

 tarearbol

 v1.6.8

 [image: Logo]

 Table of contents

 	Tarearbol

 	Task Management

 	Dynamic Workers Management

 	Dynamic Management Examples

 	Cron Management

 	Modules

 	Tarearbol

 	Tarearbol.DynamicManager

 	Tarearbol.DynamicManager.Child

 	Tarearbol.Pool

 	Tarearbol.Calendar

 	Tarearbol.Crontab

 	Tarearbol.Scheduler

 	Tarearbol.Scheduler.Job

 	Tarearbol.TaskFailedError

Tarearbol

	Scaffold for managing many children under Tarearbol.DynamicManager wrapping DynamicSupervisor with a pleasure
	Lightweight task manager, allowing retries, callbacks, assurance that the task succeeded, and more
	Lightweight scalable cron-like job scheduler Tarearbol.Scheduler

Dynamic Workers Management
Features
	Scaffold for the supervised DynamicSupervisor
	No code for managing processes required
	Implementation is as easy as 4 callbacks
	Behaviour-driven consumers
	Consistent state and callbacks on state changes (like restarting)

Dynamic Workers Management Examples
Task Management
Features
	Task supervision tree for granted
	Infinite retries until succeeded
	Async execution of a single task with retries
	Async execution of many tasks with retries
	Limited amount of retries
	Delay between retries
	Callbacks on on_retry, on_success, on_fail
	Configurable “success” treatment
	Task scheduling and draining, cron-like execution

Task Management Examples
Job Management
Features
	Fully supported cron syntax
	Job callback with an ability to cancel and reschedule jobs
	Easy configuration via project, config, or external file
	No persistent storage required
	Stream with all the upcoming cron events by cron record
	Tarearbol.Calendar.{beginning_of,end_of}/2 with full Calendar support

Job Management Examples

Task Management

Task supervision tree for granted
Add :tarearbol to the list of applications and you are all set.
Infinite retries
Tarearbol.ensure fn ->
 unless Enum.random(1..100) == 42, do: raise "Incorrect answer"
 {:ok, 42}
end

some bad-case logging
{:ok, 42}
Async execution with retries
Tarearbol.spawn_ensured({Process, :sleep, [1_000]},
 attempts: 1,
 on_success: {IO, :inspect, [[label: "Result"]]})

%Task{
 owner: #PID<0.248.0>,
 pid: #PID<0.271.0>,
 ref: #Reference<0.1612468028.2321547270.14001>
}
<one second delay>
Result: :ok
Async execution of many tasks with retries
res = 1..20
 |> Enum.map(fn i ->
 fn -> Process.sleep(Enum.random(1..i)); i end
 end)
 |> Tarearbol.Job.ensure_all(attempts: 1)

[{:ok, 1}, {:ok, 2}, ..., {:ok, 20}]
NB the above is synchronized against main process.
Limited amount of retries
Tarearbol.ensure fn ->
 raise "Incorrect answer"
end, attempts: 10

some bad-case logging
{:error,
 %{job: #Function<20.87737649/0 in :erl_eval.expr/5>,
 outcome: {%RuntimeError{message: "Incorrect answer"},
 [{:erl_eval, :do_apply, 6, [file: 'erl_eval.erl', line: 668]},
 {Task.Supervised, :do_apply, 2,
 [file: 'lib/task/supervised.ex', line: 85]},
 {Task.Supervised, :reply, 5, [file: 'lib/task/supervised.ex', line: 36]},
 {:proc_lib, :init_p_do_apply, 3, [file: 'proc_lib.erl', line: 247]}]}}}
Delay between retries
Tarearbol.ensure fn ->
 unless Enum.random(1..100) == 42, do: raise "Incorrect answer"
 {:ok, 42}
end, delay: 1000

some slow bad-case logging
{:ok, 42}
Callbacks
Tarearbol.ensure fn ->
 unless Enum.random(1..100) == 42, do: raise "Incorrect answer"
 {:ok, 42}
end, on_success: fn data -> IO.inspect(data, label: "★") end,
 on_retry: {IO, :inspect, [[label: "☆"]]} end

some slow bad-case logging
⇓⇓⇓⇓ one or more of ⇓⇓⇓⇓
☆: %{cause: :on_raise,
 data: {%RuntimeError{message: "Incorrect answer"},
 [{:erl_eval, :do_apply, 6, [file: 'erl_eval.erl', line: 670]},
 {:erl_eval, :exprs, 5, [file: 'erl_eval.erl', line: 122]},
 {Task.Supervised, :do_apply, 2, [file: 'lib/task/supervised.ex', line: 85]},
 {Task.Supervised, :reply, 5, [file: 'lib/task/supervised.ex', line: 36]},
 {:proc_lib, :init_p_do_apply, 3, [file: 'proc_lib.erl', line: 247]}]}}
⇑⇑⇑⇑ one or more of ⇑⇑⇑⇑
★: 42
{:ok, 42}
Allowed options
	attempts integer, an amount of attempts before giving up, 0 for forever; default: :infinity
	delay the delay between attempts, default: :none;
- raise: when true, will raise after all attempts were unsuccessful, or return {:error, outcome} tuple otherwise, default: false;
	accept_not_ok: when true, any result save for {:error, _} will be accepted as correct, otherwise only {:ok, _} is treated as correct, default: true;
	on_success: callback when the task returned a result, default: nil;
	on_retry: callback when the task failed and scheduled for retry, default: :debug;
	on_fail: callback when the task completely failed, default: :warn.

for :attempts and :delay keys one might specify the following values:
	integer → amount to be used as is (milliseconds for delay, number for attempts);
	float → amount of thousands, rounded (seconds for delay, thousands for attempts);
	:none → 0;
	:tiny → 10;
	:medium → 100;
	:infinity → -1, :attempts only.

