

 Unicode String

 v1.2.0

 [image: Logo]

 Table of contents

 	Unicode String

 	License

 	Changelog

 	Modules

 	Unicode.String

 	Unicode.String.Break

 	Unicode.String.Case.Folding

 	Unicode.String.Segment

Unicode String

Adds functions supporting some string algorithms in the Unicode standard:
	The Unicode Case Folding algorithm to provide case-independent equality checking irrespective of language or script with Unicode.String.fold/2 and Unicode.String.equals_ignoring_case?/2

	The Unicode Segmentation algorithm to detect, break, split or stream strings into grapheme clusters, words, sentences and line break points.

	The Unicode Line Breaking algorithm to determine line breaks (as in breaks where word-wrapping would be acceptable).

Casing
The Unicode Case Folding algorithm defines how to perform case folding. This allows comparison of strings in a case-insensitive fashion. It does not define the means to compare ignoring diacritical marks (accents). Some examples follow, for details see:
	Unicode.String.fold/2
	Unicode.String.equals_ignoring_case?/3

iex> Unicode.String.equals_ignoring_case? "ABC", "abc"
true

iex> Unicode.String.equals_ignoring_case? "beißen", "beissen"
true

iex> Unicode.String.equals_ignoring_case? "grüßen", "grussen"
false
Segmentation
The Unicode Segmentation annex details the algorithm to be applied with segmenting text (Elixir strings) into words, sentences, graphemes and line breaks. Some examples follow, for details see:
	Unicode.String.split/2
	Unicode.String.break?/2
	Unicode.String.break/2
	Unicode.String.splitter/2
	Unicode.String.next/2
	Unicode.String.stream/2

Split text at a word boundary.
iex> Unicode.String.split "This is a sentence. And another.", break: :word
["This", " ", "is", " ", "a", " ", "sentence", ".", " ", "And", " ", "another", "."]

Split text at a word boundary but omit any whitespace
iex> Unicode.String.split "This is a sentence. And another.", break: :word, trim: true
["This", "is", "a", "sentence", ".", "And", "another", "."]

Split text at a sentence boundary.
iex> Unicode.String.split "This is a sentence. And another.", break: :sentence
["This is a sentence. ", "And another."]

By default, common abbreviations are suppressed (ie
the do not cause a break)
iex> Unicode.String.split "No, I don't have a Ph.D. but I don't think it matters.", break: :word, trim: true
["No", ",", "I", "don't", "have", "a", "Ph.D", ".", "but", "I", "don't",
 "think", "it", "matters", "."]

iex> Unicode.String.split "No, I don't have a Ph.D. but I don't think it matters.", break: :sentence, trim: true
["No, I don't have a Ph.D. but I don't think it matters."]

Sentence Break suppressions are locale sensitive.
iex> Unicode.String.Segment.known_locales
["de", "el", "en", "en-US", "en-US-POSIX", "es", "fi", "fr", "it", "ja", "pt",
 "root", "ru", "sv", "zh", "zh-Hant"]

iex> Unicode.String.split "Non, c'est M. Dubois.", break: :sentence, trim: true, locale: "fr"
["Non, c'est M. Dubois."]

Note that break: :line does NOT mean split the string
at newlines. It splits the string where a line break would be
acceptable. This is very useful for calculating where
to perform word-wrap on some text.
iex> Unicode.String.split "This is a sentence. And another.", break: :line
["This ", "is ", "a ", "sentence. ", "And ", "another."]
Segment Streaming
Segmentation can also be streamed using Unicode.String.stream/2. For large strings this may improve memory usage since the intermediate segments will be garbage collected when they fall out of scope.
iex> Enum.to_list Unicode.String.stream("this is a set of words", trim: true) ["this", "is", "a", "set", "of", "words"]

iex> Enum.map Unicode.String.stream("this is a set of words", trim: true),
...> fn word -> %{word: word, length: String.length(word)} end
[
 %{length: 4, word: "this"},
 %{length: 2, word: "is"},
 %{length: 1, word: "a"},
 %{length: 3, word: "set"},
 %{length: 2, word: "of"},
 %{length: 5, word: "words"}
]
Installation
The package can be installed by adding :unicode_string to your list of dependencies in mix.exs:
def deps do
 [
 {:unicode_string, "~> 1.0"}
]
end

License

Copyright 2018 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Changelog

Unicode String v1.2.0
This is the changelog for Unicode String v1.2.0 released on March 14th, 2023. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds Unicode.String.stream/2 to support streaming graphemes, words, sentences and line breaks.

