

 tortoise311

 v0.11.1

 Table of contents

 	Introduction

 	Connecting to a MQTT Broker

 	Connection Supervision

 	Publishing Messages

 	Modules

 	Tortoise311

 	Tortoise311.Connection

 	Tortoise311.Events

 	Tortoise311.Handler

 	Tortoise311.Pipe

 	Tortoise311.Supervisor

 	Tortoise311.Transport

Introduction

Tortoise is a MQTT client application written in Elixir for use in
Elixir applications. Its philosophy is to separate the MQTT semantics
from the Elixir semantics, attempting to hide the MQTT protocol
details from the end-user while still being flexible enough to be able
to do just about anything one would like to do with the MQTT protocol.
MQTT overview
MQTT is a lightweight Publish/Subscribe (PubSub) protocol, designed to
operate on high-latency networks or unreliable networks. It is a
server/client architecture, so a MQTT server (often referred to as a
broker) is required for the clients to connect to. All communication
happens via the broker, clients cannot see each other, and the
capabilities of the MQTT broker can vary depending on its
implementation and its configuration.
Being a PubSub protocol the clients can connect to the broker and
subscribe to topics, by specifying topic filters, and post messages to
topics. Depending on the configuration of the broker the topics can be
free-form (any valid topic filter accepted), or restricted to a
handful of topics. A topic consist of one or more topic levels,
separated by forward slashes such as:
rooms/living-room/temp
rooms/hall/temp
rooms/kitchen/temp
"Topic filters" allow the client to glob on topics, and support
wildcards for a single level using a plus sign +; or multiple levels
using a hash sign #, which may only be at the last spot of the topic
filter. rooms/+/temp would subscribe to messages posted to all the
topics in the previous example, and rooms/# would subscribe to every
message posted to all topics starting with rooms. The wildcard
patterns can be mixed, so +/+/# would be a valid topic.
When publishing a message we cannot use the wildcard functionality,
that is strictly for subscribing; Publishing messages needs to be
addressed to a specific topic, not a topic filter.
The protocol support three kinds of quality of service (QoS) for both
subscriptions and publishing. The three kinds are defined as the
following:
	QoS=0 is a fire and forget. The sender has no guarantee that the
receiver will receive the message.

	QoS=1 where the receiver will respond with an acknowledge
message, at which point the sender will stop retransmitting the
message. It is possible that a retransmission will arrive after
the acknowledge message has been sent, in which case the
retransmission will be treated as a new message. In other words,
this implements at least once delivery.

	QoS=2 implements a series of acknowledge and release messages
ensuring a message will only get delivered once to the receiver,
referred to as exactly once delivery.

The higher quality of service specified the more expensive a publish
or a subscription will be bandwidth wise, as a higher QoS will require
more protocol messages to fulfill network exchange. That is why some
broker administrators choose to configure their broker to refuse
a higher quality of service for some topics, or some subscriptions. In
the case of subscriptions it can happen that a lower QoS than the one
requested is accepted.
Note: Placing a subscription with QoS=2 does not mean that the
client will receive messages with QoS=2, it will receive all
messages published to that topic regardless of QoS; the message
exchange between the broker and the client will use the specified QoS
in the subscription.
When a message is published to the broker, the client sending the
message can specify that the broker should retain the message; if so
the broker will keep the message and dispatch it to clients when they
subscribe to the topic.
It is also possible for a client to specify a last will message when
connecting to the broker. The broker will keep this message and
dispatch it to the specified topic when the client disconnects abruptly
from the broker.
The Tortoise MQTT Client
Tortoise aims to hide the MQTT semantics from the user, and expose an
interface that should be familiar to an Elixir developer. This means
the message exchanges needed to complete a publish or retrieval of a
message on a subscription with a QoS>0 should be handled in the
background and the details of the protocol should not bleed through to
the user.
While the goal of the project is to hide the details of the MQTT
protocol from the user, another goal is not to restrict the user in any
way. This means Tortoise will attempt to map Elixir semantics to
MQTT semantics, which should be possible because both systems deal
with message passing:
	A publish with QoS=0 works like a cast; send and forget.

	A publish with QoS>0 results in a message exchange between the
sender and the receiver; to keep track of these messages the MQTT
protocol specifies that these messages should have an identifier
assigned, a random 16-bit number. The user of Tortoise will never
see this random 16-bit number, but instead an Erlang reference
will get returned from the publish function, which makes it
possible to await and pattern match for the return.

	Furthermore, when it comes to publishing messages; the client
should make sure that messages with a QoS>0 are delivered, so if
the client is offline it should store these messages and send them
when the client is back online.

	A callback behaviour is specified allowing the user to implement
custom behavior for when the client connects; disconnects; accepts
a subscription; acknowledges an unsubscribe; and receives a message
on one of the subscribed topics.

If the design of Tortoise is a hindrance to creating something with
MQTT (within reason) it should be considered a bug, and it should be
discussed how we should map that behaviour to Elixir semantics.
Summary
MQTT is a protocol implementing a PubSub allowing one or multiple
clients to subscribe to topics, using topic filters, and clients to
publish messages to topics. Tortoise is an MQTT client that aims to map
MQTT semantics to Elixir so sending and receiving messages using an
MQTT broker feels like any other kind of message passing, and awaiting
results feels natural to the Elixir ecosystem.

Connecting to a MQTT Broker

Tortoise is capable of connecting to any MQTT broker that implements
the 3.1.1 version of the MQTT protocol (support for MQTT 5 is
planned). It does so by taking a connection specification, and with it
will do its best to connect to the broker and keeping the connection
open.
A minimal connection specification looks like this:
{ok, _pid} =
 Tortoise.Connection.start_link(
 client_id: HelloWorld,
 server: {Tortoise.Transport.Tcp, host: "localhost", port: 1883},
 handler: {Tortoise.Handler.Logger, []}
)
This will establish a TCP connection to a broker running on
localhost port 1883. The connection takes a module that implements
the Tortoise.Handler behaviour; In this case the
Tortoise.Handler.Logger callback module, which will print a log
statement on events happening during the connection life cycle.
Furthermore, we specify that the client_id of the connection is
HelloWorld. The client id can later be used to interact with the
connection, such as publishing messages and subscribing to topics.
Notice that this example expects a server configured to allow anonymous
connections without SSL. Not all MQTT brokers are configured the same, so
depending on the server more configuration options might be needed for
a successful connection. This document aims to give an overview.
Network Transport
Tortoise has an abstraction for the network transport, and comes
with two official implementations included in Tortoise itself:
	Tortoise.Transport.Tcp used to connect to a broker via
TCP. While this transport is the simplest to use it is also the
least secure, and should only be used on trusted networks. It is
based on :gen_tcp found in the Erlang/OTP distribution.

	Tortoise.Transport.SSL used to create a secure connection via
secure socket layer. This option takes a bit more work to setup,
but it will prevent people from eavesdropping on the data being
sent between the client and the broker.