Task spawning
Tarearbol.run_in fn -> IO.puts(42) end, 1_000 # 1 sec
Tarearbol.spawn fn -> IO.puts(42) end # immediately
Task draining
Tarearbol.run_in fn -> IO.inspect(42) end, 1_000 # 1 sec
Tarearbol.run_in fn -> IO.inspect(:foo) end, 1_000 # 1 sec
Tarearbol.drain
42 # immediately, from `IO.inspect`
:foo # immediately, from `IO.inspect`
[ok: 42, ok: :foo] # immediately, the returned value(s)

Dynamic Workers Management

Dynamic Management Examples
There are some ready-to-use snippets collected here.
Architecture
[image: DynamicManager Architecture]
DynamicSupervisor is a very handy tool to manage many different task-like processes.
It is used mostly when one does not know in advance how many processes are to be run,
and the processes happen to appear based on some external conditions. A good example
would be a web scraper; we might spawn a process per every new page we need to crawl
and DynamicSupervisor would take care about restarting those failed.
It might become slightly cumbersome for the projects requiring more-or-less same
behaviour but when the supervised processes should perform some periodical job,
maybe exit upon job outcome and be accessible by some id while they are running.
For the contrived example, imagine the main dashboard that displays the state
of all the computers, connected to the intranet. There are guests with notebooks,
constantly connecting and disconneting. Let’s say we want to maintain a list of
processes spying on our guests (please do not use this library that way, though.)
We need to be able to query the processes for current state / stats by computer ID,
say, MAC-address. The first wild guess would be to convert MACs to alphanumeric
and then to atoms to give names to our workers. And then call them by name.
This approach is not only naïve but also very dangerous. That way we’d DOS our
ErlangVM with atoms. So yeah, the dictionary MAC → PID is to be stored
somewhere else. So we already need to have a supervisor, managing the state and
DynamicSupervisor, which in turn manages workers. Also, upon startup there is
a warming period during which we probably do not want to show anything since the
data might be inaccurate. This warming stage should be probably done from inside
handle_continue/2 from some another process, and this process cannot be the state
one due to restart strategy :rest_for_one, which is required to restart workers
when the state has crashed.
All the problems above are very similar for this kind of task. So, welcome
DynamicSupervisor which solves all the problems above automagically, leaving
the consumer with a pure business logic implementation. The only needed thing
to make it all up and running would be to implement Tarearbol.DynamicManager
behaviour. It consists of four functions.
children_specs/0
@callback children_specs :: %{required(binary()) => Enum.t()}
Return value should be a map of id → settings where id is the unique
identifier of the process and possible settings values are described in the
documentation.
perform/2
@callback perform(id :: binary(), payload :: term()) :: any()
The implementation of the worker. This function will be called with
the child id as first argument and the payload option to child spec
as second argument.
If it returns :halt, the process is considered done his job. Any other outcome
will be treated as as a result and stored in the State.
handle_state_change/1
@callback handle_state_change(state :: :down | :up | :starting | :unknown) :: :ok | :restart
This callback will be called on state changes, like :starting while the
initial state is not yet fully loaded and :started upon readyness.
handle_timeout/1
@callback handle_timeout(state :: map()) :: any()
This callback will be called if the worker cannot process in a reasonable time.

Dynamic Management Examples

Schedule Work
defmodule Counter do
 alias Tarearbol.DynamicManager
 use DynamicManager

 @impl DynamicManager
 def children_specs do
 now = DateTime.utc_now()
 %{
 second: [payload: now, timeout: 1_000],
 minute: [payload: now, timeout: 60_000]
 }
 end

 @impl DynamicManager
 def perform(:second, payload) do
 now = DateTime.utc_now()
 IO.inspect({payload, now}, label: "sec")
 {:ok, now} # do not replace a payload
 end

 def perform(:minute, payload) do
 now = DateTime.utc_now()
 IO.inspect({payload, now}, label: "min")
 {:replace, now} # replace a payload
 end
end
Once started with Counter.start_link(), it’ll output:
sec: {~U[2021-03-10 07:58:55.874591Z], ~U[2021-03-10 07:58:56.876633Z]}
...
sec: {~U[2021-03-10 07:58:55.874591Z], ~U[2021-03-10 07:59:54.938543Z]}
min: {~U[2021-03-10 07:58:55.874591Z], ~U[2021-03-10 07:59:55.876592Z]}
sec: {~U[2021-03-10 07:58:55.874591Z], ~U[2021-03-10 07:59:55.939661Z]}
...
sec: {~U[2021-03-10 07:58:55.874591Z], ~U[2021-03-10 08:00:54.998537Z]}
min: {~U[2021-03-10 07:59:55.876592Z], ~U[2021-03-10 08:00:55.877658Z]}
...
Note, that the payload of the :second one does not change, while the payload of minute gets updated to the latest value reported.
Workers Pool
One might create a workers pool with a help of Tarearbol.DynamicManager. Usually perform/2 is suppressed in workers with timeout: 0 and only Genserver.cast/2 and Genserver.call/2 are handled with helpers Tarearbol.Pool.defsynch/2 and Tarearbol.Pool.defasynch/2.
Written as a regular functions, they are wrapped during compilation time to be dispatched to the free instance of the pool behind. Inside the body of these functions, the following magic macros become available:
	id! returning the id of the worker invoked
	payload! returning the payload of the worker invoked
	state! returning the state of the worker invoked as a tuple {id, payload}

defmodule Pool do
 use Tarearbol.Pool, init: &Pool.initializer/0, pool_size: 2

 def initializer, do: 0

 defsynch synch(),
 do: {:ok, payload!()}

 defsynch synch(n),
 do: {:ok, payload!() + n}

 defasynch asynch(n),
 do: {:replace, payload!() + n}
end
Now one might call Pool.synch/1 to perform a synchronized pooled state request, as well as Pool.asynch/1 to asynchronously update the state. Note, that in this contrived example, the state of the first free worker is going to be updated.
Pool.start_link()

