

 Surgex

 v4.8.0

 [image: Logo]

 Table of contents

 	Surgex

 	Changelog

 	Modules

 	Surgex.Application

 	Surgex.Changeset

 	Surgex.DataPipe

 	Surgex.DataPipe.FollowerSync

 	Surgex.DataPipe.ForeignDataWrapper

 	Surgex.DataPipe.PostgresSystemUtils

 	Surgex.DataPipe.RepoProxy

 	Surgex.DataPipe.TableSync

 	Surgex.DatabaseCleaner

 	Surgex.DateTime

 	Surgex.Guide

 	Surgex.Guide.CodeStyle

 	Surgex.Guide.SoftwareDesign

 	Surgex.Parser

 	Surgex.Parser.ContainParser

 	Surgex.Parser.Geobox

 	Surgex.Parser.Geolocation

 	Surgex.Parser.IncludeParser

 	Surgex.Parser.SortParser

 	Surgex.Parser.StringParser

 	Surgex.Refactor

 	Surgex.Refactor.MapFilenames

 	Surgex.RepoHelpers

 	Surgex.Sentry

 	Mix Tasks

 	mix surgex.refactor

Surgex [image: Hex version badge] [image: License badge] [image: Build status badge] [image: Code quality badge] [image: Code coverage badge]
All Things Elixir @ Surge Ventures Inc, the creators of Shedul
This is the official entry point and hub for all company-wide Elixir efforts at Surge Ventures.
Here's what you can expect to find in the
Surgex repository.
Elixir knowledge base
Official style guide for Elixir and Phoenix projects at Surge Ventures, written in ExDoc format as
a set of functions in the Surgex.Guide module (visit at HexDocs).
Surgex bundle
Surgex is a package of cross-project helper modules, each too small or too young to justify
publishing them separately. It currently consists of:
	Surgex.Changeset: tools for working with Ecto changesets
	Surgex.DatabaseCleaner: cleans tables in a database represented by an Ecto repo
	Surgex.DataPipe: tools for moving data between PostgreSQL databases and tables
	Surgex.Parser: parses, casts and catches errors in the web request input
	Surgex.Refactor: tools for making code maintenance and refactors easier
	Surgex.Sentry: extensions to the official Sentry package
	Surgex.RepoHelpers: tools for dynamic setup of Ecto repo opts

Separate packages
Besides the toolbelt bundle inside the Surgex package, we also maintain separate Elixir packages
that contain our bigger and more serious open source efforts. Currently, we own the following repos:
	Jabbax - JSON API Building Blocks Assembly for Elixir

Changelog
4.8.0
	New Surgex.DateTime module with date_and_offset_to_datetime/3 helper for creating UTC or time-zone date time

4.7.0
	The Surgex.Parser.RequiredParser accepts an empty string as valid input

4.6.1
	Parsers can now process any value without throwing exception on unknown value type

4.6.0
	Updated Surgex.Parser.ResourceArrayParser to support invalid parameters

4.5.0
	Extended parsers to match empty string values as nil

4.4.0
	Extended parsing of ResourceID ("" -> required)

4.3.0
	Bump minor version

4.2.1
	Extended parsing of boolean ("true" -> true, "false" -> false) and integers ("" -> nil) values

4.2.0
	Added support for translating errors in nested changeset to JSON API responses

4.0.0
	Removed support for AppSignal

3.2.8
	Surgex.RepoHelpers sets ecto application_name based on APP_NAME env var

3.2.7
	Simplified email regex to fix catastrophic backtracing error when providing longer addresses

3.2.6
	Added ssl in Surgex.RepoHelpers

3.2.5
	Fixed typespec error in Surgex.Parser.BooleanParser
	Added dialyzer --halt-exit-status to mix check

3.2.4
	Added typespecs in Surgex.Parser
	Deprecated Surgex.Guide, Surgex.RepoHelpers and Surgex.Sentry

3.2.3
	Improved Surgex.DataPipe.ForeignDataWrapper to alter pg server if it already exists

3.2.2
	Fixed error in Surgex.Appsignal.EctoLogger for when event is missing stage times

3.2.1
	Fixed compilation of Surgex.Appsignal.EctoLogger
	Added :all value for :query_stages option in Surgex.Appsignal.EctoLogger.handle_event/4

3.2.0
	Added Surgex.Appsignal.EctoLogger

3.1.0
	Added Surgex.RepoHelpers.set_pool_size/2 and included it in set_opts/2

3.0.0
	Extended Surgex.Parser.IdListParser with support for list type
	Removed Surgex.Config
	Removed Surgex.DeviseSession
	Removed Surgex.PhoneNumber
	Removed Surgex.RPC
	Removed Surgex.Scout
	Updated some deps

2.24.1
	Added Surgex.RepoHelpers

2.23.0
	Added Surgex.DataPipe.PostgresSystemUtils
	Fixed Surgex.DataPipe to support PostgreSQL 10
	Reformatted code with Elixir Formatter
	Deprecated Surgex.{Config, DeviseSession, PhoneNumber, RPC, Scout} modules

2.22.0
	Extended Surgex.Parser.StringParser with trim, min and max options
	Extended Surgex.Parser.ResourceArrayParser with min and max options
	Extended Surgex.Parser.IncludeParser with support for multiple includes

2.21.0
	Extended Surgex.DataPipe.RepoProxy with registry and follower sync

2.20.1
	Fixed LSN check in Surgex.DataPipe.FollowerSync

2.20.0
	Refine error handling in Surgex.DataPipe.FollowerSync

2.19.0
	Added Surgex.DataPipe.RepoProxy

2.18.0
	Added Surgex.Parser.ListParser

2.17.0
	Extended Surgex.DataPipe.TableSync with delete_scope option
	Fixed Surgex.DataPipe.TableSync to properly use Ecto's query params

2.16.0
	Extended Surgex.Parser.FloatParser with support for integers as input

2.15.0
	Extended Surgex.Parser.FloatParser with support for floats as input
	Extended Surgex.Parser.BooleanParser with support for booleans as input

2.14.0
	Extended Surgex.Parser.FloatParser with min and max options

2.13.0
	Added Surgex.Parser.ResourceParser

2.12.1
	Fixed Surgex.RPC.Client to support no services in the client
	Refactored Surgex.RPC for proper payload - transport separation

2.12.0
	Added Surgex.Parser.SlugParser
	Added Surgex.Parser.SlugOrIdParser

2.11.0
	Added support for configuring Surgex.RPC.HTTPAdapter via Mix config, powered by Surgex.Config
	Added support for passing service name atom to Surgex.RPC.Client.proto/1
	Added support for passing arbitrary opts to Protobuf via Surgex.RPC.Client.service/1

2.10.0
	Added Surgex.RPC

2.9.0
	Added Surgex.Guide.CodeStyle.typespec_alias_usage/0 rule

2.8.0
	Added Surgex.Config.Patch

2.7.0
	Added Surgex.Scout to support setting Scout Agent Key with {:system, "SCOUT_API_KEY"}

2.6.0
	Added Surgex.Guide.SoftwareDesign.return_ok_error_usage/0 rule

2.5.1
	Fixed Surgex.DeviseSession to support Plug.Conn with {:system, "SECRET_KEY_BASE"}

2.5.0
	Added Surgex.DatabaseCleaner

2.3.0
	Added Surgex.Guide.CodeStyle.pipe_chain_alignment/0

2.2.1
	Fixed Surgex.Parser to return the same error reason multiple times

2.2.0
	Added support for raw SQL source in Surgex.DataPipe.TableSync

2.1.1
	Fixed nil scope bug in Surgex.Config.get/2
	Fixed per-repo config parse bug in Surgex.DataPipe.FollowerSync

2.1.0
	Added support for per-repo config in Surgex.DataPipe.FollowerSync

2.0.0
	Replaced Surgex.Config.Session with Surgex.DeviseSession
	Added Surgex.DataPipe
	Added Surgex.Refactor

1.6.0
	Added Surgex.Config.Session

1.5.2
	Support integer input in Surgex.Parser.IntegerParser

1.5.1
	Return invalid instead of invalid-cast in Surgex.Changeset

1.5.0
	Add Surgex.Guide.CodeStyle.test_happy_case_placement/0 rule

1.4.0
	Keep input nil keys in Surgex.Parser

1.2.1
	Fix bug in Sentry docs

1.2.0
	Added Surgex.Guide.SoftwareDesign.error_handling/0 rule
	Fixed some other rules

1.1.0
	Added Surgex.PhoneNumber

1.0.0
	Extended Surgex.Config to support env var lists
	Changed Surgex.Config to take opts via keyword list
	Added Surgex.Parser support for nil input
	Extended Surgex.Parser.IntegerParser with min and max opts
	Changed Surgex.Sentry to run as an OTP app
	Extended Surgex.Sentry to take release and environment from Mix
	Completed Surgex.Guide

Surgex.Application

Main Surgex OTP application that calls patches configured for running and hibernates itself.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(_)

 Callback implementation for GenServer.init/1.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 init(_)

 View Source

Callback implementation for GenServer.init/1.

Surgex.Changeset

Tools for working with Ecto changesets.

 Anchor for this section

 Summary

 Functions

 build_errors_document(changeset)

 Builds Jabbax document that describes changeset errors.

 Anchor for this section

Functions

 Link to this function

 build_errors_document(changeset)

 View Source

Builds Jabbax document that describes changeset errors.

Surgex.DataPipe

Tools for moving data between PostgreSQL databases and tables.
The following tools are available:
	Surgex.DataPipe.FollowerSync: waits for a slave synchronization with a remote master
	Surgex.DataPipe.ForeignDataWrapper: configures a FDW linkage between two repos
	Surgex.DataPipe.TableSync: ETLs data from one database or table into another
	Surgex.DataPipe.RepoProxy: Proxies repo calls depending on replication needs

Usage
A common scenario may be to wait for a message or event coming from an external service that has
just made a change in an OLTP master database (D1) which we can access via a read-only slave (D2)
for puproses of efficient ETL into our own OLAP database (D3). Let's see what steps and what tools
from this module are involved in such a data pipe.
First, since we're using slave that replicates data from master with a delay, we may want to wait
for it to catch up with a master to a point at which the event was triggered. In order to do that,
the external service should include the current log location (lsn) of D1 in the event. We can use
that to wait for D2 to catch up:
%{lsn: d1_lsn} = external_event
FollowerSync.call(D2Repo, d1_lsn)
Then, we may connect our D3 database to D2 via an efficient PostgreSQL FDW link in order for data
to flow directly between databases without having to load them into app memory:
ForeignDataWrapper.call(D3Repo, D2Repo)
Finally, we may synchronize data between two repos using a native Ecto syntax:
query =
 D2Sale
 |> where(...)
 |> select(...)
 |> ForeignDataWrapper.prefix(D2Repo)

TableSync.call(D3Repo, query, D3FactSale)
That's it. You now have an up-to-date copy of reduced data from OLTP master in your OLAP database.

Surgex.DataPipe.FollowerSync

Acquires a PostgreSQL slave synchronization with a remote master.
Usage
It can be configured globally or per repo as follows:
config :surgex,
 follower_sync_enabled: true,
 follower_sync_timeout: 15_000,
 follower_sync_interval: 1_000

config :my_project, MyProject.MyRepo,
 # ...
 follower_sync_enabled: true,
 follower_sync_timeout: 15_000,
 follower_sync_interval: 1_000
As a convenience versus calling Surgex.DataPipe.FollowerSync.call/2 all the time, it can be
used in a repo module as follows:
defmodule MyProject.MyRepo do
 use Surgex.DataPipe.FollowerSync
end

MyProject.MyRepo.ensure_follower_sync(lsn)
Refer to Surgex.DataPipe for a complete data pipe example.

 Anchor for this section

 Summary

 Functions

 call(repo, lsn)

 Waits for a given slave repo's sync up to specific remote master's lsn.

 Anchor for this section

Functions

 Link to this function

 call(repo, lsn)

 View Source

Waits for a given slave repo's sync up to specific remote master's lsn.

Surgex.DataPipe.ForeignDataWrapper

Configures a PostgreSQL Foreign Data Wrapper linkage between two repos.
Specifically, it executes the following steps:
	adds postgres_fdw extension to local repo
	(re)creates server and user mapping based on current remote repo's config
	copies remote repo's schema to local repo (named with underscored repo module name)

Everything is executed in one transaction, so it's safe to use while existing transactions that
depend on connection to foreign repo and its schema are running in the system (based on
https://robots.thoughtbot.com/postgres-foreign-data-wrapper).
Usage
Refer to Surgex.DataPipe for a complete data pipe example.

