

 Unicode

 v1.15.0

 [image: Logo]

 Table of contents

 	Unicode

 	License

 	Changelog

 	Modules

 	Unicode

 	Unicode.Block

 	Unicode.CanonicalCombiningClass

 	Unicode.Category.QuoteMarks

 	Unicode.EastAsianWidth

 	Unicode.GeneralCategory

 	Unicode.GeneralCategory.Derived

 	Unicode.GraphemeClusterBreak

 	Unicode.IndicSyllabicCategory

 	Unicode.LineBreak

 	Unicode.Property

 	Unicode.Script

 	Unicode.SentenceBreak

 	Unicode.WordBreak

Unicode

[image: Build Status]
[image: Hex.pm]
[image: Hex.pm]
[image: Hex.pm]
Functions to return information about Unicode codepoints.
Elixir strings are UTF8-encoded Unicode binaries. This is a flexible and complete encoding scheme for the worlds many scripts, characters and emjois. However since its a variable length encoding (using between one and four bytes for UTF8) it is harder to use high-performance byte-oriented functions to decompose strings.
Since checking strings and codepoints for certain attributes - like whether they are upper case, or symbols, or whitespace - is a common occurrence, a performant approach to such detection is useful.
It is tempting to assume the use of US ASCII encoding and checking only for characters in that range. For example it is very common to see code in Elixir checking codepoint in ?a..?z to check for lowercase alphabetic characters. When the underlying programming language has no canonical form for a string beyond bytes this may be considered acceptable - the programmer is defining the script domain as he or she sees fit.
However since Elixir strings are declared to be UTF8 encoded Unicode strings it seems appropriate to make it easier to determine the characteristics of codepoints (and strings) using this standard.
The Elixir standard library does not provide introspection beyond that required to support casing (String.downcase/1, String.upcase/1, String.capitalize/1). This library aims to fill in the blanks a little bit.
Unicode version
As of unicode version 1.15.0 published on September 17th, 2022, Unicode 15 forms the underlying data.
Additional Unicode libraries
ex_unicode provides basic introspection of Unicode codepoints and strings. Additional libraries (either released or in development) build upon this library):
	unicode_set implements functions to parse and match on unicode sets

	unicode_guards is a simple library implementing common function guards using unicode_set and unicode

	unicode_string is a library to implement efficient string splitting into words and sentences based upon the Unicode Segementation algorithm.

	unicode_transform implements the Unicode transform specification.

Unicode Functions
The following is a partial list of functions included in the library. See the documentation for the relevant module for further information:
Codepoint ranges
These functions return the codepoints as list of 2-tuples for the given property:
	Unicode.Block.blocks/0
	Unicode.Script.scripts/0
	Unicode.GeneralCategory.categories/0
	Unicode.CombiningClass.combining_classes/0
	Unicode.GraphemeBreak.grapheme_breaks/0
	Unicode.LineBreak.line_breaks/0
	Unicode.SentenceBreak.sentence_breaks/0
	Unicode.IndicSyllabicCategory.indic_syllabic_categories/0
	Unicode.Property.properties/0

Introspection of codepoints and strings
The following functions return the block, script and category for codepoints and strings:
	 Unicode.script/1
iex> Unicode.script ?ä
"latin"

iex> Unicode.script ?خ
"arabic"

iex> Unicode.script ?अ
"devanagari"

	 Unicode.block/1
iex> Unicode.block ?ä
:latin_1_supplement

iex> Unicode.block ?A
:basic_latin

iex> Unicode.block "äA"
[:latin_1_supplement, :basic_latin]

	 Unicode.category/1
iex> Unicode.category ?ä
:Ll
iex> Unicode.category ?A
:Lu
iex> Unicode.category ?🧐
:So

	 Unicode.properties/1
iex> Unicode.properties 0x1bf0
[
 :alphabetic,
 :case_ignorable,
 :grapheme_extend,
 :id_continue,
 :other_alphabetic,
 :xid_continue
]

iex> Unicode.properties ?A
[
 :alphabetic,
 :ascii_hex_digit,
 :cased,
 :changes_when_casefolded,
 :changes_when_casemapped,
 :changes_when_lowercased,
 :grapheme_base,
 :hex_digit,
 :id_continue,
 :id_start,
 :uppercase,
 :xid_continue,
 :xid_start
]

iex> Unicode.properties ?+
[:grapheme_base, :math, :pattern_syntax]

iex> Unicode.properties "a1+"
[
 [
 :alphabetic,
 :ascii_hex_digit,
 :cased,
 :changes_when_casemapped,
 :changes_when_titlecased,
 :changes_when_uppercased,
 :grapheme_base,
 :hex_digit,
 :id_continue,
 :id_start,
 :lowercase,
 :xid_continue,
 :xid_start
],
 [
 :ascii_hex_digit,
 :emoji,
 :grapheme_base,
 :hex_digit,
 :id_continue,
 :xid_continue
],
 [:grapheme_base, :math, :pattern_syntax]
]

Character classes
These functions help filter codepoints and strings based upon their properties. They return a boolean result.
	Unicode.alphabetic?/1
	Unicode.alphanumeric?/1
	Unicode.digits?/1
	Unicode.numeric?/1
	Unicode.emoji?/1
	Unicode.math?/1
	Unicode.cased?/1
	Unicode.lowercase?/1
	Unicode.uppercase?/1

Any known property can be called as a function Unicode.Property.<property_name>(codepoint_or_string) or Unicode.Property.<property_name>?(codepoint_or_string) to return a boolean.
Transformations
The function Unicode.unaccent/1 attempts to transform a Unicode string into a subset of the Latin-1 alphabet by removing diacritical marks from text. It is not a full transformation (which will be available in the upcoming unicode_transform library.)
Recognition
The information functions are heavily inspired by @qqwy's elixir-unicode package and compatibility with some of the api is represented by including some of the doctests from that package. Originally published under the :unicode package name on hex, this original work is now replaced with this library code.
Installation
The package can be installed by adding unicode to your list of dependencies in mix.exs:
def deps do
 [
 {:unicode, "~> 1.15"}
]
end
The docs can be found at https://hexdocs.pm/unicode.

License

Copyright 2018 Kip Cole
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License
is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied. See the License for the specific language governing permissions and limitations under the
License.

Changelog

Unicode v1.15.0
This is the changelog for Unicode v1.15.0 released on September 17th, 2022. For older changelogs please consult the release tag on GitHub
Note there is no release 1.14. The release is 1.15 to align with Unicode 15 and it is expected to keep this pattern into the future.
Deprecations
	Fix deprecation warnings for Elixir 1.14. Now requires Elixir 1.11 as a minimum release.

Enhancements
	Updates to Unicode 15.

Bug Fixes
	Fix code fences in docs to be Elixir

Unicode v1.13.1
This is the changelog for Unicode v1.13.1 released on September 16th, 2021. For older changelogs please consult the release tag on GitHub
Bug Fixes
	When looking up scripts, general categories and properties we indirect through an alias table. But not all entries have alias so in the case alias lookup fails we still need to lookup using the original key.

Unicode v1.13.0
This is the changelog for Unicode v1.13.0 released on September 15th, 2021. For older changelogs please consult the release tag on GitHub
Enhancements
	Change the application name to :unicode (in collaboration with @Qqwy). The old name ex_unicode will be retired.

Unicode v1.12.0
This is the changelog for Unicode v1.12.0 released on September 14th, 2021. For older changelogs please consult the release tag on GitHub
Enhancements
	Update to use Unicode 14 release data.

Unicode v1.12.0-rc.0
This is the changelog for Unicode v1.12.0-rc.0 released on August 27th, 2021. For older changelogs please consult the release tag on GitHub
Enhancements
	Updates to Unicode 14 preview data.

Unicode v1.11.2
This is the changelog for Unicode v1.11.2 released on May 25th, 2021. For older changelogs please consult the release tag on GitHub
Bug fixes
	Make ex_doc and benchee optional. Thanks to @fireproofsocks.

Unicode v1.11.1
This is the changelog for Unicode v1.11.1 released on January 5th, 2021. For older changelogs please consult the release tag on GitHub
Bug fixes
	Restrict ex_doc to only :dev and :release. Closes #3. Thanks to @manuelmontenegro.

	Fix spec for Unicode.all/0 so dialyzer is happy

Unicode v1.11.0
This is the changelog for Unicode v1.11.0 released on October 8th, 2020. For older changelogs please consult the release tag on GitHub
Bug fixes
	Rename the derived category :visible to :graph and change the definition to that in Unicode Regular Expressions. Deprecate the derived category :visible.

Unicode v1.10.0
This is the changelog for Unicode v1.10.0 released on October 5th, 2020. For older changelogs please consult the release tag on GitHub
Bug fixes
	Revert "Change the definition of the derived property All to be the disjoint set of unicode ranges, not the closed set." since All in the ICU means the full range of codepoints, assigned or otherwise.

	Add :inets and :public_key to :extra_applicatons to avoid warnings on Elixir 1.11.

Enhancements
	Add Unicode.assigned/0 to return the list of codepoint ranges that are assigned within Unicode

	Rename Unicode.ranges/0 to Unicode.all/0 to better reflect the intent. Unicode.ranges/0 is deprecated.

Unicode v1.9.0
This is the changelog for Unicode v1.9.0 released on October 4th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Change the definition of the derived property All to be the disjoint set of unicode ranges, not the closed set.

Unicode v1.8.0
This is the changelog for Unicode v1.8.0 released on July 12th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add the east asian width property to Unicode.Property.fetch/2 API

	Add the word break property to Unicode.Property.fetch/2 API

Unicode v1.7.0
This is the changelog for Unicode v1.7.0 released on June 22nd, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add the emoji properties to Uniccode.Property.fetch/2 API

	Add certificate verification to download process

Unicode v1.6.0
This is the changelog for Unicode v1.6.0 released on May 17th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add Unicode.Utils.case_folding/0

	Add Unicode.Utils.special_casing/0

Unicode v1.5.0
This is the changelog for Unicode v1.5.0 released on March 14th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
	Add derived categories :printable: and :visible:. :printable: implements the same semnantics String.printable?/1. :visible: combines the categories [[:L:][:N:][:M:][:P:][:S:][:Zs:]].

Unicode v1.4.1
This is the changelog for Unicode v1.4.1 released on March 11th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Regenerate the assigned ranges for Unicode 13

Unicode v1.4.0
This is the changelog for Unicode v1.4.0 released on March 11th, 2020. For older changelogs please consult the release tag on GitHub
Enhancements
Updates Unicode to version 13.0.
As of March 2020, Unicode has introduced Unicode 13.0 and this data now forms the basis of ex_unicode version 1.40. Version 13 of Unicode adds 5,390 characters, for a total of 143,859 characters. These additions include four new scripts, for a total of 154 scripts, as well as 55 new emoji characters.
Adds derived categories for various quotation marks.
Although the unicode character database has a flag to indicate if a given codepoint is a quotation mark, the list does not include CJK quotation marks, dingbats or alternative encodings. Some additional derived categories are therefore added that are taken from Wikipedia. The added dervived categories are:
	QuoteMark - all quote marks
	QuoteMarkLeft - all quote marks used on the left
	QuoteMarkRight - quote marks used on the right
	QuoteMarkAmbidextrous - quote marks used either left or right
	QuoteMarkSingle - single quote marks
	QuoteMarkDouble - double quote marks

These additional derived categories can be used in Unicode Sets, for example:
iex> Unicode.Set.match? ?', "[[:quote_mark:]]"
true
iex> Unicode.Set.match? ?', "[[:quote_mark_left:]]"
false
iex> Unicode.Set.match? ?', "[[:quote_mark_ambidextrous:]]"
true
Unicode v1.3.1
This is the changelog for Unicode v1.3.1 released on January 8th, 2020. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Remove call to Code.ensure_compiled?/1 which is deprecated in Elixir 1.10.0.