Enum.map(1..3, &Pool.synch(&1))
#⇒ [ok: 1, ok: 2, ok: 3]
Pool.synch()
#⇒ 0
But for asynch/1 function that needs some time to finish and updates the state, it’s different.
Pool.start_link()

Enum.map(1..3, &Pool.asynch(&1))
#⇒ [:ok, :ok, :ok]
Enum.reduce(Pool.state().children, 0, & &2 + elem(&1, 1).value)
#⇒ 6
Note, that there is no guarantee what worker would handle each call.
Multiple Stateful Processes
Consider we are building an online shop having buckets for each customer. Then we might back up the customer session with this kind of DynamicManager.
defmodule Bucket do
 alias Tarearbol.DynamicManager
 use DynamicManager

 def new(customer) do
 put(customer, payload: %{}, timeout: 10_000)
 end

 def do_smth(customer) do
 IO.inspect("Hey, #{customer}, we have a discount")
 end

 @impl DynamicManager
 def children_specs, do: %{}

 @impl DynamicManager
 def perform(id, payload) do
 if map_size(payload) > 0, do: do_smth(id)
 {:ok, DateTime.utc_now()}
 end

 @impl DynamicManager
 def call(:<, _from, {_id, payload}),
 do: {:ok, payload}

 @impl DynamicManager
 def cast({:+, item}, {_id, payload}),
 do: {:replace, Map.update(payload, item, 1, & &1+1)}
end
Then we can play with it.
iex|1▸ Bucket.start_link()
{:ok, #PID<0.325.0>}
iex|2▸ Bucket.new "Aleksei"
:ok
iex|3▸ Bucket.synch_call "Aleksei", {:+, :tomato}
iex|4▸ Bucket.asynch_call "Aleksei", {:+, :tomato}
iex|5▸ Bucket.asynch_call "Aleksei", {:+, :cucumber}
the below is printed from `perform/2`
"Hey, Aleksei, we have a discount"
iex|6▸ Bucket.synch_call "Aleksei", :<
{:ok, %{cucumber: 1, tomato: 2}}

Cron Management

Intro
Tarearbol provides a simple but robust support of cron-like jobs scheduling. The approach is to spawn a process for each job to be completed under Tarearbol.DynamicManager supervision. Tarearbol application does not start the Tarearbol.Scheduler automatically, the target application must include it into it’s supervision tree explicitly.
Jobs description are loaded upon application start from one of the following locations:
	project section of the Mix.Project, key :tarearbol, subkey :jobs
	config entry in Config script, key :tarearbol, subkey :jobs
	.tarearbol.exs file in the root folder of the target project (the path to the file might be configured in project section of the Mix.Project, key :tarearbol, subkey :jobs_file)

Tarearbol.Scheduler understands cron format. It exports three handy methods from Tarearbol.Crontab module, Tarearbol.Crontab.next/3, Tarearbol.Crontab.next_as_stream/3 and Tarearbol.Crontab.next_as_list/3. The first might be used to get the timestamp of the next event by cron record, the second to greedy evaluate all the next events for the year and the last one to return a Stream lazily evaluating next events.

Job Management
Tarearbol.Scheduler was created mostly for the single-node application, but it might be easily extended to manage jobs on several nodes.
Upon start, it loads jobs schedules and spawns processes for each, managed by Tarearbol.DynamicManager. Each job must return on of the following three outcomes.
	{:ok, any()} to normally return the result to be stored as last job execution result in the state of Manager and reschedule the job to the next event
	:halt to prevent further job executions and remove it from the list of scheduled jobs
	{{:reschedule, binary()}, any()} to reschedule the job with new cron record, given as the second parameter of the first tuple.

Extra Sugar
Tarearbol.Calendar exposes two functions stolen from Rails:
	Tarearbol.Calendar.beginning_of/2 returns the beginning of the period including the timestamp given as an argument
	Tarearbol.Calendar.end_of/2 returns the end of the period including the timestamp.

Tarearbol

Tarearbol module provides an interface to run tasks in easy way.
Examples
iex> result = Tarearbol.ensure(fn -> raise "¡?" end, attempts: 1, raise: false)
iex> {:error, %{job: _job, outcome: outcome}} = result
iex> {error, _stacktrace} = outcome
iex> error
%RuntimeError{message: "¡?"}

 Anchor for this section

 Summary

 Functions

 drain(jobs \\ Tarearbol.Application.jobs())

 Executes all the scheduled tasks immediately, cleaning up the queue.

 ensure!(job, opts \\ [])

 Same as Tarearbol.ensure/2, but it raises on fail and returns the result
 itself on successful execution.

 ensure(job, opts \\ [])

 Ensures the task to be completed; restarts it when necessary.

 ensure_all(jobs, opts \\ [])

 Executes Tarearbol.ensure_all_streamed/2 and collects tasks results.

 ensure_all_streamed(jobs, opts \\ [])

 Wrapper for Task.Supervisor.async_stream/4.

 run_at(job, at, opts \\ [])

 Runs a task specified by the first argument at a given time.

 run_in(job, interval, opts \\ [])

 Runs a task specified by the first argument in a given interval.

 spawn(job, opts \\ [])

 Spawns the task for the immediate async execution.

 spawn_ensured(job, opts)

 Spawns an ensured job asynchronously, passing all options given.

