

 Ueberauth Apple Strategy

 v0.6.0

 Table of contents

 	Overview

 	Getting Started

 	Contributing

 	License

 	Modules

 	Ueberauth.Strategy.Apple

 	Ueberauth.Strategy.Apple.OAuth

 	Ueberauth.Strategy.Apple.Token

 	UeberauthApple

Überauth Apple

Überauth plugin for Apple OAuth / Sign In with Apple
What is this?
Ueberauth is an authentication framework for Elixir applications that specializes in OAuth.
This library is one of many plugins (called Strategies) that allow Ueberauth to integrate with different identity providers.
Specifically, this one implements an OAuth integration with Apple, for their Sign In with Apple service.
Important Notes
Apple's OAuth implementation is different than you may expect.
Please keep the following in mind:
	There are only two scopes available, name and email, for retrieving personal information about the user signing in.
Neither scope provides access to any API endpoints; instead they change the data returned during the sign-in process.

	If any scopes are requested during sign-in, the response from Apple must be in the form of a form POST request to your application.
Otherwise, a GET request with query parameters will occur.
Accepting POST callbacks require additional setup with Ueberauth that may not be necessary for other providers.

	Because scoped requests must use a form POST request, any cookies that will be read during the callback phase must have SameSite=None (and, therefore, Secure).
Otherwise the browser will block them from being sent along with the POST because it is not a top-level navigation.

	Apple requires a Primary App ID (with the Sign In with Apple capability enabled), Services ID, and Private Key to be set up in their Apple Developer Console before integration can occur.

	Apple OAuth Client Secrets are generated from a Private Key and have a maximum lifetime of six months.

	Users may choose not to share their information with your application, in which case an anonymized private relay email address will be supplied during the callback phase.

	Apple does not supply the user's name in callback responses after the first time.

Quick Start
For detailed instructions, see Getting Started.
	Set up a Services ID and download a Private Key in the Apple Developer Console.
See Getting Started or the official documentation for more information

	Add :ueberauth_apple to your list of dependencies in mix.exs and run mix deps.get:

 def deps do
 [
 # ...
 {:ueberauth, "~> 0.10"},
 {:ueberauth_apple, github: "codesandbox/ueberauth_apple"}
]
 end
	Add this library as a new provider for Ueberauth (see Getting Started for more information on the available options):

 config :ueberauth, Ueberauth,
 providers: [
 # Default configuration: does not retrieve name or email address during sign-in.
 apple: {Ueberauth.Strategy.Apple, []}

 # Alternative configuration: retrieve name and email during sign-in.
 apple: {Ueberauth.Strategy.Apple, callback_methods: ["POST"], default_scope: "name email"}
]
	Configure the provider (see Getting Started for more information on generating client secrets):

 config :ueberauth, Ueberauth.Strategy.Apple.OAuth,
 client_id: System.get_env("APPLE_CLIENT_ID"),
 client_secret: {MyApp.Apple, :client_secret}
	Create a Client Secret generator function.
(Apple's Client Secrets are generated from a Private Key and have a maximum life of six months.)

	Integrate Ueberauth with the rest of your application (usually: router and controller).
See Getting Started or the Ueberauth Example application.

Usage
Making a request to /auth/apple will redirect to the Apple sign-in page with the relevant query parameters.
You can include a scope query param to configure the scopes at runtime: /auth/apple?scope=name%20email.
The default scopes can also be configured in the provider definition.
To guard against client-side request modification, it's important to still check the domain in info.urls[:website] within the Ueberauth.Auth struct if you want to limit sign-in to a specific domain.
Acknowledgments
Thank you to Loop Social for the original implementation of this library.
License
Please see LICENSE for licensing details.

Getting Started

Setting up your application to use Sign In with Apple requires a few steps:
	Create and configure a Services ID in the Apple Developer Console and download a private key.
	Install :ueberauth_apple (and :ueberauth, if not already installed).
	Configure Ueberauth to include this library as a provider.
	Configure this library, including a method of client secret generation.

Let's get started!