	Fix the ranges for the General Category :assigned.

Unicode v1.3.0
This is the changelog for Unicode v1.3.0 released on December 3rd, 2019. For older changelogs please consult the release tag on GitHub
Breaking Changes
	Changed two module names: Unicode.Category becomes Unicode.GeneralCategory and Unicode.CombiningClass becomes Unicode.CanonicalCombiningClass. These names map directly to the Unicode standard names. It also means all property module names can be derived from the Unicode property name which is what the new Unicode.servers/0 function does.

Enhancements
	Add property modules for line break, sentence break, grapheme cluster break and indic syllabic category. These properties are used by the CLDR and Unicode segmentation rules.

	Add Unicode.servers/0 that maps property names and aliases to a module name that serves that property.

Bug fixes
	Fixes Unicode.aliases/0 to correctly use the aliases in data/property_alias.txt

Unicode v1.2.0
This is the changelog for Unicode v1.2.0 released on November 27th, 2019. For older changelogs please consult the release tag on GitHub
Breaking Changes
	Script names are now atoms instead of strings to be consistent with other properties

Enhancements
	Add aliases/0, fetch/1 and get/1 to Unicode.Property

	Added additional properties to Unicode.Property. The set now includes those from the UCD files DerivedCoreProperties.txt and PropList.txt.

Unicode v1.1.0
This is the changelog for Unicode v1.1.0 released on November 23rd, 2019. For older changelogs please consult the release tag on GitHub
Breaking Changes
	Removed Unicode.Guards from this library and moved them to the unicode_set package.

Enhancements
	Unicode.Category.categories/0 now returns the super categories as well as the subcategories. These super categories are computed at compile time by consolidating the relevant subcategories. Unicode.Category.category/1 will only return one category, and it will be the subcategory as it consistent with earlier releases.

	Add Unicode.ranges/0 that returns all Unicode codepoints as a list of 2-tuples representing the disjoint ranges of valid codepoints. The list is in sorted order.

	Add aliases/0 for Unicode.Category, Unicode.Script, Unicode.Block, and Unicode.CombiningClass which returns the alias map for the relevant module.

	Add fetch/1 and get/1 for Unicode.Category, Unicode.Script, Unicode.Block, and Unicode.CombiningClass. These functions leverage Unicode property value aliases for retrieving codepoints.

	Add Unicode.fetch_property/1 and Unicode.get_property/1 that return the module responsible for handling a given Unicode property.

	Add Unicode.compact_ranges/1 that given a list of 2-tuple ranges will compact them into as small a list of contiguous blocks as possible

	Documented all public functions

Unicode v1.0.0
This is the changelog for Unicode v1.0.0 released on November 14th, 2019. For older changelogs please consult the release tag on GitHub
Breaking Changes
	Rename the module prefix to Unicode since this package is not linked in any way to the Cldr family. The hex package is renamed to ex_unicode.

Cldr Unicode v0.7.1
This is the changelog for Unicode v0.7.1 released on November 12th, 2019. For older changelogs please consult the release tag on GitHub
Bug Fixes
	Fixes count/1 for blocks, scripts and categories

	Replace deprecated String.normalize/2 with :unicode.characters_to_nfd_binary/ for OTP release 20 and later.

Cldr Unicode v0.7.0
This is the changelog for Unicode v0.7.0 released on November 12th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Add is_whitespace/1 guard generator

Cldr Unicode v0.6.0
This is the changelog for Unicode v0.6.0 released on October 22nd, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Update to Emoji 12.1

Cldr Unicode v0.5.0
This is the changelog for Unicode v0.5.0 released on May 12th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Update to Unicode 12.1

Cldr Unicode v0.4.0
This is the changelog for Unicode v0.4.0 released on April 30th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Adds Cldr.Unicode.unaccent/1

Breaking Changes
	Block names are now atoms instead of strings

Cldr Unicode v0.3.0
This is the changelog for Unicode v0.3.0 released on March 28th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Updated to Unicode version 12

Cldr Unicode v0.2.0
This is the changelog for Unicode v0.2.0 released on February 24th, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Moves the public API to the Cldr.Unicode module.

	Updates and adds documentation to all public functions.

	Removes the text annotations from the compiled functions which materially reduces the size of the beam files.

Cldr Unicode v0.1.0
This is the changelog for Unicode v0.1.0 released on February 23rd, 2019. For older changelogs please consult the release tag on GitHub
Enhancements
	Initial release

Unicode

Functions to introspect the Unicode character database and
to provide fast codepoint lookups for scripts, blocks,
categories and properties.

 Anchor for this section

 Summary

 Types

 codepoint()

 codepoint_or_string()

 Functions

 all()

 Returns a list of tuples representing the
full range of Unicode code points.

 alphabetic?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters in the
given string) adhere to the Derived Core Property Alphabetic
otherwise returns false.

 alphanumeric?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters
in the given string) are either alphabetic?/1 or
numeric?/1 otherwise returns false.

 assigned()

 Returns a list of tuples representing the
assigned ranges of Unicode code points.

 block(codepoint_or_string)

 Returns the block name of a codepoint
or the list of block names for each codepoint
in a string.

 cased?(codepoint_or_string)

 Returns either true if the codepoint has the :cased property
or false.

 category(codepoint_or_string)

 Returns the Unicode category for a codepoint or a list of
categories for a string.

 digits?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters
in the given string) adhere to Unicode category :Nd
otherwise returns false.

 downcase?(codepoint_or_string)

 See Unicode.Property.lowercase?/1.

 emoji?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters
in the given string) are emoji otherwise returns false.

 fetch_property(property)

 get_property(property)

 lowercase?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters
in the given string) the category :Ll otherwise returns false.

 math?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters
in the given string) the category :Sm otherwise returns false.

 numeric?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters
in the given string) adhere to Unicode categories :Nd,
:Nl and :No otherwise returns false.

 properties(codepoint_or_string)

 Returns the list of properties of each codepoint
in a given string or the list of properties for a
given string.

 property_servers()

 Returns a map of aliases mapping
property names to a module that
serves that property

 ranges()

 deprecated

 script(codepoint_or_string)

 Returns the script name of a codepoint
or the list of block names for each codepoint
in a string.

 unaccent(string)

 Removes accents (diacritical marks) from
a string.

 upcase?(codepoint_or_string)

 See Unicode.Property.uppercase?/1.

 uppercase?(codepoint_or_string)

 Returns true if a single Unicode codepoint (or all characters
in the given string) the category :Lu otherwise returns false.

 version()

 Returns the version of Unicode in use.

 Anchor for this section

Types

 Link to this type

 codepoint()

 View Source

 @type codepoint() :: non_neg_integer()

 Link to this type

 codepoint_or_string()

 View Source

 @type codepoint_or_string() :: codepoint() | String.t()

 Anchor for this section

Functions

 Link to this function

 all()

 View Source

 @spec all() :: [{0, 1_114_111}]

Returns a list of tuples representing the
full range of Unicode code points.

 Link to this function

 alphabetic?(codepoint_or_string)

 View Source

 @spec alphabetic?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters in the
given string) adhere to the Derived Core Property Alphabetic
otherwise returns false.
These are all characters that are usually used as representations
of letters/syllabes in words/sentences.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.alphabetic?(?a)
true

iex> Unicode.alphabetic?("A")
true

iex> Unicode.alphabetic?("Elixir")
true

iex> Unicode.alphabetic?("الإكسير")
true

comma and whitespace
iex> Unicode.alphabetic?("foo, bar")
false

iex> Unicode.alphabetic?("42")
false

iex> Unicode.alphabetic?("龍王")
true

Summation, ∑
iex> Unicode.alphabetic?("∑")
false

Greek capital letter sigma, Σ
iex> Unicode.alphabetic?("Σ")
true

 Link to this function

 alphanumeric?(codepoint_or_string)

 View Source

 @spec alphanumeric?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters
in the given string) are either alphabetic?/1 or
numeric?/1 otherwise returns false.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.alphanumeric? "1234"
true

iex> Unicode.alphanumeric? "KeyserSöze1995"
true

iex> Unicode.alphanumeric? "3段"
true

iex> Unicode.alphanumeric? "dragon@example.com"
false

 Link to this function

 assigned()

 View Source

 @spec assigned() :: [{pos_integer(), pos_integer()}]

Returns a list of tuples representing the
assigned ranges of Unicode code points.
This information is derived from the block
ranges as defined by Unicode.Block.blocks/0.

 Link to this function

 block(codepoint_or_string)

 View Source

 @spec block(codepoint_or_string()) :: atom() | [atom(), ...]

Returns the block name of a codepoint
or the list of block names for each codepoint
in a string.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	in the case of a single codepoint, an atom
block name

	in the case of a string, a list of atom
block names for each codepoint in the
codepoint_or_string

 exmaples

 Exmaples

iex> Unicode.block ?ä
:latin_1_supplement

iex> Unicode.block ?A
:basic_latin

iex> Unicode.block "äA"
[:latin_1_supplement, :basic_latin]

 Link to this function

 cased?(codepoint_or_string)

 View Source

 @spec cased?(codepoint_or_string()) :: boolean()

Returns either true if the codepoint has the :cased property
or false.
The :cased property means that this character has at least
an upper and lower representation and possibly a titlecase
representation too.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.cased? ?ယ
false

iex> Unicode.cased? ?A
true

 Link to this function

 category(codepoint_or_string)

 View Source

 @spec category(codepoint_or_string()) :: atom() | [atom(), ...]

Returns the Unicode category for a codepoint or a list of
categories for a string.

 argument

 Argument

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	in the case of a single codepoint, an atom representing
one of the categories listed below

	in the case of a string, a list representing the
category for each codepoint in the string

 notes

 Notes

THese categories match the names of the Unicode character
classes used in various regular expression engines and in
Unicode Sets. The full list of categories is:
	Category	Matches
	:C	Other
	:Cc	Control
	:Cf	Format
	:Cn	Unassigned
	:Co	Private use
	:Cs	Surrogate
	:L	Letter
	:Ll	Lower case letter
	:Lm	Modifier letter
	:Lo	Other letter
	:Lt	Title case letter
	:Lu	Upper case letter
	:M	Mark
	:Mc	Spacing mark
	:Me	Enclosing mark
	:Mn	Non-spacing mark
	:N	Number
	:Nd	Decimal number
	:Nl	Letter number
	:No	Other number
	:P	Punctuation
	:Pc	Connector punctuation
	:Pd	Dash punctuation
	:Pe	Close punctuation
	:Pf	Final punctuation
	:Pi	Initial punctuation
	:Po	Other punctuation
	:Ps	Open punctuation
	:S	Symbol
	:Sc	Currency symbol
	:Sk	Modifier symbol
	:Sm	Mathematical symbol
	:So	Other symbol
	:Z	Separator
	:Zl	Line separator
	:Zp	Paragraph separator
	:Zs	Space separator

Note too that the group level categories like :L,
:M, :S and so on are not assigned to any codepoint.
They can only be identified by combining the results
for each of the subsidiary categories.

 examples

 Examples

iex> Unicode.category ?ä
:Ll

iex> Unicode.category ?A
:Lu

iex> Unicode.category ?🧐
:So

iex> Unicode.category ?+
:Sm

iex> Unicode.category ?1
:Nd

iex> Unicode.category "äA"
[:Ll, :Lu]

 Link to this function

 digits?(codepoint_or_string)

 View Source

 @spec digits?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters
in the given string) adhere to Unicode category :Nd
otherwise returns false.
This group of characters represents the decimal digits zero
through nine (0..9) and the equivalents in non-Latin scripts.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.
For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

 Link to this function

 downcase?(codepoint_or_string)

 View Source

See Unicode.Property.lowercase?/1.