 Anchor for this section

Functions

 Link to this function

 drain(jobs \\ Tarearbol.Application.jobs())

 View Source

Executes all the scheduled tasks immediately, cleaning up the queue.

 Link to this function

 ensure!(job, opts \\ [])

 View Source

 @spec ensure!(
 (() -> any()) | {atom(), atom(), list()},
 keyword()
) :: {:error, any()} | {:ok, any()}

Same as Tarearbol.ensure/2, but it raises on fail and returns the result
 itself on successful execution.

 Link to this function

 ensure(job, opts \\ [])

 View Source

 @spec ensure(
 (() -> any()) | {atom(), atom(), list()},
 keyword()
) :: {:error, any()} | {:ok, any()}

Ensures the task to be completed; restarts it when necessary.
Possible options:
	attempts [default: :infinity] Might be any of @Tarearbol.Utils.interval
type (5 for five attempts, :random for the random amount etc)
	delay [default: 1 msec]. Might be any of @Tarearbol.Utils.interval
type (1_000 or 1.0 for one second, :timeout for five seconds etc)
	on_success [default: nil], the function to be called on successful
execution (arity ∈ [0, 1] or tuple {Mod, fun} where fun is of arity
zero or one.) When the arity of given function is 1, the result of
task execution is passed
	on_retry [default: nil], same as above, called on retries after
insuccessful attempts or one of [:debug, :info, :warn, :error] atoms
to log a retry with default logger
	on_fail [default: nil], same as above, called when the task finally
failed after attempts amount of insuccessful attempts

 Link to this function

 ensure_all(jobs, opts \\ [])

 View Source

 @spec ensure_all([(() -> any()) | {atom(), atom(), list()}], keyword()) :: [
 error: any(),
 ok: any()
]

Executes Tarearbol.ensure_all_streamed/2 and collects tasks results.

 Link to this function

 ensure_all_streamed(jobs, opts \\ [])

 View Source

 @spec ensure_all_streamed([(() -> any()) | {atom(), atom(), list()}], keyword()) ::
 Enumerable.t()

Wrapper for Task.Supervisor.async_stream/4.

 Link to this function

 run_at(job, at, opts \\ [])

 View Source

 @spec run_at(
 (() -> any()) | {atom(), atom(), list()},
 DateTime.t() | String.t(),
 keyword()
) :: Task.t()

Runs a task specified by the first argument at a given time.
If the second parameter is a [DateTime] struct, the task will be run once.
If the second parameter is a [Time] struct, the task will be run at that time
 on daily basis.

 Link to this function

 run_in(job, interval, opts \\ [])

 View Source

 @spec run_in(
 (() -> any()) | {atom(), atom(), list()},
 atom() | integer() | float(),
 keyword()
) :: Task.t()

Runs a task specified by the first argument in a given interval.
See [Tarearbol.ensure/2] for all possible variants of the interval argument.

 Link to this function

 spawn(job, opts \\ [])

 View Source

 @spec spawn(
 (() -> any()) | {atom(), atom(), list()},
 keyword()
) :: Task.t()

Spawns the task for the immediate async execution.

 Link to this function

 spawn_ensured(job, opts)

 View Source

 @spec spawn_ensured(
 (() -> any()) | {atom(), atom(), list()},
 keyword()
) :: Task.t()

Spawns an ensured job asynchronously, passing all options given.

Tarearbol.DynamicManager behaviour

The scaffold implementation to dynamically manage many similar tasks running
as processes.
It creates a main supervisor, managing the GenServer holding the state and
DynamicSupervisor handling chidren. It has a strategy :rest_for_one,
assuming that if the process holding the state crashes, the children will be
restarted.
Typically one calls use Tarearbol.DynamicManager and implements at least
children_specs/0 callback and receives back supervised tree with a state
and many processes controlled by DynamicSupervisor.
To see how it works you might try
defmodule DynamicManager do
 use Tarearbol.DynamicManager

 def children_specs do
 for i <- 1..10, do: {"foo_#{i}", []}, into: %{}
 end
end

{:ok, pid} = DynamicManager.start_link()
The above would spawn 10 children with IDs "foo_1".."foo_10".
Workers Management
DynamicManager allows dynamic workers management. It exports three functions
@spec get(id :: id()) :: Enum.t()
@spec put(id :: id(), opts :: Enum.t()) :: pid()
@spec del(id :: id()) :: :ok
@spec restart(id :: id()) :: :ok
The semantics of put/2 arguments is the same as a single child_spec,
del/1 and get/1 receive the unique ID of the child and shutdown it or
return it’s payload respectively.
Workers Callbacks
Workers are allowed to implement several callbacks to be used to pass messages
 to them.
	peform/2 is called periodically by the library internals; the interval
is set upon worker initialization via children_specs/1 (static) or put/2
(dynamic); the interval set to 0 suppresses periodic invocations
	call/3 to handle synchronous message send to worker
	cast/2 to handle asynchronous message send to worker
	terminate/2 to handle worker process termination

All the above should return a value of Tarearbol.DynamicManager.response/0 type.
Also, the implementing module might use a custom initialization function
 to e. g. dynamically build payload. Is should be passed to use DynamicManager
 as a parameter init: handler and might be a tuple {module(), function(), arity()} or
 a captured function &MyMod.my_init/1. Arities 0, 1 and 2 are allowed, as described by
 Tarearbol.DynamicManager.init_handler/0 type.
The worker process will call this function from GenServer.handle_continue/2 callback.