Unicode String v1.1.0
This is the changelog for Unicode String v1.1.0 released on September 21st, 2022. For older changelogs please consult the release tag on GitHub
Enhancements
	Updates the segmentation supplemental data (including locales) for CLDR. This adds the "sv" and "fi" locale data for sentence break suppressions.

Unicode String v1.0.1
This is the changelog for Unicode String v1.0.1 released on September 15th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Woops, the priv/segments directory was not included in the build artifact

Unicode String v1.0.0
This is the changelog for Unicode String v1.0.0 released on September 14th, 2021. For older changelogs please consult the release tag on GitHub
Enhancements
	Update to use Unicode 14 release data.

Unicode String v0.3.0
This is the changelog for Unicode String v0.3.0 released on October 11th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Correct deps and docs to align with Elixir 1.11 and recent releases of ex_unicode.

Unicode String v0.2.0
This is the changelog for Unicode String v0.2.0 released on July 12th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
This release implements the Unicode break rules for graphemes, words, lines (word-wrapping) and sentences.
	Adds Unicode.String.split/2

	Adds Unicode.String.break?/2

	Adds Unicode.String.break/2

	Adds Unicode.String.splitter/2

	Adds Unicode.String.next/2

Unicode String v0.1.0
This is the changelog for Unicode String v0.1.0 released on May 17th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Initial release

Unicode.String

This module provides functions that implement some
of the Unicode standards:
	The Unicode Case Folding algorithm
to provide case-independent equality checking irrespective of language or script.

	The Unicode Segmentation algorithm to detect,
break or splut strings into grapheme clusters, works and sentences.

	The Unicode Line Breaking algorithm to determine
line breaks (as in word-wrapping).

 Anchor for this section

 Summary

 Types

 break_match()

 break_or_no_break()

 break_type()

 error_return()

 options()

 split_options()

 string_interval()

 Functions

 break(arg, options \\ [])

 Returns match data indicating if the
requested break is applicable
at the point between the two string
segments represented by {string_before, string_after}.

 break?(arg, options \\ [])

 Returns a boolean indicating if the
requested break is applicable
at the point between the two string
segments represented by {string_before, string_after}.

 equals_ignoring_case?(string_a, string_b, type \\ :full)

 Compares two strings in a case insensitive
manner.

 fold(string)

 See Unicode.String.Case.Folding.fold/1.

 fold(string, type)

 See Unicode.String.Case.Folding.fold/2.

 next(string, options \\ [])

 Returns next segment in a string.

 split(string, options \\ [])

 Splits a string according to the
specified break type.

 splitter(string, options)

 Returns an enumerable that splits a string on demand.

 stream(string, options \\ [])

 Return a stream that breaks a string into
graphemes, words, sentences or line breaks.

 Anchor for this section

Types

 Link to this type

 break_match()

 View Source

 @type break_match() ::
 {break_or_no_break(), {String.t(), {String.t(), String.t()}}}
 | {break_or_no_break(), {String.t(), String.t()}}

 Link to this type

 break_or_no_break()

 View Source

 @type break_or_no_break() :: :break | :no_break

 Link to this type

 break_type()

 View Source

 @type break_type() :: :grapheme | :word | :line | :sentence

 Link to this type

 error_return()

 View Source

 @type error_return() :: {:error, String.t()}

 Link to this type

 options()

 View Source

 @type options() :: [locale: String.t(), break: break_type(), suppressions: boolean()]

 Link to this type

 split_options()

 View Source

 @type split_options() :: [
 locale: String.t(),
 break: break_type(),
 suppressions: boolean(),
 trim: boolean()
]

 Link to this type

 string_interval()