 Link to this function

 emoji?(codepoint_or_string)

 View Source

 @spec emoji?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters
in the given string) are emoji otherwise returns false.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.emoji? "🧐🤓🤩🤩️🤯"
true

 Link to this function

 fetch_property(property)

 View Source

 Link to this function

 get_property(property)

 View Source

 Link to this function

 lowercase?(codepoint_or_string)

 View Source

 @spec lowercase?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters
in the given string) the category :Ll otherwise returns false.
Notice that there are many languages that do not have a distinction
between cases. Their characters are not included in this group.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.lowercase?(?a)
true

iex> Unicode.lowercase?("A")
false

iex> Unicode.lowercase?("Elixir")
false

iex> Unicode.lowercase?("léon")
true

iex> Unicode.lowercase?("foo, bar")
false

iex> Unicode.lowercase?("42")
false

iex> Unicode.lowercase?("Σ")
false

iex> Unicode.lowercase?("σ")
true

 Link to this function

 math?(codepoint_or_string)

 View Source

 @spec math?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters
in the given string) the category :Sm otherwise returns false.
These are all characters whose primary usage is in mathematical
concepts (and not in alphabets). Notice that the numerical digits
are not part of this group.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.math?(?=)
true

iex> Unicode.math?("=")
true

iex> Unicode.math?("1+1=2") # Digits do not have the `:math` property.
false

iex> Unicode.math?("परिस")
false

iex> Unicode.math?("∑") # Summation, \u2211
true

iex> Unicode.math?("Σ") # Greek capital letter sigma, \u03a3
false

 Link to this function

 numeric?(codepoint_or_string)

 View Source

 @spec numeric?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters
in the given string) adhere to Unicode categories :Nd,
:Nl and :No otherwise returns false.
This group of characters represents the decimal digits zero
through nine (0..9) and the equivalents in non-Latin scripts.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.numeric?("65535")
true

iex> Unicode.numeric?("42")
true

iex> Unicode.numeric?("lapis philosophorum")
false

 Link to this function

 properties(codepoint_or_string)

 View Source

 @spec properties(codepoint_or_string()) :: [atom(), ...] | [[atom(), ...], ...]

Returns the list of properties of each codepoint
in a given string or the list of properties for a
given string.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	in the case of a single codepoint, an atom
list of properties

	in the case of a string, a list of atom
lisr for each codepoint in the
codepoint_or_string

 exmaples

 Exmaples

iex> Unicode.properties 0x1bf0
[
 :alphabetic,
 :case_ignorable,
 :grapheme_extend,
 :id_continue,
 :other_alphabetic,
 :xid_continue
]

iex> Unicode.properties ?A
[
 :alphabetic,
 :ascii_hex_digit,
 :cased,
 :changes_when_casefolded,
 :changes_when_casemapped,
 :changes_when_lowercased,
 :grapheme_base,
 :hex_digit,
 :id_continue,
 :id_start,
 :uppercase,
 :xid_continue,
 :xid_start
]

iex> Unicode.properties ?+
[:grapheme_base, :math, :pattern_syntax]

iex> Unicode.properties "a1+"
[
 [
 :alphabetic,
 :ascii_hex_digit,
 :cased,
 :changes_when_casemapped,
 :changes_when_titlecased,
 :changes_when_uppercased,
 :grapheme_base,
 :hex_digit,
 :id_continue,
 :id_start,
 :lowercase,
 :xid_continue,
 :xid_start
],
 [
 :ascii_hex_digit,
 :emoji,
 :emoji_component,
 :grapheme_base,
 :hex_digit,
 :id_continue,
 :xid_continue
],
 [
 :grapheme_base,
 :math,
 :pattern_syntax
]
]

 Link to this function

 property_servers()

 View Source

Returns a map of aliases mapping
property names to a module that
serves that property

 Link to this function

 ranges()

 View Source

 This function is deprecated. Use Unicode.assigned/0.

 Link to this function

 script(codepoint_or_string)

 View Source

 @spec script(codepoint_or_string()) :: String.t() | [String.t(), ...]

Returns the script name of a codepoint
or the list of block names for each codepoint
in a string.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	in the case of a single codepoint, a string
script name

	in the case of a string, a list of string
script names for each codepoint in the
codepoint_or_string

 exmaples

 Exmaples

iex> Unicode.script ?ä
:latin

iex> Unicode.script ?خ
:arabic

iex> Unicode.script ?अ
:devanagari

iex> Unicode.script ?א
:hebrew

iex> Unicode.script ?Ж
:cyrillic

iex> Unicode.script ?δ
:greek

iex> Unicode.script ?ก
:thai

iex> Unicode.script ?ယ
:myanmar

 Link to this function

 unaccent(string)

 View Source

Removes accents (diacritical marks) from
a string.

 arguments

 Arguments

	string is any String.t

 returns

 Returns

	A string with all diacritical marks
removed

 notes

 Notes

The string is first normalised to :nfd form
and then all characters in the block
:comnbining_diacritical_marks is removed
from the string

 example

 Example

iex> Unicode.unaccent("Et Ça sera sa moitié.")
"Et Ca sera sa moitie."

 Link to this function

 upcase?(codepoint_or_string)

 View Source

See Unicode.Property.uppercase?/1.

 Link to this function

 uppercase?(codepoint_or_string)

 View Source

 @spec uppercase?(codepoint_or_string()) :: boolean()

Returns true if a single Unicode codepoint (or all characters
in the given string) the category :Lu otherwise returns false.
Notice that there are many languages that do not have a distinction
between cases. Their characters are not included in this group.

 arguments

 Arguments

	codepoint_or_string is a single integer codepoint
or a String.t.

 returns

 Returns

	true or false

For the string-version, the result will be true only if all
codepoints in the string adhere to the property.

 examples

 Examples

iex> Unicode.uppercase?(?a)
false

iex> Unicode.uppercase?("A")
true

iex> Unicode.uppercase?("Elixir")
false

iex> Unicode.uppercase?("CAMEMBERT")
true

iex> Unicode.uppercase?("foo, bar")
false

iex> Unicode.uppercase?("42")
false

iex> Unicode.uppercase?("Σ")
true

iex> Unicode.uppercase?("σ")
false

 Link to this function

 version()

 View Source

Returns the version of Unicode in use.

Unicode.Block

Functions to introspect Unicode
blocks for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode blocks.

 assigned()

 Returns a list of tuples representing the
assigned ranges of all Unicode code points.

 block(string)

 Returns the block name(s) for the
given binary or codepoint.

 blocks()

 Returns the map of Unicode
blocks.

 count(block)

 Returns the count of the number of characters
for a given block.

 fetch(block)

 Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.

 get(block)

 Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.

 known_blocks()

 Returns a list of known Unicode
block names.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode blocks.
An alias is an alternative name
for referring to a block. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 assigned()

 View Source

Returns a list of tuples representing the
assigned ranges of all Unicode code points.

 Link to this function

 block(string)

 View Source

Returns the block name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
block name is returned.
For a binary a list of distinct block
names represented by the graphemes in
the binary is returned.

 Link to this function

 blocks()

 View Source

Returns the map of Unicode
blocks.
The block name is the map
key and a list of codepoint
ranges as tuples as the value.

 Link to this function

 count(block)

 View Source

Returns the count of the number of characters
for a given block.
Aliases are resolved by this function.

 example

 Example

iex> Unicode.Block.count(:old_north_arabian)
32

 Link to this function

 fetch(block)

 View Source

Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(block)

 View Source

Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_blocks()

 View Source

Returns a list of known Unicode
block names.
This function does not return the
names of any block aliases.

Unicode.CanonicalCombiningClass

Functions to introspect Unicode
canonical combining classes for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode canonical combining classes..

 combining_class(string)

 Returns the canonical combining class
 name(s) for the given binary or codepoint.

 combining_classes()

 Returns the map of Unicode
canonical combining classes..

 count(class)

 Returns the count of the number of characters
for a given canonical combining class.

 fetch(combining_class)

 Returns the Unicode ranges for
a given canonical combining class
 as a list of ranges as 2-tuples.

 get(combining_class)

 Returns the Unicode ranges for
a given canonical combining class
 as a list of ranges as 2-tuples.

 known_combining_classes()

 Returns a list of known Unicode
canonical combining class names.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode canonical combining classes..
An alias is an alternative name
for referring to a class. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 combining_class(string)

 View Source

Returns the canonical combining class
 name(s) for the given binary or codepoint.
In the case of a codepoint, a single
class name is returned.
For a binary a list of distinct class
names represented by the graphemes in
the binary is returned.

 Link to this function

 combining_classes()

 View Source

Returns the map of Unicode
canonical combining classes..
The class name is the map
key and a list of codepoint
ranges as tuples as the value.

 Link to this function

 count(class)

 View Source

Returns the count of the number of characters
for a given canonical combining class.

 example

 Example

iex> Unicode.CanonicalCombiningClass.count(230)
510

 Link to this function

 fetch(combining_class)

 View Source

Returns the Unicode ranges for
a given canonical combining class
 as a list of ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(combining_class)

 View Source

Returns the Unicode ranges for
a given canonical combining class
 as a list of ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_combining_classes()

 View Source

Returns a list of known Unicode
canonical combining class names.
This function does not return the
names of any class aliases.

Unicode.Category.QuoteMarks

Functions to return codepoints that form quotation marks. These
marks are taken from the Wikipedia definition
which is more expansive than the Unicode categories Pi
and Pf.
The full list of codepoints considered to be quote marks is tabled here.
Unicode code point table
These are codepoints noted in the Unicode character data base with the flag
quotation mark = yes. These are equivalent to the unicode sets Pi and Pf.
	Glyph	Code	Unicode name	HTML	Comments

		"	U+0022	Quotation mark	&quot;	Typewriter ("programmer's") quote, ambidextrous. Also known as "double quote".
		'	U+0027	Apostrophe	&#39;	Typewriter ("programmer's") straight single quote, ambidextrous
		«	U+00AB	Left-pointing double angle quotation mark	&laquo;	Double angle quote
		»	U+00BB	Right-pointing double angle quotation mark	&raquo;	Double angle quote, right
		‘	U+2018	Left single quotation mark	&lsquo;	Single curved quote, left. Also known as ''inverted [[comma]]'' or ''turned comma''
		’	U+2019	Right single quotation mark	&rsquo;	Single curved quote, right
		‚	U+201A	Single low-9 quotation mark	&sbquo;	Low single curved quote, left
		‛	U+201B	Single high-reversed-9 quotation mark	&#8219;	also called ''single reversed comma'', ''quotation mark''
		“	U+201C	Left double quotation mark	&ldquo;	Double curved quote, left
		”	U+201D	Right double quotation mark	&rdquo;	Double curved quote, right
		„	U+201E	Double low-9 quotation mark	&bdquo;	Low double curved quote, left
		‟	U+201F	Double high-reversed-9 quotation mark	&#8223;	also called ''double reversed comma'', ''quotation mark''
		‹	U+2039	Single left-pointing angle quotation mark	&lsaquo;	Single angle quote, left
		›	U+203A	Single right-pointing angle quotation mark	&rsaquo;	Single angle quote, right
		⹂	U+2E42	Double low-reversed-9 quotation mark	&#11842;	also called ''double low reversed comma'', ''quotation mark''