The transports are given with the server field in the connection
specification as a tuple, containing the transport type and an
options list specific to the given transport.
Tortoise.Transport.Tcp takes two options; the host name as a string,
such as "localhost" or a four-tuple describing an IP-network
address, such as {127, 0, 0, 1}. An example where the TCP transport
is used can be seen in the introduction to this article.
The Tortoise.Transport.SSL is a bit more versatile in its
configuration options. The most important additional options are:
	cacertfile needs to point to a file with trusted CA
certificates, which is necessary for server certificate
verification. For instance, when using the
certifi package, pass
cacertfile: :certifi.cacertfile() in the options. It is also
possible to pass a list of binary (DER encoded) root CA
certificates using the cacerts option instead.
	certfile and keyfile are needed if the server authenticates
clients using a client certificate. The cert option can be
used to pass the client certificate as DER binary, and the
key option can be used to pass the key using
Erlang's ssl format
(e.g. {:RSAPrivateKey, der_binary_key}).
	verify defaults to :verify_peer, enabling server certificate
verification. To override, include verify: :verify_none in the
server options. In that case there is no need to define CA
certificates, but an attacker could intercept the connection
without detection!

Note that any paths must be specified as charlists.
The implementation is based on the :ssl module from the Erlang
distribution, so be sure to check the documentation for the :ssl
module for detailed information on the possible configuration
options.
Information on creating a custom transport can be found in the
Tortoise.Transport module, but for most cases the TCP and SSL modules
should suffice.
Connection Handler
A handful of events are possible during a client life cycle. Tortoise
aims to expose the interesting events as callback functions, defined in
the Tortoise.Handler behaviour, making it possible to implement
custom behavior for the client. The exposed events are:
	The client is initialized, or terminated allowing for
initialization and tear down of subsystems
	A connection to the server is established
	The connection to the server is dropped
	The subscription status of a given topic filter is changed
	A message is received on one of the subscribed topic filters

Read more about defining custom behavior for a connection in the
documentation for the Tortoise.Handler module.
The client_id
In MQTT, the clients announce themselves to the broker with what is
referred to as a client id. Two clients cannot share the same client
id on a broker, and depending on the implementation (or configuration)
the server will either kick the first client out, or deny the new client
if it specifies a client id that is already in use.
The protocol specifies that a valid client id is between 1 and 23
UTF-8 encoded bytes in length, but some server configurations may
allow for longer ids; thus tortoise will allow for client identifiers
longer than 23 bytes but some MQTT brokers might reject the
connection.
Allowed values are a string or an atom. If an atom is specified it
will be converted to a string when the connection message is sent on
the wire, but it will be possible to refer to the connection using the
atom, which can be more convenient. Notice that the client id can
easily reach the 23 bytes when converted from an atom because atoms
starting with an uppercase letter will be prefixed with Elixir.;
therefore MyClientId will be 17 bytes instead of the 10 one could
expect.
iex(1)> client_id = Atom.to_string(MyClientId)
"Elixir.MyClientId"
iex(2)> byte_size(client_id)
17
The specified client identifier is used to identify a connection when
publishing messages, subscribing to topics, or otherwise interacting
with the named connection.
{ok, _pid} =
 Tortoise.Connection.start_link(
 client_id: MyClient,
 server: {Tortoise.Transport.Tcp, host: "localhost", port: 1883},
 handler: {Tortoise.Handler.Logger, []}
)

Tortoise.publish(MyClient, "foo/bar", "hello")
Note: Though the MQTT 3.1.1 protocol allows for a zero-byte
client id — in which case the server should assign a random client_id
for the connection — a client id is enforced in Tortoise. This is
done so the connection has an identifier that can be used when
interacting with the connection.
User Name and Password
Some brokers are configured to require some basic authentication,
which will determine whether a user is allowed to subscribe or publish
to a given topic, and some set limitations to what quality of service
a particular user, or group of users, are allowed to subscribe or
publish with.
To specify a user name and password for a connection the aptly named
user_name and password connection configuration fields come in handy.
Both of them take UTF-8 encoded strings, or nil as their value, in which
case an anonymous connection is attempted. Depending on the broker
configuration it is allowed to specify a user name and omit the password,
but the user name has to be specified if a password is specified.
Both default to nil if left blank.
The keep alive interval
When connected, an MQTT client should ping the server on a set interval
to let the broker know that it is still alive. The keep alive value is
given as an integer, describing time in seconds between keep alive
messages, and should be set depending on factors such as power
consumption, network bandwidth, etc. Per default Tortoise will send a
keep alive message every 60 seconds, which is a reasonable value for
most installations. The allowed maximum value is 65_535, which is 18
hours, 12 minutes, and 15 seconds; most would consider this a bit too
extreme, and some brokers might reject connections specifying keep_alive
interval that is too high.
Some brokers allow disabling the keep alive interval by setting it to
zero, so Tortoise allows for a keep_alive specified as 0. Note
that the broker can still choose to disconnect a given client due to
inactivity. When keep_alive is disabled, the broker
implementation will decide its own measure of inactivity. So, to avoid
unspecified behavior, it is advised to use a keep alive value.
Last will message
It is possible to specify a message which should be dispatched by the
broker if the client is abruptly disconnected from the broker. This
message is known as the last will message, and allows for other
connected clients to act on other clients leaving the broker.
The (default) last will message is specified as part of the connection, and for
Tortoise it is possible to configure a last will message by passing in
a Tortoise.Package.Publish struct to the will connection
configuration field. Note that the Tortoise handler can provide a new last will message for
each new connection. If the handler chooses not to, the connection's default message will be used.
{:ok, pid} =
 Tortoise.Connection.start_link(
 client_id: William,
 server: {Tortoise.Transport.Tcp, host: 'localhost', port: 1883},
 handler: {Tortoise.Handler.Logger, []},
 will: %Tortoise.Package.Publish{topic: "foo/bar", payload: "goodbye"}
)
If we have another client connected to the broker, subscribing to
foo/bar, we should now receive a message containing the message
goodbye on that topic, should the client called William disconnect
abruptly from the broker. We can simulate this by terminating the pid
using Process.exit(pid, :ouch).

Connection Supervision

An important aspect of building an Elixir application is setting up a
supervision structure that ensures the application will continue
to work if parts of the system should reach an erroneous state and
need to get restarted into a known working state. To do this one needs
to group the processes the application consist of in a manner such
that processes belonging together will start and terminate together.
Tortoise offers multiple ways of supervising one or multiple
connections; by using the provided dynamic Tortoise.Supervisor or
starting a dynamic supervisor belonging to the application using the
connections; or by starting the connections needed directly in an
application supervisor. This document will describe the ways of
supervision, and give an overview for when to use a given supervision
strategy.
Linked Connection
A connection can be started and linked to the current process by using
the Tortoise.Connection.start_link/1 function.
Tortoise.Connection.start_link(
 client_id: HeartOfGold,
 server: {Tortoise.Transport.Tcp, host: 'localhost', port: 1883},
 handler: {Tortoise.Handler.Logger, []}
)
As with any other linked process both process will terminate if either
terminate, as described in the Process.link/1 documentation. This
means that any stored state in the process that owns the MQTT connection
will disappear with the process if the connection process
terminates. Therefore it is not recommended to link a connection
process like this outside of experimenting in IEx, but instead to run
it inside of a supervisor process. When properly supervised connections
terminate, the crash will be contained, allowing the other processes
to keep their state.
Supervising a connection
The Tortoise.Connection module provides a child_spec/1 which makes
it easier to start a Tortoise.Connection as part of a supervisor by
simply passing a {Tortoise.Connection, connection_specification} to
the supervisor child list.
defmodule MyApp.Supervisor do
 use Supervisor

 def start_link(opts) do
 Supervisor.start_link(__MODULE__, opts, name: __MODULE__)
 end