 Anchor for this section

 Summary

 Types

 id()

 Identifier of the child process

 init_handler()

 Post-instantion init handler type, that might be passed to use DynamicManager vis init:

 payload()

 Payload associated with the worker

 response()

 Expected response from the DymanicManager implementation

 Callbacks

 call(message, from, {})

 The method to implement to support explicit GenServer.call/3 on the wrapping worker.

 cast(
 message,
 {}
)

 The method to implement to support explicit GenServer.cast/2 on the wrapping worker.

 children_specs()

 This function is called to retrieve the map of children with name as key
and a workers as the value.

 handle_state_change(state)

 Declares an instance-wide callback to report state; if the startup process
takes a while, it’d be run in handle_continue/2 and this function will be
called after it finishes so that the application might start using it.

 handle_timeout(state)

 Declares a callback to report slow process (when the scheduler cannot process
in a reasonable time).

 perform(id, payload)

 The main function, doing all the internal job, supervised.

 terminate(
 reason,
 {}
)

 The method that will be called before the worker is terminated.

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: any()

Identifier of the child process

 Link to this type

 init_handler()

 View Source

 @type init_handler() ::
 nil
 | (() -> payload())
 | (payload() -> payload())
 | (id(), payload() -> payload())

Post-instantion init handler type, that might be passed to use DynamicManager vis init:

 Link to this type

 payload()

 View Source

 @type payload() :: any()

Payload associated with the worker

 Link to this type

 response()

 View Source

 @type response() ::
 :halt
 | {:replace, payload()}
 | {:replace, id(), payload()}
 | {{:timeout, integer()}, payload()}
 | {:ok, any()}
 | any()

Expected response from the DymanicManager implementation

 Anchor for this section

Callbacks

 Link to this callback

 call(message, from, {})

 View Source

 (since 1.2.0)

 @callback call(
 message :: any(),
 from :: GenServer.from(),
 {id :: id(), payload :: payload()}
) :: response()

The method to implement to support explicit GenServer.call/3 on the wrapping worker.

 Link to this callback

 cast(
 message,
 {}
)

 View Source

 (since 1.2.1)

 @callback cast(
 message :: any(),
 {id :: id(), payload :: payload()}
) :: response()

The method to implement to support explicit GenServer.cast/2 on the wrapping worker.

 Link to this callback

 children_specs()

 View Source

 (since 0.9.0)

 @callback children_specs() :: %{required(id()) => Enum.t()}

This function is called to retrieve the map of children with name as key
and a workers as the value.
The value must be an enumerable with keys among:
	:payload passed as second argument to perform/2, default nil
	:timeout time between iterations of perform/2, default 1 second
	:lull threshold to notify latency in performing, default 1.1
(the threshold is :lull times the :timeout)

This function should not care about anything save for producing side effects.
It will be backed by DynamicSupervisor. The value it returns will be put
into the state under children key.

 Link to this callback

 handle_state_change(state)

 View Source

 (since 0.9.0)

 @callback handle_state_change(state :: :down | :up | :starting | :unknown) ::
 :ok | :restart

Declares an instance-wide callback to report state; if the startup process
takes a while, it’d be run in handle_continue/2 and this function will be
called after it finishes so that the application might start using it.
If the application is not interested in receiving state updates, e. g. when
all it needs from runners is a side effect, there is a default implementation
that does nothing.

 Link to this callback

 handle_timeout(state)

 View Source

 (since 0.9.5)

 @callback handle_timeout(state :: map()) :: any()

Declares a callback to report slow process (when the scheduler cannot process
in a reasonable time).

 Link to this callback

 perform(id, payload)

 View Source

 (since 0.9.0)

 @callback perform(id :: id(), payload :: payload()) :: response()

The main function, doing all the internal job, supervised.
It will be called with the child id as first argument and the
payload option to child spec as second argument (defaulting to nil,
can also be ignored if not needed).

 return-values

 Return values

perform/2 might return
	:halt if it wants to be killed
	{:ok, result} to store the last result and reschedule with default timeout
	{:replace, payload} to replace the payload (state) of the current worker with the new one
	{:replace, id, payload} to replace the current worker with the new one
	{{:timeout, timeout}, result} to store the last result and reschedule in given timeout interval
	or deprecated anything else will be treated as a result

 Link to this callback

 terminate(
 reason,
 {}
)

 View Source

 (since 1.2.0)

 @callback terminate(
 reason :: term(),
 {id :: id(), payload :: payload()}
) :: any()

The method that will be called before the worker is terminated.

Tarearbol.DynamicManager.Child

The internal representation of a child process under DynamicManager supervision

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tarearbol.DynamicManager.Child{
 pid: pid(),
 value: Tarearbol.DynamicManager.payload(),
 busy?: nil | DateTime.t(),
 opts: keyword()
}

Tarearbol.Pool

The pool of workers built on top of Tarearbol.DynamicManager.
Configuration options:
	pool_size the size of the pool, default: 5
	payload the default payload for all the workers
(for more complex initialization, use init option below)
	init custom init step as described in Tarearbol.DynamicManager docs

This module exports defsynch/2 and defasynch/2 macros allowing to to declare
 functions that would be managed by a pool behind. Basically, the below would be translated
 into a message passed to the free worker of the pool.
defsynch synch(n) do
 {:ok, payload!() + n}
end
Both macros have three predefined functions declared inside a block
	id! returning the id of the worker invoked
	payload! returning the payload of the worker invoked
	state! returning the state of the worker invoked as a tuple {id, payload}

 Anchor for this section

 Summary

 Functions

 defasynch(definition, opts \\ [])

 Declares an asynchronous function with the same name and block, that will be under the hood
 routed to the free worker to execute. If there is no free worker at the moment,
 returns :error otherwise returns {:ok, result} tuple.

 defsynch(definition, opts \\ [])

 Declares a synchronous function with the same name and block, that will be under the hood
 routed to the free worker to execute. If there is no free worker at the moment,
 returns :error otherwise returns {:ok, result} tuple.