Quotation marks in dingbats
	Glyph	Code	Unicode name	HTML	Comments

		❛	U+275B	Heavy single turned comma quotation mark ornament	&#10075;	<code>Quotation Mark=No</code>
		❜	U+275C	Heavy single comma quotation mark ornament	&#10076;	<code>Quotation Mark=No</code>
		❝	U+275D	Heavy double turned comma quotation mark ornament	&#10077;	<code>Quotation Mark=No</code>
		❞	U+275E	Heavy double comma quotation mark ornament	&#10078;	<code>Quotation Mark=No</code>
		🙶	U+1F676	SANS-SERIF HEAVY DOUBLE TURNED COMMA QUOTATION MARK ORNAMENT	&#128630;	<code>Quotation Mark=No</code>
		🙷	U+1F677	SANS-SERIF HEAVY DOUBLE COMMA QUOTATION MARK ORNAMENT	&#128631;	<code>Quotation Mark=No</code>
		🙸	U+1F678	SANS-SERIF HEAVY LOW DOUBLE COMMA QUOTATION MARK ORNAMENT	&#128632;	<code>Quotation Mark=No</code>

Quotation marks in Braille Patterns
	Glyph	Code	Unicode name	HTML	Comments

		⠦	U+2826	Braille pattern dots-236	&#10292;	Braille double closing quotation mark; <code>Quotation Mark=No</code>
		⠴	U+2834	Braille pattern dots-356	&#10278;	Braille double opening quotation mark; <code>Quotation Mark=No</code>

Quotation marks in Chinese, Japanese, and Korean
	Glyph	Code	Unicode name	HTML	Comments

		「	U+300C	Left corner bracket	&#12300;	CJK
		」	U+300D	Right corner bracket	&#12301;	CJK
		『	U+300E	Left white corner bracket	&#12302;	CJK
		』	U+300F	Right white corner bracket	&#12303;	CJK
		〝	U+301D	REVERSED DOUBLE PRIME QUOTATION MARK	&#12317;	CJK
		〞	U+301E	DOUBLE PRIME QUOTATION MARK	&#12318;	CJK
		〟	U+301F	LOW DOUBLE PRIME QUOTATION MARK	&#12319;	CJK

Alternate encodings
	Glyph	Code	Unicode name	HTML	Comments

		﹁	U+FE41	PRESENTATION FORM FOR VERTICAL LEFT CORNER BRACKET	&#65089;	CJK Compatibility, preferred use: U+300C
		﹂	U+FE42	PRESENTATION FORM FOR VERTICAL RIGHT CORNER BRACKET	&#65090;	CJK Compatibility, preferred use: U+300D
		﹃	U+FE43	PRESENTATION FORM FOR VERTICAL LEFT WHITE CORNER BRACKET	&#65091;	CJK Compatibility, preferred use: U+300E
		﹄	U+FE44	PRESENTATION FORM FOR VERTICAL RIGHT WHITE CORNER BRACKET	&#65092;	CJK Compatibility, preferred use: U+300F
		＂	U+FF02	FULLWIDTH QUOTATION MARK	&#65282;	Halfwidth and Fullwidth Forms, corresponds with U+0022
		＇	U+FF07	FULLWIDTH apostrophe	&#65287;	Halfwidth and Fullwidth Forms, corresponds with U+0027
		｢	U+FF62	HALFWIDTH LEFT CORNER BRACKET	&#65378;	Halfwidth and Fullwidth Forms, corresponds with U+300C
		｣	U+FF63	HALFWIDTH right CORNER BRACKET	&#65379;	Halfwidth and Fullwidth Forms, corresponds with U+300D

 Anchor for this section

 Summary

 Functions

 all_quote_marks()

 Return a list of codepoints representing all
quote marks.

 quote_marks_ambidextrous()

 Return a list of codepoints representing quote marks
typically used on the left or right (for LTR languages)

 quote_marks_braille()

 Return a list of codepoints representing quote marks
typically used in Braille

 quote_marks_double()

 Return a list of codepoints representing quote marks
understood to be double marks

 quote_marks_left()

 Return a list of codepoints representing quote marks
typically used on the left (for LTR languages)

 quote_marks_right()

 Return a list of codepoints representing quote marks
typically used on the right (for LTR languages)

 quote_marks_single()

 Return a list of codepoints representing quote marks
understood to be single marks

 Anchor for this section

Functions

 Link to this function

 all_quote_marks()

 View Source

Return a list of codepoints representing all
quote marks.

 Link to this function

 quote_marks_ambidextrous()

 View Source

Return a list of codepoints representing quote marks
typically used on the left or right (for LTR languages)

 Link to this function

 quote_marks_braille()

 View Source

Return a list of codepoints representing quote marks
typically used in Braille

 Link to this function

 quote_marks_double()

 View Source

Return a list of codepoints representing quote marks
understood to be double marks

 Link to this function

 quote_marks_left()

 View Source

Return a list of codepoints representing quote marks
typically used on the left (for LTR languages)

 Link to this function

 quote_marks_right()

 View Source

Return a list of codepoints representing quote marks
typically used on the right (for LTR languages)

 Link to this function

 quote_marks_single()

 View Source

Return a list of codepoints representing quote marks
understood to be single marks

Unicode.EastAsianWidth

Functions to introspect Unicode
east asian width categories for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode east asian width categorys.

 count(east_asian_width_category)

 Returns the count of the number of characters
for a given east asian width category.

 east_asian_width_categories()

 Returns the map of Unicode
east asian width categorys.

 east_asian_width_category(string)

 Returns the east asian width category name(s) for the
given binary or codepoint.

 fetch(east_asian_width_category)

 Returns the Unicode ranges for
a given east asian width category as a list of
ranges as 2-tuples.

 get(east_asian_width_category)

 Returns the Unicode ranges for
a given east asian width category as a list of
ranges as 2-tuples.

 known_east_asian_width_categories()

 Returns a list of known Unicode
east asian width category names.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode east asian width categorys.
An alias is an alternative name
for referring to a east asian width category. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 count(east_asian_width_category)

 View Source

Returns the count of the number of characters
for a given east asian width category.

 example

 Example

iex> Unicode.IndicSyllabicCategory.count(:bindu)
91

 Link to this function

 east_asian_width_categories()

 View Source

Returns the map of Unicode
east asian width categorys.
The east asian width category name is the map
key and a list of codepoint
ranges as tuples as the value.

 Link to this function

 east_asian_width_category(string)

 View Source

Returns the east asian width category name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
east asian width category name is returned.
For a binary a list of distinct east asian width category
names represented by the lines in
the binary is returned.

 Link to this function

 fetch(east_asian_width_category)

 View Source

Returns the Unicode ranges for
a given east asian width category as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(east_asian_width_category)

 View Source

Returns the Unicode ranges for
a given east asian width category as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_east_asian_width_categories()

 View Source

Returns a list of known Unicode
east asian width category names.
This function does not return the
names of any east asian width category aliases.

Unicode.GeneralCategory

Functions to introspect Unicode
general categories for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode categories.

 categories()

 Returns the map of Unicode
character categories.

 category(string)

 Returns the category name(s) for the
given binary or codepoint.

 count(category)

 Return the count of characters in a given
category.

 fetch(category)

 Returns the Unicode ranges for
a given category as a list of
ranges as 2-tuples.

 get(category)

 Returns the Unicode ranges for
a given category as a list of
ranges as 2-tuples.

 known_categories()

 Returns a list of known Unicode
category names.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode categories.
An alias is an alternative name
for referring to a category. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 categories()

 View Source

Returns the map of Unicode
character categories.
The category name is the map
key and a list of codepoint
ranges as tuples as the value.

 Link to this function

 category(string)

 View Source

Returns the category name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
category name is returned.
For a binary a list of distinct category
names represented by the graphemes in
the binary is returned.
Only concrete general categories are considered,
derived categories (:all, :ascii, :assigned etc)
are not considered.

 Link to this function

 count(category)

 View Source

Return the count of characters in a given
category.

 example

 Example

iex> Unicode.GeneralCategory.count(:Ll)
2233

iex> Unicode.GeneralCategory.count(:Nd)
680

 Link to this function

 fetch(category)

 View Source

Returns the Unicode ranges for
a given category as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(category)

 View Source

Returns the Unicode ranges for
a given category as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_categories()

 View Source

Returns a list of known Unicode
category names.
This function does not return the
names of any category aliases.

Unicode.GeneralCategory.Derived

For certain operations and transformations
(especially in Unicode Sets)
there is an expectation that certain derived
general categories exists even though they are not
defined in the unicode character database.
These categories are:
	:any which is the full unicode character
range 0x0..0x10ffff

	:assigned which is the set of codepoints
that are assigned and is therefore
equivalent to [:any]-[:Cn]. In fact that is
exactly how it is calculated using unicode_set
and the results are copied here so
that there is no mutual dependency.

	:ascii which is the range for the US ASCII
character set of 0x0..0x7f

In addition there are derived categories
not part of the Unicode specification that
support additional use cases. These include:
	Categories related to
recognising quotation marks. See the
module Unicode.Category.QuoteMarks.

	:printable which implements the same
semantics as String.printable?/1. This is
a very broad definition of printable characters.

	:graph which includes characters from the
[^\p{space}\p{gc=Control}\p{gc=Surrogate}\p{gc=Unassigned}]
set defined by Unicode Regular Expressions.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of the aliases
for the derived General Categories

 categories()

 Returns a map of the derived
General Categories

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

 @spec aliases() :: map()

Returns a map of the aliases
for the derived General Categories

 Link to this function

 categories()

 View Source

 @spec categories() :: map()

Returns a map of the derived
General Categories

Unicode.GraphemeClusterBreak

Functions to introspect Unicode
grapheme cluster breaks for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode grapheme cluster breaks.

 count(grapheme_break)

 Returns the count of the number of characters
for a given grapheme cluster break.

 fetch(grapheme_break)

 Returns the Unicode ranges for
a given grapheme cluster break as a list of
ranges as 2-tuples.

 get(grapheme_break)

 Returns the Unicode ranges for
a given grapheme cluster break as a list of
ranges as 2-tuples.

 grapheme_break(string)

 Returns the grapheme cluster break name(s) for the
given binary or codepoint.

 grapheme_breaks()

 Returns the map of Unicode
grapheme cluster breaks.

 known_grapheme_breaks()

 Returns a list of known Unicode
grapheme cluster break names.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode grapheme cluster breaks.
An alias is an alternative name
for referring to a grapheme cluster break. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 count(grapheme_break)

 View Source

Returns the count of the number of characters
for a given grapheme cluster break.

 example

 Example

iex> Unicode.GraphemeClusterBreak.count(:prepend)
27

 Link to this function

 fetch(grapheme_break)

 View Source

Returns the Unicode ranges for
a given grapheme cluster break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(grapheme_break)

 View Source

Returns the Unicode ranges for
a given grapheme cluster break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 grapheme_break(string)

 View Source

Returns the grapheme cluster break name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
grapheme cluster break name is returned.
For a binary a list of distinct grapheme cluster break
names represented by the graphemes in
the binary is returned.

 Link to this function

 grapheme_breaks()

 View Source

Returns the map of Unicode
grapheme cluster breaks.
The grapheme cluster break name is the map
key and a list of codepoint
ranges as tuples as the value.

 Link to this function

 known_grapheme_breaks()

 View Source

Returns a list of known Unicode
grapheme cluster break names.
This function does not return the
names of any grapheme cluster break aliases.