 @impl true
 def init(_opts) do
 children = [
 {Tortoise.Connection,
 [
 client_id: WombatTaskForce,
 server: {Tortoise.Transport.Tcp, host: 'localhost', port: 1883},
 handler: {Tortoise.Handler.Logger, []}
]}
]

 Supervisor.init(children, strategy: :one_for_one)
 end
end
The great thing about this approach is that the connection can live in
the same supervision tree as the rest of the application that depends
on that connection. The connection is started, restarted, and stopped
with the application as a whole, ensuring the connection is closed
with the processes that depend on it.
Be sure to set a reasonable connection strategy for the
supervisor. Refer to the Supervisor documentation for more
information on usage and configuration.
The Tortoise.Supervisor
When Tortoise is included as a dependency in the mix.exs file of
an application, Tortoise will automatically get started alongside the
application. During the application start up a dynamic supervisor will
spawn and register itself under the name Tortoise.Supervisor. This
can be used to start supervised connections that will get restarted if
they are terminated with an abnormal reason.
To start a connection on the Tortoise.Supervisor one can use the
Tortoise.Supervisor.start_child/2 function, which defaults to using
the dynamic supervisor registered under the name
Tortoise.Supervisor.
Tortoise.Supervisor.start_child(
 client_id: "heart-of-gold",
 handler: {Tortoise.Handler.Logger, []},
 server: {Tortoise.Transport.Tcp, host: 'localhost', port: 1883}
)
This is an easy and convenient way of getting started, as everything
needed to supervise a connection is there when the Tortoise
application has been initialized. One downside is that while the
children are supervised they are not grouped with the application that
uses the connections; they are grouped with the Tortoise
application. To mitigate this, a Tortoise.Supervisor.child_spec/1
function is available, which can be used to start the
Tortoise.Supervisor as part of another supervisor.
defmodule MyApp.Supervisor do
 use Supervisor

 def start_link(opts) do
 Supervisor.start_link(__MODULE__, opts, name: __MODULE__)
 end

 @impl true
 def init(_opts) do
 children = [
 {Tortoise.Supervisor,
 [
 name: MyApp.Connection.Supervisor,
 strategy: :one_for_one
]}
]

 Supervisor.init(children, strategy: :one_for_one)
 end
end
Connections can now, dynamically, be attached to the supervised
Tortoise.Supervisor by calling the
Tortoise.Supervisor.start_child/2 function with the name
that was given to the supervisor, in this case
MyApp.Connection.Supervisor.
Tortoise.Supervisor.start_child(
 MyApp.Connection.Supervisor,
 client_id: SmartHose,
 server: {Tortoise.Transport.Tcp, host: 'localhost', port: 1883},
 handler: {Tortoise.Handler.Logger, []}
)
This is the best way of supervising a dynamic set of connections, but
might be overkill if only one static connection is needed for the
application.
Summary
Tortoise makes it possible to spawn connections and supervise them,
and it is always a best practice to supervise a connection to ensure it
remains up. Different approaches can be taken depending on the
situation:
	If a fixed number of connections are needed, the recommended way is
to attach them directly to a supervision tree, along with the
processes that depend on said connections using the
Tortoise.Connection.child_spec/1 function.

	If a dynamic set of connections is needed, the recommended way is
to spawn a named Tortoise.Supervisor as part of a supervisor,
which holds the processes that depend on the connections, and spawn
the connections on the dynamic supervisor.

Supervising the connections along the processes that rely on them
ensures that the application can be started and stopped as a
whole, and makes it possible to recover from a faulty state.

Publishing Messages

Tortoise provides a couple of methods for publishing messages to an MQTT
broker. They vary in the amount of setup needed to setup a publish,
and they differ in the way connection drops are handled.
This document will describe the different supported ways of publishing
messages, and should serve as a guide for when to choose a particular
strategy and its setup. All publish methods require an open
connection.
Tortoise.publish/4
The simplest way of publishing a message is to use the publish
function found on the main Tortoise module. Given the identifier
(client_id) of an open connection, and a topic, such as foo/bar, a
publish is as simple as Tortoise.publish(MyClientId, "foo/bar"),
which will send a message to the topic foo/bar with an empty payload
(nil).
A message payload can be specified by passing data as the third
argument.
Tortoise.publish(MyClientId, "foo/bar", "hello, world !")
We can pass in a fourth argument: an option list allowing us to
specify:
	qos (default: 0) the requested quality of service
	retain (default: false) specifying if the message should be
retained on the server for the given topic

Here we will publish a retained message with QoS=1 to baz.
Tortoise.publish(MyClientId, "baz", "Hi !", [qos: 1, retain: true])
If we want to pass options to a message without a payload we should
specify the payload as nil
Tortoise.publish(MyClientId, "baz", nil, [qos: 2])
If we were to pass in an empty string ("", or <<>>) a zero length
binary would be sent instead, which is different from an empty
payload.
Notice that the semantics of the returned value change when the QoS
is bigger than 0. For messages published with QoS=0 the client
will respond with :ok.
iex(1)> Tortoise.publish(MyClientId, "baz", nil, [qos: 0])
:ok
A message with QoS=0 has no quality of service, which in MQTT terms
means that we have no guarantee that the message was delivered.
If the message is published with QoS=1 or QoS=2 we will get a
reference as the return value. This reference allows us to enter a
selective receive where we can get the result of the publish; in an
iex context we can simply use the flush/0 command to see the
result:
iex(2)> Tortoise.publish(MyClientId, "baz", nil, [qos: 1])
{:ok, #Reference<0.1924528969.904134659.102547>}
iex(3)> flush()
{{Tortoise, C}, #Reference<0.1924528969.904134659.102547>, :ok}
:ok
As observed we can expect a message containing a three-tuple. The
first element contains an identifier for the tortoise connection
{Tortoise, *client identifier*}, then the reference created by the
publish command, and finally the result of the operation; in this case
:ok. This structure should allow for some flexible pattern matches
in handle_info/2 when Tortoise is used in the context of a
GenServer.

