resolver 
    



      
Resolver functions to make it easier to use Uploadex with Absinthe.
Note that all functions in this module require the Uploader as an argument. You are free to call them like that:
Example
  In your Absinthe schema, assuming user only has one photo:
object :user do
  field :photo_url, :string, resolve: Uploadex.Resolver.get_file_url(:photo, MyUploader)
end
  If it has many photos:
object :user do
  field :photos, list_of(:string), resolve: Uploadex.Resolver.get_files_url(:photos, MyUploader)
end
However, by doing use Uploadex in your uploader, you can call these functions directly through the uploader to avoid having to pass this
extra argument around:
Example
  In your Absinthe schema, assuming user only has one photo:
object :user do
  field :photo_url, :string, resolve: MyUploader.get_file_url(:photo)
end
  If it has many photos:
object :user do
  field :photos, list_of(:string), resolve: MyUploader.get_files_url(:photos)
end

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          get_file_url(field, uploader)

        


      


      
        
          get_files_url(field, uploader)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    get_file_url(field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_file_url(atom(), Uploadex.Uploader.t()) ::
  (any(), any(), any() -> {:ok, any()})


      



  



  
    
      
      Link to this function
    
    get_files_url(field, uploader)


      
       
       View Source
     


  


  

      

          @spec get_files_url(atom(), Uploadex.Uploader.t()) ::
  (any(), any(), any() -> {:ok, [any()]})


      



  


        

      



  

    
Uploadex.S3Storage 
    



      
Storage for AWS S3.
Opts
	bucket: String (required for all functions)
	region:  String (required for Uploadex.Storage.get_url/2)
	directory: String (required for all functions)
	upload_opts: Keyword list. This opts are passed to ExAws.S3.upload/4 and ExAws.S3.put_object/4 (required for Uploadex.Storage.store/2).
  If content_type is not specified in upload_opts, the default is the upload's content type.

Example
  To use this storage for your User record, define these functions in your Uploadex.Uploader implementation:
def default_opts(Uploadex.S3Storage), do: [bucket: "my_bucket", region: "sa-east-1", upload_opts: [acl: :public_read]]

def storage(%User{} = user, :photo), do: {Uploadex.S3Storage, directory: "/photos"}

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          delete_file_after_delay(delay, path)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    delete_file_after_delay(delay, path)


      
       
       View Source
     


  


  


  


        

      



  

    
Uploadex.Storage behaviour
    



      
Behaviour for a Storage implementation.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          file()

        


      


      
        
          opts()

        


      


      
        
          record()

        


      


      
        
          status()

        


      


  


  
    
      Callbacks
    


      
        
          delete(file, opts)

        


          Deletes the file



      


      
        
          get_temporary_file(file, t, opts)

        


          Returns the path of a temporary file, that will be deleted after the configured amount of time.



      


      
        
          get_url(file, opts)

        


          Returns the file's URL



      


      
        
          store(file, opts)

        


          Stores the file



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    file()


      
       
       View Source
     


  


  

      

          @type file() :: map() | String.t()


      



  



  
    
      
      Link to this type
    
    opts()


      
       
       View Source
     


  


  

      

          @type opts() :: Keyword.t()


      



  



  
    
      
      Link to this type
    
    record()


      
       
       View Source
     


  


  

      

          @type record() :: any()


      



  



  
    
      
      Link to this type
    
    status()


      
       
       View Source
     


  


  

      

          @type status() :: :ok | :error


      



  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    delete(file, opts)


      
       
       View Source
     


  


  

      

          @callback delete(file(), opts()) :: :ok | {:error, any()}


      


Deletes the file

  



  
    
      
      Link to this callback
    
    get_temporary_file(file, t, opts)


      
       
       View Source
     


  


  

      

          @callback get_temporary_file(file(), String.t(), opts()) :: String.t()


      


Returns the path of a temporary file, that will be deleted after the configured amount of time.