Unicode.IndicSyllabicCategory

Functions to introspect Unicode
indic syllabic categories for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode indic syllabic categorys.

 count(indic_syllabic_category)

 Returns the count of the number of characters
for a given indic syllabic category.

 fetch(indic_syllabic_category)

 Returns the Unicode ranges for
a given indic syllabic category as a list of
ranges as 2-tuples.

 get(indic_syllabic_category)

 Returns the Unicode ranges for
a given indic syllabic category as a list of
ranges as 2-tuples.

 indic_syllabic_categories()

 Returns the map of Unicode
indic syllabic categorys.

 indic_syllabic_category(string)

 Returns the indic syllabic category name(s) for the
given binary or codepoint.

 known_indic_syllabic_categories()

 Returns a list of known Unicode
indic syllabic category names.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode indic syllabic categorys.
An alias is an alternative name
for referring to a indic syllabic category. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 count(indic_syllabic_category)

 View Source

Returns the count of the number of characters
for a given indic syllabic category.

 example

 Example

iex> Unicode.IndicSyllabicCategory.count(:bindu)
94

 Link to this function

 fetch(indic_syllabic_category)

 View Source

Returns the Unicode ranges for
a given indic syllabic category as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(indic_syllabic_category)

 View Source

Returns the Unicode ranges for
a given indic syllabic category as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 indic_syllabic_categories()

 View Source

Returns the map of Unicode
indic syllabic categorys.
The indic syllabic category name is the map
key and a list of codepoint
ranges as tuples as the value.

 Link to this function

 indic_syllabic_category(string)

 View Source

Returns the indic syllabic category name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
indic syllabic category name is returned.
For a binary a list of distinct indic syllabic category
names represented by the lines in
the binary is returned.

 Link to this function

 known_indic_syllabic_categories()

 View Source

Returns a list of known Unicode
indic syllabic category names.
This function does not return the
names of any indic syllabic category aliases.

Unicode.LineBreak

Functions to introspect Unicode
line breaks for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode line breaks.

 count(line_break)

 Returns the count of the number of characters
for a given line_break.

 fetch(line_break)

 Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.

 get(line_break)

 Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.

 known_line_breaks()

 Returns a list of known Unicode
line break names.

 line_break(string)

 Returns the line break name(s) for the
given binary or codepoint.

 line_breaks()

 Returns the map of Unicode
line breaks.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode line breaks.
An alias is an alternative name
for referring to a line break. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 count(line_break)

 View Source

Returns the count of the number of characters
for a given line_break.

 example

 Example

iex> Unicode.LineBreak.count(:al)
22215

 Link to this function

 fetch(line_break)

 View Source

Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(line_break)

 View Source

Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_line_breaks()

 View Source

Returns a list of known Unicode
line break names.
This function does not return the
names of any line break aliases.

 Link to this function

 line_break(string)

 View Source

Returns the line break name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
line_break name is returned.
For a binary a list of distinct line break
names represented by the lines in
the binary is returned.

 Link to this function

 line_breaks()

 View Source

Returns the map of Unicode
line breaks.
The line break name is the map
key and a list of codepoint
ranges as tuples as the value.

Unicode.Property

Functions to introspect Unicode properties for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Types

 string_or_codepoint()

 Functions

 aliases()

 Returns a map of aliases for
Unicode blocks.

 alphabetic(codepoint)

 Returns :alphabetic or nil indicating
if the codepoint or string has the property
:alphabetic.

 alphabetic?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:alphabetic.

 alphanumeric(codepoint_or_binary)

 Returns :alphanumeric or nil based upon
whether the given codepoint or binary
is all alphanumeric characters.

 alphanumeric?(codepoint_or_binary)

 Returns a boolean based upon
whether the given codepoint or binary
is all alphanumeric characters.

 ascii_hex_digit(codepoint)

 Returns :ascii_hex_digit or nil indicating
if the codepoint or string has the property
:ascii_hex_digit.

 ascii_hex_digit?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:ascii_hex_digit.

 bidi_control(codepoint)

 Returns :bidi_control or nil indicating
if the codepoint or string has the property
:bidi_control.

 bidi_control?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:bidi_control.

 case_ignorable(codepoint)

 Returns :case_ignorable or nil indicating
if the codepoint or string has the property
:case_ignorable.

 case_ignorable?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:case_ignorable.

 cased(codepoint)

 Returns :cased or nil indicating
if the codepoint or string has the property
:cased.

 cased?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:cased.

 changes_when_casefolded(codepoint)

 Returns :changes_when_casefolded or nil indicating
if the codepoint or string has the property
:changes_when_casefolded.

 changes_when_casefolded?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:changes_when_casefolded.

 changes_when_casemapped(codepoint)

 Returns :changes_when_casemapped or nil indicating
if the codepoint or string has the property
:changes_when_casemapped.

 changes_when_casemapped?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:changes_when_casemapped.

 changes_when_lowercased(codepoint)

 Returns :changes_when_lowercased or nil indicating
if the codepoint or string has the property
:changes_when_lowercased.

 changes_when_lowercased?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:changes_when_lowercased.

 changes_when_titlecased(codepoint)

 Returns :changes_when_titlecased or nil indicating
if the codepoint or string has the property
:changes_when_titlecased.

 changes_when_titlecased?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:changes_when_titlecased.

 changes_when_uppercased(codepoint)

 Returns :changes_when_uppercased or nil indicating
if the codepoint or string has the property
:changes_when_uppercased.

 changes_when_uppercased?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:changes_when_uppercased.

 count(property)

 Returns the count of the number of characters
for a given property.

 dash(codepoint)

 Returns :dash or nil indicating
if the codepoint or string has the property
:dash.

 dash?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:dash.

 default_ignorable_code_point(codepoint)

 Returns :default_ignorable_code_point or nil indicating
if the codepoint or string has the property
:default_ignorable_code_point.

 default_ignorable_code_point?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:default_ignorable_code_point.

 deprecated(codepoint)

 Returns :deprecated or nil indicating
if the codepoint or string has the property
:deprecated.

 deprecated?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:deprecated.

 diacritic(codepoint)

 Returns :diacritic or nil indicating
if the codepoint or string has the property
:diacritic.

 diacritic?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:diacritic.

 emoji(codepoint)

 Returns :emoji or nil indicating
if the codepoint or string has the property
:emoji.

 emoji_component(codepoint)

 Returns :emoji_component or nil indicating
if the codepoint or string has the property
:emoji_component.

 emoji_component?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:emoji_component.

 emoji_modifier(codepoint)

 Returns :emoji_modifier or nil indicating
if the codepoint or string has the property
:emoji_modifier.

 emoji_modifier_base(codepoint)

 Returns :emoji_modifier_base or nil indicating
if the codepoint or string has the property
:emoji_modifier_base.

 emoji_modifier_base?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:emoji_modifier_base.

 emoji_modifier?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:emoji_modifier.

 emoji_presentation(codepoint)

 Returns :emoji_presentation or nil indicating
if the codepoint or string has the property
:emoji_presentation.

 emoji_presentation?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:emoji_presentation.

 emoji?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:emoji.

 extended_numeric(codepoint_or_binary)

 Returns :extended_numeric or nil based upon
whether the given codepoint or binary
is all alphanumeric characters.

 extended_numeric?(codepoint_or_binary)

 Returns a boolean based upon
whether the given codepoint or binary
is all numberic characters.

 extended_pictographic(codepoint)

 Returns :extended_pictographic or nil indicating
if the codepoint or string has the property
:extended_pictographic.

 extended_pictographic?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:extended_pictographic.

 extender(codepoint)

 Returns :extender or nil indicating
if the codepoint or string has the property
:extender.

 extender?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:extender.

 fetch(property)

 Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.

 get(property)

 Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.

 grapheme_base(codepoint)

 Returns :grapheme_base or nil indicating
if the codepoint or string has the property
:grapheme_base.

 grapheme_base?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:grapheme_base.

 grapheme_extend(codepoint)

 Returns :grapheme_extend or nil indicating
if the codepoint or string has the property
:grapheme_extend.

 grapheme_extend?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:grapheme_extend.

 grapheme_link(codepoint)

 Returns :grapheme_link or nil indicating
if the codepoint or string has the property
:grapheme_link.

 grapheme_link?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:grapheme_link.

 hex_digit(codepoint)

 Returns :hex_digit or nil indicating
if the codepoint or string has the property
:hex_digit.

 hex_digit?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:hex_digit.

 hyphen(codepoint)

 Returns :hyphen or nil indicating
if the codepoint or string has the property
:hyphen.

 hyphen?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:hyphen.

 id_continue(codepoint)

 Returns :id_continue or nil indicating
if the codepoint or string has the property
:id_continue.

 id_continue?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:id_continue.

 id_start(codepoint)

 Returns :id_start or nil indicating
if the codepoint or string has the property
:id_start.

 id_start?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:id_start.

 ideographic(codepoint)

 Returns :ideographic or nil indicating
if the codepoint or string has the property
:ideographic.

 ideographic?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:ideographic.

 ids_binary_operator(codepoint)

 Returns :ids_binary_operator or nil indicating
if the codepoint or string has the property
:ids_binary_operator.

 ids_binary_operator?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:ids_binary_operator.

 ids_trinary_operator(codepoint)

 Returns :ids_trinary_operator or nil indicating
if the codepoint or string has the property
:ids_trinary_operator.

 ids_trinary_operator?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:ids_trinary_operator.

 join_control(codepoint)

 Returns :join_control or nil indicating
if the codepoint or string has the property
:join_control.

 join_control?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:join_control.

 known_properties()

 Returns a list of known Unicode
property names.

 logical_order_exception(codepoint)

 Returns :logical_order_exception or nil indicating
if the codepoint or string has the property
:logical_order_exception.

 logical_order_exception?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:logical_order_exception.

 lowercase(codepoint)

 Returns :lowercase or nil indicating
if the codepoint or string has the property
:lowercase.

 lowercase?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:lowercase.

 math(codepoint)

 Returns :math or nil indicating
if the codepoint or string has the property
:math.

 math?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:math.

 noncharacter_code_point(codepoint)

 Returns :noncharacter_code_point or nil indicating
if the codepoint or string has the property
:noncharacter_code_point.

 noncharacter_code_point?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:noncharacter_code_point.

 numeric(codepoint_or_binary)

 Returns :numeric or nil based upon
whether the given codepoint or binary
is all numeric characters.

 numeric?(codepoint)

 Returns a boolean based upon
whether the given codepoint or binary
is all numeric characters.

 other_alphabetic(codepoint)

 Returns :other_alphabetic or nil indicating
if the codepoint or string has the property
:other_alphabetic.

 other_alphabetic?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_alphabetic.

 other_default_ignorable_code_point(codepoint)

 Returns :other_default_ignorable_code_point or nil indicating
if the codepoint or string has the property
:other_default_ignorable_code_point.

 other_default_ignorable_code_point?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_default_ignorable_code_point.

 other_grapheme_extend(codepoint)

 Returns :other_grapheme_extend or nil indicating
if the codepoint or string has the property
:other_grapheme_extend.

 other_grapheme_extend?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_grapheme_extend.

 other_id_continue(codepoint)

 Returns :other_id_continue or nil indicating
if the codepoint or string has the property
:other_id_continue.

 other_id_continue?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_id_continue.

 other_id_start(codepoint)

 Returns :other_id_start or nil indicating
if the codepoint or string has the property
:other_id_start.

 other_id_start?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_id_start.

 other_lowercase(codepoint)

 Returns :other_lowercase or nil indicating
if the codepoint or string has the property
:other_lowercase.

 other_lowercase?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_lowercase.

 other_math(codepoint)

 Returns :other_math or nil indicating
if the codepoint or string has the property
:other_math.

 other_math?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_math.

 other_uppercase(codepoint)

 Returns :other_uppercase or nil indicating
if the codepoint or string has the property
:other_uppercase.

 other_uppercase?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:other_uppercase.

 pattern_syntax(codepoint)

 Returns :pattern_syntax or nil indicating
if the codepoint or string has the property
:pattern_syntax.

 pattern_syntax?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:pattern_syntax.

 pattern_white_space(codepoint)