Tortoise311

A MQTT client for Elixir.
Tortoise311 provides ways of publishing messages to, and receiving
messages from one or many MQTT brokers via TCP or SSL. The design
philosophy of Tortoise311 is to hide the protocol specific details from
the user, and expose interfaces and a connection life cycle that
should feel natural to Elixir, while not limiting the capability of
what one can do with the MQTT protocol.
First off, connection to a broker happens through a connection
specification. This results in a process that can be supervised,
either by the application the connection should live and die with,
or by being supervised by the Tortoise311 application itself. Once the
connection is established the Tortoise311 application should do its
best to keep that connection open, by automatically sending keep
alive messages (as the protocol specifies), and eventually attempt
to reconnect if the connection should drop.
Secondly, a connection is specified with a user defined callback
module, following the Tortoise311.Handler-behaviour, which allow the
user to hook into certain events happening in the life cycle of the
connection. This way code can get executed when:
	The connection is established
	The client has been disconnected from the broker
	A topic filter subscription has been accepted (or declined)
	A topic filter has been successfully unsubscribed
	A message is received on one of the subscribed topic filters

Besides this there are hooks for the usual life-cycle events one
would expect, such as init/1 and terminate/2.
Thirdly, publishing is handled in such a way that the semantics of
the levels of Quality of Service, specified by the MQTT protocol, is
mapped to the Elixir message passing semantics. Tortoise311 expose an
interface for publishing messages that hide the protocol details of
message delivery (retrieval of acknowledge, release, complete
messages) and instead provide Tortoise311.publish/4 which will
deliver the message to the broker and receive a response in the
process mailbox when a message with a QoS>0 has been handed to the
server. This allow the user to keep track of the messages that has
been delivered, or simply by using the Tortoise311.publish_sync/4
form that will block the calling process until the message has been
safely handed to the broker. Messages with QoS1 or QoS2 are stored
in a process until they are delivered, so once they are published
the client should retry delivery to make sure they reach their
destination.
An alternative way of posting messages is implemented in
Tortoise311.Pipe, which provide a data structure that among other
things keep a reference to the connection socket. This allow for an
efficient way of posting messages because the data can get shot
directly onto the wire without having to copy the message between
processes (unless the message has a QoS of 1 or 2, in which case
they will end up in a process to ensure they will get
delivered). The pipe will automatically renew its connection socket
if the connection has been dropped, so ideally this message sending
approach should be fast and efficient.

 Anchor for this section

 Summary

 Types

 client_id()

 An identifier used to identify the client on the server.

 package_identifier()

 A 16-bit number identifying a message in a message exchange.

 payload()

 An optional message payload.

 qos()

 What Quality of Service (QoS) mode should be used.

 topic()

 A topic for a message.

 topic_filter()

 A topic filter for a subscription.

 Functions

 default_timeout()

 The default timeout value

 publish(client_id, topic, payload \\ nil, opts \\ [])

 Publish a message to the MQTT broker.

 publish_sync(client_id, topic, payload \\ nil, opts \\ [])

 Synchronously send a message to the MQTT broker.

 Anchor for this section

Types

 Link to this type

 client_id()

 View Source

 Specs

 client_id() :: atom() | String.t()

An identifier used to identify the client on the server.
Most servers accept a maximum of 23 UTF-8 encode bytes for a client
id, and only the characters:
	"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"

Tortoise311 accept atoms as client ids but they it will be converted to
a string before going on the wire. Be careful with atoms such as
Example because they are expanded to the atom :"Elixir.Example",
it is really easy to hit the maximum byte limit. Solving this is
easy, just add a : before the client id such as :Example.

 Link to this type

 package_identifier()

 View Source

 Specs

 package_identifier() :: 1..65535 | nil

A 16-bit number identifying a message in a message exchange.
Some MQTT packages are part of a message exchange and need an
identifier so the server and client can distinct between multiple
in-flight messages.
Tortoise311 will assign package identifier to packages that need them,
so outside of tests (where it is beneficial to assert on the
identifier of a package) it should be set by tortoise itself; so
just leave it as nil.

 Link to this type

 payload()

 View Source

 Specs

 payload() :: binary() | nil

An optional message payload.
A message can optionally have a payload. The payload is a series of
bytes and for MQTT 3.1.1 the payload has no defined structure; any
series of bytes will do, and the client has to make sense of it.
The payload will be nil if there is no payload. This is done to
distinct between a zero byte binary and an empty payload.

 Link to this type

 qos()

 View Source

 Specs

 qos() :: 0..2

What Quality of Service (QoS) mode should be used.
Quality of Service is one of 0, 1, and 2 denoting the following:
	0 no quality of service. The message is a fire and forget.

	1 at least once delivery. The receiver will respond with an
acknowledge message, so the sender will be certain that the
message has reached the destination. It is possible that a message
will be delivered twice though, as the package identifier for a
publish will be relinquished when the message has been
acknowledged, so a package with the same identifier will be
treated as a new message though it might be a re-transmission.

	2 exactly once delivery. The receiver will only receive the
message once. This happens by having a more elaborate message
exchange than the QoS=1 variant.

There are a difference in the semantics of assigning a QoS to a
publish and a subscription. When assigned to a publish the message
will get delivered to the server with the requested QoS; that is if
it accept that level of QoS for the given topic.
When used in the context of a subscription it should be read as the
maximum QoS. When messages are published to the subscribed topic
the message will get on-warded with the same topic as it was
delivered with, or downgraded to the maximum QoS of the subscription
for the given subscribing client. That is, if the client subscribe
with a maximum QoS=2 and a message is published to said topic with a
QoS=1, the message will get downgraded to QoS=1 when on-warded to
the client.

 Link to this type

 topic()

 View Source

 Specs

 topic() :: String.t()

A topic for a message.
According to the MQTT 3.1.1 specification a valid topic must be at
least one character long. They are case sensitive and can include
space characters.
MQTT topics consist of topic levels which are delimited with forward
slashes /. A topic with a leading or trailing forward slash is
allowed but they create distinct topics from the ones without;
/sports/tennis/results are different from
sports/tennis/results. While a topic level normally require at
least one character the topic / (a single forward slash) is valid.
The server will drop the connection if it receive an invalid topic.

 Link to this type

 topic_filter()

 View Source

 Specs

 topic_filter() :: String.t()

A topic filter for a subscription.
The topic filter is different from a topic because it is allowed
to contain wildcard characters:
	+ is a single level wildcard which is allowed to stand on any
position in the topic filter. For instance: sport/+/results will
match sport/tennis/results, sport/soccer/results, etc.

	# is a multi-level wildcard and is only allowed to be on the
last position of the topic filter. For instance: sport/# will
match sport/tennis/results, sport/tennis/announcements, etc.

The server will reject any invalid topic filter and close the
connection.

 Anchor for this section

Functions

 Link to this function

 default_timeout()

 View Source

The default timeout value

 Link to this function

 publish(client_id, topic, payload \\ nil, opts \\ [])

 View Source

 Specs

 publish(client_id(), topic(), payload, [options]) ::
 :ok | {:ok, reference()} | {:error, :unknown_connection} | {:error, :timeout}
when payload: binary() | nil,
 options:
 {:qos, qos()}
 | {:retain, boolean()}
 | {:identifier, package_identifier()}
 | {:timeout, non_neg_integer()}

Publish a message to the MQTT broker.
The publish function requires a client_id and a valid MQTT
topic. If no payload is set an empty zero byte message will get
send to the broker.
Optionally an options list can get passed to the publish, making it
possible to specify if the message should be retained on the server,
and with what quality of service the message should be published
with.
	retain indicates, when set to true, that the broker should
retain the message for the topic. Retained messages are
delivered to clients when they subscribe to the topic. Only one
message at a time can be retained for a given topic, so sending
a new one will overwrite the old. retain defaults to false.

	qos set the quality of service, and integer of 0, 1, or 2. The
qos defaults to 0.