 View Source

 @type string_interval() :: {String.t(), String.t()}

 Anchor for this section

Functions

 Link to this function

 break(arg, options \\ [])

 View Source

 @spec break(string_interval(), options()) :: break_match() | error_return()

Returns match data indicating if the
requested break is applicable
at the point between the two string
segments represented by {string_before, string_after}.

 arguments

 Arguments

	string is any String.t/0.

	options is a keyword list of
options.

 returns

 Returns

A tuple indicating if a break would
be applicable at this point between
string_before and string_after.
	{:break, {string_before, {matched_string, remaining_string}}} or

	{:no_break, {string_before, {matched_string, remaining_string}}} or

	{:error, reason}

 options

 Options

	:locale is any locale returned by
Unicode.String.Segment.known_locales/0.
The default is "root" which corresponds
to the break rules defined by the
Unicode Segmentation rules.

	:break is the type of break. It is one of
:grapheme, :word, :line or :sentence. The
default is :word.

	:suppressions is a boolean which,
if true, will suppress breaks for common
abbreviations defined for the locale. The
default is true.

 examples

 Examples

iex> Unicode.String.break {"This is ", "some words"}
{:break, {"This is ", {"s", "ome words"}}}

iex> Unicode.String.break {"This is ", "some words"}, break: :sentence
{:no_break, {"This is ", {"s", "ome words"}}}

iex> Unicode.String.break {"This is one. ", "This is some words."}, break: :sentence
{:break, {"This is one. ", {"T", "his is some words."}}}

 Link to this function

 break?(arg, options \\ [])

 View Source

 @spec break?(string_interval(), options()) :: boolean()

Returns a boolean indicating if the
requested break is applicable
at the point between the two string
segments represented by {string_before, string_after}.

 arguments

 Arguments

	string is any String.t/0.

	options is a keyword list of
options.

 returns

 Returns

	true or false or

	raises an exception if there is an error

 options

 Options

	:locale is any locale returned by
Unicode.String.Segment.known_locales/0.
The default is "root" which corresponds
to the break rules defined by the
Unicode Segmentation rules.

	:break is the type of break. It is one of
:grapheme, :word, :line or :sentence. The
default is :word.

	:suppressions is a boolean which,
if true, will suppress breaks for common
abbreviations defined for the locale. The
default is true.

 examples

 Examples

iex> Unicode.String.break? {"This is ", "some words"}
true

iex> Unicode.String.break? {"This is ", "some words"}, break: :sentence
false

iex> Unicode.String.break? {"This is one. ", "This is some words."}, break: :sentence
true

 Link to this function

 equals_ignoring_case?(string_a, string_b, type \\ :full)

 View Source

 @spec equals_ignoring_case?(String.t(), String.t(), atom()) :: boolean()

Compares two strings in a case insensitive
manner.
Case folding is applied to the two string
arguments which are then compared with the
== operator.

 arguments

 Arguments

	string_a and string_b are two strings
to be compared

	type is the case folding type to be
applied. The alternatives are :full,
:simple and :turkic. The default is
:full.

 returns

 Returns

	true or false

 notes

 Notes

	This function applies the Unicode Case Folding
algorithm

	The algorithm does not apply any treatment to diacritical
marks hence "compare strings without accents" is not
part of this function.

 examples

 Examples

iex> Unicode.String.equals_ignoring_case? "ABC", "abc"
true

iex> Unicode.String.equals_ignoring_case? "beißen", "beissen"
true

iex> Unicode.String.equals_ignoring_case? "grüßen", "grussen"
false

 Link to this function

 fold(string)

 View Source

See Unicode.String.Case.Folding.fold/1.

 Link to this function

 fold(string, type)

 View Source

See Unicode.String.Case.Folding.fold/2.

 Link to this function

 next(string, options \\ [])

 View Source

 @spec next(String.t(), split_options()) :: String.t() | nil | error_return()

Returns next segment in a string.

 arguments

 Arguments

	string is any String.t/0.

	options is a keyword list of
options.

 returns

 Returns

A tuple with the segment and the remainder of the string or ""
in case the String reached its end.
	{next_string, rest_of_the_string} or

	{:error, reason}

 options

 Options

	:locale is any locale returned by
Unicode.String.Segment.known_locales/0.
The default is "root" which corresponds
to the break rules defined by the
Unicode Segmentation rules.