 Returns :pattern_white_space or nil indicating
if the codepoint or string has the property
:pattern_white_space.

 pattern_white_space?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:pattern_white_space.

 prepended_concatenation_mark(codepoint)

 Returns :prepended_concatenation_mark or nil indicating
if the codepoint or string has the property
:prepended_concatenation_mark.

 prepended_concatenation_mark?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:prepended_concatenation_mark.

 properties()

 Returns the map of Unicode
properties.

 properties(codepoint)

 Returns the property name(s) for the
given binary or codepoint.

 quotation_mark(codepoint)

 Returns :quotation_mark or nil indicating
if the codepoint or string has the property
:quotation_mark.

 quotation_mark?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:quotation_mark.

 radical(codepoint)

 Returns :radical or nil indicating
if the codepoint or string has the property
:radical.

 radical?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:radical.

 regional_indicator(codepoint)

 Returns :regional_indicator or nil indicating
if the codepoint or string has the property
:regional_indicator.

 regional_indicator?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:regional_indicator.

 sentence_terminal(codepoint)

 Returns :sentence_terminal or nil indicating
if the codepoint or string has the property
:sentence_terminal.

 sentence_terminal?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:sentence_terminal.

 servers()

 Returns a map of properties to the module
that serves that property.

 soft_dotted(codepoint)

 Returns :soft_dotted or nil indicating
if the codepoint or string has the property
:soft_dotted.

 soft_dotted?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:soft_dotted.

 terminal_punctuation(codepoint)

 Returns :terminal_punctuation or nil indicating
if the codepoint or string has the property
:terminal_punctuation.

 terminal_punctuation?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:terminal_punctuation.

 unified_ideograph(codepoint)

 Returns :unified_ideograph or nil indicating
if the codepoint or string has the property
:unified_ideograph.

 unified_ideograph?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:unified_ideograph.

 uppercase(codepoint)

 Returns :uppercase or nil indicating
if the codepoint or string has the property
:uppercase.

 uppercase?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:uppercase.

 variation_selector(codepoint)

 Returns :variation_selector or nil indicating
if the codepoint or string has the property
:variation_selector.

 variation_selector?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:variation_selector.

 white_space(codepoint)

 Returns :white_space or nil indicating
if the codepoint or string has the property
:white_space.

 white_space?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:white_space.

 xid_continue(codepoint)

 Returns :xid_continue or nil indicating
if the codepoint or string has the property
:xid_continue.

 xid_continue?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:xid_continue.

 xid_start(codepoint)

 Returns :xid_start or nil indicating
if the codepoint or string has the property
:xid_start.

 xid_start?(codepoint)

 Returns a boolean indicating if the
codepoint or string has the property
:xid_start.

 Anchor for this section

Types

 Link to this type

 string_or_codepoint()

 View Source

 @type string_or_codepoint() :: String.t() | non_neg_integer()

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode blocks.
An alias is an alternative name
for referring to a block. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 alphabetic(codepoint)

 View Source

Returns :alphabetic or nil indicating
if the codepoint or string has the property
:alphabetic.
For string parameters, all codepoints in
the string must have the :alphabetic
property in order for the result to :alphabetic.

 Link to this function

 alphabetic?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:alphabetic.
For string parameters, all codepoints in
the string must have the :alphabetic
property in order for the result to be true.

 Link to this function

 alphanumeric(codepoint_or_binary)

 View Source

Returns :alphanumeric or nil based upon
whether the given codepoint or binary
is all alphanumeric characters.
This is useful when the desired result is
truthy or falsy

 example

 Example

iex> Unicode.Property.alphanumeric "123abc"
:alphanumeric
iex> Unicode.Property.alphanumeric "???"
nil

 Link to this function

 alphanumeric?(codepoint_or_binary)

 View Source

Returns a boolean based upon
whether the given codepoint or binary
is all alphanumeric characters.

 example

 Example

iex> Unicode.Property.alphanumeric? "123abc"
true
iex> Unicode.Property.alphanumeric? "⅔"
false

 Link to this function

 ascii_hex_digit(codepoint)

 View Source

Returns :ascii_hex_digit or nil indicating
if the codepoint or string has the property
:ascii_hex_digit.
For string parameters, all codepoints in
the string must have the :ascii_hex_digit
property in order for the result to :ascii_hex_digit.

 Link to this function

 ascii_hex_digit?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:ascii_hex_digit.
For string parameters, all codepoints in
the string must have the :ascii_hex_digit
property in order for the result to be true.

 Link to this function

 bidi_control(codepoint)

 View Source

Returns :bidi_control or nil indicating
if the codepoint or string has the property
:bidi_control.
For string parameters, all codepoints in
the string must have the :bidi_control
property in order for the result to :bidi_control.

 Link to this function

 bidi_control?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:bidi_control.
For string parameters, all codepoints in
the string must have the :bidi_control
property in order for the result to be true.

 Link to this function

 case_ignorable(codepoint)

 View Source

Returns :case_ignorable or nil indicating
if the codepoint or string has the property
:case_ignorable.
For string parameters, all codepoints in
the string must have the :case_ignorable
property in order for the result to :case_ignorable.

 Link to this function

 case_ignorable?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:case_ignorable.
For string parameters, all codepoints in
the string must have the :case_ignorable
property in order for the result to be true.

 Link to this function

 cased(codepoint)

 View Source

Returns :cased or nil indicating
if the codepoint or string has the property
:cased.
For string parameters, all codepoints in
the string must have the :cased
property in order for the result to :cased.

 Link to this function

 cased?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:cased.
For string parameters, all codepoints in
the string must have the :cased
property in order for the result to be true.

 Link to this function

 changes_when_casefolded(codepoint)

 View Source

Returns :changes_when_casefolded or nil indicating
if the codepoint or string has the property
:changes_when_casefolded.
For string parameters, all codepoints in
the string must have the :changes_when_casefolded
property in order for the result to :changes_when_casefolded.

 Link to this function

 changes_when_casefolded?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:changes_when_casefolded.
For string parameters, all codepoints in
the string must have the :changes_when_casefolded
property in order for the result to be true.

 Link to this function

 changes_when_casemapped(codepoint)

 View Source

Returns :changes_when_casemapped or nil indicating
if the codepoint or string has the property
:changes_when_casemapped.
For string parameters, all codepoints in
the string must have the :changes_when_casemapped
property in order for the result to :changes_when_casemapped.

 Link to this function

 changes_when_casemapped?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:changes_when_casemapped.
For string parameters, all codepoints in
the string must have the :changes_when_casemapped
property in order for the result to be true.

 Link to this function

 changes_when_lowercased(codepoint)

 View Source

Returns :changes_when_lowercased or nil indicating
if the codepoint or string has the property
:changes_when_lowercased.
For string parameters, all codepoints in
the string must have the :changes_when_lowercased
property in order for the result to :changes_when_lowercased.

 Link to this function

 changes_when_lowercased?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:changes_when_lowercased.
For string parameters, all codepoints in
the string must have the :changes_when_lowercased
property in order for the result to be true.

 Link to this function

 changes_when_titlecased(codepoint)

 View Source

Returns :changes_when_titlecased or nil indicating
if the codepoint or string has the property
:changes_when_titlecased.
For string parameters, all codepoints in
the string must have the :changes_when_titlecased
property in order for the result to :changes_when_titlecased.

 Link to this function

 changes_when_titlecased?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:changes_when_titlecased.
For string parameters, all codepoints in
the string must have the :changes_when_titlecased
property in order for the result to be true.

 Link to this function

 changes_when_uppercased(codepoint)

 View Source

Returns :changes_when_uppercased or nil indicating
if the codepoint or string has the property
:changes_when_uppercased.
For string parameters, all codepoints in
the string must have the :changes_when_uppercased
property in order for the result to :changes_when_uppercased.

 Link to this function

 changes_when_uppercased?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:changes_when_uppercased.
For string parameters, all codepoints in
the string must have the :changes_when_uppercased
property in order for the result to be true.

 Link to this function

 count(property)

 View Source

Returns the count of the number of characters
for a given property.

 example

 Example

iex> Unicode.Property.count(:lowercase)
2544

 Link to this function

 dash(codepoint)

 View Source

Returns :dash or nil indicating
if the codepoint or string has the property
:dash.
For string parameters, all codepoints in
the string must have the :dash
property in order for the result to :dash.

 Link to this function

 dash?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:dash.
For string parameters, all codepoints in
the string must have the :dash
property in order for the result to be true.

 Link to this function

 default_ignorable_code_point(codepoint)

 View Source

Returns :default_ignorable_code_point or nil indicating
if the codepoint or string has the property
:default_ignorable_code_point.
For string parameters, all codepoints in
the string must have the :default_ignorable_code_point
property in order for the result to :default_ignorable_code_point.

 Link to this function

 default_ignorable_code_point?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:default_ignorable_code_point.
For string parameters, all codepoints in
the string must have the :default_ignorable_code_point
property in order for the result to be true.

 Link to this function

 deprecated(codepoint)

 View Source

Returns :deprecated or nil indicating
if the codepoint or string has the property
:deprecated.
For string parameters, all codepoints in
the string must have the :deprecated
property in order for the result to :deprecated.

 Link to this function

 deprecated?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:deprecated.
For string parameters, all codepoints in
the string must have the :deprecated
property in order for the result to be true.

 Link to this function

 diacritic(codepoint)

 View Source

Returns :diacritic or nil indicating
if the codepoint or string has the property
:diacritic.
For string parameters, all codepoints in
the string must have the :diacritic
property in order for the result to :diacritic.

 Link to this function

 diacritic?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:diacritic.
For string parameters, all codepoints in
the string must have the :diacritic
property in order for the result to be true.

 Link to this function

 emoji(codepoint)

 View Source

Returns :emoji or nil indicating
if the codepoint or string has the property
:emoji.
For string parameters, all codepoints in
the string must have the :emoji
property in order for the result to :emoji.

 Link to this function

 emoji_component(codepoint)

 View Source

Returns :emoji_component or nil indicating
if the codepoint or string has the property
:emoji_component.
For string parameters, all codepoints in
the string must have the :emoji_component
property in order for the result to :emoji_component.

 Link to this function

 emoji_component?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:emoji_component.
For string parameters, all codepoints in
the string must have the :emoji_component
property in order for the result to be true.

 Link to this function

 emoji_modifier(codepoint)

 View Source

Returns :emoji_modifier or nil indicating
if the codepoint or string has the property
:emoji_modifier.
For string parameters, all codepoints in
the string must have the :emoji_modifier
property in order for the result to :emoji_modifier.

 Link to this function

 emoji_modifier_base(codepoint)

 View Source

Returns :emoji_modifier_base or nil indicating
if the codepoint or string has the property
:emoji_modifier_base.
For string parameters, all codepoints in
the string must have the :emoji_modifier_base
property in order for the result to :emoji_modifier_base.

 Link to this function

 emoji_modifier_base?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:emoji_modifier_base.
For string parameters, all codepoints in
the string must have the :emoji_modifier_base
property in order for the result to be true.

 Link to this function

 emoji_modifier?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:emoji_modifier.
For string parameters, all codepoints in
the string must have the :emoji_modifier
property in order for the result to be true.

 Link to this function

 emoji_presentation(codepoint)

 View Source

Returns :emoji_presentation or nil indicating
if the codepoint or string has the property
:emoji_presentation.
For string parameters, all codepoints in
the string must have the :emoji_presentation
property in order for the result to :emoji_presentation.

 Link to this function

 emoji_presentation?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:emoji_presentation.
For string parameters, all codepoints in
the string must have the :emoji_presentation
property in order for the result to be true.

 Link to this function

 emoji?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:emoji.
For string parameters, all codepoints in
the string must have the :emoji
property in order for the result to be true.