 Anchor for this section

Functions

 Link to this macro

 defasynch(definition, opts \\ [])

 View Source

 (since 1.4.0)

 (macro)

Declares an asynchronous function with the same name and block, that will be under the hood
 routed to the free worker to execute. If there is no free worker at the moment,
 returns :error otherwise returns {:ok, result} tuple.
This function might return any response recognizable by Tarearbol.DynamicManager.response/0.

 Link to this macro

 defsynch(definition, opts \\ [])

 View Source

 (since 1.4.0)

 (macro)

Declares a synchronous function with the same name and block, that will be under the hood
 routed to the free worker to execute. If there is no free worker at the moment,
 returns :error otherwise returns {:ok, result} tuple.
This function might return any response recognizable by Tarearbol.DynamicManager.response/0.

Tarearbol.Calendar

Handy functions to work with dates.

 Anchor for this section

 Summary

 Functions

 beginning_of(dt \\ nil, count \\ 0, what)

 Returns a DateTime instance of the beginning of the period given as third
parameters, related to the DateTime instance given as the first parameter
(defaulted to DateTime.utc_now/0).

 end_of(dt \\ nil, n \\ 0, period)

 Anchor for this section

Functions

 Link to this function

 beginning_of(dt \\ nil, count \\ 0, what)

 View Source

 @spec beginning_of(dt :: DateTime.t() | nil, count :: integer(), atom()) ::
 DateTime.t()

Returns a DateTime instance of the beginning of the period given as third
parameters, related to the DateTime instance given as the first parameter
(defaulted to DateTime.utc_now/0).
The number of periods to shift might be given as the second parameter
(defaults to 0.)
Examples:
iex> dt = DateTime.from_unix!(1567091960)
~U[2019-08-29 15:19:20Z]
iex> Tarearbol.Calendar.beginning_of(dt, :year)
~U[2019-01-01 00:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, -2, :year)
~U[2017-01-01 00:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, :month)
~U[2019-08-01 00:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, 6, :month)
~U[2020-02-01 00:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, 4, :day)
~U[2019-09-02 00:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, :week)
~U[2019-08-26 00:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, -34, :week)
~U[2018-12-31 00:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, :hour)
~U[2019-08-29 15:00:00Z]
iex> Tarearbol.Calendar.beginning_of(dt, -28*24-16, :hour)
~U[2019-07-31 23:00:00Z]
iex> Tarearbol.Calendar.end_of(dt, :hour)
~U[2019-08-29 15:59:59Z]
iex> Tarearbol.Calendar.end_of(dt, 5, :month)
~U[2020-01-31 23:59:59Z]
iex> Tarearbol.Calendar.end_of(dt, -1, :year)
~U[2018-12-31 23:59:59Z]

 Link to this function

 end_of(dt \\ nil, n \\ 0, period)

 View Source

 @spec end_of(dt :: DateTime.t() | nil, count :: integer(), atom()) :: DateTime.t()

Tarearbol.Crontab

Helper functions to work with cron syntax.

 Anchor for this section

 Summary

 Types

 t()

 Internal representation of the record in cron file

 Functions

 formula(ct)

 Produces the single formula out of cron record. Might be useful
for some external check that requires the single validation call.

 next(dt \\ nil, input, opts \\ [])

 Returns the next DateTime the respective cron record points to
with a precision given as the third argument (default: :second.)

 next_as_list(dt \\ nil, input, opts \\ [])

 Returns the list of all the events after dt (default: DateTime.utc_now/0.)

 next_as_stream(dt \\ nil, input, opts \\ [])

 Returns the stream of all the events after dt (default: DateTime.utc_now/0.)

 parse(input)

 Parses the cron string into human-readable representation.

 prepare(input)

 Parses the cron string into Tarearbol.Crontab.t() struct.

 to_cron(time)

 Converts the Time instance into daily-execution cron string

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tarearbol.Crontab{
 day: term(),
 day_of_week: term(),
 hour: term(),
 minute: term(),
 month: term()
}

Internal representation of the record in cron file

 Anchor for this section

Functions

 Link to this function

 formula(ct)

 View Source

 @spec formula(ct :: binary() | t()) :: :error | binary()

Produces the single formula out of cron record. Might be useful
for some external check that requires the single validation call.
Examples
iex> Tarearbol.Crontab.formula("42 3 28 08 *").formula
"(day == 28) && (rem(day_of_week, 1) == 0) && (hour == 3) && (minute == 42) && (month == 8)"

iex> Tarearbol.Crontab.formula("423 * * * *")
{:error, [minute: {:could_not_parse_field, ["423"]}]}

 Link to this function

 next(dt \\ nil, input, opts \\ [])

 View Source

 @spec next(dt :: nil | DateTime.t(), input :: binary(), opts :: keyword()) ::
 DateTime.t()

Returns the next DateTime the respective cron record points to
with a precision given as the third argument (default: :second.)
If the first parameter is not given, it assumes the next after now.
Examples
iex> dt = DateTime.from_unix!(1567091960)
~U[2019-08-29 15:19:20Z]
iex> Tarearbol.Crontab.next(dt, "42 3 28 08 *")
[
 origin: ~U[2019-08-29 15:19:20Z],
 next: ~U[2020-08-28 03:42:00Z],
 second: 31494160
]
where origin contains the timestamp to lookup the next for, next
is the DateTime instance of the next event and second is the
{precision, difference_in_that_precision}.

 Link to this function

 next_as_list(dt \\ nil, input, opts \\ [])

 View Source

 @spec next_as_list(dt :: nil | DateTime.t(), input :: binary(), opts :: keyword()) ::
 keyword()

Returns the list of all the events after dt (default: DateTime.utc_now/0.)
This function calculates the outcome greedily and, while it might be slightly
faster than Tarearbol.Crontab.next_as_stream/3, it should not be used for
frequently recurring cron records (like "* * * * *".)