 Anchor for this section

 Summary

 Functions

 init(source_repo, foreign_repo)

 Links source repo to a given foreign repo.

 init_script(server, schema, config)

 prefix(query, foreign_repo)

 Puts a foreign repo prefix (aka. schema) in a given Repo query.

 update_script(server, schema, config)

 Anchor for this section

Functions

 Link to this function

 init(source_repo, foreign_repo)

 View Source

Links source repo to a given foreign repo.

 Link to this function

 init_script(server, schema, config)

 View Source

 Link to this function

 prefix(query, foreign_repo)

 View Source

Puts a foreign repo prefix (aka. schema) in a given Repo query.
After calling this function, a given query will target tables from the previously linked repo
instead of Repo.

 Link to this function

 update_script(server, schema, config)

 View Source

Surgex.DataPipe.PostgresSystemUtils

Executes system-level PostgreSQL queries (server version, WAL status etc).

 Anchor for this section

 Summary

 Functions

 full_version_string(repo)

 get_current_wal_lsn(repo)

 get_current_wal_lsn_function(repo)

 get_last_wal_replay_lsn(repo)

 get_last_wal_replay_lsn_function(repo)

 get_lsn(repo, func)

 lsn_valid?(lsn)

 version(repo)

 version_match?(repo, requirement)

 Anchor for this section

Functions

 Link to this function

 full_version_string(repo)

 View Source

 Link to this function

 get_current_wal_lsn(repo)

 View Source

 Link to this function

 get_current_wal_lsn_function(repo)

 View Source

 Link to this function

 get_last_wal_replay_lsn(repo)

 View Source

 Link to this function

 get_last_wal_replay_lsn_function(repo)

 View Source

 Link to this function

 get_lsn(repo, func)

 View Source

 Link to this function

 lsn_valid?(lsn)

 View Source

 Link to this function

 version(repo)

 View Source

 Link to this function

 version_match?(repo, requirement)

 View Source

Surgex.DataPipe.RepoProxy

Proxies repo calls depending on replication needs.

Surgex.DataPipe.TableSync

Extracts and transforms data from one PostgreSQL table into another.
Usage
Refer to Surgex.DataPipe for a complete data pipe example.

 Anchor for this section

 Summary

 Functions

 call(repo, source, target, opts \\ [])

 Synchronizes the given repository's table with data fetched using a specified query.

 Anchor for this section

Functions

 Link to this function

 call(repo, source, target, opts \\ [])

 View Source

Synchronizes the given repository's table with data fetched using a specified query.
The synchronization is done via a single SQL query by utilizing the WITH statement. It first
executes INSERT .. ON CONFLICT (called "upserting") to insert and update new rows, followed by
DELETE .. WHERE that removes old entries that didn't appear in the input query.
Returns a tuple with a number of upserts (inserts + updates) and a number of deletions.

Surgex.DatabaseCleaner

Cleans tables in a database represented by an Ecto repo.
Usage
Here's a basic example:
Surgex.DatabaseCleaner.call(MyProject.Repo)
Surgex.DatabaseCleaner.call(MyProject.Repo, method: :delete_all)
Surgex.DatabaseCleaner.call(MyProject.Repo, only: ~w(posts users))
Surgex.DatabaseCleaner.call(MyProject.Repo, only: [Post, User])
Surgex.DatabaseCleaner.call(MyProject.Repo, except: [Project])
This module may come in handy as a tool for configuring integration tests. You may use it globally
if you want to clean before all tests as following:
setup do
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(MyProject.Repo)

 # ...

 Surgex.DatabaseCleaner.call(MyProject.Repo)

 :ok
end
Also, in order not to ruin test performance and the general experience of the Ecto sandbox, you
may want to clean repo only after those tests that are tagged not to run in the sandbox. It can be
achieved via the following on_exit callback:
setup do
 if tags[:sandbox] == false do
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(MyProject.Repo, sandbox: false)

 on_exit(fn ->
 :ok = Ecto.Adapters.SQL.Sandbox.checkout(MyProject.Repo, sandbox: false)
 Surgex.DatabaseCleaner.call(MyProject.Repo)
 end)
 else
 # ...
 end

 :ok
end

 Anchor for this section

 Summary

 Functions

 call(repo, opts \\ [])

 Cleans selected or all tables in given repo using specified method.

 Anchor for this section

Functions

 Link to this function

 call(repo, opts \\ [])

 View Source

Cleans selected or all tables in given repo using specified method.

 Options

	method: one of :truncate (default), :delete_all
	only: cleans specified tables/schemas (defaults to all tables)
	except: cleans all tables/schemas except specified ones

Surgex.DateTime

Utilities for creating date times.

 Anchor for this section

 Summary

 Functions

 date_and_offset_to_datetime(date, seconds_since_midnight, timezone \\ "Etc/UTC")

 Create UTC or time-zone date time given a date and seconds (from midnight) offset.

 Anchor for this section

Functions

 Link to this function

 date_and_offset_to_datetime(date, seconds_since_midnight, timezone \\ "Etc/UTC")

 View Source

 Specs

 date_and_offset_to_datetime(Date.t(), integer(), String.t()) ::
 {:ok, DateTime.t()} | {:error, term()}

Create UTC or time-zone date time given a date and seconds (from midnight) offset.

 Examples

 iex> Surgex.DateTime.date_and_offset_to_datetime(~D{2021-10-07}, 5400)

Surgex.Guide

Official style guide for Elixir and Phoenix projects at Surge Ventures.
NOTE: Deprecated in favor of https://github.com/surgeventures/elixir.
The rules in this guide aim to provide a consistent, convention-driven coding experience and an
easily readable, long-term maintainable code as a result. It's divided into the following modules:
	Surgex.Guide.CodeStyle: basic code style and formatting guidelines
	Surgex.Guide.SoftwareDesign: higher level application design and engineering guidelines

Here's what you can expect from this guide:
	Elixir-friendly experience: rules are written as Elixir functions with @doc clauses and
compiled by ExDoc to a documentation easily browsable by anyone familiar to HexDocs

	One-line summary for each rule: each rule's @doc starts with a descriptive one-line
summary, which is compiled into a clean list of rules (the Summary section)

	Reasoning for every rule: it's only fair to make the reasoning behind the rules clear for
those who use them and leave the door open for discussions and improvements

	Examples for every rule: even for the simplest rules, an examples of proper and inproper use
are provided in order to make it clear what it's all about in a matter of seconds

Above all rules, use your common sense to solve every coding situation in a way that's consistent,
readable and maintainable. Follow your instincts and keep making this guide better in places where
it lacks.

Surgex.Guide.CodeStyle

Basic code style and formatting guidelines.

 Anchor for this section

 Summary

 Functions

 alias_usage()

 Aliases should be preferred over using full module name.

 assignment_indentation()

 Multi-line calculations should be indented by one level for assignment.

 block_alignment()

 Vertical blocks should be preferred over horizontal blocks.

 block_inner_spacing()

 Indentation blocks must never start or end with blank lines.

 block_outer_spacing()

 Indentation blocks should be padded from surrounding code with single blank line.

 bracket_spacing()

 There must be no space put before },] or) and after {, [or (brackets.

 comma_spacing()

 Single space must be put after commas.

 config_order()

 Config calls should be placed in alphabetical order, with modules over atoms.

 doc_content_format()

 Documentation in @doc and @moduledoc should be written in ExDoc-friendly Markdown.

 doc_spacing()

 There must be no blank lines between @doc and the function definition.

 doc_summary_format()

 Documentation in @doc and @moduledoc should start with an one-line summary sentence.

 ecto_query_indentation()

 Keywords in Ecto queries should be indented by one level (and one more for on after join).

 exception_naming()

 Exception modules (and only them) should be named with the Error suffix.

 exception_structure()

 Exceptions should define semantic struct fields and a custom message/1 function.

 function_call_parentheses()

 Functions should be called with parentheses.

 indentation()

 Indentation must be done with 2 spaces.

 inline_block_usage()

 Inline blocks should be preferred for simple code that fits one line.

 line_length()

 Lines must not be longer than 100 characters.

 list_format()

 Hardcoded word (both string and atom) lists should be written using the ~w sigil.

 macro_call_parentheses()

 Macros should be called without parentheses.

 moduledoc_spacing()

 Single blank line must be inserted after @moduledoc.

 negation_spacing()

 There must be no space put after the ! operator.

 number_padding()

 Large numbers must be padded with underscores.

 operator_spacing()

 Single space must be put around operators.

 pipe_chain_alignment()

 Pipe chains must be aligned into multiple lines.

 pipe_chain_start()

 Pipe chains must be started with a plain value.

 pipe_chain_usage()

 Pipe chains must be used only for multiple function calls.

 restful_action_order()

 RESTful actions should be placed in I S N C E U D order in controllers and their tests.

 reuse_directive_grouping()

 Reuse directives against same module should be grouped with {} syntax and sorted A-Z.

 reuse_directive_order()

 Calls to reuse directives should be placed in use, require, import,alias order.

 reuse_directive_placement()

 Reuse directives should be placed on top of modules or functions.

 reuse_directive_scope()

 Per-function usage of reuse directives should be preferred over module-wide usage.

 reuse_directive_spacing()

 Calls to reuse directives should not be separated with blank lines.

 semicolon_usage()

 ; must not be used to separate statements and expressions.

 test_happy_case_placement()

 Basic happy case in a test file or scope should be placed on top of other cases.

 trailing_newline()

 Files must end with single line break.

 trailing_whitespace()

 Lines must not end with trailing white-space.

 typespec_alias_usage()

 Modules referenced in typespecs should be aliased.

 Anchor for this section

Functions

 Link to this function

 alias_usage()

 View Source

Aliases should be preferred over using full module name.

 Reasoning

Aliasing modules makes code more compact and easier to read. They're even more beneficial as the
number of uses of aliased module grows.
That's of course assuming they don't override other used modules or ones that may be used in the
future (such as stdlib's IO or similar).

 Examples

Preferred:
def create(params)
 alias Toolbox.Creator

 params
 |> Creator.build()
 |> Creator.call()
 |> Toolbox.IO.write()
end
Not so DRY:
def create(params)
 params
 |> Toolbox.Creator.build()
 |> Toolbox.Creator.call()
 |> Toolbox.IO.write()
end
Overriding standard library:
def create(params)
 alias Toolbox.IO

 params
 |> Toolbox.Creator.build()
 |> Toolbox.Creator.call()
 |> IO.write()
end

 Link to this function

 assignment_indentation()

 View Source

Multi-line calculations should be indented by one level for assignment.

 Reasoning

Horizontal alignment is something especially tempting in Elixir programming as there are many
operators and structures that look cool when it gets applied. In particular, pipe chains only look
good when the pipe "comes out" from the initial value. In order to achieve that in assignment,
vertical alignment is often overused.
The issue is with future-proofness of such alignment. For instance, it may easily get ruined
without developer's attention in typical find-and-replace sessions that touch the name on the left
side of = sign.
Hence this rule, which is about inserting a new line after the = and indenting the right side
calculation by one level.

 Examples

Preferred:
user =
 User
 |> build_query()
 |> apply_scoping()
 |> Repo.one()
Cool yet not so future-proof:
user = User
 |> build_query()
 |> apply_scoping()
 |> Repo.one()
Find-and-replace session result on the above:
authorized_user = User
 |> build_query()
 |> apply_scoping()
 |> Repo.one()

 Link to this function

 block_alignment()

 View Source

Vertical blocks should be preferred over horizontal blocks.

 Reasoning

There's often more than one way to achieve the same and the difference is in fitting things
horizontally through indentation vs vertically through function composition. This rule is about
preference of the latter over the former in order to avoid crazy indentation, have more smaller
functions, which makes for a code easier to understand and extend.

 Examples

Too much crazy indentation to fit everything in one function:
defp map_array(array) do
 array
 |> Enum.uniq
 |> Enum.map(fn array_item ->
 if is_binary(array_item) do
 array_item <> " (changed)"
 else
 array_item + 1
 end
 end)
end
Preferred refactor of the above:
defp map_array(array) do
 array
 |> Enum.uniq
 |> Enum.map(&map_array_item/1)
end

defp map_array_item(array_item) when is_binary(array_item), do: array_item <> " (changed)"
defp map_array_item(array_item), do: array_item + 1

 Link to this function

 block_inner_spacing()

 View Source

Indentation blocks must never start or end with blank lines.

 Reasoning

There's no point in adding additional vertical spacing since we already have horizontal padding
increase/decrease on block start/end.