 Link to this function

 extended_numeric(codepoint_or_binary)

 View Source

Returns :extended_numeric or nil based upon
whether the given codepoint or binary
is all alphanumeric characters.
Extended numberic includes fractions, superscripts,
subscripts and other characters in the category No.
This is useful when the desired result is
truthy or falsy

 example

 Example

iex> Unicode.Property.extended_numeric "123"
:extended_numeric
iex> Unicode.Property.extended_numeric "⅔"
:extended_numeric
iex> Unicode.Property.extended_numeric "-123"
nil

 Link to this function

 extended_numeric?(codepoint_or_binary)

 View Source

Returns a boolean based upon
whether the given codepoint or binary
is all numberic characters.

 example

 Example

 iex> Unicode.Property.extended_numeric? "123"
 true
 iex> Unicode.Property.extended_numeric? "⅔"
 true

 Link to this function

 extended_pictographic(codepoint)

 View Source

Returns :extended_pictographic or nil indicating
if the codepoint or string has the property
:extended_pictographic.
For string parameters, all codepoints in
the string must have the :extended_pictographic
property in order for the result to :extended_pictographic.

 Link to this function

 extended_pictographic?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:extended_pictographic.
For string parameters, all codepoints in
the string must have the :extended_pictographic
property in order for the result to be true.

 Link to this function

 extender(codepoint)

 View Source

Returns :extender or nil indicating
if the codepoint or string has the property
:extender.
For string parameters, all codepoints in
the string must have the :extender
property in order for the result to :extender.

 Link to this function

 extender?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:extender.
For string parameters, all codepoints in
the string must have the :extender
property in order for the result to be true.

 Link to this function

 fetch(property)

 View Source

Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(property)

 View Source

Returns the Unicode ranges for
a given block as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 grapheme_base(codepoint)

 View Source

Returns :grapheme_base or nil indicating
if the codepoint or string has the property
:grapheme_base.
For string parameters, all codepoints in
the string must have the :grapheme_base
property in order for the result to :grapheme_base.

 Link to this function

 grapheme_base?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:grapheme_base.
For string parameters, all codepoints in
the string must have the :grapheme_base
property in order for the result to be true.

 Link to this function

 grapheme_extend(codepoint)

 View Source

Returns :grapheme_extend or nil indicating
if the codepoint or string has the property
:grapheme_extend.
For string parameters, all codepoints in
the string must have the :grapheme_extend
property in order for the result to :grapheme_extend.

 Link to this function

 grapheme_extend?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:grapheme_extend.
For string parameters, all codepoints in
the string must have the :grapheme_extend
property in order for the result to be true.

 Link to this function

 grapheme_link(codepoint)

 View Source

Returns :grapheme_link or nil indicating
if the codepoint or string has the property
:grapheme_link.
For string parameters, all codepoints in
the string must have the :grapheme_link
property in order for the result to :grapheme_link.

 Link to this function

 grapheme_link?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:grapheme_link.
For string parameters, all codepoints in
the string must have the :grapheme_link
property in order for the result to be true.

 Link to this function

 hex_digit(codepoint)

 View Source

Returns :hex_digit or nil indicating
if the codepoint or string has the property
:hex_digit.
For string parameters, all codepoints in
the string must have the :hex_digit
property in order for the result to :hex_digit.

 Link to this function

 hex_digit?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:hex_digit.
For string parameters, all codepoints in
the string must have the :hex_digit
property in order for the result to be true.

 Link to this function

 hyphen(codepoint)

 View Source

Returns :hyphen or nil indicating
if the codepoint or string has the property
:hyphen.
For string parameters, all codepoints in
the string must have the :hyphen
property in order for the result to :hyphen.

 Link to this function

 hyphen?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:hyphen.
For string parameters, all codepoints in
the string must have the :hyphen
property in order for the result to be true.

 Link to this function

 id_continue(codepoint)

 View Source

Returns :id_continue or nil indicating
if the codepoint or string has the property
:id_continue.
For string parameters, all codepoints in
the string must have the :id_continue
property in order for the result to :id_continue.

 Link to this function

 id_continue?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:id_continue.
For string parameters, all codepoints in
the string must have the :id_continue
property in order for the result to be true.

 Link to this function

 id_start(codepoint)

 View Source

Returns :id_start or nil indicating
if the codepoint or string has the property
:id_start.
For string parameters, all codepoints in
the string must have the :id_start
property in order for the result to :id_start.

 Link to this function

 id_start?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:id_start.
For string parameters, all codepoints in
the string must have the :id_start
property in order for the result to be true.

 Link to this function

 ideographic(codepoint)

 View Source

Returns :ideographic or nil indicating
if the codepoint or string has the property
:ideographic.
For string parameters, all codepoints in
the string must have the :ideographic
property in order for the result to :ideographic.

 Link to this function

 ideographic?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:ideographic.
For string parameters, all codepoints in
the string must have the :ideographic
property in order for the result to be true.

 Link to this function

 ids_binary_operator(codepoint)

 View Source

Returns :ids_binary_operator or nil indicating
if the codepoint or string has the property
:ids_binary_operator.
For string parameters, all codepoints in
the string must have the :ids_binary_operator
property in order for the result to :ids_binary_operator.

 Link to this function

 ids_binary_operator?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:ids_binary_operator.
For string parameters, all codepoints in
the string must have the :ids_binary_operator
property in order for the result to be true.

 Link to this function

 ids_trinary_operator(codepoint)

 View Source

Returns :ids_trinary_operator or nil indicating
if the codepoint or string has the property
:ids_trinary_operator.
For string parameters, all codepoints in
the string must have the :ids_trinary_operator
property in order for the result to :ids_trinary_operator.

 Link to this function

 ids_trinary_operator?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:ids_trinary_operator.
For string parameters, all codepoints in
the string must have the :ids_trinary_operator
property in order for the result to be true.

 Link to this function

 join_control(codepoint)

 View Source

Returns :join_control or nil indicating
if the codepoint or string has the property
:join_control.
For string parameters, all codepoints in
the string must have the :join_control
property in order for the result to :join_control.

 Link to this function

 join_control?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:join_control.
For string parameters, all codepoints in
the string must have the :join_control
property in order for the result to be true.

 Link to this function

 known_properties()

 View Source

Returns a list of known Unicode
property names.
This function does not return the
names of any property aliases.

 Link to this function

 logical_order_exception(codepoint)

 View Source

Returns :logical_order_exception or nil indicating
if the codepoint or string has the property
:logical_order_exception.
For string parameters, all codepoints in
the string must have the :logical_order_exception
property in order for the result to :logical_order_exception.

 Link to this function

 logical_order_exception?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:logical_order_exception.
For string parameters, all codepoints in
the string must have the :logical_order_exception
property in order for the result to be true.

 Link to this function

 lowercase(codepoint)

 View Source

Returns :lowercase or nil indicating
if the codepoint or string has the property
:lowercase.
For string parameters, all codepoints in
the string must have the :lowercase
property in order for the result to :lowercase.

 Link to this function

 lowercase?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:lowercase.
For string parameters, all codepoints in
the string must have the :lowercase
property in order for the result to be true.

 Link to this function

 math(codepoint)

 View Source

Returns :math or nil indicating
if the codepoint or string has the property
:math.
For string parameters, all codepoints in
the string must have the :math
property in order for the result to :math.

 Link to this function

 math?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:math.
For string parameters, all codepoints in
the string must have the :math
property in order for the result to be true.

 Link to this function

 noncharacter_code_point(codepoint)

 View Source

Returns :noncharacter_code_point or nil indicating
if the codepoint or string has the property
:noncharacter_code_point.
For string parameters, all codepoints in
the string must have the :noncharacter_code_point
property in order for the result to :noncharacter_code_point.

 Link to this function

 noncharacter_code_point?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:noncharacter_code_point.
For string parameters, all codepoints in
the string must have the :noncharacter_code_point
property in order for the result to be true.

 Link to this function

 numeric(codepoint_or_binary)

 View Source

Returns :numeric or nil based upon
whether the given codepoint or binary
is all numeric characters.
This is useful when the desired result is
truthy or falsy

 example

 Example

iex> Unicode.Property.numeric "123"
:numeric
iex> Unicode.Property.numeric "123a"
nil

 Link to this function

 numeric?(codepoint)

 View Source

Returns a boolean based upon
whether the given codepoint or binary
is all numeric characters.

 example

 Example

iex> Unicode.Property.numeric? "123"
true
iex> Unicode.Property.numeric? "123a"
false

 Link to this function

 other_alphabetic(codepoint)

 View Source

Returns :other_alphabetic or nil indicating
if the codepoint or string has the property
:other_alphabetic.
For string parameters, all codepoints in
the string must have the :other_alphabetic
property in order for the result to :other_alphabetic.

 Link to this function

 other_alphabetic?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_alphabetic.
For string parameters, all codepoints in
the string must have the :other_alphabetic
property in order for the result to be true.

 Link to this function

 other_default_ignorable_code_point(codepoint)

 View Source

Returns :other_default_ignorable_code_point or nil indicating
if the codepoint or string has the property
:other_default_ignorable_code_point.
For string parameters, all codepoints in
the string must have the :other_default_ignorable_code_point
property in order for the result to :other_default_ignorable_code_point.

 Link to this function

 other_default_ignorable_code_point?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_default_ignorable_code_point.
For string parameters, all codepoints in
the string must have the :other_default_ignorable_code_point
property in order for the result to be true.

 Link to this function

 other_grapheme_extend(codepoint)

 View Source

Returns :other_grapheme_extend or nil indicating
if the codepoint or string has the property
:other_grapheme_extend.
For string parameters, all codepoints in
the string must have the :other_grapheme_extend
property in order for the result to :other_grapheme_extend.

 Link to this function

 other_grapheme_extend?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_grapheme_extend.
For string parameters, all codepoints in
the string must have the :other_grapheme_extend
property in order for the result to be true.

 Link to this function

 other_id_continue(codepoint)

 View Source

Returns :other_id_continue or nil indicating
if the codepoint or string has the property
:other_id_continue.
For string parameters, all codepoints in
the string must have the :other_id_continue
property in order for the result to :other_id_continue.

 Link to this function

 other_id_continue?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_id_continue.
For string parameters, all codepoints in
the string must have the :other_id_continue
property in order for the result to be true.

 Link to this function

 other_id_start(codepoint)

 View Source

Returns :other_id_start or nil indicating
if the codepoint or string has the property
:other_id_start.
For string parameters, all codepoints in
the string must have the :other_id_start
property in order for the result to :other_id_start.

 Link to this function

 other_id_start?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_id_start.
For string parameters, all codepoints in
the string must have the :other_id_start
property in order for the result to be true.

 Link to this function

 other_lowercase(codepoint)

 View Source

Returns :other_lowercase or nil indicating
if the codepoint or string has the property
:other_lowercase.
For string parameters, all codepoints in
the string must have the :other_lowercase
property in order for the result to :other_lowercase.

 Link to this function

 other_lowercase?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_lowercase.
For string parameters, all codepoints in
the string must have the :other_lowercase
property in order for the result to be true.

 Link to this function

 other_math(codepoint)

 View Source

Returns :other_math or nil indicating
if the codepoint or string has the property
:other_math.
For string parameters, all codepoints in
the string must have the :other_math
property in order for the result to :other_math.

 Link to this function

 other_math?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_math.
For string parameters, all codepoints in
the string must have the :other_math
property in order for the result to be true.

 Link to this function

 other_uppercase(codepoint)

 View Source

Returns :other_uppercase or nil indicating
if the codepoint or string has the property
:other_uppercase.
For string parameters, all codepoints in
the string must have the :other_uppercase
property in order for the result to :other_uppercase.