  



  
    
      
      Link to this callback
    
    get_url(file, opts)


      
       
       View Source
     


  


  

      

          @callback get_url(file(), opts()) :: {status(), String.t()}


      


Returns the file's URL

  



  
    
      
      Link to this callback
    
    store(file, opts)


      
       
       View Source
     


  


  

      

          @callback store(file(), opts()) :: :ok | {:error, any()}


      


Stores the file

  


        

      



  

    
Uploadex.TestStorage 
    



      
Storage to be used for testing. It holds the files in memory (using a Agent).
Configuring
To configure your app to use the Uploadex.TestStorage, just add this storage to your Uploadex module,
depending on the current environment:
defmodule MyApp.Uploader do
  use Uploadex

  @impl true
  def get_fields(%User{}), do: :files

  @impl true
  def default_opts(Uploadex.FileStorage), do: [...]
  def default_opts(Uploadex.TestStorage), do: []

  @impl true
  def storage(%User{}, _field) do
    if test_environment?() do
      {Uploadex.TestStorage, []}
    else
      {Uploadex.FileStorage, [...]}
    end
  end

  @impl true
  def accepted_extensions(%User{}, _field), do: ~w(.jpg .png)

  defp test_environment?() do
    # This env must be set in your config files depending on the environment.
    Application.fetch_env!(:my_app, :environment) == :test
  end
end
Using
In your ExUnit tests, add a setup block starting the storage:
setup do
  Uploadex.TestStorage.start_link()
  :ok
end
Then, in the tests, you can use the get_stored/1, get_deleted/1 and get_opts:
test "some test with files" do
  assert ["document-1.pdf", "document-2.pdf"] == Uploadex.TestStorage.get_stored()
  assert ["deleted-document.pdf"] == Uploadex.TestStorage.get_deleted()
  assert [] == Uploadex.TestStorage.get_opts()
end
This module is just the base for testing, check Uploadex.Testing for a more convenient way to test uploads.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          child_spec(arg)

        


          Returns a specification to start this module under a supervisor.



      


      
        
          get_deleted(opts \\ [])

        


      


      
        
          get_opts(opts \\ [])

        


      


      
        
          get_stored(opts \\ [])

        


      


      
        
          start_link(initial_state \\ %{})

        


      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    child_spec(arg)


      
       
       View Source
     


  


  

Returns a specification to start this module under a supervisor.
See Supervisor.

  



    

  
    
      
      Link to this function
    
    get_deleted(opts \\ [])


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    get_opts(opts \\ [])


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    get_stored(opts \\ [])


      
       
       View Source
     


  


  


  



    

  
    
      
      Link to this function
    
    start_link(initial_state \\ %{})


      
       
       View Source
     


  


  


  


        

      



  

    
Uploadex.Testing 
    



      
This module simplifies testing and assertions involving Uploadex.
Usage in Tests
The most convenient way to use Uploadex.Testing is to use the module:
use Uploadex.Testing
That will define all the helper functions you'll need to make assertions.
Some examples of how to use the functions
# Asserting that 2 files were stored
assert_stored_files_count(2)

# Asserting the filenames of the stored files
assert_stored_files(["file1.pdf", "file2.pdf"])

# Asserting the filenames of the stored files ignoring the order
assert_stored_files(["file2.pdf", "file1.pdf"], ignore_order: true)

# Asserting that no file was stored
refute_stored_files()

# Getting all stored files
["file1.pdf", "file2.pdf"] == get_stored_files()

# Asserting that 1 files was deleted
assert_deleted_files_count(1)

# Asserting the filenames of the deleted files
assert_deleted(["file3.pdf", "file4.pdf", "file5.pdf"])

# Asserting the filenames of the deleted files ignoring the order
assert_deleted_files(["file4.pdf", "file5.pdf", "file3.pdf"], ignore_order: true)

# Asserting that no file was deleted
refute_deleted_files()

# Getting all deleted files
["file3.pdf", "file4.pdf", "file5.pdf"] == get_deleted_files()
If you need a more low level API, you can directly use the Uploadex.TestStorage functions.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          __using__(opts)

        


          Imports all functions from Uploadex.Testing
and defines a setup callback to start the Uploadex.TestStorage.