 Examples

Preferred:
def parent do
 nil
end
Wasted line:
def parent do

 nil
end

 Link to this function

 block_outer_spacing()

 View Source

Indentation blocks should be padded from surrounding code with single blank line.

 Reasoning

There are probably as many approaches to inserting blank lines between regular code as there are
developers, but the common aim usually is to break the heaviest parts into separate "blocks". This
rule tries to highlight one most obvious candidate for such "block" which is... an actual block.
Since blocks are indented on the inside, there's no point in padding them there, but the outer
parts of the block (the line where do appears and the line where end appears) often include a
key to a reasoning about the whole block and are often the most important parts of the whole
parent scope, so it may be beneficial to make that part distinct.
In case of Elixir it's even more important, since block openings often include non-trivial
destructuring, pattern matching, wrapping things in tuples etc.

 Examples

Preferred (there's blank line before the Enum.map block since there's code (array = [1, 2, 3])
in parent block, but there's no blank line after that block since there's no more code after it):
def parent do
 array = [1, 2, 3]

 Enum.map(array, fn number ->
 number + 1
 end)
end
Obfuscated block:
def parent do
 array = [1, 2, 3]
 big_numbers = Enum.map(array, fn number ->
 number + 1
 end)
 big_numbers ++ [5, 6, 7]
end

 Link to this function

 bracket_spacing()

 View Source

There must be no space put before },] or) and after {, [or (brackets.

 Reasoning

It's often tempting to add inner padding for tuples, maps, lists or function arguments to give
those constructs more space to breathe, but these structures are distinct enough to be readable
without it. They may actually be more readable without the padding, because this rule plays well
with other spacing rules (like comma spacing or operator spacing), making expressions that combine
brackets and operators have a distinct, nicely parse-able "rhythm".
Also, when allowed to pad brackets, developers tend to add such padding inconsistently - even
between opening and ending in single line. This gets even worse once a different developer
modifies such code and has a different approach towards bracket spacing.
Lastly, it keeps pattern matchings more compact and readable, which invites developers to utilize
this wonderful Elixir feature to the fullest.

 Examples

Preferred:
def func(%{first: second}, [head | tail]), do: nil
Everything padded and unreadable (no "rhythm"):
def func(%{ first: second }, [head | tail]), do: nil
Inconsistencies:
def func(%{first: second}, [head | tail]), do: nil

 Link to this function

 comma_spacing()

 View Source

Single space must be put after commas.

 Reasoning

It's a convention that passes through many languages - it looks good and so there's no reason to
make an exception for Elixir on this one.

 Examples

Preferred:
fn(arg, %{first: first, second: second}), do: nil
Three creative ways to achieve pure ugliness by omitting comma between arguments, map keys or
before inline do:
fn(arg,%{first: first,second: second}),do: nil

 Link to this function

 config_order()

 View Source

Config calls should be placed in alphabetical order, with modules over atoms.

 Reasoning

Provides obvious and predictable placement of specific config calls.

 Examples

Preferred:
config :another_package, key: value
config :my_project, MyProject.A, key: "value"
config :my_project, MyProject.B, key: "value"
config :my_project, :a, key: "value"
config :my_project, :b, key: "value"
config :package, key: "value"
Modules wrongly mixed with atoms and internal props wrongly before external ones:
config :my_project, MyProject.A, key: "value"
config :my_project, :a, key: "value"
config :my_project, MyProject.B, key: "value"
config :my_project, :b, key: "value"
config :another_package, key: value
config :package, key: "value"

 Link to this function

 doc_content_format()

 View Source

Documentation in @doc and @moduledoc should be written in ExDoc-friendly Markdown.
Here's what is considered an ExDoc-friendly Markdown:
	Paragraphs written with full sentences, separated by a blank line

	Headings starting from 2nd level heading (## Biggest heading)

	Bullet lists starting with a dash and subsequent lines indented by 2 spaces

	Bullet/ordered list items separated by a blank line

	Elixir code indented by 4 spaces to mark the code block

 Reasoning

This syntax is encouraged in popular Elixir libraries, it's confirmed to generate nicely readable
output and it's just as readable in the code which embeds it as well.

 Examples

Preferred:
defmodule MyProject.Accounts do
 @moduledoc """
 User account authorization and management system.

 This module does truly amazing stuff. It's purpose is to take anything you pass its way and
 make an user out of that. It can also tell you if specific user can do specific things without
 messing the system too much.

 Here's what you can expect from this module:

 - Nicely written lists with a lot of precious information that
 get indented properly in every subsequent line

 - And that are well padded as well

 And here's an Elixir code example:

 defmodule MyProject.Accounts.User do
 @defstruct [:name, :email]
 end

 It's all beautiful, isn't it?
 """
end
Messed up line breaks, messed up list item indentation and non ExDoc-ish code block:
defmodule MyProject.Accounts do
 @moduledoc """
 User account authorization and management system.

 This module does truly amazing stuff. It's purpose is to take anything you pass its way and
 make an user out of that. It can also tell you if specific user can do specific things without
 messing the system too much.
 Here's what you can expect from this module:

 - Nicely written lists with a lot of precious information that
 get indented properly in every subsequent line
 - And that are well padded as well

 And here's an Elixir code example:

  ```
  defmodule MyProject.Accounts.User do
    @defstruct [:name, :email]
  end
  ```

 It's not so beautiful, is it?
 """
end

 Link to this function

 doc_spacing()

 View Source

There must be no blank lines between @doc and the function definition.

 Reasoning

Compared to moduledoc spacing, the @doc clause belongs to the function
definition directly beneath it, so the lack of blank line between the two is there to make this
linkage obvious. If the blank line is there, there's a growing risk of @doc clause becoming
completely separated from its owner in the heat of future battles.

 Examples

Preferred:
@doc """
This is by far the most complex function in the universe.
"""
def func, do: nil
Weak linkage:
@doc """
This is by far the most complex function in the universe.
"""

def func, do: nil
Broken linkage:
@doc """
This is by far the most complex function in the universe.
"""

def non_complex_func, do: something_less_complex_than_returning_nil()

def func, do: nil

 Link to this function

 doc_summary_format()

 View Source

Documentation in @doc and @moduledoc should start with an one-line summary sentence.

 Reasoning

This first line is treated specially by ExDoc in that it's taken as a module/function summary for
API summary listings. The period at its end is removed so that it looks good both as a summary
(without the period) and as part of a whole documentation (with a period).
The single-line limit (with up to 100 characters as per line limit rule) is there to avoid mixing
up short and very long summaries on a single listing.
It's also important to fit as precise description as possible in this single line, without
unnecessarily repeating what's already expressed in the module or function name itself.

 Examples

Preferred:
defmodule MyProject.Accounts do
 @moduledoc """
 User account authorization and management system.
 """
end
Too vague:
defmodule MyProject.Accounts do
 @moduledoc """
 Accounts system.
 """
end
Missing trailing period:
defmodule MyProject.Accounts do
 @moduledoc """
 Accounts system
 """
end
Missing trailing blank line:
defmodule MyProject.Accounts do
 @moduledoc """
 User account authorization and management system.
 All functions take the `MyProject.Accounts.Input` structure as input argument.
 """
end

 Link to this function

 ecto_query_indentation()

 View Source

Keywords in Ecto queries should be indented by one level (and one more for on after join).

 Reasoning

Horizontal alignment is something especially tempting in Elixir programming as there are many
operators and structures that look cool when it gets applied. In particular, Ecto queries are
often written (and they do look good) when aligned to : after from macro keywords. In order to
achieve that, vertical alignment is often overused.
The issue is with future-proofness of such alignment. For instance, it'll get ruined when longer
keyword will have to be added, such as preload or select in queries with only join or
where.
It's totally possible to adhere to the 2 space indentation rule and yet to write a good looking
and readable Ecto query. In order to make things more readable, additional 2 spaces can be added
for contextual indentation of sub-keywords, like on after join.

 Examples

Preferred:
from users in User,
 join: credit_cards in assoc(users, :credit_card),
 on: is_nil(credit_cards.deleted_at),
 where: is_nil(users.deleted_at),
 select: users.id,
 preload: [:credit_card],
Cool yet not so future-proof:
from users in User,
 join: credit_cards in assoc(users, :credit_card),
 on: is_nil(credit_cards.deleted_at),
 where: is_nil(users.deleted_at)

 Link to this function

 exception_naming()

 View Source

Exception modules (and only them) should be named with the Error suffix.

 Reasoning

Exceptions are a distinct kind of application entities, so it's good to emphasize that in their
naming. Two most popular suffixes are Exception and Error. The latter was choosen for brevity.

 Examples

Preferred:
defmodule InvalidCredentialsError do
 defexception [:one, :other]
end
Invalid suffix:
defmodule InvalidCredentialsException do
 defexception [:one, :other]
end
Usage of Error suffix for non-exception modules:
defmodule Actions.HandleRegistrationError do
 # ...
end

 Link to this function

 exception_structure()

 View Source

Exceptions should define semantic struct fields and a custom message/1 function.

 Reasoning

It's possible to define an exception with custom arguments and message by overriding the
exception/1 function and defining a standard defexception [:message] struct, but that yields
to non-semantic exceptions that don't express their arguments in their structure. It also makes
it harder (or at least inconsistent) to define multi-argument exceptions, which is simply a
consequence of not having a struct defined for an actual struct.
Therefore, it's better to define exceptions with a custom set of struct fields instead of a
message field and to define a message/1 function that takes those fields and creates an error
message out of them.

 Examples

Preferred:
defmodule MyError do
 defexception [:a, :b]

 def message(%__MODULE__{a: a, b: b}) do
 "a: #{a}, b: #{b}"
 end
end

raise MyError, a: 1, b: 2
Non-semantic error struct with unnamed fields in multi-argument call:
defmodule MyError do
 defexception [:message]

 def exception({a, b}) do
 %__MODULE__{message: "a: #{a}, b: #{b}"}
 end
end

raise MyError, {1, 2}

 Link to this function

 function_call_parentheses()

 View Source

Functions should be called with parentheses.

 Reasoning

There's a convention in Elixir universe to make function calls distinct from macro calls by
consistently covering them with parentheses. Function calls often take part in multiple operations
in a single line or inside pipes and as such, it's just safer to mark the precedence via
parentheses.

 Examples

Preferred:
first() && second(arg)
Unreadable and with compiler warning coming up:
first && second arg

 Link to this function

 indentation()

 View Source

Indentation must be done with 2 spaces.

 Reasoning

This is kind of a delicate subject, but seemingly both Elixir and
Ruby communities usually go for spaces, so it's best to stay aligned.
When it comes to linting, the use of specific number of spaces works well with the line length
rule, while tabs can be expanded to arbitrary number of soft spaces in editor, possibly ruining
all the hard work put into staying in line with the column limit.
As to the number of spaces, 2 seems to be optimal to allow unconstrained module, function and
block indentation without sacrificing too many columns.

 Examples

Preferred:
defmodule User do
 def blocked?(user) do
 !user.confirmed || user.blocked
 end
end
Too deep indentation (and usual outcome of using tabs):
defmodule User do
 def blocked?(user) do
 !user.confirmed || user.blocked
 end
end
Missing single space:
defmodule User do
 def blocked?(user) do
 !user.confirmed || user.blocked
 end
end

 Link to this function

 inline_block_usage()

 View Source

Inline blocks should be preferred for simple code that fits one line.

 Reasoning

In case of simple and small functions, conditions etc, the inline variant of block allows to keep
code more compact and fit biggest piece of the story on the screen without losing readability.

 Examples

Preferred:
def add_two(number), do: number + 2
Wasted vertical space:
def add_two(number) do
 number + 2
end
Too long (or too complex) to be inlined:
def add_two_and_multiply_by_the_meaning_of_life_and_more(number),
 do: (number + 2) * 42 * get_more_for_this_truly_crazy_computation(number)

 Link to this function

 line_length()

 View Source

Lines must not be longer than 100 characters.

 Reasoning

The old-school 70 or 80 column limits seem way limiting for Elixir which is highly based on
indenting blocks. Considering modern screen resolutions, 100 columns should work well for anyone
with something more modern than CGA video card.
Also, 100 column limit plays well with GitHub, CodeClimate, HexDocs and others.