Set Up with Apple
Note
If you already have a Services ID with Sign In with Apple set up, skip down to Installation.

You can also check out the official documentation for setting up Sign In with Apple.
Abbreviated instructions are included below.
Prerequisites
	You must have an Apple Developer account with Account Holder or Admin permissions.
	You must have an eligible domain to associate with your service (not localhost, .test, etc.).
	You must have a Primary App ID with Sign In with Apple enabled.
(For this, go to Certificates, Identifiers & Profiles and select the Identifiers tab (direct link).
Then create or select your App ID, and enable the Sign In with Apple capability.)

Services ID
Services IDs establish a relationship between your website and your Apple Developer Program team and apps.
You may choose to have multiple Services IDs for multiple instances of your application (e.g. staging and production).
Each Services ID has a reverse-domain identifier, like com.example.my-app, that is distinct from your app IDs.
You can enable one or more services on each Service ID; for our purposes, only "Sign In with Apple" is necessary.
To set up a Services ID, perform the following:
	Log in to your Apple Developer account.
	Go to Certificates, Identifiers & Profiles, select the Identifiers tab, and then select Services IDs from the dropdown in the top-right (direct link).
	Click + to create a new identifier.
	Select Services IDs and continue.
	Provide a description (example MyApp Staging) and identifier (example com.example.my-app-staging).
	Continue, and click Register.
	You should now see the new Services ID in the list of all identifiers.
Click it again to configure it.
	Enable Sign In with Apple and click Configure.
	If you have a published application (such as an iOS version of your app) already, you likely want to use that app's identifier as the Primary App ID.
Learn more about grouping App IDs here.
	Input all Domains and Subdomains that will act as origins for Sign In with Apple requests.
	Input the exact Return URL(s) your app will use during the OAuth flow.
Usually these look like https://my-app.example.com/auth/apple/callback.
	Confirm your choices. Once back at the Services ID configuration page, Continue and Save.

You now have a Services ID that is eligible to make requests to Sign In with Apple.
Currently, it is also necessary to provide :ueberauth_apple with the details necessary to make an API request to Apple.
This includes a private key.
Private Key
After creating a Services ID, we also need to create a private key for use with API requests.
	In the Apple Developer console, return to Certificates, Identifiers & Profiles and select the Keys tab (direct link).
	Click + to create a new key.
	Provide a name for the key (example Sign In with Apple Staging) and select Sign In with Apple.
Click Configure for this service.
	Select the same Primary App ID that was used for your Services ID.
Be aware that this private key will be eligible to make requests against any of the grouped IDs (so even a staging key should be considered a production-level secret).
	Save the Primary ID choice, Continue, and Register.
	Download the new Key file and record the Key ID.
Both of these pieces of information are necessary to generate a client secret later.

Important
Private Key files are critical secrets for your application.
Even if you intend to use a Key only for testing, it has access to Sign In with Apple for all Services IDs connected to the same Primary App ID.
Use configuration best practices to provide these keys at runtime in the production environment.

Installation
Now that you have a Services ID and Private Key set up with Apple, you can begin integrating Sign In with Apple in your application.
Package
Add ueberauth_apple as a dependency in mix.exs and run mix deps.get:
def deps do
 [
 # ...
 {:ueberauth, "~> 0.10"},
 {:ueberauth_apple, github: "codesandbox/ueberauth_apple"},
]
end
Provider Configuration
Then add this library as a provider in your configuration for Ueberauth:
config :ueberauth, Ueberauth,
 providers: [
 apple: {Ueberauth.Strategy.Apple, []}
]
The following options are available here, in the provider definition:
	callback_methods: List of HTTP methods to accept during the callback phase.
Should be ["POST"] if requesting any scopes (name or email), or ["GET"] otherwise.
Defaults to ["GET"]. See also Ueberauth's documentation.

	callback_path: See Ueberauth's documentation.

	callback_url: URL to use as the Redirect URI parameter in the request phase.
Defaults to a value based on the Phoenix Endpoint's host and the Ueberauth configuration.

	default_scope: Space-separated string of personal information to retrieve from Apple during sign-in.
Available options are name and email.
If any scopes are included, the callback_methods option must include "POST".
Defaults to no scopes, or "".

	request_path: See Ueberauth's documentation.