      


      
        
          assert_deleted_files(expected_files, opts \\ [])

        


          Asserts that all the files in expected_files were deleted
in the exact order that they are passed in the list.



      


      
        
          assert_deleted_files_count(expected_count)

        


          Asserts that the given expected_count number of files was deleted.



      


      
        
          assert_stored_files(expected_files, opts \\ [])

        


          Asserts that all the files in expected_files were stored
in the exact order that they are passed in the list.



      


      
        
          assert_stored_files_count(expected_count)

        


          Asserts that the given expected_count number of files was stored.



      


      
        
          get_deleted_files()

        


          Returns all the deleted files.



      


      
        
          get_storage_opts()

        


          Returns the options used in the Uploadex.TestStorage.



      


      
        
          get_stored_files()

        


          Returns all the stored files.



      


      
        
          refute_deleted_files()

        


          Asserts that no file was deleted.



      


      
        
          refute_stored_files()

        


          Asserts that no file was stored.



      


      
        
          start_test_storage(ctx \\ %{})

        


          Starts the Uploadex.TestStorage.



      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this macro
    
    __using__(opts)


      
       
       View Source
     


      (macro)

  


  

Imports all functions from Uploadex.Testing
and defines a setup callback to start the Uploadex.TestStorage.

  



    

  
    
      
      Link to this function
    
    assert_deleted_files(expected_files, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec assert_deleted_files(
  expected_files :: list(),
  opts :: [{:ignoring_order, boolean()}]
) :: true


      


Asserts that all the files in expected_files were deleted
in the exact order that they are passed in the list.

  
  options

  
  Options


	ignoring_order: if true, ignores the order of the files when asserting (defaults to false)


  



  
    
      
      Link to this function
    
    assert_deleted_files_count(expected_count)


      
       
       View Source
     


  


  

      

          @spec assert_deleted_files_count(expected_count :: integer()) :: true


      


Asserts that the given expected_count number of files was deleted.

  



    

  
    
      
      Link to this function
    
    assert_stored_files(expected_files, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec assert_stored_files(
  expected_files :: list(),
  opts :: [{:ignoring_order, boolean()}]
) :: true


      


Asserts that all the files in expected_files were stored
in the exact order that they are passed in the list.

  
  options

  
  Options


	ignoring_order: if true, ignores the order of the files when asserting (defaults to false)


  



  
    
      
      Link to this function
    
    assert_stored_files_count(expected_count)


      
       
       View Source
     


  


  

      

          @spec assert_stored_files_count(expected_count :: integer()) :: true


      


Asserts that the given expected_count number of files was stored.

  



  
    
      
      Link to this function
    
    get_deleted_files()


      
       
       View Source
     


  


  

      

          @spec get_deleted_files() :: list()


      


Returns all the deleted files.
It's the same as calling Uploadex.TestStorage.get_deleted/0.

  



  
    
      
      Link to this function
    
    get_storage_opts()


      
       
       View Source
     


  


  

      

          @spec get_storage_opts() :: keyword()


      


Returns the options used in the Uploadex.TestStorage.
It's the same as calling Uploadex.TestStorage.get_opts/0.

  



  
    
      
      Link to this function
    
    get_stored_files()


      
       
       View Source
     


  


  

      

          @spec get_stored_files() :: list()


      


Returns all the stored files.
It's the same as calling Uploadex.TestStorage.get_stored/0.

  



  
    
      
      Link to this function
    
    refute_deleted_files()


      
       
       View Source
     


  


  

      

          @spec refute_deleted_files() :: true


      


Asserts that no file was deleted.