 Link to this function

 other_uppercase?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:other_uppercase.
For string parameters, all codepoints in
the string must have the :other_uppercase
property in order for the result to be true.

 Link to this function

 pattern_syntax(codepoint)

 View Source

Returns :pattern_syntax or nil indicating
if the codepoint or string has the property
:pattern_syntax.
For string parameters, all codepoints in
the string must have the :pattern_syntax
property in order for the result to :pattern_syntax.

 Link to this function

 pattern_syntax?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:pattern_syntax.
For string parameters, all codepoints in
the string must have the :pattern_syntax
property in order for the result to be true.

 Link to this function

 pattern_white_space(codepoint)

 View Source

Returns :pattern_white_space or nil indicating
if the codepoint or string has the property
:pattern_white_space.
For string parameters, all codepoints in
the string must have the :pattern_white_space
property in order for the result to :pattern_white_space.

 Link to this function

 pattern_white_space?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:pattern_white_space.
For string parameters, all codepoints in
the string must have the :pattern_white_space
property in order for the result to be true.

 Link to this function

 prepended_concatenation_mark(codepoint)

 View Source

Returns :prepended_concatenation_mark or nil indicating
if the codepoint or string has the property
:prepended_concatenation_mark.
For string parameters, all codepoints in
the string must have the :prepended_concatenation_mark
property in order for the result to :prepended_concatenation_mark.

 Link to this function

 prepended_concatenation_mark?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:prepended_concatenation_mark.
For string parameters, all codepoints in
the string must have the :prepended_concatenation_mark
property in order for the result to be true.

 Link to this function

 properties()

 View Source

Returns the map of Unicode
properties.
The property name is the map
key and a list of codepoint
ranges as tuples as the value.

 Link to this function

 properties(codepoint)

 View Source

 @spec properties(string_or_codepoint()) :: [atom(), ...] | [[atom(), ...], ...]

Returns the property name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
list of properties for that codepoint name is returned.
For a binary a list of list for each
codepoint in the binary is returned.

 Link to this function

 quotation_mark(codepoint)

 View Source

Returns :quotation_mark or nil indicating
if the codepoint or string has the property
:quotation_mark.
For string parameters, all codepoints in
the string must have the :quotation_mark
property in order for the result to :quotation_mark.

 Link to this function

 quotation_mark?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:quotation_mark.
For string parameters, all codepoints in
the string must have the :quotation_mark
property in order for the result to be true.

 Link to this function

 radical(codepoint)

 View Source

Returns :radical or nil indicating
if the codepoint or string has the property
:radical.
For string parameters, all codepoints in
the string must have the :radical
property in order for the result to :radical.

 Link to this function

 radical?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:radical.
For string parameters, all codepoints in
the string must have the :radical
property in order for the result to be true.

 Link to this function

 regional_indicator(codepoint)

 View Source

Returns :regional_indicator or nil indicating
if the codepoint or string has the property
:regional_indicator.
For string parameters, all codepoints in
the string must have the :regional_indicator
property in order for the result to :regional_indicator.

 Link to this function

 regional_indicator?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:regional_indicator.
For string parameters, all codepoints in
the string must have the :regional_indicator
property in order for the result to be true.

 Link to this function

 sentence_terminal(codepoint)

 View Source

Returns :sentence_terminal or nil indicating
if the codepoint or string has the property
:sentence_terminal.
For string parameters, all codepoints in
the string must have the :sentence_terminal
property in order for the result to :sentence_terminal.

 Link to this function

 sentence_terminal?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:sentence_terminal.
For string parameters, all codepoints in
the string must have the :sentence_terminal
property in order for the result to be true.

 Link to this function

 servers()

 View Source

Returns a map of properties to the module
that serves that property.

 Link to this function

 soft_dotted(codepoint)

 View Source

Returns :soft_dotted or nil indicating
if the codepoint or string has the property
:soft_dotted.
For string parameters, all codepoints in
the string must have the :soft_dotted
property in order for the result to :soft_dotted.

 Link to this function

 soft_dotted?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:soft_dotted.
For string parameters, all codepoints in
the string must have the :soft_dotted
property in order for the result to be true.

 Link to this function

 terminal_punctuation(codepoint)

 View Source

Returns :terminal_punctuation or nil indicating
if the codepoint or string has the property
:terminal_punctuation.
For string parameters, all codepoints in
the string must have the :terminal_punctuation
property in order for the result to :terminal_punctuation.

 Link to this function

 terminal_punctuation?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:terminal_punctuation.
For string parameters, all codepoints in
the string must have the :terminal_punctuation
property in order for the result to be true.

 Link to this function

 unified_ideograph(codepoint)

 View Source

Returns :unified_ideograph or nil indicating
if the codepoint or string has the property
:unified_ideograph.
For string parameters, all codepoints in
the string must have the :unified_ideograph
property in order for the result to :unified_ideograph.

 Link to this function

 unified_ideograph?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:unified_ideograph.
For string parameters, all codepoints in
the string must have the :unified_ideograph
property in order for the result to be true.

 Link to this function

 uppercase(codepoint)

 View Source

Returns :uppercase or nil indicating
if the codepoint or string has the property
:uppercase.
For string parameters, all codepoints in
the string must have the :uppercase
property in order for the result to :uppercase.

 Link to this function

 uppercase?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:uppercase.
For string parameters, all codepoints in
the string must have the :uppercase
property in order for the result to be true.

 Link to this function

 variation_selector(codepoint)

 View Source

Returns :variation_selector or nil indicating
if the codepoint or string has the property
:variation_selector.
For string parameters, all codepoints in
the string must have the :variation_selector
property in order for the result to :variation_selector.

 Link to this function

 variation_selector?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:variation_selector.
For string parameters, all codepoints in
the string must have the :variation_selector
property in order for the result to be true.

 Link to this function

 white_space(codepoint)

 View Source

Returns :white_space or nil indicating
if the codepoint or string has the property
:white_space.
For string parameters, all codepoints in
the string must have the :white_space
property in order for the result to :white_space.

 Link to this function

 white_space?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:white_space.
For string parameters, all codepoints in
the string must have the :white_space
property in order for the result to be true.

 Link to this function

 xid_continue(codepoint)

 View Source

Returns :xid_continue or nil indicating
if the codepoint or string has the property
:xid_continue.
For string parameters, all codepoints in
the string must have the :xid_continue
property in order for the result to :xid_continue.

 Link to this function

 xid_continue?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:xid_continue.
For string parameters, all codepoints in
the string must have the :xid_continue
property in order for the result to be true.

 Link to this function

 xid_start(codepoint)

 View Source

Returns :xid_start or nil indicating
if the codepoint or string has the property
:xid_start.
For string parameters, all codepoints in
the string must have the :xid_start
property in order for the result to :xid_start.

 Link to this function

 xid_start?(codepoint)

 View Source

Returns a boolean indicating if the
codepoint or string has the property
:xid_start.
For string parameters, all codepoints in
the string must have the :xid_start
property in order for the result to be true.

Unicode.Script

Functions to introspect Unicode
scripts for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode scripts.

 count(script)

 Returns the count of the number of characters
for a given script.

 fetch(script)

 Returns the Unicode ranges for
a given script as a list of
ranges as 2-tuples.

 get(script)

 Returns the Unicode ranges for
a given script as a list of
ranges as 2-tuples.

 known_scripts()

 Returns a list of known Unicode
script names.

 script(string)

 Returns the script name(s) for the
given binary or codepoint.

 scripts()

 Returns the map of Unicode
scripts.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode scripts.
An alias is an alternative name
for referring to a script. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 count(script)

 View Source

Returns the count of the number of characters
for a given script.

 example

 Example

iex> Unicode.Script.count("mongolian")
168

 Link to this function

 fetch(script)

 View Source

Returns the Unicode ranges for
a given script as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(script)

 View Source

Returns the Unicode ranges for
a given script as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_scripts()

 View Source

Returns a list of known Unicode
script names.
This function does not return the
names of any script aliases.

 Link to this function

 script(string)

 View Source

Returns the script name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
script name is returned.
For a binary a list of distinct script
names represented by the graphemes in
the binary is returned.

 Link to this function

 scripts()

 View Source

Returns the map of Unicode
scripts.
The script name is the map
key and a list of codepoint
ranges as tuples as the value.

Unicode.SentenceBreak

Functions to introspect Unicode
sentence breaks for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode sentence breaks.

 count(sentence_break)

 Returns the count of the number of characters
for a given sentence break.

 fetch(sentence_break)

 Returns the Unicode ranges for
a given sentence break as a list of
ranges as 2-tuples.

 get(sentence_break)

 Returns the Unicode ranges for
a given sentence break as a list of
ranges as 2-tuples.

 known_sentence_breaks()

 Returns a list of known Unicode
sentence break names.

 sentence_break(string)

 Returns the sentence break name(s) for the
given binary or codepoint.

 sentence_breaks()

 Returns the map of Unicode
sentence breaks.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode sentence breaks.
An alias is an alternative name
for referring to a sentence break. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 count(sentence_break)

 View Source

Returns the count of the number of characters
for a given sentence break.

 example

 Example

iex> Unicode.SentenceBreak.count(:extend)
2550

 Link to this function

 fetch(sentence_break)

 View Source

Returns the Unicode ranges for
a given sentence break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(sentence_break)

 View Source

Returns the Unicode ranges for
a given sentence break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_sentence_breaks()

 View Source

Returns a list of known Unicode
sentence break names.
This function does not return the
names of any sentence break aliases.

 Link to this function

 sentence_break(string)

 View Source

Returns the sentence break name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
sentence break name is returned.
For a binary a list of distinct sentence break
names represented by the graphemes in
the binary is returned.

 Link to this function

 sentence_breaks()

 View Source

Returns the map of Unicode
sentence breaks.
The sentence break name is the map
key and a list of codepoint
ranges as tuples as the value.

Unicode.WordBreak

Functions to introspect Unicode
line breaks for binaries
(Strings) and codepoints.

 Anchor for this section

 Summary

 Functions

 aliases()

 Returns a map of aliases for
Unicode line breaks.

 count(word_break)

 Returns the count of the number of characters
for a given word_break.

 fetch(word_break)

 Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.

 get(word_break)

 Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.

 known_word_breaks()

 Returns a list of known Unicode
line break names.

 word_break(string)

 Returns the line break name(s) for the
given binary or codepoint.

 word_breaks()

 Returns the map of Unicode
line breaks.

 Anchor for this section

Functions

 Link to this function

 aliases()

 View Source

Returns a map of aliases for
Unicode line breaks.
An alias is an alternative name
for referring to a line break. Aliases
are resolved by the fetch/1 and
get/1 functions.

 Link to this function

 count(word_break)

 View Source

Returns the count of the number of characters
for a given word_break.

 example

 Example

iex> Unicode.LineBreak.count(:al)
21400

 Link to this function

 fetch(word_break)

 View Source

Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either {:ok, range_list} or
:error.

 Link to this function

 get(word_break)

 View Source

Returns the Unicode ranges for
a given line break as a list of
ranges as 2-tuples.
Aliases are resolved by this function.
Returns either range_list or
nil.

 Link to this function

 known_word_breaks()

 View Source

Returns a list of known Unicode
line break names.
This function does not return the
names of any line break aliases.

 Link to this function

 word_break(string)

 View Source

Returns the line break name(s) for the
given binary or codepoint.
In the case of a codepoint, a single
word_break name is returned.
For a binary a list of distinct line break
names represented by the lines in
the binary is returned.

 Link to this function

 word_breaks()

 View Source

Returns the map of Unicode
line breaks.
The line break name is the map
key and a list of codepoint
ranges as tuples as the value.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