 Examples

Preferred:
defmodule MyProject.Accounts.User do
 def build(%{
 "first_name" => first_name,
 "last_name" => last_name,
 "email" => email,
 "phone_number" => phone_number
 }) do
 %__MODULE__{
 first_name: first_name,
 last_name: last_name,
 email: email,
 phone_number: phone_number
 }
 end
end
Missing line breaks before limit:
defmodule MyProject.Accounts.User do
 def build(%{"first_name" => first_name, "last_name" => last_name, "email" => email, "phone_number" => phone_number}) do
 %__MODULE__{first_name: first_name, last_name: last_name, email: email, phone_number: phone_number}
 end
end

 Link to this function

 list_format()

 View Source

Hardcoded word (both string and atom) lists should be written using the ~w sigil.

 Reasoning

They're simply more compact and easier to read this way. They're also easier to extend. For long
lists, line breaks can be applied without problems.

 Examples

Preferred:
~w(one two three)
~w(one two three)a
Harder to read:
["one", "two", "three"]
[:one, :two, :three]

 Link to this function

 macro_call_parentheses()

 View Source

Macros should be called without parentheses.

 Reasoning

There's a convention in Elixir universe to make function calls distinct from macro calls by
consistently covering them with parentheses. Compared to functions, macros are often used as a
DSL, with one macro invocation per line. As such, they can be safely written (and just look
better) without parentheses.

 Examples

Preferred:
if bool, do: nil

from t in table, select: t.id
Macro call that looks like a function call:
from(t in table, select: t.id)

 Link to this function

 moduledoc_spacing()

 View Source

Single blank line must be inserted after @moduledoc.

 Reasoning

@moduledoc is a module-wide introduction to the module. It makes sense to give it padding and
separate it from what's coming next. The reverse looks especially bad when followed by a function
that has no @doc clause yet.

 Examples

Preferred:
defmodule SuperMod do
 @moduledoc """
 This module is seriously amazing.
 """

 def call, do: nil
end
@moduledoc that pretends to be a @doc:
defmodule SuperMod do
 @moduledoc """
 This module is seriously amazing.
 """
 def call, do: nil
end

 Link to this function

 negation_spacing()

 View Source

There must be no space put after the ! operator.

 Reasoning

Like with brackets, it may be tempting to pad negation to make it more visible, but in general
unary operators tend to be easier to parse when they live close to their argument. Why? Because
they usually have precedence over binary operators and padding them away from their argument makes
this precedence less apparent.

 Examples

Preferred:
!blocked && allowed
Operator precedence mixed up:
! blocked && allowed

 Link to this function

 number_padding()

 View Source

Large numbers must be padded with underscores.

 Reasoning

They're just more readable that way. It's one of those cases when a minimal effort can lead to
eternal gratitude from other committers.

 Examples

Preferred:
x = 50_000_000
"How many zeros is that" puzzle (hint: not as many as in previous example):
x = 5000000

 Link to this function

 operator_spacing()

 View Source

Single space must be put around operators.

 Reasoning

It's a matter of keeping variable names readable and distinct in operator-intensive situations.
There should be no technical problem with such formatting even in long lines, since those can be
easily broken into multiple, properly indented lines.

 Examples

Preferred:
(a + b) / c
Hard to read:
(a+b)/c

 Link to this function

 pipe_chain_alignment()

 View Source

Pipe chains must be aligned into multiple lines.
Check out Surgex.Guide.CodeStyle.assignment_indentation/0 to see how to assign the output from
properly formatted multi-line chains.

 Reasoning

This comes from general preference of vertical spacing over horizontal spacing, expressed across
this guide by rules such as Surgex.Guide.CodeStyle.block_alignment/0. This ensures that the code
is readable and not too condensed. Also, it's easier to modify or extend multi-line chains,
because they don't require re-aligning the whole thing.
By the way, single-line chains look kinda like a code copied from iex in a hurry, which is only
fine when the building was on fire during the coding session.

 Examples

Preferred:
user
|> reset_password()
|> send_password_reset_email()
Too condensed:
user |> reset_password() |> send_password_reset_email()

 Link to this function

 pipe_chain_start()

 View Source

Pipe chains must be started with a plain value.

 Reasoning

The whole point of pipe chain is to push some value through the chain, end to end. In order to do
that consistently, it's best to keep away from starting chains with function calls.
This also makes it easier to see if pipe operator should be used at all - since chain with 2 pipes
may get reduced to just 1 pipe when inproperly started with function call, it may falsely look
like a case when pipe should not be used at all.

 Examples

Preferred:
arg
|> func()
|> other_func()
Chain that lost its reason to live:
func(arg)
|> other_func()

 Link to this function

 pipe_chain_usage()

 View Source

Pipe chains must be used only for multiple function calls.

 Reasoning

The whole point of pipe chain is that... well, it must be a chain. As such, single function call
does not qualify. Reversely, nesting multiple calls instead of piping them seriously limits the
readability of the code.

 Examples

Preferred for 2 and more function calls:
arg
|> func()
|> other_func()
Preferred for 1 function call:
yet_another_func(a, b)
Not preferred:
other_func(func(arg))

a |> yet_another_func(b)

 Link to this function

 restful_action_order()

 View Source

RESTful actions should be placed in I S N C E U D order in controllers and their tests.

 Reasoning

It's important to establish a consistent order to make it easier to find actions and their tests,
considering that both controller and (especially) controller test files tend to be big at times.
This particular order (index, show, new, create, edit, update, delete) comes from
the long-standing convention established by both Phoenix and, earlier, Ruby on Rails generators,
so it should be familiar, predictable and non-surprising to existing developers.

 Examples

Preferred:
defmodule MyProject.Web.UserController do
 use MyProject.Web, :controller

 def index(_conn, _params), do: raise("Not implemented")

 def show(_conn, _params), do: raise("Not implemented")

 def new(_conn, _params), do: raise("Not implemented")

 def create(_conn, _params), do: raise("Not implemented")

 def edit(_conn, _params), do: raise("Not implemented")

 def update(_conn, _params), do: raise("Not implemented")

 def delete(_conn, _params), do: raise("Not implemented")
end
Different (CRUD-like) order against the convention:
defmodule MyProject.Web.UserController do
 use MyProject.Web, :controller

 def index(_conn, _params), do: raise("Not implemented")

 def new(_conn, _params), do: raise("Not implemented")

 def create(_conn, _params), do: raise("Not implemented")

 def show(_conn, _params), do: raise("Not implemented")

 def edit(_conn, _params), do: raise("Not implemented")

 def update(_conn, _params), do: raise("Not implemented")

 def delete(_conn, _params), do: raise("Not implemented")
end
The issue with CRUD order is that index action falls between fitting and being kind of "above"
the Read section and new/edit actions fall between Read and Create/Update sections,
respectively.

 Link to this function

 reuse_directive_grouping()

 View Source

Reuse directives against same module should be grouped with {} syntax and sorted A-Z.

 Reasoning

The fresh new grouping feature for alias, import, require and use allows to make multiple
reuses from single module shorter, more declarative and easier to comprehend. It's just a
challenge to use this feature consistently, hence this rule.
Keeping sub-module names in separate lines (even when they could fit a single line) is an
additional investment for the future - to have clean diffs when more modules will get added. It's
also easier to keep them in alphabetical order when they're in separate lines from day one.

 Examples

Preferred:
alias Toolbox.{
 Creator,
 Deletor,
 Other,
}
alias SomeOther.Mod
Short but not so future-proof:
alias Toolbox.{Creator, Deletor, Other}
Classical but inconsistent and not so future-proof:
alias Toolbox.Creator
alias Toolbox.Deletor
alias SomeOther.Mod
alias Toolbox.Other

 Link to this function

 reuse_directive_order()

 View Source

Calls to reuse directives should be placed in use, require, import,alias order.

 Reasoning

First of all, having any directive ordering convention definitely beats not having one, since they
are a key to parsing code and so it adds up to better code reading experience when you know
exactly where to look for an alias or import.
This specific order is an attempt to introduce more significant directives before more trivial
ones. It so happens that in case of reuse directives, the reverse alphabetical order does exactly
that, starting with use (which can do virtually anything with a target module) and ending with
alias (which is only a cosmetic change and doesn't affect the module's behavior).

 Examples

Preferred:
use Helpers.Thing import Helpers.Other alias Helpers.Tool
Out of order:
alias Helpers.Tool
import Helpers.Other
use Helpers.Thing

 Link to this function

 reuse_directive_placement()

 View Source

Reuse directives should be placed on top of modules or functions.

 Reasoning

Calls to alias, import, require or use should be placed on top of module or function, or
directly below @moduledoc in case of modules with documentation.
Just like with the order rule, this is to make finding these directives faster when reading the
code. For that reason, it's more beneficial to have such important key for interpreting code in
obvious place than attempting to have them right above the point where they're needed (which
usually ends up messed up anyway when code gets changed over time).

 Examples

Preferred:
defmodule Users do
 alias Users.User

 def name(user) do
 user["name"] || user.name
 end

 def delete(user_id) do
 import Ecto.Query

 user_id = String.to_integer(user_id)
 Repo.delete_all(from users in User, where: users.id == ^user_id)
 end
end
Cool yet not so future-proof "lazy" placement:
defmodule Users do
 def name(user) do
 user["name"] || user.name
 end

 alias Users.User

 def delete(user_id) do
 user_id = String.to_integer(user_id)

 import Ecto.Query

 Repo.delete_all(from users in User, where: users.id == ^user_id)
 end
end

 Link to this function

 reuse_directive_scope()

 View Source

Per-function usage of reuse directives should be preferred over module-wide usage.

 Reasoning

If a need for alias, import or require spans only across single function in a module (or
across a small subset of functions in otherwise large module), it should be preferred to declare
it locally on top of that function instead of globally for whole module.
Keeping these declarations local makes them even more descriptive as to what scope is really
affected. They're also more visible, being closer to the place they're used at. The chance for
conflicts is also reduced when they're local.

 Examples

Preferred (alias on Users.User is used in both create and delete functions so it's made
global, but import on Ecto.Query is only used in delete function so it's declared only
there):
defmodule Users do
 alias Users.User

 def create(params)
 %User{}
 |> User.changeset(params)
 |> Repo.insert()
 end

 def delete(user_id) do
 import Ecto.Query

 Repo.delete_all(from users in User, where: users.id == ^user_id)
 end
end
Not so DRY (still, this could be OK if there would be more functions in Users module that
wouldn't use the User sub-module):
defmodule Users do
 def create(params)
 alias Users.User

 %User{}
 |> User.changeset(params)
 |> Repo.insert()
 end

 def delete(user_id) do
 import Ecto.Query
 alias Users.User

 Repo.delete_all(from users in User, where: users.id == ^user_id)
 end
end
Everything a bit too public:
defmodule Users do
 import Ecto.Query
 alias Users.User

 def create(params)
 %User{}
 |> User.changeset(params)
 |> Repo.insert()
 end

 def delete(user_id) do
 Repo.delete_all(from users in User, where: users.id == ^user_id)
 end
end

 Link to this function

 reuse_directive_spacing()

 View Source

Calls to reuse directives should not be separated with blank lines.

 Reasoning

It may be tempting to separate all aliases from imports with blank line or to separate multi-line
grouped aliases from other aliases, but as long as they're properly placed and ordered, they're
readable enough without such extra efforts. Also, as their number grows, it's more beneficial to
keep them vertically compact than needlessly padded.

 Examples

Preferred:
use Helpers.Thing
import Helpers.Other
alias Helpers.Subhelpers.{
 First,
 Second
}
alias Helpers.Tool
Too much padding (with actual code starting N screens below):
use Helpers.Thing

import Helpers.Other

alias Helpers.Subhelpers.{
 First,
 Second
}

alias Helpers.Tool

 Link to this function

 semicolon_usage()

 View Source

; must not be used to separate statements and expressions.

 Reasoning

This is the most classical case when it comes to preference of vertical over horizontal alignment.
Let's just keep ; operator for iex sessions and focus on code readability over doing code
minification manually - neither EVM nor GitHub will explode over that additional line break.
Actually, ", " costs one more byte than an Unix line break but if that would be our biggest
concern then I suppose we wouldn't prefer spaces over tabs for indentation...

 Examples

Preferred:
func()
other_func()
iex session saved to file by mistake:
func(); other_func()

 Link to this function

 test_happy_case_placement()

 View Source

Basic happy case in a test file or scope should be placed on top of other cases.

 Reasoning

When using tests to understand how specific unit of code works, it's very handy to have the basic
happy case placed on top of other cases.

 Examples

Preferred:
defmodule MyProject.Web.MyControllerTest do
 describe "index/2" do
 test "works for valid params" do
 # ...
 end

 test "fails for invalid params" do
 # ...
 end
 end
end
Out of order:
defmodule MyProject.Web.MyControllerTest do
 describe "index/2" do
 test "fails for invalid params" do
 # ...
 end

 test "works for valid params" do
 # ...
 end
 end
end

 Link to this function

 trailing_newline()

 View Source

Files must end with single line break.