  



  
    
      
      Link to this function
    
    refute_stored_files()


      
       
       View Source
     


  


  

      

          @spec refute_stored_files() :: true


      


Asserts that no file was stored.

  



    

  
    
      
      Link to this function
    
    start_test_storage(ctx \\ %{})


      
       
       View Source
     


  


  

      

          @spec start_test_storage(context :: map()) :: :ok


      


Starts the Uploadex.TestStorage.
After importing it, you can use as a ExUnit setup callback:
import Uploadex.Testing

setup :start_test_storage

  


        

      



  

    
Uploadex.Upload 
    



      
Ecto type that handles upload.
It stores the filename in the database.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          upload_binary()

        


      


      
        
          upload_path()

        


      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    upload_binary()


      
       
       View Source
     


  


  

      

          @type upload_binary() :: %{
  filename: String.t(),
  binary: String.t(),
  content_type: String.t()
}


      



  



  
    
      
      Link to this type
    
    upload_path()


      
       
       View Source
     


  


  

      

          @type upload_path() :: %{
  filename: String.t(),
  path: Path.t(),
  content_type: String.t()
}


      



  


        

      



  

    
Uploadex.Uploader behaviour
    



      
Behaviour of an Uploader.
Example
defmodule MyApp.Uploader do
  @moduledoc false
  @behaviour Uploadex.Uploader

  alias MyAppWeb.Endpoint

  @impl true
  def get_fields(%User{}), do: :photo
  def get_fields(%Company{}), do: [:photo]

  @impl true
  def default_opts(Uploadex.FileStorage), do: [base_path: :code.priv_dir(:my_app), base_url: Endpoint.url()]
  def default_opts(Uploadex.S3Storage), do: [bucket: "my_bucket", region: "sa-east-1", upload_opts: [acl: :public_read]]

  @impl true
  def storage(%User{id: id}, :photo), do: {Uploadex.FileStorage, directory: "/uploads/users/#{id}"}
  def storage(%Company{}, :photo), do: {Uploadex.S3Storage, directory: "/thumbnails"}

  # Optional:
  @impl true
  def accepted_extensions(%User{}, _field), do: ~w(.jpg .png)
  def accepted_extensions(_any, _any), do: :any
end

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          file()

        


      


      
        
          record()

        


      


      
        
          record_field()

        


      


      
        
          t()

        


      


  


  
    
      Callbacks
    


      
        
          accepted_extensions(record, record_field)

        


      


      
        
          default_opts(module)

        


      


      
        
          get_fields(record)

        


      


      
        
          storage(record, record_field)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    file()


      
       
       View Source
     


  


  

      

          @type file() :: atom()


      



  



  
    
      
      Link to this type
    
    record()


      
       
       View Source
     


  


  

      

          @type record() :: any()


      



  



  
    
      
      Link to this type
    
    record_field()


      
       
       View Source
     


  


  

      

          @type record_field() :: atom()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: module()


      



  


        

      

      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    accepted_extensions(record, record_field)


      
       
       View Source
     


      (optional)

  


  

      

          @callback accepted_extensions(record(), record_field()) :: [String.t()] | :any


      



  



  
    
      
      Link to this callback
    
    default_opts(module)


      
       
       View Source
     


  


  

      

          @callback default_opts(module :: atom()) :: opts :: Keyword.t()


      



  



  
    
      
      Link to this callback
    
    get_fields(record)


      
       
       View Source
     


  


  

      

          @callback get_fields(record()) :: file() | [file()]


      



  



  
    
      
      Link to this callback
    
    storage(record, record_field)


      
       
       View Source
     


  


  

      

          @callback storage(record(), record_field()) :: {module :: atom(), opts :: Keyword.t()}


      



  


        

      



  OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&amp;").replace(/</g,"&lt;").replace(/>/g,"&gt;").replace(/"/g,"&quot;")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});