	:break is the type of break. It is one of
:grapheme, :word, :line or :sentence. The
default is :word.

	:suppressions is a boolean which,
if true, will suppress breaks for common
abbreviations defined for the locale. The
default is true.

 examples

 Examples

iex> Unicode.String.next "This is a sentence. And another.", break: :word
{"This", " is a sentence. And another."}

iex> Unicode.String.next "This is a sentence. And another.", break: :sentence
{"This is a sentence. ", "And another."}

 Link to this function

 split(string, options \\ [])

 View Source

 @spec split(String.t(), split_options()) :: [String.t(), ...] | error_return()

Splits a string according to the
specified break type.

 arguments

 Arguments

	string is any String.t/0.

	options is a keyword list of
options.

 returns

 Returns

	A list of strings after applying the
specified break rules or

	{:error, reason}

 options

 Options

	:locale is any locale returned by
Unicode.String.Segment.known_locales/0.
The default is "root" which corresponds
to the break rules defined by the
Unicode Segmentation rules.

	:break is the type of break. It is one of
:grapheme, :word, :line or :sentence. The
default is :word.

	:suppressions is a boolean which,
if true, will suppress breaks for common
abbreviations defined for the locale. The
default is true.

	:trim is a boolean indicating if segments
the are comprised of only white space are to be
excluded from the returned list. The default
is false.

 examples

 Examples

iex> Unicode.String.split "This is a sentence. And another.", break: :word
["This", " ", "is", " ", "a", " ", "sentence", ".", " ", "And", " ", "another", "."]

iex> Unicode.String.split "This is a sentence. And another.", break: :word, trim: true
["This", "is", "a", "sentence", ".", "And", "another", "."]

iex> Unicode.String.split "This is a sentence. And another.", break: :sentence
["This is a sentence. ", "And another."]

 Link to this function

 splitter(string, options)

 View Source

 @spec splitter(String.t(), split_options()) :: function() | error_return()

Returns an enumerable that splits a string on demand.

 arguments

 Arguments

	string is any String.t/0.

	options is a keyword list of
options.

 returns

 Returns

	A function that implements the enumerable
protocol or

	{:error, reason}

 options

 Options

	:locale is any locale returned by
Unicode.String.Segment.known_locales/0.
The default is "root" which corresponds
to the break rules defined by the
Unicode Segmentation rules.

	:break is the type of break. It is one of
:grapheme, :word, :line or :sentence. The
default is :word.

	:suppressions is a boolean which,
if true, will suppress breaks for common
abbreviations defined for the locale. The
default is true.

	:trim is a boolean indicating if segments
the are comprised of only white space are to be
excluded from the returned list. The default
is false.

 examples

 Examples

iex> enum = Unicode.String.splitter "This is a sentence. And another.", break: :word, trim: true
iex> Enum.take enum, 3
["This", "is", "a"]

 Link to this function

 stream(string, options \\ [])

 View Source

 (since 1.2.0)

 @spec stream(String.t(), Keyword.t()) :: Enumerable.t() | {:error, String.t()}

Return a stream that breaks a string into
graphemes, words, sentences or line breaks.

 arguments

 Arguments

	string is any String.t/0.

	options is a keyword list of
options.

 returns

 Returns

	A stream that is an Enumerable.t/0 that
can be used with the functions in the Stream
or Enum modules.

	{:error, reason}

 options

 Options

	:locale is any locale returned by
Unicode.String.Segment.known_locales/0.
The default is "root" which corresponds
to the break rules defined by the
Unicode Segmentation rules.

	:break is the type of break. It is one of
:grapheme, :word, :line or :sentence. The
default is :word.

	:suppressions is a boolean which,
if true, will suppress breaks for common
abbreviations defined for the locale. The
default is true.