 Reasoning

Many editors and version control systems consider files without final line break invalid. In git,
such last line gets highlighted with an alarming red. Like with trailing white-space, it's a bad
habit to leave such artifacts and ruin diffs for developers who save files correctly.
Reversely, leaving too many line breaks is just sloppy.
Most editors can be tuned to automatically add single trailing line break on save.

 Examples

Preferred:
func()⮐
Missing line break:
func()
Too many line breaks:
func()⮐
⮐

 Link to this function

 trailing_whitespace()

 View Source

Lines must not end with trailing white-space.

 Reasoning

Leaving white-space at the end of lines is a bad programming habit that leads to crazy diffs in
version control once developers that do it get mixed with those that don't.
Most editors can be tuned to automatically trim trailing white-space on save.

 Examples

Preferred:
func()
Hidden white-space (simulated by adding comment at the end of line):
func() # line end

 Link to this function

 typespec_alias_usage()

 View Source

Modules referenced in typespecs should be aliased.

 Reasoning

When writing typespecs, it is often necessary to reference a module in some nested naming
scheme. One could reference it with the absolute name, e.g. Application.Accounting.Invoice.t,
but this makes typespecs rather lengthy.
Using aliased modules makes typespecs easier to read and, as an added benefit, it allows for an
in-front declaration of module dependencies. This way we can easily spot breaches in module
isolation.

 Examples

Preferred:
alias VideoApp.Recommendations.{Rating, Recommendation, User}

@spec calculate_recommendations(User.t, [Rating.t]) :: [Recommendation.t]
def calculate_recommendations(user, ratings) do
 # ...
end
Way too long:
@spec calculate_recommendations(
 VideoApp.Recommendations.User.t,
 [VideoApp.Recommendations.Rating.t]
) :: [VideoApp.Recommendations.Recommendation.t]
def calculate_recommendations(user, ratings) do
 # ...
end

Surgex.Guide.SoftwareDesign

Higher level application design and engineering guidelines.

 Anchor for this section

 Summary

 Functions

 error_handling()

 Errors should be thrown as close to the spot of failure and unhandled unless required.

 error_mapping()

 Errors from external contexts should be mapped to have a meaning in the current context.

 flow_directive_usage()

 Flow control directives should be leveraged to yield compact and readable code.

 function_clause_grouping()

 Function clauses should be grouped together, ie. without a blank line between them.

 function_order()

 Functions should be grouped by their relationship rather than by "public then private".

 import_usage()

 Usage of import directive at module level or without the only option should be avoided.

 moduledoc_usage()

 Non-false moduledoc should be filled only for global, context-external app modules.

 nested_struct_macro_usage()

 Kernel macros for working with nested structures should be preferred over manual assembly.

 nesting_depth()

 Functions should not include more than one level of block nesting.

 option_format()

 Keyword lists and tuples should be preferred over maps and lists for passing options.

 pattern_matching_usage()

 Pattern matching should be preferred over line-by-line destructuring of maps and structs.

 predicate_function_naming()

 Predicate function names shouldn't start with is_ and should end with ?.

 return_ok_error_usage()

 Functions should return :ok/:error when both success and failure paths are present.

 sequential_variable_naming()

 Sequential variable names, like user1, should respect underscore naming (and be avoided).

 test_case_usage()

 Tests should only use support test case modules that they need.

 unless_usage()

 The unless directive should never be used with an else block or with logical operators.

 with_else_order()

 Matches in a with-else block should be placed in occurrence order.

 with_else_redundancy()

 Redundant else block should not be provided for the with directive.

 with_else_usage()

 An else block should be provided for with when it forwards cases from external files.

 Anchor for this section

Functions

 Link to this function

 error_handling()

 View Source

Errors should be thrown as close to the spot of failure and unhandled unless required.

 Reasoning

Throwing an exception (or using a throwing equivalent of a standard library function) allows to
avoid spending an additional time on inventing failure paths in the code and handling them higher
in the call stack.
It may be tempting to go with an error return value, such as the {:error, ...} tuple, in order
to let the code higher in the call stack to decide what to do in a specific situation, but that
only makes sense when it makes sense, ie. there exists a valid case higher in the call stack that
would want to do something other than throwing or returning a meaningless, generic error.
Otherwise, when a hard system-wide failure ends up not being an exception, it may look like a step
towards reusability, but it's really anti-semantic and the specific code unit (function or module)
stops telling the whole story, ie. multiple files must be read in order to come up with a simple
conclusion that we really end up with an exception anyway.
This may be extra important during a debugging session, since the closer an exception happens to
the spot of failure, the easier it is for developer to understand the real reason behind it. For
the same reason, it's always better to use a throwing equivalent of a standard library function
(with the ! suffix) in places which don't handle the negative scenario anyway further down the
pipe.

 Examples

Preferred:
def do_something_external(params) do
 required = Keyword.fetch!(params, :required)
 optional = Keyword.get(params, :optional)
 integer =
 params
 |> Keyword.fetch!(:integer)
 |> String.to_integer

 case external_api_call(required, optional, integer) do
 %{status: 200, body: body} ->
 body["result"]
 %{status: error_status, body: error_body} ->
 raise("External API error #{error_status}: #{inspect error_body}")
 end
end
Bad code (read the explanation below):
def do_something_external(params) do
 required = Keyword.get(params, :required)
 optional = Keyword.get(params, :optional)
 {integer, _} =
 params
 |> Keyword.fetch!(:integer)
 |> Integer.parse

 case external_api_call(required, optional, integer) do
 %{status: 200, body: body} ->
 {:ok, body["result"]}
 _ ->
 {:error, :external_api_failed}
 end
end
There are following problems in the code above:
	not throwing on forgotten :required_option as early as possible will yield problems further
down the pipe that will be hard to debug since debugging session will have to track the issue
back to the original spot that we could've thrown at since the beginning

	not using optimal standard library means for throwing a descriptive error for failed string to
integer conversion (String.to_integer) will yield a less descriptive match error (and the
match-all on a 2nd elem of tuple from Integer.parse may produce bugs)

	returning {:error, :external_api_failed} on failure from external API will force the caller of
do_something_external to handle this case, so it makes sense only if we can actually do
something that makes sense (other than raising, silencing the issue or making it ambiguous)

 Link to this function

 error_mapping()

 View Source

Errors from external contexts should be mapped to have a meaning in the current context.

 Reasoning

Elixir allows to match and forward everything in case and with-else match clauses (which are
often used to control the high level application flow) or to simply omit else for with. This
often results in bubbling up errors, such as those in {:error, reason} tuples, to the next
context in which those errors are ambiquous or not fitting the context into which they traverse.
For instance, {:error, :forbidden} returned from a HTTP client is ambiguous and not fitting the
context of a service or controller that calls it. The following questions are unanswered:
	what exactly is forbidden?
	why would I care if it's forbidden and not, for instance, temporarily unavailable?
	what actually went wrong?
	how does it map to actual input args?

A reverse case is also possible when errors in lower contexts are intentionally named to match
upper context expectations, breaking the separation of concerns. For instance, a service may
return {:error, :not_found} or {:error, :forbidden} in order to implicitly fall into fallback
controller's expectations, even though a more descriptive error naming could've been invented.
Therefore, care should be put into naming errors in a way that matters in the contexts where
they're born and into leveraging case and with-else constructs to re-map ambiguous or not
fitting errors into a meaningful and fitting ones when they travel across context bounds.

 Examples

Preferred:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- CreateUserFromAttributesService.call(attrs),
 :ok <- SendUserWelcomeEmailService.call(user)
 do
 {:ok, user}
 else
 {:error, changeset = %Ecto.Changeset{}} -> {:error, :invalid_attributes, changeset}
 {:error, :not_available} -> {:error, :mailing_service_not_available}
 end
 end
end
Ambiguous and "out of context" errors:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- CreateUserFromAttributesService.call(attrs),
 :ok <- SendUserWelcomeEmailService.call(user)
 do
 {:ok, user}
 else
 {:error, changeset = %Ecto.Changeset{}} -> {:error, changeset}
 {:error, :not_available} -> {:error, :not_available}
 end
 end
end

 Link to this function

 flow_directive_usage()

 View Source

Flow control directives should be leveraged to yield compact and readable code.

 Reasoning

Each of flow control directives (if, cond, case, with) has its own purpose, but sometimes
more than one of them can be used to achieve the same goal. In such cases, the one that yields the
most compact and readable code should be picked.

 Examples

Preferred:
with {:ok, user} <- load_user(id),
 {:ok, avatar} <- load_user_avatar(user)
do
 {:ok, user, avatar}
end
Redundant case equivalent of the above:
case load_user(id) do
 {:ok, user} ->
 case load_user_avatar(user) do
 {:ok, avatar} ->
 {:ok, user, avatar}
 error -> error
 end
 error -> error
end

 Link to this function

 function_clause_grouping()

 View Source

Function clauses should be grouped together, ie. without a blank line between them.

 Reasoning

This allows to easily read a whole set of specific function's clauses and spot the start and end
of the whole story of that specific function.

 Examples

Preferred:
def active?(%User{confirmed_at: nil}), do: false
def active?(%User{}), do: true

def deleted?(%User{deleted_at: nil}), do: false
def deleted?(%User{}), do: true
No obvious visual bounds for each function:
def active?(%User{confirmed_at: nil}), do: false

def active?(%User{}), do: true

def deleted?(%User{deleted_at: nil}), do: false

def deleted?(%User{}), do: true

 Link to this function

 function_order()

 View Source

Functions should be grouped by their relationship rather than by "public then private".

 Reasoning

The existence of a def + defp directive pair allows to leave behind the old habits for
defining all the public functions before private ones. Keeping related functions next to each
other allows to read the code faster and to easily get the grasp of the whole module flow.
The best rule of thumb is to place every private function directly below first other function that
calls it.

 Examples

Preferred:
def a, do: b()

defp a_helper, do: nil

def b, do: nil

defp b_helper, do: nil
Harder to read:
def a, do: b()

def b, do: nil

defp a_helper, do: nil

defp b_helper, do: nil

 Link to this function

 import_usage()

 View Source

Usage of import directive at module level or without the only option should be avoided.

 Reasoning

When importing at module level, one adds a set of foreign functions to the module that may
conflict with existing ones. This gets worse when multiple modules are imported and their names
start to clash with each other. When project complexity increases over time and the preference for
imports over aliases grows, the developer will sooner or later be forced to name functions in a
custom to-be-imported module in a way that scopes them in a target module and/or avoids naming
conflicts with other to-be-imported modules. This results in bad function naming - names start to
be unnecessarily long or to repeat the module name in a function name.
When importing without the only option, it's unclear without visiting the source of imported
module what exact function names and arities come from the external place. This makes the code
harder to reason about.

 Examples

Preferred:
defmodule User do
 def full_name(%{first_name: first_name, last_name: last_name}) do
 import Enum, only: [join: 2]

 join([first_name, last_name])
 end
end
Too wide scope:
defmodule User do
 import Enum, only: [join: 2]

 def full_name(%{first_name: first_name, last_name: last_name}) do
 join([first_name, last_name])
 end
end
Unknown imports:
defmodule User do
 def full_name(%{first_name: first_name, last_name: last_name}) do
 import Enum

 join([first_name, last_name])
 end
end

 Link to this function

 moduledoc_usage()

 View Source

Non-false moduledoc should be filled only for global, context-external app modules.

 Reasoning

Filling moduledoc results in adding the module to module list in the documentation. Therefore, it
makes little sense to use it only to leave a comment about internal mechanics of specific module
or its meaning in the context of a closed application domain. For such cases, regular comments
should be used. This will yield a clean documentation with eagle-eye overview of the system and
its parts that can be directly used from global or external perspective.

 Example

Preferred:
defmodule MyProject.Accounts do
 @moduledoc """
 Account management system.
 """

 @doc """
 Registers an user account.
 """
 def register(attrs) do
 MyProject.Accounts.RegistrationService.call(attrs)
 end
end

defmodule MyProject.Accounts.RegistrationService do
 @moduledoc false

 # Fails on occasion due to Postgres connection issue.
 # Works best on Fridays.

 def call(attrs) do
 # ...
 end
end
Unnecessary external-ization and comment duplication:
defmodule MyProject.Accounts do
 @moduledoc """
 Account management system.
 """

 @doc """
 Registers an user account.
 """
 def register(attrs) do
 MyProject.Accounts.RegistrationService.call(attrs)
 end
end

defmodule MyProject.Accounts.RegistrationService do
 @moduledoc """
 Registers an user account.