Plug Integration
As with other Ueberauth providers, it is necessary to implement handlers for the callback phase.
This usually includes adding Ueberauth as a plug in an authentication-related controller:
defmodule MyAppWeb.AuthController do
 use MyAppWeb, :controller
 plug Ueberauth
 # ...
end
Then, implement handlers for success and failure cases during the callback phase:
defmodule MyAppWeb.AuthController do
 # ...

 def callback(%{assigns: %{ueberauth_failure: failure}} = conn, _params) do
 message = Enum.map_join(failure.errors, "; ", fn error -> error.message end)

 conn
 |> put_flash(:error, "An error occurred during authentication: #{message}")
 |> redirect(to: "/")
 end

 def callback(%{assigns: %{ueberauth_auth: auth}} = conn, _params) do
 case MyApp.Accounts.create_or_update_user(auth) do
 {:ok, user} ->
 conn
 |> put_flash(:info, "Successfully logged in")
 |> log_in_and_redirect_user(user)

 {:error, _changeset} ->
 conn
 |> put_flash(:error, "An error occurred while saving login")
 |> redirect(to: "/")
 end
 end
end
Finally, ensure the relevant routes are available in the router:
defmodule MyAppWeb.Router
 # ...

 scope "/auth", UeberauthExampleWeb do
 pipe_through :browser

 get "/:provider", AuthController, :request

 # Include this for requests with no scopes, or if you use other providers that require it.
 get "/:provider/callback", AuthController, :callback

 # Include this for requests with any scopes (name and/or email).
 post "/:provider/callback", AuthController, :callback
 end
end
For further assistance, check out the Ueberauth Example.

OAuth Configuration
In addition to the configuration provided above, this library accepts configuration for its OAuth module.
config :ueberauth, Ueberauth.Strategy.Apple.OAuth,
 client_id: System.get_env("APPLE_CLIENT_ID"),
 client_secret: {MyApp.Apple, :client_secret}
The following options are available:
	client_id: (Required) OAuth client ID used during both the request and callback phases.
This matches the reverse-domain Services ID registered with Apple.

	client_secret: (Required) OAuth client secret OR a function used to generate this secret.
Apple restricts client secrets to a maximum lifetime of six months, so most applications will generate and cache this secret at runtime.
Use a string as the value to define the secret directly, or {Module, :function} as the value to define the generator function (see below).

Generating the Client Secret
See also the official documentation for more information.
A typical client secret generator might look like this:
defmodule MyApp.Apple
 @expiration_sec 86400 * 180

 @spec client_secret(keyword) :: String.t()
 def client_secret(_config \\ []) do
 with {:error, :not_found} <- get_client_secret_from_cache() do
 secret =
 UeberauthApple.generate_client_secret(%{
 client_id: Application.fetch_env!(:my_app, :apple_client_id),
 expires_in: @expiration_sec,
 key_id: Application.fetch_env!(:my_app, :apple_private_key_id),
 team_id: Application.fetch_env!(:my_app, :apple_team_id),
 private_key: Application.fetch_env!(:my_app, :apple_private_key)
 })

 put_client_secret_in_cache(secret, @expiration_sec)
 secret
 end
 end
end
In this example, the client_secret configuration for the OAuth module would be {MyApp.Apple, :client_secret}.
The config argument supplied by this library includes basic information about the request, including the client ID if configured:
[
 strategy: Ueberauth.Strategy.Apple.OAuth,
 site: "https://appleid.apple.com",
 authorize_url: "/auth/authorize",
 token_url: "/auth/token",
 redirect_uri: "https://my-app.example.com/auth/apple/callback",
 client_id: "com.example.my-app",
 client_secret: {MyApp.Apple, :client_secret}
]
Because client secret generation may take some time, it is recommended to use a caching mechanism (ETS, Redis, etc.) to hold the generated secret until its expiration.