Publishing a message with the payload hello to to topic foo/bar
with a QoS1 could look like this:
Tortoise311.publish("client_id", "foo/bar", "hello", qos: 1)
Notice that if you want to send a message with an empty payload with
options you will have to set to payload to nil like this:
Tortoise311.publish("client_id", "foo/bar", nil, retain: true)

 Return Values

The specified Quality of Service for a given publish will alter the
behaviour of the return value. When publishing a message with a QoS0
an :ok will simply get returned. This is because a QoS0 is a "fire
and forget." There are no quality of service so no efforts are made
to ensure that the message will reach its destination (though it very
likely will).
:ok = Tortoise311.publish("client_id", "foo/bar", nil, qos: 0)
When a message is published using either a QoS1 or QoS2, Tortoise311
will ensure that the message is delivered. A unique reference will
get returned and eventually a message will get delivered to the
process mailbox, containing the result of the publish when it has
been handed over:
{:ok, ref} = Tortoise311.publish("client_id", "foo/bar", nil, qos: 2)
receive do
 {{Tortoise311, "client_id"}, ^ref, result} ->
 IO.inspect({:result, result})
after
 5000 ->
 {:error, :timeout}
end
Be sure to implement a handle_info/2 in GenServer processes that
publish messages using Tortoise311.publish/4. Notice that the returned
message has a structure:
{{Tortoise311, "client_id"}, ^ref, result}
It is possible to send to multiple clients and blanket match on
results designated for a given client id, and the message is tagged
with Tortoise311 so it is easy to see where the message originated
from.

 Link to this function

 publish_sync(client_id, topic, payload \\ nil, opts \\ [])

 View Source

 Specs

 publish_sync(client_id(), topic(), payload, [options]) ::
 :ok | {:error, :unknown_connection} | {:error, :timeout}
when payload: binary() | nil,
 options:
 {:qos, qos()}
 | {:retain, boolean()}
 | {:identifier, package_identifier()}
 | {:timeout, timeout()}

Synchronously send a message to the MQTT broker.
This is very similar to Tortoise311.publish/4 with the difference
that it will block the calling process until the message has been
handed over to the server; the configuration options are the same
with the addition of the timeout option which specifies how long
we are willing to wait for a reply. Per default the timeout is set
to Tortoise311.default_timeout(), it is advisable to set it to a reasonable amount in
milliseconds as it otherwise could block forever.
msg = "Hello, from the World of Tomorrow !"
case Tortoise311.publish_sync("my_client_id", "foo/bar", msg, qos: 2, timeout: 200) do
 :ok ->
 :done

 {:error, :timeout} ->
 :timeout
end
Notice: It does not make sense to use publish_sync/4 on a publish
that has a QoS=0, because that will return instantly anyways. It is
made possible for consistency, and it is the default QoS.
See the documentation for Tortoise311.publish/4 for configuration.

Tortoise311.Connection

Establish a connection to a MQTT broker.
Todo.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 disconnect(client_id)

 Close the connection to the broker.

 ping(client_id)

 Ping the broker.

 ping_sync(client_id, timeout \\ Tortoise311.default_timeout())

 Ping the server and await the ping latency reply.

 start_link(connection_opts, opts \\ [])

 Start a connection process and link it to the current process.

 subscribe(client_id, topics, opts \\ [])

 Subscribe to one or more topics using topic filters on client_id

 subscribe_sync(client_id, topics, opts \\ [])

 Subscribe to topics and block until the server acknowledges.

 subscriptions(client_id)

 Return the list of subscribed topics.

 unsubscribe(client_id, topics, opts \\ [])

 Unsubscribe from one of more topic filters. The topic filters are
given as strings. Multiple topic filters can be given at once by
passing in a list of strings.

 unsubscribe_sync(client_id, topics, opts \\ [])

 Unsubscribe from topics and block until the server acknowledges.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

 Specs

 child_spec(Keyword.t()) :: %{
 id: term(),
 start: {Tortoise311.Connection, :start_link, [Keyword.t()]},
 restart: :transient | :permanent | :temporary,
 type: :worker
}

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 disconnect(client_id)

 View Source

 Specs

 disconnect(Tortoise311.client_id()) :: :ok

Close the connection to the broker.
Given the client_id of a running connection it will cancel the
inflight messages and send the proper disconnect message to the
broker. The session will get terminated on the server.

 Link to this function

 ping(client_id)

 View Source

 Specs

 ping(Tortoise311.client_id()) :: {:ok, reference()}

Ping the broker.
When the round-trip is complete a message with the time taken in
milliseconds will be send to the process that invoked the ping
command.
The connection will automatically ping the broker at the interval
specified in the connection configuration, so there is no need to
setup a reoccurring ping. This ping function is exposed for
debugging purposes. If ping latency over time is desired it is
better to listen on :ping_response using the Tortoise311.Events
PubSub.

 Link to this function

 ping_sync(client_id, timeout \\ Tortoise311.default_timeout())

 View Source

 Specs

 ping_sync(Tortoise311.client_id(), timeout()) ::
 {:ok, reference()} | {:error, :timeout}

Ping the server and await the ping latency reply.
Takes a client_id and an optional timeout.
Like ping/1 but will block the caller process until a response is
received from the server. The response will contain the ping latency
in milliseconds.

 Link to this function

 start_link(connection_opts, opts \\ [])

 View Source

 Specs

 start_link(options, GenServer.options()) :: GenServer.on_start()
when option:
 {:client_id, Tortoise311.client_id()}
 | {:server, {atom(), term()}}
 | {:user_name, String.t()}
 | {:password, String.t()}
 | {:keep_alive, non_neg_integer()}
 | {:will, Tortoise311.Package.Publish.t()}
 | {:subscriptions,
 [{Tortoise311.topic_filter(), Tortoise311.qos()}]
 | Tortoise311.Package.Subscribe.t()}
 | {:clean_session, boolean()}
 | {:handler, {atom(), term()}},
 options: [option]

Start a connection process and link it to the current process.
Read the documentation on child_spec/1 if you want... (todo!)

 Link to this function

 subscribe(client_id, topics, opts \\ [])

 View Source

 Specs

 subscribe(Tortoise311.client_id(), topic | topics, [options]) ::
 {:ok, reference()}
when topics: [topic],
 topic: {Tortoise311.topic_filter(), Tortoise311.qos()},
 options:
 {:timeout, timeout()} | {:identifier, Tortoise311.package_identifier()}

Subscribe to one or more topics using topic filters on client_id
The topic filter should be a 2-tuple, {topic_filter, qos}, where
the topic_filter is a valid MQTT topic filter, and qos an
integer value 0 through 2.
Multiple topics can be given as a list.
The subscribe function is asynchronous, so it will return {:ok, ref}. Eventually a response will get delivered to the process
mailbox, tagged with the reference stored in ref. It will take the
form of:
{{Tortoise311, ^client_id}, ^ref, ^result}
Where the result can be one of :ok, or {:error, reason}.
Read the documentation for Tortoise311.Connection.subscribe_sync/3
for a blocking version of this call.