 Fails on occasion due to Postgres connection issue.
 Works best on Fridays.
 """

 def call(attrs) do
 # ...
 end
end

 Link to this function

 nested_struct_macro_usage()

 View Source

Kernel macros for working with nested structures should be preferred over manual assembly.
This is about macros from the *_in family in the Elixir.Kernel module, like pop_in,
put_in or update_in.

 Reasoning

Using these macros can vastly reduce the amount of code amd ensure that the complexity of digging
and modifying nested structures is handled in the fastest way possible, as guaranteed by relying
on a standard library. Implementing these flows manually leads to repetitive code and an open door
for extra bugs.

 Examples

Preferred:
opts = [
 user: [
 name: "John",
 email: "user#xample.com"
]
]

opts_with_phone = put_in opts[:user][:phone], "+48 600 700 800"
Unneeded complexity:
opts = [
 user: [
 name: "John",
 email: "user#xample.com"
]
]

user_with_phone = Keyword.put(opts[:user], :phone, "+48 600 700 800")
opts_with_phone = Keyword.put(opts, :user, user_with_phone)

 Link to this function

 nesting_depth()

 View Source

Functions should not include more than one level of block nesting.

 Reasoning

Constructs like with, case, cond, if or fn often need their own vertical space in order
to make them readable, avoid cluttering and explicitly express dependencies needed by each block.
Therefore, if they appear within each other, it should be preferred to extract the nested logic to
separate function. This will often yield a good chance to replace some of these constructs with
preferred solution of pattern matching function arguments.

 Examples

Preferred:
def calculate_total_cart_price(cart, items_key \\ :items, omit_below \\ 0) do
 reduce_cart_items_price(cart[items_key], omit_below)
end

defp sum_cart_items_price(nil, _omit_below), do: 0
defp sum_cart_items_price(items, omit_below) do
 Enum.reduce(items, 0, &reduce_cart_item_price(&1, &2, omit_below))
end

defp reduce_cart_item_price(%{price: price}, total, omit_below) when price < omit_below do
 total
end
defp reduce_cart_item_price(%{price: price}, total, _omit_below) do
 total + price
end
Cluttered and without obvious variable dependencies (items_key is not used in the deepest block
while omit_below is):
def calculate_total_cart_price(cart, items_key \\ :items, omit_below \\ 0) do
 if cart[items_key] do
 Enum.reduce(cart[items_key], 0, fn %{price: price}, total ->
 if price < omit_below do
 total
 else
 total + price
 end
 end)
 else
 0
 end
end

 Link to this function

 option_format()

 View Source

Keyword lists and tuples should be preferred over maps and lists for passing options.

 Reasoning

Keyword lists and tuples are a standard, conventional means for passing internal information
between Elixir modules.
Keyword lists enforce a usage of atoms for keys and allow to pass single key more than once and in
specific order when that's desired (and provide a merge function for when that's not desired).
The price for last two feats is that they are not pattern-matchable (and should never be pattern
matched) in cases when order and duplication is not important - functions from the
Elixir.Keyword module should be used in those cases. Ot the other hand, pattern matching may
come handy when parsing options with significant order of keys.
Tuples declare a syntax for short, efficient, predefined lists and are useful in simpler and
convention-driven cases, in which key naming is not needed. For instance, there's an established
convention to return {:ok, result}/{:error, reason} tuples from actions that can succeed or
fail without throwing.

 Examples

Preferred:
defp create_user(attrs, opts \\ []) do
 # required option
 auth_scope = Keyword.fetch!(opts, :send_welcome_email, false)

 # options with defaults
 send_welcome_email = Keyword.get(opts, :send_welcome_email, false)
 mark_as_confirmed = Keyword.get(opts, :mark_as_confirmed, true)

 case Repo.insert(%User{}, attrs) do
 {:ok, user} ->
 final_user =
 user
 |> send_email(send_welcome_email)
 |> confirm(mark_as_confirmed)
 {:ok, final_user}

 {:error, changeset} ->
 {:error, map_changeset_errors_to_error_reason(changeset.errors)}
 end
end
Invalid usage of maps over keyword lists:
defp create_user(attrs, opts = %{}) do
 # ...
end
Invalid usage of lists over tuples:
defp create_user(attrs) do
 # ...

 [:ok, user]
end

 Link to this function

 pattern_matching_usage()

 View Source

Pattern matching should be preferred over line-by-line destructuring of maps and structs.

 Reasoning

Pattern matching can be used to vastly simplify destructuring of complicated structures, so it
should be used whenever possible, instead of taking out field by field via a struct getter (.)
or an access operator ([]).
It's supported in function clauses, so extensive use of the feature will also encourage writing
more pattern-matched functions, which should in turn yield a code easier to parse for Elixir
developers. Function headers with long matches can be easily broken into multiple lines and
indented in a clean way, so the length of a match should not be the factor for making a decision
about using or not using it.
Even outside of function clauses, pattern matching is a blazing fast VM-supported feature that,
combined with guards unwrapped at compilation time, should yield the best possible code
performance.
It's also worth mentioning that pattern matching can be also done inside of the assert macro
in ExUnit in order to write selective, nicely diffed assertions on maps and structs.
Pattern matching should not be preferred over functions from Keyword module for destructuring
option lists, even if they can hold only one possible option at a time.

 Examples

Preferred in function clauses:
def create_user_from_json_api_document(%{
 "data" => %{
 "id" => id,
 "attributes" => %{
 "name" => name,
 "email" => email,
 "phone" => phone
 }
 }
}, mailing_enabled) do
 user = insert_user(id, name, email, phone)
 if mailing_enabled, do: send_welcome_email(user)
end
Preferred in tests:
assert %User{
 name: "John",
 phone: "+48 600 700 800"
} == CreateUserAction(name: "John", email: email_sequence(), phone: "+48 600 700 800")
Cluttered:
id = doc["data"]["id"]
name = doc["data"]["attributes"]["name"]
email = doc["data"]["attributes"]["email"]
phone = doc["data"]["attributes"]["phone"]

 Link to this function

 predicate_function_naming()

 View Source

Predicate function names shouldn't start with is_ and should end with ?.

 Reasoning

It's an Elixir convention to name predicate functions with a ? suffix. It leverages the fact
that this character can appear as function name suffix to make it easier to differentiate such
functions from others.
It's also an Elixir convention not to name predicate functions with a is_ prefix, since that
prefix is reserved for guard-enabled predicate macros.
Note that this rule doesn't apply to service functions that return success tuples instead of
plain boolean values.

 Examples

Preferred:
def active?(user), do: true
Function that pretends to be a guard:
def is_active?(user), do: true
Function that pretends not to be a predicate:
def active(user), do: true

 Link to this function

 return_ok_error_usage()

 View Source

Functions should return :ok/:error when both success and failure paths are present.

 Reasoning

First of all, we do want to adhere to the long-standing Elixir convention of returning
:ok/:error atoms from functions. They may either be stand-alone (simple :ok/:error when
there's nothing more to add) or wrapped in a tuple with extra contextual info, such as {:ok, fetched_data} or {:error, reason}. Tuples may be mixed with stand-alone atoms, eg. the same
function may return :ok upon success (since there's nothing more to add upon success) while
 multiple distinct error paths may return {:error, reason} to make them distinct to the caller.
That said, there's a case when usage of this pattern may make the code more confusing. It's when
specific code simply cannot fail. If it cannot fail, then it doesn't make sense to make it tell
its caller that something went ok. In such cases, the function should simply return the value that
was asked for (fetched_data in example above) or nil if there's nothing to return (eg. when a
non-failing function only creates side effects).
This fits nicely into the way the Elixir standard library is designed (eg. Map.get/2 never fails
so it only returns the value but Map.fetch/2 does fail so it returns {:ok, value} or
:error). As such, this rule makes our code consistent with Elixir conventions and community code
that's supposed to follow them.
Refer to the Surgex.Guide.SoftwareDesign.error_handling/0 rule in order to learn when to
actually implement the failure path.

 Examples

Preferred:
def print_debug_info(message) do
 IO.puts(message)

 nil
end

def remove_file(path) do
 if File.exists?(path)
 :ok = File.rm(path)
 else
 {:error, :file_not_found}
 end
end
Confusing :ok when there's no failure path (IO.puts/1 returns :ok):
def print_debug_info(message) do
 IO.puts(message)
end

def remove_file(path) do
 if File.exists?(path)
 :ok = File.rm(path)
 else
 raise("No such file: #{inspect path}")
 end
end
Lack of :ok when there's a failure path (File.read!/1 returns the file content):
def read_file(path) do
 if File.exists?(path)
 File.read!(path)
 else
 {:error, :file_not_found}
 end
end

 Link to this function

 sequential_variable_naming()

 View Source

Sequential variable names, like user1, should respect underscore naming (and be avoided).

 Reasoning

Sequential variable names should be picked only as a last resort, since they're hard to express
in underscore notation and are non-descriptive. For instance, in comparison function
compare(integer_1, integer_2) can be replaced with compare(integer, other_integer).
Sequence number added as suffix without the underscore is a breakage of underscore naming and
looks especially bad when the name consists of more than one word, like user_location1.

 Examples

Preferred:
def compare(integer, other_integer), do: # ...
Preferred as last resort:
def add_three_nums(integer_1, integer_2, integer_3), do: # ...
Plain ugly:
def concat(file_name1, file_name2), do: # ...

 Link to this function

 test_case_usage()

 View Source

Tests should only use support test case modules that they need.

 Reasoning

If specific test only unit tests a module without using a web request, it shouldn't use ConnCase
and if it doesn't create records, it shouldn't use DataCase. For many tests, ExUnit.Case will
be enough of a support.
This yields more semantic test headers and avoids needlessly importing and abusing of more complex
support files.

 Examples

Preferred:
defmodule MyProject.Web.MyControllerTest do
 use MyProject.Web.ConnCase
end

defmodule MyProject.MyServiceTest do
 use MyProject.DataCase
end

defmodule NeitherControllerNorDatabaseTest do
 use ExUnit.Case
end
Test support file abuse:
defmodule MyProject.MyServiceTest do
 use MyProject.Web.ConnCase
end

defmodule NeitherControllerNorDatabaseTest do
 use MyProject.DataCase
end

 Link to this function

 unless_usage()

 View Source

The unless directive should never be used with an else block or with logical operators.

 Reasoning

The unless directive is confusing and hard to reason about when used with more complex
conditions or an alternative code path (which could be read as "unless unless"). Therefore, in
such cases it should be rewritten as an if.

 Examples

Preferred:
unless user.confirmed, do: raise("user is not confirmed")

if user.banned and not(user.vip) do
 raise("user is banned")
else
 confirm_action(user)
end
Too hard to read:
unless not(user.banned) or user.vip do
 confirm_action(user)
else
 raise("user is banned")
end

 Link to this function

 with_else_order()

 View Source

Matches in a with-else block should be placed in occurrence order.

 Reasoning

Doing this will make it much easier to reason about the whole flow of the with block, which
tends to be quite complex and a core of flow control.

 Examples

Preferred:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- CreateUserFromAttributesService.call(attrs),
 :ok <- SendUserWelcomeEmailService.call(user)
 do
 {:ok, user}
 else
 {:error, changeset = %Ecto.Changeset{}} -> {:error, changeset}
 {:error, :not_available} -> {:error, :not_available}
 end
 end
end
Unclear flow:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- CreateUserFromAttributesService.call(attrs),
 :ok <- SendUserWelcomeEmailService.call(user)
 do
 {:ok, user}
 else
 {:error, :not_available} -> {:error, :not_available}
 {:error, changeset = %Ecto.Changeset{}} -> {:error, changeset}
 end
 end
end

 Link to this function

 with_else_redundancy()

 View Source

Redundant else block should not be provided for the with directive.

 Reasoning

In cases when all the code called in with resides in the same file (or in a standard library)
and when none of else clauses would override the negative path's output, it's more semantic and
descriptive to simply drop the else entirely. It's worth noting that else blocks in with
bring an additional maintenance cost so it should be excused by either of conditions mentioned
above.