 Link to this function

 next_as_stream(dt \\ nil, input, opts \\ [])

 View Source

 @spec next_as_stream(dt :: nil | DateTime.t(), input :: binary(), opts :: keyword()) ::
 Enumerable.t()

Returns the stream of all the events after dt (default: DateTime.utc_now/0.)
This function calculates the outcome lazily, returning a stream.
See Tarearbol.Crontab.next_as_list/3 for greedy evaluation.

 Link to this function

 parse(input)

 View Source

 @spec parse(input :: binary()) :: t()

Parses the cron string into human-readable representation.
This function is exported for debugging purposes only, normally one would call prepare/1 instead.
Input format: "minute hour day/month month day/week".
Examples:
iex> Tarearbol.Crontab.parse "10-30/5 */4 1 */1 6,7"
%Tarearbol.Crontab{
 day: "(day == 1)",
 day_of_week: "(day_of_week == 6 || day_of_week == 7)",
 hour: "(rem(hour, 4) == 0)",
 minute: "(rem(minute, 5) == 0 && minute >= 10 && minute <= 30)",
 month: "(rem(month, 1) == 0)"
}
In case of malformed input:
iex> Tarearbol.Crontab.parse "10-30/5 */4 1 */1 6d,7"
%Tarearbol.Crontab{
 day: "(day == 1)",
 day_of_week: {:error, {:could_not_parse_integer, "6d"}},
 hour: "(rem(hour, 4) == 0)",
 minute: "(rem(minute, 5) == 0 && minute >= 10 && minute <= 30)",
 month: "(rem(month, 1) == 0)"
}

 Link to this function

 prepare(input)

 View Source

 @spec prepare(input :: binary() | t()) :: t()

Parses the cron string into Tarearbol.Crontab.t() struct.
Input format: "minute hour day/month month day/week".

 Link to this function

 to_cron(time)

 View Source

 @spec to_cron(dt :: Time.t()) :: binary()

Converts the Time instance into daily-execution cron string

Tarearbol.Scheduler

Cron-like task scheduler. Accepts both static and dynamic configurations.
Usage
Add Tarearbol.Scheduler to the list of supervised workers. It would attempt
to read the static configuration (see below) and start the DynamicSupervisor
with all the scheduled jobs as supervised workers.
The runner is the function of arity zero, that should return {:ok, result}
tuple upon completion. The job will be rescheduled according to its schedule.
The last result returned will be stored in the state and might be retrieved
later with get/1 passing the job name.
Static Configuration
Upon starts it looks up :tarearbol section of Mix.Project for
:jobs and :jobs_file keys. The latter has a default .tarearbol.exs.
This won’t work with releases.
Also it looks up :tarearbol, :jobs section of config.exs. Everything found
is unioned. Jobs with the same names are overriden, the file has precedence
over project config, the application config has least precedence.
If found, jobs as a list of tuples of {name, runner, schedule} are scheduled.
These are expected to be in the following form.
	name might be whatever, used to refer to the job during it’s lifetime
	runner might be either {module, function} tuple or a reference to the function of arity zero (&Foo.bar/0)
	schedule in standard cron notation, see https://crontab.guru

Dynamic Configuration
Use Tarearbol.Scheduler.push/3, Tarearbol.Scheduler.pop/1 to add/remove jobs
temporarily and/or Tarearbol.Scheduler.push!/3, Tarearbol.Scheduler.pop!/1 to
reflect changes in the configuration file.
Tarearbol.Scheduler.push(TestJob, &Foo.bar/0, "3-5/1 9-18 * * 6-7")

 Anchor for this section

 Summary

 Types

 once_schedule()

 Type of possible job schedules to be run once: Time to be executed once or
amount of milliseconds to execute after

 repeated_schedule()

 Type of possible job schedules to be run repeatedly: binary cron format
or DateTime for the daily execution

 runner()

 Type of the job runner, an {m, f} tuple or a function of arity zero,
returning one of the outcomes below

 Functions

 active_jobs()

 asynch_call(id, message)

 Performs a GenServer.cast/2 to the worker specified by id.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 del(id)

 Dynamically removes a supervised worker implementing Tarearbol.DynamicManager
behaviour from the list of supervised children

 get(id)

 Retrieves the information (payload, timeout, lull etc.) assotiated with
the supervised worker

 multidel(id)

 deprecated

 Dynamically removes a supervised worker implementing Tarearbol.DynamicManager
 behaviour from the list of supervised children on all the nodes managed by Cloister.

 multiput(id, opts)

 deprecated

 Dynamically adds a supervised worker implementing Tarearbol.DynamicManager
 behaviour to the list of supervised children on all the nodes managed by Cloister.

 pop!(name)

 Removes the scheduled job from the schedule by id and updated the configuration.

 pop(name)

 Removes the scheduled job from the schedule by id.

 push!(name, runner, schedule)

 Creates and pushes the job to the list of currently scheduled jobs, updates
the permanent list of scheduled jobs.

 push(name, runner, schedule)

 Creates and temporarily pushes the job to the list of currently scheduled jobs.

 put(id, opts)

 Dynamically adds a supervised worker implementing Tarearbol.DynamicManager
 behaviour to the list of supervised children.

 restart()

 Restarts the DynamicManager to the clean state

 start_link(opts \\ [])

 Starts the DynamicSupervisor and its helpers to manage dynamic children

 synch_call(id, message)

 Performs a GenServer.call/3 to the worker specified by id.