 Link to this function

 subscribe_sync(client_id, topics, opts \\ [])

 View Source

 Specs

 subscribe_sync(Tortoise311.client_id(), topic | topics, [options]) ::
 :ok | {:error, :timeout}
when topics: [topic],
 topic: {Tortoise311.topic_filter(), Tortoise311.qos()},
 options:
 {:timeout, timeout()} | {:identifier, Tortoise311.package_identifier()}

Subscribe to topics and block until the server acknowledges.
This is a synchronous version of the
Tortoise311.Connection.subscribe/3. In fact it calls into
Tortoise311.Connection.subscribe/3 but will handle the selective
receive loop, making it much easier to work with. Also, this
function can be used to block a process that cannot continue before
it has a subscription to the given topics.
See Tortoise311.Connection.subscribe/3 for configuration options.

 Link to this function

 subscriptions(client_id)

 View Source

 Specs

 subscriptions(Tortoise311.client_id()) :: Tortoise311.Package.Subscribe.t()

Return the list of subscribed topics.
Given the client_id of a running connection return its current
subscriptions. This is helpful in a debugging situation.

 Link to this function

 unsubscribe(client_id, topics, opts \\ [])

 View Source

 Specs

 unsubscribe(Tortoise311.client_id(), topic | topics, [options]) ::
 {:ok, reference()}
when topics: [topic],
 topic: Tortoise311.topic_filter(),
 options:
 {:timeout, timeout()} | {:identifier, Tortoise311.package_identifier()}

Unsubscribe from one of more topic filters. The topic filters are
given as strings. Multiple topic filters can be given at once by
passing in a list of strings.
Tortoise311.Connection.unsubscribe(client_id, ["foo/bar", "quux"])
This operation is asynchronous. When the operation is done a message
will be received in mailbox of the originating process.

 Link to this function

 unsubscribe_sync(client_id, topics, opts \\ [])

 View Source

 Specs

 unsubscribe_sync(Tortoise311.client_id(), topic | topics, [options]) ::
 :ok | {:error, :timeout}
when topics: [topic],
 topic: Tortoise311.topic_filter(),
 options:
 {:timeout, timeout()} | {:identifier, Tortoise311.package_identifier()}

Unsubscribe from topics and block until the server acknowledges.
This is a synchronous version of
Tortoise311.Connection.unsubscribe/3. It will block until the server
has send the acknowledge message.
See Tortoise311.Connection.unsubscribe/3 for configuration options.

Tortoise311.Events

A PubSub exposing various system events from a Tortoise311
connection. This allows the user to integrate with custom metrics
and logging solutions.
Please read the documentation for Tortoise311.Events.register/2 for
information on how to subscribe to events, and
Tortoise311.Events.unregister/2 for how to unsubscribe.

 Anchor for this section

 Summary

 Functions

 register(client_id, type)

 Subscribe to messages on the client with the client id client_id
of the type type.

 unregister(client_id, type)

 Unsubscribe from messages of type from client_id. This is the
reverse of Tortoise311.Events.register/2.

 Anchor for this section

Functions

 Link to this function

 register(client_id, type)

 View Source

 Specs

 register(Tortoise311.client_id(), atom()) :: {:ok, pid()} | no_return()

Subscribe to messages on the client with the client id client_id
of the type type.
When a message of the subscribed type is dispatched it will end up
in the mailbox of the process that placed the subscription. The
received message will have the format:
{{Tortoise311, client_id}, type, value}
Making it possible to pattern match on multiple message types on
multiple clients. The value depends on the message type.
Possible message types are:
	:status dispatched when the connection of a client changes
status. The value will be :up when the client goes online, and
:down when it goes offline.

	:ping_response dispatched when the connection receive a
response from a keep alive message. The value is the round trip
time in milliseconds, and can be used to track the latency over
time.

Other message types exist, but unless they are mentioned in the
possible message types above they should be considered for internal
use only.
It is possible to listen on all events for a given type by
specifying :_ as the client_id.

 Link to this function

 unregister(client_id, type)

 View Source

 Specs

 unregister(Tortoise311.client_id(), atom()) :: :ok | no_return()

Unsubscribe from messages of type from client_id. This is the
reverse of Tortoise311.Events.register/2.

Tortoise311.Handler behaviour

User defined callback module for handling connection life cycle events.
Tortoise311.Handler defines a behaviour which can be given to a
Tortoise311.Connection. This allow the user to implement
functionality for events happening in the life cycle of the
connection, the provided callbacks are:
	init/1 and terminate/2 are called when the connection is
started and stopped. Parts that are setup in init/1 can be
torn down in terminate/2. Notice that the connection process
is not terminated if the connection to the broker is lost;
Tortoise311 will attempt to reconnect, and events that should
happen when the connection goes offline should be set up using
the connection/3 callback.

	last_will/1 is called to get a last will message for a
 new connection. If none is provided (nil), the connection's default
 last will will be used.

	connection/3 is called when the connection is :up or
:down, allowing for functionality to be run when the
connection state changes.

	subscription/3 is called when a topic filter subscription
changes status, so this callback can be used to control the
life-cycle of a subscription, allowing us to implement custom
behavior for when the subscription is accepted, declined, as
well as unsubscribed.

	handle_message/3 is run when the client receive a message on
one of the subscribed topic filters.

Because the callback-module will run inside the connection
controller process, which also handles the routing of protocol
messages (such as publish acknowledge messages) it is important that
the callbacks do not call functions that will block the process,
especially for clients that subscribe to topics with heavy
traffic.
Technically it would be possible to run the callback module in a
different process than the controller process, but it has been
decided to keep it on the controller as we otherwise would have to
copy every message evaluated by the connection to another
process. It is much better to let the end-user handle the
dispatching to other parts of the system while we are evaluating
what to do with the process anyways with the caveats:
	The callbacks should not block the controller

	it is not possible to call the (un)subscribe and publish
functions from within a callback as they will block the
controller.

While it is not possible to subscribe and unsubscribe in the handler
process using the Tortoise311.subscribe/3 and
Tortoise311.unsubscribe/3 it is possible to make changes to the
subscription list via :gen_statem inspired next_actions.
Next actions
In some situations one would like to subscribe or unsubscribe a
filter topic when a certain event happens on the client. The
functions for interacting with the MQTT broker, defined on the
Tortoise311-module are for the most part blocking operations, or
require the user to peek into the process mailbox to fetch the
result of the operation. To allow for changes in the subscriptions
one can define a set of next actions that should happen as part of
the return value to the handle_message/3, subscription/3, and
connection/3 callbacks by returning a {:ok, state, next_actions}
where next_actions is a list of commands of:
	{:subscribe, topic_filter, qos: qos, timeout: 5000} where
topic_filter is a binary containing a valid MQTT topic filter,
and qos is the desired quality of service (0..2). The timeout
is the amount of time in milliseconds we are willing to wait for
a response to the request.