 Examples

Preferred:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- insert_user(attrs),
 :ok <- send_welcome_email(user)
 do
 {:ok, user}
 end
 end

 defp insert_user(attrs), do: # ...

 defp send_welcome_email(user), do: # ...
end
Redundant and hard to maintain else:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- insert_user(attrs),
 :ok <- send_welcome_email(user)
 do
 {:ok, user}
 else
 {:error, :insertion_error_a} -> {:error, :insertion_error_a}
 {:error, :insertion_error_b} -> {:error, :insertion_error_b}
 {:error, :insertion_error_c} -> {:error, :insertion_error_c}
 {:error, :mailing_service_error_a} -> {:error, :mailing_service_error_a}
 {:error, :mailing_service_error_b} -> {:error, :mailing_service_error_b}
 {:error, :mailing_service_error_c} -> {:error, :mailing_service_error_c}
 end
 end

 defp insert_user(attrs), do: # ...

 defp send_welcome_email(user), do: # ...
end

 Link to this function

 with_else_usage()

 View Source

An else block should be provided for with when it forwards cases from external files.

 Reasoning

The with clause allows to omit else entirely if its only purpose is to amend the specific
series of matches filled between with and do. In such cases, all non-matching outputs are
forwarded (or "bubbled up") by with. This is a cool feature that allows to reduce the amount of
redundant negative matches when there's no need to amend them.
It may however become a readability and maintenance problem when with calls to complex, external
code from separate files, which makes it hard to reason about the complete set of possible
outcomes of the whole with block. Therefore, it's encouraged to provide an else which lists
a complete set of possible negative scenarios, even if they are not mapped to a different output.

 Examples

Preferred:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- CreateUserFromAttributesService.call(attrs),
 :ok <- SendUserWelcomeEmailService.call(user)
 do
 {:ok, user}
 else
 {:error, changeset = %Ecto.Changeset{}} -> {:error, changeset}
 {:error, :not_available} -> {:error, :not_available}
 end
 end
end
Unclear cross-module flow:
defmodule RegistrationService do
 def call(attrs) do
 with {:ok, user} <- CreateUserFromAttributesService.call(attrs),
 :ok <- SendUserWelcomeEmailService.call(user)
 do
 {:ok, user}
 end
 end
end

Surgex.Parser

Parses, casts and catches errors in the web request input, such as params or JSON API body.
Usage
In order to use it, you should import the Surgex.Parser module, possibly in the controller
macro in the web.ex file belonging to your Phoenix project, which will make functions like
parse available in all controllers.
Then, you should start implementing functions for parsing params or documents for specific
controller actions. Those functions will serve as documentation crucial for understanding specific
action's input, so it's best to keep them close to the relevant action. For example:
def index(conn, params) do
 with {:ok, opts} <- parse_index_params(params) do
 render(conn, locations: Marketplace.search_locations(opts))
 else
 {:error, :invalid_parameters, params} -> {:error, :invalid_parameters, params}
 end
end

defp parse_index_params(params) do
 parse params,
 query: [:string, :required],
 center: :geolocation,
 box: :box,
 category_id: :id,
 subcategory_ids: :id_list,
 sort: {:sort, ~w{price_min published_at distance}a},
 page: :page
end
The second argument to parse/2 and flat_parse/2 is a param spec in which keys are resulting
option names and values are parser functions, atoms, tuples or lists used to process specific
parameter. Here's how each work:
	parser functions are functions that take the input value as first argument and can take
arbitrary amount of additional arguments as parser options; in order to pass such parser it's
best to use the & operator in format &parser/1 or in case of parser options
&parser(&1, opts...)

	parser atoms point to built-in parsers by looking up a
Surgex.Parser.<camelized-name>Parser module and invoking the call function within it,
where the call function is just a parser function described above; for example :integer is
an equivalent to &Surgex.Parser.IntegerParser.call/1

	parser tuples allow to pass additional options to built-in parsers; the tuple starts with
the parser atom described above, followed by parser arguments matching the number of additional
arguments consumed by the parser; for example {:sort, ~w{price_min published_at}a}

	parser lists allow to pass a list of parser functions, atoms or tuples, all of which will be
parsed in a sequence in which the output from previous parser is piped to the next one and in
which the first failure stops the whole pipe; for example [:integer, :required]

 Anchor for this section

 Summary

 Functions

 assert_blank_params(params)

 Makes sure there are no unknown params passed to controller action.

 flat_parse(input, parsers)

 Parses controller action input into a flat structure.

 map_parsed_options(parser_result, mapping)

 Renames keys in the parser output.

 parse(input, parsers)

 Parses controller action input (parameters, documents) with a given set of parsers.

 Anchor for this section

Functions

 Link to this function

 assert_blank_params(params)

 View Source

 Specs

 assert_blank_params(map()) ::
 :ok
 | {:error, :invalid_parameters, list()}
 | {:error, :invalid_pointers, list()}

Makes sure there are no unknown params passed to controller action.

 Link to this function

 flat_parse(input, parsers)

 View Source

 Specs

 flat_parse(nil, any()) :: {:error, :empty_input}

 flat_parse(map(), list()) ::
 tuple()
 | {:error, :invalid_parameters, list()}
 | {:error, :invalid_pointers, list()}

Parses controller action input into a flat structure.
This function takes the same input as parse/2 but it returns a {:ok, value1, value2, ...}
tuple instead of a [key1: value1, key2: value2, ...] keyword list.

 Link to this function

 map_parsed_options(parser_result, mapping)

 View Source

 Specs

 map_parsed_options({:error, any()}, any()) :: {:error, any()}

 map_parsed_options({:ok, any()}, any()) :: {:ok, any()}

Renames keys in the parser output.

 Link to this function

 parse(input, parsers)

 View Source

 Specs

 parse(nil, any()) :: {:error, :empty_input}

 parse(map(), list()) ::
 {:ok, any()}
 | {:error, :invalid_parameters, list()}
 | {:error, :invalid_pointers, list()}

Parses controller action input (parameters, documents) with a given set of parsers.
Returns a keyword list with parsed options.

Surgex.Parser.ContainParser

Checks if the given parameter's value is on the list of allowed values.

Surgex.Parser.Geobox

Holds a box made of two points on Earth's surface.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Surgex.Parser.Geobox{
 north_east: Surgex.Parser.Geolocation.t(),
 south_west: Surgex.Parser.Geolocation.t()
}

Surgex.Parser.Geolocation

Holds a specific point on Earth's surface.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Surgex.Parser.Geolocation{latitude: number(), longitude: number()}

Surgex.Parser.IncludeParser

Parses the JSON API's include parameter according to the
JSON API spec.
Produces a list of includes constrained to the provided relationship paths.

 Anchor for this section

 Summary

 Types

 errors()

 path()

 Functions

 flatten(input, key)

 Flattens the result of the parser (inclusion list) into multiple keys.

 Anchor for this section

Types

 Link to this type

 errors()

 View Source

 Specs

 errors() :: :invalid_relationship_path | :invalid_input

 Link to this type

 path()

 View Source

 Specs

 path() :: atom() | String.t()

 Anchor for this section

Functions

 Link to this function

 flatten(input, key)

 View Source

 Specs

 flatten({:ok, Keyword.t()}, String.t()) :: {:ok, Keyword.t()}

Flattens the result of the parser (inclusion list) into multiple keys.

 Examples

iex> IncludeParser.flatten({:ok, include: [:user]}, :include)
{:ok, include_user: true}

Surgex.Parser.SortParser

Parses the JSON API's sort parameter according to the
JSON API spec.
Produces a {direction, column} tuple, in which direction is either :asc or :desc and
column is a safely atomized and underscored column name.

 Anchor for this section

 Summary

 Functions

 flatten(input, key)

 Flattens the result of the parser (sort tuple) into *_by and *_direction keys.

 Anchor for this section

Functions

 Link to this function

 flatten(input, key)

 View Source

 Specs

 flatten({:ok, Keyword.t()}, atom()) :: {:ok, {:asc | :desc, atom()}}

Flattens the result of the parser (sort tuple) into *_by and *_direction keys.

 Examples

iex> SortParser.flatten({:ok, sort: {:asc, :col}}, :sort)
{:ok, sort_by: :col, sort_direction: :asc}

Surgex.Parser.StringParser

Available options:
	trim is trimming whitespaces from the string, takes priority over min and max options
	min is a minimal length of the string, returns :too_short error symbol
	max is a maximal length of the string, returns :too_long error symbol

 Anchor for this section

 Summary

 Types

 errors()

 option()

 Functions

 call(input, opts \\ [])

 trim(input)

 validate_max(input)

 validate_min(input)

 Anchor for this section

Types

 Link to this type

 errors()

 View Source

 Specs

 errors() :: :too_short | :too_long | :invalid_string

 Link to this type

 option()

 View Source

 Specs

 option() :: {:trim, boolean()} | {:min, integer()} | {:max, integer()}

 Anchor for this section

Functions

 Link to this function

 call(input, opts \\ [])

 View Source

 Specs

 call(term(), [option()]) :: {:ok, String.t() | nil} | {:error, errors()}

 Link to this function

 trim(input)

 View Source

 Specs

 trim(%{opts: list(), value: String.t(), error: nil}) :: %{
 opts: list(),
 value: String.t(),
 error: nil
}

 Link to this function

 validate_max(input)

 View Source

 Specs

 validate_max(%{opts: list(), value: String.t(), error: nil}) :: %{
 opts: list(),
 value: String.t(),
 error: nil | :too_long
}

 Link to this function

 validate_min(input)

 View Source

 Specs

 validate_min(%{opts: list(), value: String.t(), error: nil}) :: %{
 opts: list(),
 value: String.t(),
 error: nil | :too_short
}

Surgex.Refactor

Tools for making code maintenance and refactors easier.

 Anchor for this section

 Summary

 Functions

 call(args)

 Anchor for this section

Functions

 Link to this function

 call(args)

 View Source

Surgex.Refactor.MapFilenames

Maps module names to filenames and finds non-matches.

 Anchor for this section

 Summary

 Functions

 call(filenames, opts)

 fix(scanned_tuples)

 scan(filenames)

 Anchor for this section

Functions

 Link to this function

 call(filenames, opts)

 View Source

 Link to this function

 fix(scanned_tuples)

 View Source

 Link to this function

 scan(filenames)

 View Source

Surgex.RepoHelpers

Tools for dynamic setup of Ecto repo opts.
NOTE: Deprecated in favor of Elixir 1.9 runtime configuration.

 Anchor for this section

 Summary

 Functions

 set_application_name(opts)

 Sets application_name to the value of APP_NAME env var.

 set_opts(opts, env_prefix \\ :database)

 Sets repo options from env vars starting with specified prefix.

 set_pool_size(opts, env)

 Sets repo database pool size from specified env var.

 set_server_pool_size(opts, env)

 Sets repo database pool size from specified env var only if Phoenix server is configured to run.

 set_ssl(opts, env)

 Sets repo database ssl enable from specified env var.

 set_url(opts, env)

 Sets repo database URL from specified env var.

 Anchor for this section

Functions

 Link to this function

 set_application_name(opts)

 View Source

Sets application_name to the value of APP_NAME env var.

 Link to this function

 set_opts(opts, env_prefix \\ :database)

 View Source

Sets repo options from env vars starting with specified prefix.

 Examples

iex> System.put_env("DATABASE_URL", "postgres://localhost")
iex> System.put_env("DATABASE_SERVER_POOL_SIZE", "30")
iex> System.put_env("DATABASE_SSL", "true")
iex> Application.put_env(:phoenix, :serve_endpoints, true)
iex>
iex> final_opts = Surgex.RepoHelpers.set_opts([])
iex>
iex> Keyword.get(final_opts, :url)
"postgres://localhost"
iex> Keyword.get(final_opts, :pool_size)
30
iex> Keyword.get(final_opts, :ssl)
true

 Link to this function

 set_pool_size(opts, env)

 View Source

Sets repo database pool size from specified env var.

 Link to this function

 set_server_pool_size(opts, env)

 View Source

Sets repo database pool size from specified env var only if Phoenix server is configured to run.

 Link to this function

 set_ssl(opts, env)

 View Source

Sets repo database ssl enable from specified env var.

 Link to this function

 set_url(opts, env)

 View Source

Sets repo database URL from specified env var.

Surgex.Sentry

Extensions to the official Sentry package.
NOTE: Deprecated in favor of Elixir 1.9 runtime configuration.

 Anchor for this section

 Summary

 Functions

 init()

 Patches Sentry environment name and release version from env vars.

 scrub_params(map)

 Deeply scrubs params, obfuscating those with blacklisted names.

 Anchor for this section

Functions

 Link to this function

 init()

 View Source

Patches Sentry environment name and release version from env vars.
By default, Sentry package only allows to fetch DSN from env var. This function extends that
with environment name and release version set on runtime, thus enabling deployments on Heroku
where application slug is compiled without final env vars.