Contributing to Ueberauth Apple

Pull Requests Welcome
	Fork ueberauth_apple
	Create a topic branch
	Make logically-grouped commits with clear commit messages
	Push commits to your fork
	Open a pull request against ueberauth_apple/master

Issues
If you believe there to be a bug, please provide the maintainers with enough
detail to reproduce or a link to an app exhibiting unexpected behavior. For
help, please start with Stack Overflow.

License

The MIT License (MIT)

Copyright (c) 2019 Loop Now Technologies, Inc.
Copyright (c) 2022 CodeSandbox, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Ueberauth.Strategy.Apple

Implementation of an Ueberauth Strategy for "Sign In with Apple".
Configuration
This provider supports the following configuration:
	Callback URL: (Required) The URI to which the authorization redirects. It must include a
domain name and can’t be an IP address or localhost. Apple will check the provided URL against
the domains and redirect URIs configured in your Service ID. Defaults to
[...]/auth/:provider/callback according to the configured provider name.

	Response mode: How response information will be sent back to the server during the
callback phase.. Valid values are "query", "fragment", and "form_post". If you requested
any scopes, the value must be form_post. Defaults to "query" if no scopes are requested,
"form_post" otherwise.

	Scopes: The amount of user information requested from Apple. Valid values are name and
email, with multiple values separated by spaces. You can request one, both, or none.
Defaults to no scopes ("").

 Anchor for this section

 Summary

 Functions

 credentials(conn)

 Includes the credentials from the Apple response.

 default_options()

 Callback implementation for Ueberauth.Strategy.default_options/0.

 extra(conn)

 Stores the raw information (including the token) obtained from the google callback.

 handle_callback!(conn)

 Handles the callback from Apple.

 handle_request!(conn)

 Handles initial request for Apple authentication.

 info(conn)

 Fetches the fields to populate the info section of the Ueberauth.Auth struct.

 uid(conn)

 Fetches the uid field from the response.

 Anchor for this section

Functions

 Link to this function

 credentials(conn)

 View Source

 @spec credentials(Plug.Conn.t()) :: Ueberauth.Auth.Credentials.t()

Includes the credentials from the Apple response.

 Link to this function

 default_options()

 View Source

Callback implementation for Ueberauth.Strategy.default_options/0.

 Link to this function

 extra(conn)

 View Source

 @spec extra(Plug.Conn.t()) :: Ueberauth.Auth.Extra.t()

Stores the raw information (including the token) obtained from the google callback.

 Link to this function

 handle_callback!(conn)

 View Source

 @spec handle_callback!(Plug.Conn.t()) :: Plug.Conn.t()

Handles the callback from Apple.

 Link to this function

 handle_request!(conn)

 View Source

 @spec handle_request!(Plug.Conn.t()) :: Plug.Conn.t()

Handles initial request for Apple authentication.

 Link to this function

 info(conn)

 View Source

 @spec info(Plug.Conn.t()) :: Ueberauth.Auth.Info.t()

Fetches the fields to populate the info section of the Ueberauth.Auth struct.

 Link to this function

 uid(conn)

 View Source

 @spec uid(Plug.Conn.t()) :: binary() | nil

Fetches the uid field from the response.

Ueberauth.Strategy.Apple.OAuth

OAuth2 for Apple.
Add client_id and client_secret to your configuration:
config :ueberauth, Ueberauth.Strategy.Apple.OAuth,
 client_id: System.get_env("APPLE_CLIENT_ID"),
 client_secret: System.get_env("APPLE_CLIENT_SECRET")

 Anchor for this section

 Summary

 Functions

 authorize_url!(params \\ [], opts \\ [])

 Provides the authorize url for the request phase of Ueberauth. No need to call this usually.

 authorize_url(client, params)

 Callback implementation for OAuth2.Strategy.authorize_url/2.

 client(opts \\ [])

 Construct a client for requests to Apple.

 get(token, url, headers \\ [], opts \\ [])

 get_access_token(params \\ [], opts \\ [])

 get_token(client, params, headers)

 Callback implementation for OAuth2.Strategy.get_token/3.