 Anchor for this section

Types

 Link to this type

 once_schedule()

 View Source

 @type once_schedule() :: non_neg_integer() | Time.t()

Type of possible job schedules to be run once: Time to be executed once or
amount of milliseconds to execute after

 Link to this type

 repeated_schedule()

 View Source

 @type repeated_schedule() :: binary() | DateTime.t()

Type of possible job schedules to be run repeatedly: binary cron format
or DateTime for the daily execution

 Link to this type

 runner()

 View Source

 @type runner() ::
 {atom(), atom()}
 | {atom(), atom(), list()}
 | (() -> :halt | {:ok | {:reschedule, binary()}, any()})

Type of the job runner, an {m, f} tuple or a function of arity zero,
returning one of the outcomes below

 Anchor for this section

Functions

 Link to this function

 active_jobs()

 View Source

 @spec active_jobs() :: %{
 required(Tarearbol.DynamicManager.id()) => Tarearbol.DynamicManager.Child.t()
}

 Link to this function

 asynch_call(id, message)

 View Source

 (since 1.2.1)

 @spec asynch_call(id :: nil | Tarearbol.DynamicManager.id(), message :: any()) ::
 :ok | :error

Performs a GenServer.cast/2 to the worker specified by id.
Tarearbol.DynamicManager.cast/2 callback should be implemented for this to work.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 del(id)

 View Source

Dynamically removes a supervised worker implementing Tarearbol.DynamicManager
behaviour from the list of supervised children
If distributed: true parameter was given to use Tarearbol.DynamicManager,
 deletes the worker from all the nodes managed by Cloister. :cloister dependency
 must be added to a project to use this feature.

 Link to this function

 get(id)

 View Source

Retrieves the information (payload, timeout, lull etc.) assotiated with
the supervised worker

 Link to this function

 multidel(id)

 View Source

 This function is deprecated. Use `distributed: true` parameter in call to `use Tarearbol.DynamicManager`
 and regular `del/1` instead.
.

Dynamically removes a supervised worker implementing Tarearbol.DynamicManager
 behaviour from the list of supervised children on all the nodes managed by Cloister.
Use distributed: true parameter in call to use Tarearbol.DynamicManager
 and regular del/1 instead.

 Link to this function

 multiput(id, opts)

 View Source

 This function is deprecated. Use `distributed: true` parameter in call to `use Tarearbol.DynamicManager`
 and regular `put/2` instead.
.

Dynamically adds a supervised worker implementing Tarearbol.DynamicManager
 behaviour to the list of supervised children on all the nodes managed by Cloister.
Use distributed: true parameter in call to use Tarearbol.DynamicManager
 and regular put/2 instead.

 Link to this function

 pop!(name)

 View Source

 @spec pop!(name :: any()) :: :ok

Removes the scheduled job from the schedule by id and updated the configuration.
For the implementation that removes jobs temporarily, use pop!/1.

 Link to this function

 pop(name)

 View Source

 @spec pop(name :: any()) :: :ok

Removes the scheduled job from the schedule by id.
For the implementation that survives restarts use pop!/1.

 Link to this function

 push!(name, runner, schedule)

 View Source

 @spec push!(
 name :: binary(),
 runner :: runner(),
 schedule :: repeated_schedule() | once_schedule()
) :: :ok

Creates and pushes the job to the list of currently scheduled jobs, updates
the permanent list of scheduled jobs.
For the implementation that temporarily pushes a job, use push/3.

 Link to this function

 push(name, runner, schedule)

 View Source

 @spec push(
 name :: binary(),
 runner :: runner(),
 schedule :: repeated_schedule() | once_schedule()
) :: :ok

Creates and temporarily pushes the job to the list of currently scheduled jobs.
For the implementation that survives restarts use push!/3.

 Link to this function

 put(id, opts)

 View Source

Dynamically adds a supervised worker implementing Tarearbol.DynamicManager
 behaviour to the list of supervised children.
If distributed: true parameter was given to use Tarearbol.DynamicManager,
 puts the worker into all the nodes managed by Cloister. :cloister dependency
 must be added to a project to use this feature.

 Link to this function

 restart()

 View Source

Restarts the DynamicManager to the clean state

 Link to this function

 start_link(opts \\ [])

 View Source

Starts the DynamicSupervisor and its helpers to manage dynamic children

 Link to this function

 synch_call(id, message)

 View Source

 (since 1.2.0)

 @spec synch_call(id :: nil | Tarearbol.DynamicManager.id(), message :: any()) ::
 {:ok, any()} | :error

Performs a GenServer.call/3 to the worker specified by id.
Tarearbol.DynamicManager.call/3 callback should be implemented for this to work.

Tarearbol.Scheduler.Job

A struct holding the job description. Used internally by Tarearbol.Scheduler
to preserve a list of scheduled jobs.

 Anchor for this section

 Summary

 Types

 t()

 The struct containing the information about the job

 Functions

 create(name, runner, schedule)

 Produces a Tarearbol.Scheduler.Job by parameters given

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Tarearbol.Scheduler.Job{
 name: binary(),
 runner: Tarearbol.Scheduler.runner(),
 schedule: Tarearbol.Scheduler.repeated_schedule(),
 once?: boolean()
}

The struct containing the information about the job

 Anchor for this section

Functions

 Link to this function

 create(name, runner, schedule)

 View Source

 @spec create(
 name :: binary(),
 runner :: Tarearbol.Scheduler.runner(),
 schedule ::
 Tarearbol.Scheduler.repeated_schedule()
 | Tarearbol.Scheduler.once_schedule()
) :: t()

Produces a Tarearbol.Scheduler.Job by parameters given

Tarearbol.TaskFailedError exception

The generic exception thrown from any function
dealing with Task handling.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