	{:unsubscribe, topic_filter} where topic_filter is a binary
containing the name of the subscription we want to unsubscribe
from.

If we want to unsubscribe from the current topic when we receive a
message on it we could write a handle_message/3 as follows:
def handle_message(topic, _payload, state) do
 topic = Enum.join(topic, "/")
 next_actions = [{:unsubscribe, topic}]
 {:ok, state, next_actions}
end
Note that the topic is received as a list of topic levels, and
that the next actions has to be a list, even if there is only one
next action; multiple actions can be given at once. Read more about
this in the handle_message/3 documentation.

 Anchor for this section

 Summary

 Types

 next_action()

 Action to perform before reentering the execution loop.

 t()

 Data structure describing the user defined callback handler

 Callbacks

 connection(status, state)

 Invoked when the connection status changes.

 handle_message(topic_levels, payload, state)

 Invoked when messages are published to subscribed topics.

 init(args)

 Invoked when the connection is started.

 last_will(state)

 Invoked when a new connection is being attempted to set the last will message to one
provided by the handler. If the handler returns {{:ok, nil}, state}, the pre-set
last will is used.

 subscription(status, topic_filter, state)

 Invoked when the subscription of a topic filter changes status.

 terminate(reason, state)

 Invoked when the connection process is about to exit.

 Anchor for this section

Types

 Link to this type

 next_action()

 View Source

 Specs

 next_action() ::
 {:subscribe, Tortoise311.topic_filter(),
 [qos: Tortoise311.qos(), timeout: timeout()]}
 | {:unsubscribe, Tortoise311.topic_filter()}

Action to perform before reentering the execution loop.
The supported next actions are:
	Tell the connection process to subscribe to a topic filter
	Tell the connection process to unsubscribe from a topic filter

More next actions might be supported in the future.

 Link to this type

 t()

 View Source

 Specs

 t() :: %Tortoise311.Handler{
 initial_args: term(),
 module: module(),
 state: term()
}

Data structure describing the user defined callback handler
The data structure describe the current state as well as its initial
arguments and the module driving the handler. This allow Tortoise311 to
restart the handler if needed be.

 Anchor for this section

Callbacks

 Link to this callback

 connection(status, state)

 View Source

 Specs

 connection(status, state :: term()) ::
 {:ok, new_state} | {:ok, new_state, [next_action()]}
when status: :up | :down, new_state: term()

Invoked when the connection status changes.
status is one of :up or :down, where up means we have an open
connection to the MQTT broker, and down means the connection is
temporary down. The connection process will attempt to reestablish
the connection.
Returning {:ok, new_state} will set the state for later
invocations.
Returning {:ok, new_state, next_actions}, where next_actions is
a list of next actions such as {:unsubscribe, "foo/bar"} will
result in the state being returned and the next actions performed.

 Link to this callback

 handle_message(topic_levels, payload, state)

 View Source

 Specs

 handle_message(topic_levels, payload, state :: term()) ::
 {:ok, new_state} | {:ok, new_state, [next_action()]}
when new_state: term(),
 topic_levels: [String.t()],
 payload: Tortoise311.payload()

Invoked when messages are published to subscribed topics.
The topic comes in the form of a list of binaries, making it
possible to pattern match on the topic levels of the retrieved
message, store the individual topic levels as variables and use it
in the function body.
Payload is a binary. MQTT 3.1.1 does not specify any format of the
payload, so it has to be decoded and validated depending on the
needs of the application.
In an example where we are already subscribed to the topic filter
room/+/temp and want to dispatch the received messages to a
Temperature application we could set up our handle_message as
such:
def handle_message(["room", room, "temp"], payload, state) do
 :ok = Temperature.record(room, payload)
 {:ok, state}
end
Notice; the handle_message/3-callback run inside the connection
controller process, so for handlers that are subscribing to topics
with heavy traffic should do as little as possible in the callback
handler and dispatch to other parts of the application using
non-blocking calls.
Returning {:ok, new_state} will reenter the loop and set the state
for later invocations.
Returning {:ok, new_state, next_actions}, where next_actions is
a list of next actions such as {:unsubscribe, "foo/bar"} will
reenter the loop and perform the listed actions.

 Link to this callback

 init(args)

 View Source

 Specs

 init(args :: term()) :: {:ok, state} when state: any()

Invoked when the connection is started.
args is the argument passed in from the connection configuration.
Returning {:ok, state} will let the MQTT connection receive data
from the MQTT broker, and the value contained in state will be
used as the process state.

 Link to this callback

 last_will(state)

 View Source

 (optional)

 Specs

 last_will(state) :: {{:ok, term() | nil}, state} when state: any()

Invoked when a new connection is being attempted to set the last will message to one
provided by the handler. If the handler returns {{:ok, nil}, state}, the pre-set
last will is used.

 Link to this callback

 subscription(status, topic_filter, state)

 View Source

 Specs

 subscription(status, topic_filter, state :: term()) ::
 {:ok, new_state} | {:ok, new_state, [next_action()]}
when status:
 :up
 | :down
 | {:warn, [requested: Tortoise311.qos(), accepted: Tortoise311.qos()]}
 | {:error, term()},
 topic_filter: Tortoise311.topic_filter(),
 new_state: term()

Invoked when the subscription of a topic filter changes status.
The status of a subscription can be one of:
	:up, triggered when the subscription has been accepted by the
MQTT broker with the requested quality of service

	{:warn, [requested: req_qos, accepted: qos]}, triggered when
 the subscription is accepted by the MQTT broker, but with a
 different quality of service qos than the one requested
 req_qos

	{:error, reason}, triggered when the subscription is rejected
with the reason reason such as :access_denied

	:down, triggered when the subscription of the given topic
filter has been successfully acknowledged as unsubscribed by the
MQTT broker

The topic_filter is the topic filter in question, and the state
is the internal state being passed through transitions.
Returning {:ok, new_state} will set the state for later
invocations.
Returning {:ok, new_state, next_actions}, where next_actions is
a list of next actions such as {:unsubscribe, "foo/bar"} will
result in the state being returned and the next actions performed.

 Link to this callback

 terminate(reason, state)

 View Source

 Specs

 terminate(reason, state :: term()) :: ignored
when reason: :normal | :shutdown | {:shutdown, term()}, ignored: term()

Invoked when the connection process is about to exit.
If anything is setup during the init/1 callback it should get
cleaned up during the terminate/2 callback.

Tortoise311.Pipe

Experimental. This feature is under development.
The transmitter "pipe", for lack of a better word, is an opaque data
type that can be given to a process. It contains amongst other
things a socket.
A process can obtain a transmitter pipe by issuing a pipe = Tortoise311.Pipe.new(client_id) request, which will result in a pipe
in passive mode, meaning it will hold a socket it can publish
messages into, but might fail, in which case it will attempt to get
another socket from the transmitter. This all happens behind the
scenes, it is important though that the returned pipe is used in
future pipe requests, so publishing on a pipe should look like this:
 pipe = Tortoise311.Pipe.publish(pipe, "foo/bar", "bonjour !")
This is all experimental, and efforts to document this better will
be made when the design and implementation has stabilized.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 await(pipe, timeout \\ 5000)

 Await for acknowledge messages for the currently pending messages.

 new(client_id, opts \\ [])

 Create a new publisher pipe.

 publish(pipe, topic, payload \\ nil, opts \\ [])

 Publish a message using a pipe.