	:trim is a boolean indicating if segments
the are comprised of only white space are to be
excluded from the returned list. The default
is false.

 examples

 Examples

 iex> Enum.to_list Unicode.String.stream("this is a set of words", trim: true)
 ["this", "is", "a", "set", "of", "words"]
 iex> Enum.to_list Unicode.String.stream("this is a set of words", break: :sentence, trim: true)
 ["this is a set of words"]

Unicode.String.Break

Implements the Unicode break algorithm

Unicode.String.Case.Folding

Implements the Unicode Case Folding algorithm.
The intention of case folding is to facilitate
case-insensitive string comparisons. It is not
intended to be a general purpose transformation.
Although case folding does generally use lower
case as its normal form, it is not true for
all scripts and codepoints. Therefore case
folding should not be used as an alternative
to String.downcase/1.

 Anchor for this section

 Summary

 Functions

 fold(string)

 Case fold a string.

 fold(string, type)

 Anchor for this section

Functions

 Link to this function

 fold(string)

 View Source

Case fold a string.
Returns a string after applying the Unicode
Case Folding algorithm.
It is recommended to call
Unicode.String.fold/1,2 instead of this
function.

 arguments

 Arguments

	string is any String.t()

	type is one of :full or :simple.
The default is :full.

	mode is either :turkic or nil.
The default is nil.

 returns

 Returns

	The case folded string

 notes

 Notes

	No normalization is applied to the
string on either input or output.

 Link to this function

 fold(string, type)

 View Source

Unicode.String.Segment

Implements the compilation of the Unicode
segment rules.

 Anchor for this section

 Summary

 Functions

 ancestors(locale_name)

 Returns a list of the ancestor locales
of the a given locale.

 compile_rule(rule, variables)

 Compiles a segment rule in the context of a list
of variables.

 compile_rules(rules, variables)

 evaluate_rules(string, rules)

 Evaluates a list of rules against a given
string.

 expand_variables(variables, additional_variables)

 is_id_continue(char)

 Identifies if a codepoint is a valid identifier character

 is_id_start(char)

 Identifies if a codepoint is a valid start of an identifier

 known_locales()

 Returns a list of the locales known to Unicode.String.Break

 rules(locale, segment_type, additional_variables \\ [])

 Return the rules as defined by CLDR for a given
locale and break type.

 rules!(locale, segment_type, additional_variables \\ [])

 Return the rules as defined by CLDR for a given
locale and break type and raises on error.

 suppressions(locale, segment_type)

 Returns a list of the suppressions for a given
locale and segment type.

 suppressions!(locale, segment_type)

 Returns a list of the suppressions for a given
locale and segment type and raises on error.

 Anchor for this section

Functions

 Link to this function

 ancestors(locale_name)

 View Source

Returns a list of the ancestor locales
of the a given locale.
The list includes the given locale.

 Link to this function

 compile_rule(rule, variables)

 View Source

Compiles a segment rule in the context of a list
of variables.
The compile rule can then be inserted into a
rule set.

 Link to this function

 compile_rules(rules, variables)

 View Source

 Link to this function

 evaluate_rules(string, rules)

 View Source

Evaluates a list of rules against a given
string.

 Link to this function

 expand_variables(variables, additional_variables)

 View Source

 Link to this macro

 is_id_continue(char)

 View Source

 (macro)

Identifies if a codepoint is a valid identifier character

 Link to this macro

 is_id_start(char)

 View Source

 (macro)

Identifies if a codepoint is a valid start of an identifier

 Link to this function

 known_locales()

 View Source

Returns a list of the locales known to Unicode.String.Break

 Link to this function

 rules(locale, segment_type, additional_variables \\ [])

 View Source

Return the rules as defined by CLDR for a given
locale and break type.

 Link to this function

 rules!(locale, segment_type, additional_variables \\ [])

 View Source

Return the rules as defined by CLDR for a given
locale and break type and raises on error.

 Link to this function

 suppressions(locale, segment_type)

 View Source

Returns a list of the suppressions for a given
locale and segment type.

 Link to this function

 suppressions!(locale, segment_type)

 View Source

Returns a list of the suppressions for a given
locale and segment type and raises on error.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