 Anchor for this section

Functions

 Link to this function

 authorize_url!(params \\ [], opts \\ [])

 View Source

Provides the authorize url for the request phase of Ueberauth. No need to call this usually.

 Link to this function

 authorize_url(client, params)

 View Source

Callback implementation for OAuth2.Strategy.authorize_url/2.

 Link to this function

 client(opts \\ [])

 View Source

Construct a client for requests to Apple.
This will be setup automatically for you in Ueberauth.Strategy.Apple.
These options are only useful for usage outside the normal callback phase of Ueberauth.

 Link to this function

 get(token, url, headers \\ [], opts \\ [])

 View Source

 Link to this function

 get_access_token(params \\ [], opts \\ [])

 View Source

 Link to this function

 get_token(client, params, headers)

 View Source

Callback implementation for OAuth2.Strategy.get_token/3.

Ueberauth.Strategy.Apple.Token

Provides helpers for working with Apple-generated tokens.
Apple provides a public list of keys that may be used for token signing at https://appleid.apple.com/auth/keys.

 Anchor for this section

 Summary

 Types

 public_key()

 Public Key used by Apple to sign ID Tokens

 t()

 ID Token supplied by the Apple Auth API

 Functions

 payload(id_token, opts \\ [])

 Decode an ID Token provided by the Apple Auth API.

 Anchor for this section

Types

 Link to this type

 public_key()

 View Source

 @type public_key() :: map()

Public Key used by Apple to sign ID Tokens

 Link to this type

 t()

 View Source

 @type t() :: String.t()

ID Token supplied by the Apple Auth API

 Anchor for this section

Functions

 Link to this function

 payload(id_token, opts \\ [])

 View Source

 @spec payload(
 t(),
 keyword()
) :: {:ok, map()} | {:error, term()}

Decode an ID Token provided by the Apple Auth API.

 options

 Options

	:public_keys: {Module, :function, args} to call in order to get a list of public keys.
The returned data must be in the form {:ok, keys} where keys is a list of maps matching
the structure found at https://appleid.apple.com/auth/keys. Defaults to a function that uses HTTPoison to
request the keys on every call.

UeberauthApple

UeberauthApple is a convenience module related to the Apple strategy for Ueberauth.
For more information, see the Overview.

 Anchor for this section

 Summary

 Functions

 generate_client_secret(opts)

 Generate a Client Secret from the given options.

 Anchor for this section

Functions

 Link to this function

 generate_client_secret(opts)

 View Source

 @spec generate_client_secret(map() | keyword()) :: String.t()

Generate a Client Secret from the given options.
This function does not concern itself with caching. Because generation of the Client Secret can
be costly on every request, it is recommended to wrap this function with a cache-aware function.

 options

 Options

	:client_id: (Required) Reverse-domain Services ID configured for Sign In with Apple.

	:expires_in: Duration, in number of seconds, for the secret to be valid. Apple specifies
a maximum duration of 15552000 seconds (6 months), which is the default.

	:key_id: (Required) Key ID for the Apple-generated Private Key associated with the
Services ID given in :client_id.

	:private_key (Required) Full text of the Apple-generated Private Key file associated
with the Services ID given in :client_id.

	:team_id: (Required) Apple Developer Program team ID, as found in the top-right of the
Apple Developer Console.

 examples

 Examples

Below is an example of a client secret generator that maintains an expiring cache of the secret.
defmodule MyApp.Apple
 @expiration_sec 86400 * 180

 @spec client_secret(keyword) :: String.t()
 def client_secret(_config \\ []) do
 with {:error, :not_found} <- get_client_secret_from_cache() do
 secret =
 UeberauthApple.generate_client_secret(%{
 client_id: Application.fetch_env!(:my_app, :apple_client_id),
 expires_in: @expiration_sec,
 key_id: Application.fetch_env!(:my_app, :apple_private_key_id),
 team_id: Application.fetch_env!(:my_app, :apple_team_id),
 private_key: Application.fetch_env!(:my_app, :apple_private_key)
 })

 put_client_secret_in_cache(secret, @expiration_sec)
 secret
 end
 end
end

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