 Anchor for this section

Types

 Link to this opaque

 t()

 View Source

 (opaque)

 Specs

 t()

 Anchor for this section

Functions

 Link to this function

 await(pipe, timeout \\ 5000)

 View Source

Await for acknowledge messages for the currently pending messages.
Note that this enters a selective receive loop, so the await needs
to happen before the process reaches its mailbox. It can be used in
situations where we want to send a couple of messages and continue
when the server has received them; This only works for messages with
a Quality of Service above 0.

 Link to this function

 new(client_id, opts \\ [])

 View Source

Create a new publisher pipe.

 Link to this function

 publish(pipe, topic, payload \\ nil, opts \\ [])

 View Source

Publish a message using a pipe.

Tortoise311.Supervisor

A dynamic supervisor that can hold Tortoise311.Connection processes
A Tortoise311.Supervisor, registered under the name
Tortoise311.Supervisor, is started as part of the Tortoise311.App,
which will get started automatically when Tortoise311 is included as
a Mix dependency. Spawning a connection on the
Tortoise311.Supervisor can be done as follows:
{:ok, pid} =
 Tortoise311.Supervisor.start_child(
 client_id: T1000,
 handler: {Tortoise311.Handler.Logger, []},
 server: {Tortoise311.Transport.Tcp, host: 'localhost', port: 1883},
 subscriptions: [{"foo/bar", 0}]
)
While this is an easy way to get started one should consider the
supervision strategy of the application using the
Tortoise311.Connections. Often one would like to close the connection
with the application using the connection, in which case one could
consider starting the Tortoise311.Connection directly in the
supervisor of the application using the connection, or start a
Tortoise311.Supervisor as part of ones application if it require more
than one connection.
See the Connection Supervision article in the project
documentation for more information on connection supervision.

 Anchor for this section

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 start_child(supervisor \\ __MODULE__, opts)

 Start a connection as a child of the Tortoise311.Supervisor.

 start_link(opts)

 Start a dynamic supervisor that can hold connection processes.

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_child(supervisor \\ __MODULE__, opts)

 View Source

Start a connection as a child of the Tortoise311.Supervisor.
supervisor is the name of the supervisor the child should be
started on, and it defaults to Tortoise311.Supervisor.

 Link to this function

 start_link(opts)

 View Source

Start a dynamic supervisor that can hold connection processes.
The :name option can also be given in order to register a supervisor
name, the supported values are described in the "Name registration"
section in the GenServer module docs.

Tortoise311.Transport behaviour

Abstraction for working with network connections; this is done to
normalize the :ssl and :gen_tcp modules, so they get a similar
interface.
This work has been heavily inspired by the Ranch project by
NineNines.

 Anchor for this section

 Summary

 Types

 opts()

 socket()

 stats()

 t()

 Callbacks

 accept(socket, timeout)

 accept_ack(socket, timeout)

 close(socket)

 connect(charlist, port_number, opts, timeout)

 controlling_process(socket, pid)

 getopts(socket, list)

 getstat(socket)

 getstat(socket, list)

 listen(opts)

 new(opts)

 peername(socket)

 recv(socket, non_neg_integer, timeout)

 send(socket, iodata)

 setopts(socket, opts)

 shutdown(socket, arg2)

 sockname(socket)

 Functions

 new(arg)

 Create a new Transport specification used by the Connection process
to log on to the MQTT server. This allow us to filter the options
passed to the connection type, and guide the user to connect to the
individual transport type.

 Anchor for this section

Types

 Link to this type

 opts()

 View Source

 Specs

 opts() :: any()

 Link to this type

 socket()

 View Source

 Specs

 socket() :: any()

 Link to this type

 stats()

 View Source

 Specs

 stats() :: any()

 Link to this opaque

 t()

 View Source

 (opaque)

 Specs

 t()

 Anchor for this section

Callbacks

 Link to this callback

 accept(socket, timeout)

 View Source

 Specs

 accept(socket(), timeout()) ::
 {:ok, socket()} | {:error, :closed | :timeout | atom()}

 Link to this callback

 accept_ack(socket, timeout)

 View Source

 Specs

 accept_ack(socket(), timeout()) :: :ok

 Link to this callback

 close(socket)

 View Source

 Specs

 close(socket()) :: :ok

 Link to this callback

 connect(charlist, port_number, opts, timeout)

 View Source

 Specs

 connect(charlist(), :inet.port_number(), opts(), timeout()) ::
 {:ok, socket()} | {:error, atom()}

 Link to this callback

 controlling_process(socket, pid)

 View Source

 Specs

 controlling_process(socket(), pid()) ::
 :ok | {:error, :closed | :now_owner | atom()}

 Link to this callback

 getopts(socket, list)

 View Source

 Specs

 getopts(socket(), [atom()]) :: {:ok, opts()} | {:error, atom()}

 Link to this callback

 getstat(socket)

 View Source

 Specs

 getstat(socket()) :: {:ok, stats()} | {:error, atom()}

 Link to this callback

 getstat(socket, list)

 View Source

 Specs

 getstat(socket(), [atom()]) :: {:ok, stats()} | {:error, atom()}

 Link to this callback

 listen(opts)

 View Source

 Specs

 listen(opts()) :: {:ok, socket()} | {:error, atom()}

 Link to this callback

 new(opts)

 View Source

 Specs

 new(opts()) :: t()

 Link to this callback

 peername(socket)

 View Source

 Specs

 peername(socket()) ::
 {:ok, {:inet.ip_address(), :inet.port_number()}} | {:error, atom()}

 Link to this callback

 recv(socket, non_neg_integer, timeout)

 View Source

 Specs

 recv(socket(), non_neg_integer(), timeout()) ::
 {:ok, any()} | {:error, :closed | :timeout | atom()}

 Link to this callback

 send(socket, iodata)

 View Source

 Specs

 send(socket(), iodata()) :: :ok | {:error, atom()}

 Link to this callback

 setopts(socket, opts)

 View Source

 Specs

 setopts(socket(), opts()) :: :ok | {:error, atom()}

 Link to this callback

 shutdown(socket, arg2)

 View Source

 Specs

 shutdown(socket(), :read | :write | :read_write) :: :ok | {:error, atom()}

 Link to this callback

 sockname(socket)

 View Source

 Specs

 sockname(socket()) ::
 {:ok, {:inet.ip_address(), :inet.port_number()}} | {:error, atom()}

 Anchor for this section

Functions

 Link to this function

 new(arg)

 View Source

 Specs

 new({atom(), [term()]}) :: t()

Create a new Transport specification used by the Connection process
to log on to the MQTT server. This allow us to filter the options
passed to the connection type, and guide the user to connect to the
individual transport type.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