 Examples

In order to execute this extension on application start, set an appropriate config key:
config :surgex,
 sentry_patch_enabled: true

 Link to this function

 scrub_params(map)

 View Source

Deeply scrubs params, obfuscating those with blacklisted names.
By default, Sentry package only offers flat scrubbing of params. This won't work with nested
params or JSON objects, so here's deep recursive equivalent of such scrubber.

 Examples

In order to use this extension, pass Surgex.Sentry.scrub_params/1 to Sentry.Plug like this:
use Sentry.Plug, body_scrubber: &Surgex.Sentry.scrub_params/1

mix surgex.refactor

Runs tasks from the Surgex.Refactor module

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 !function(e){var n={};function a(t){if(n[t])return n[t].exports;var r=n[t]={i:t,l:!1,exports:{}};return e[t].call(r.exports,r,r.exports,a),r.l=!0,r.exports}a.m=e,a.c=n,a.d=function(e,n,t){a.o(e,n)||Object.defineProperty(e,n,{enumerable:!0,get:t})},a.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},a.t=function(e,n){if(1&n&&(e=a(e)),8&n)return e;if(4&n&&"object"==typeof e&&e&&e.__esModule)return e;var t=Object.create(null);if(a.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:e}),2&n&&"string"!=typeof e)for(var r in e)a.d(t,r,function(n){return e[n]}.bind(null,r));return t},a.n=function(e){var n=e&&e.__esModule?function(){return e.default}:function(){return e};return a.d(n,"a",n),n},a.o=function(e,n){return Object.prototype.hasOwnProperty.call(e,n)},a.p="",a(a.s=39)}([,function(e,n,a){!function(e){"object"==typeof window&&window||"object"==typeof self&&self;(function(e){var n=[],a=Object.keys,t={},r={},i=/^(no-?highlight|plain|text)$/i,s=/\blang(?:uage)?-([\w-]+)\b/i,o=/((^(<[^>]+>|\t|)+|(?:\n)))/gm,l={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0};function c(e){return e.replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">")}function d(e){return e.nodeName.toLowerCase()}function u(e,n){var a=e&&e.exec(n);return a&&0===a.index}function g(e){return i.test(e)}function m(e){var n,a={},t=Array.prototype.slice.call(arguments,1);for(n in e)a[n]=e[n];return t.forEach((function(e){for(n in e)a[n]=e[n]})),a}function p(e){var n=[];return function e(a,t){for(var r=a.firstChild;r;r=r.nextSibling)3===r.nodeType?t+=r.nodeValue.length:1===r.nodeType&&(n.push({event:"start",offset:t,node:r}),t=e(r,t),d(r).match(/br|hr|img|input/)||n.push({event:"stop",offset:t,node:r}));return t}(e,0),n}function _(e){function n(e){return e&&e.source||e}function t(a,t){return new RegExp(n(a),"m"+(e.case_insensitive?"i":"")+(t?"g":""))}!function r(i,s){if(!i.compiled){if(i.compiled=!0,i.keywords=i.keywords||i.beginKeywords,i.keywords){var o={},l=function(n,a){e.case_insensitive&&(a=a.toLowerCase()),a.split(" ").forEach((function(e){var a=e.split("|");o[a[0]]=[n,a[1]?Number(a[1]):1]}))};"string"==typeof i.keywords?l("keyword",i.keywords):a(i.keywords).forEach((function(e){l(e,i.keywords[e])})),i.keywords=o}i.lexemesRe=t(i.lexemes||/\w+/,!0),s&&(i.beginKeywords&&(i.begin="\\b("+i.beginKeywords.split(" ").join("|")+")\\b"),i.begin||(i.begin=/\B|\b/),i.beginRe=t(i.begin),i.end||i.endsWithParent||(i.end=/\B|\b/),i.end&&(i.endRe=t(i.end)),i.terminator_end=n(i.end)||"",i.endsWithParent&&s.terminator_end&&(i.terminator_end+=(i.end?"|":"")+s.terminator_end)),i.illegal&&(i.illegalRe=t(i.illegal)),null==i.relevance&&(i.relevance=1),i.contains||(i.contains=[]),i.contains=Array.prototype.concat.apply([],i.contains.map((function(e){return function(e){return e.variants&&!e.cached_variants&&(e.cached_variants=e.variants.map((function(n){return m(e,{variants:null},n)}))),e.cached_variants||e.endsWithParent&&[m(e)]||[e]}("self"===e?i:e)}))),i.contains.forEach((function(e){r(e,i)})),i.starts&&r(i.starts,s);var c=i.contains.map((function(e){return e.beginKeywords?"\\.?("+e.begin+")\\.?":e.begin})).concat([i.terminator_end,i.illegal]).map(n).filter(Boolean);i.terminators=c.length?t(c.join("|"),!0):{exec:function(){return null}}}}(e)}function b(e,n,a,r){function i(e,n){var a=m.case_insensitive?n[0].toLowerCase():n[0];return e.keywords.hasOwnProperty(a)&&e.keywords[a]}function s(e,n,a,t){var r='')+n+(a?"":"")}function o(){y+=null!=h.subLanguage?function(){var e="string"==typeof h.subLanguage;if(e&&!t[h.subLanguage])return c(x);var n=e?b(h.subLanguage,x,!0,v[h.subLanguage]):f(x,h.subLanguage.length?h.subLanguage:void 0);return h.relevance>0&&(w+=n.relevance),e&&(v[h.subLanguage]=n.top),s(n.language,n.value,!1,!0)}():function(){var e,n,a,t;if(!h.keywords)return c(x);for(t="",n=0,h.lexemesRe.lastIndex=0,a=h.lexemesRe.exec(x);a;)t+=c(x.substring(n,a.index)),(e=i(h,a))?(w+=e[1],t+=s(e[0],c(a[0]))):t+=c(a[0]),n=h.lexemesRe.lastIndex,a=h.lexemesRe.exec(x);return t+c(x.substr(n))}(),x=""}function d(e){y+=e.className?s(e.className,"",!0):"",h=Object.create(e,{parent:{value:h}})}function g(e,n){if(x+=e,null==n)return o(),0;var t=function(e,n){var a,t;for(a=0,t=n.contains.length;a<t;a++)if(u(n.contains[a].beginRe,e))return n.contains[a]}(n,h);if(t)return t.skip?x+=n:(t.excludeBegin&&(x+=n),o(),t.returnBegin||t.excludeBegin||(x=n)),d(t),t.returnBegin?0:n.length;var r=function e(n,a){if(u(n.endRe,a)){for(;n.endsParent&&n.parent;)n=n.parent;return n}if(n.endsWithParent)return e(n.parent,a)}(h,n);if(r){var i=h;i.skip?x+=n:(i.returnEnd||i.excludeEnd||(x+=n),o(),i.excludeEnd&&(x=n));do{h.className&&(y+=""),h.skip||(w+=h.relevance),h=h.parent}while(h!==r.parent);return r.starts&&d(r.starts),i.returnEnd?0:n.length}if(function(e,n){return!a&&u(n.illegalRe,e)}(n,h))throw new Error('Illegal lexeme "'+n+'" for mode "'+(h.className||"<unnamed>")+'"');return x+=n,n.length||1}var m=E(e);if(!m)throw new Error('Unknown language: "'+e+'"');_(m);var p,h=r||m,v={},y="";for(p=h;p!==m;p=p.parent)p.className&&(y=s(p.className,"",!0)+y);var x="",w=0;try{for(var N,k,O=0;h.terminators.lastIndex=O,N=h.terminators.exec(n);)k=g(n.substring(O,N.index),N[0]),O=N.index+k;for(g(n.substr(O)),p=h;p.parent;p=p.parent)p.className&&(y+="");return{relevance:w,value:y,language:e,top:h}}catch(e){if(e.message&&-1!==e.message.indexOf("Illegal"))return{relevance:0,value:c(n)};throw e}}function f(e,n){n=n||l.languages||a(t);var r={relevance:0,value:c(e)},i=r;return n.filter(E).forEach((function(n){var a=b(n,e,!1);a.language=n,a.relevance>i.relevance&&(i=a),a.relevance>r.relevance&&(i=r,r=a)})),i.language&&(r.second_best=i),r}function h(e){return l.tabReplace||l.useBR?e.replace(o,(function(e,n){return l.useBR&&"\n"===e?"
":l.tabReplace?n.replace(/\t/g,l.tabReplace):""})):e}function v(e){var a,t,i,o,u,m=function(e){var n,a,t,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",a=s.exec(i))return E(a[1])?a[1]:"no-highlight";for(n=0,t=(i=i.split(/\s+/)).length;n<t;n++)if(g(r=i[n])||E(r))return r}(e);g(m)||(l.useBR?(a=document.createElementNS("http://www.w3.org/1999/xhtml","div")).innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n"):a=e,u=a.textContent,i=m?b(m,u,!0):f(u),(t=p(a)).length&&((o=document.createElementNS("http://www.w3.org/1999/xhtml","div")).innerHTML=i.value,i.value=function(e,a,t){var r=0,i="",s=[];function o(){return e.length&&a.length?e[0].offset!==a[0].offset?e[0].offset<a[0].offset?e:a:"start"===a[0].event?e:a:e.length?e:a}function l(e){i+="<"+d(e)+n.map.call(e.attributes,(function(e){return" "+e.nodeName+'="'+c(e.value).replace('"',""")+'"'})).join("")+">"}function u(e){i+="</"+d(e)+">"}function g(e){("start"===e.event?l:u)(e.node)}for(;e.length||a.length;){var m=o();if(i+=c(t.substring(r,m[0].offset)),r=m[0].offset,m===e){s.reverse().forEach(u);do{g(m.splice(0,1)[0]),m=o()}while(m===e&&m.length&&m[0].offset===r);s.reverse().forEach(l)}else"start"===m[0].event?s.push(m[0].node):s.pop(),g(m.splice(0,1)[0])}return i+c(t.substr(r))}(t,p(o),u)),i.value=h(i.value),e.innerHTML=i.value,e.className=function(e,n,a){var t=n?r[n]:a,i=[e.trim()];return e.match(/\bhljs\b/)||i.push("hljs"),-1===e.indexOf(t)&&i.push(t),i.join(" ").trim()}(e.className,m,i.language),e.result={language:i.language,re:i.relevance},i.second_best&&(e.second_best={language:i.second_best.language,re:i.second_best.relevance}))}function y(){if(!y.called){y.called=!0;var e=document.querySelectorAll("pre code");n.forEach.call(e,v)}}function E(e){return e=(e||"").toLowerCase(),t[e]||t[r[e]]}e.highlight=b,e.highlightAuto=f,e.fixMarkup=h,e.highlightBlock=v,e.configure=function(e){l=m(l,e)},e.initHighlighting=y,e.initHighlightingOnLoad=function(){addEventListener("DOMContentLoaded",y,!1),addEventListener("load",y,!1)},e.registerLanguage=function(n,a){var i=t[n]=a(e);i.aliases&&i.aliases.forEach((function(e){r[e]=n}))},e.listLanguages=function(){return a(t)},e.getLanguage=E,e.inherit=m,e.IDENT_RE="[a-zA-Z]\\w*",e.UNDERSCORE_IDENT_RE="[a-zA-Z_]\\w*",e.NUMBER_RE="\\b\\d+(\\.\\d+)?",e.C_NUMBER_RE="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",e.BINARY_NUMBER_RE="\\b(0b[01]+)",e.RE_STARTERS_RE="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",e.BACKSLASH_ESCAPE={begin:"\\\\[\\s\\S]",relevance:0},e.APOS_STRING_MODE={className:"string",begin:"'",end:"'",illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},e.QUOTE_STRING_MODE={className:"string",begin:'"',end:'"',illegal:"\\n",contains:[e.BACKSLASH_ESCAPE]},e.PHRASAL_WORDS_MODE={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},e.COMMENT=function(n,a,t){var r=e.inherit({className:"comment",begin:n,end:a,contains:[]},t||{});return r.contains.push(e.PHRASAL_WORDS_MODE),r.contains.push({className:"doctag",begin:"(?:TODO|FIXME|NOTE|BUG|XXX):",relevance:0}),r},e.C_LINE_COMMENT_MODE=e.COMMENT("//","$"),e.C_BLOCK_COMMENT_MODE=e.COMMENT("/*","*/"),e.HASH_COMMENT_MODE=e.COMMENT("#","$"),e.NUMBER_MODE={className:"number",begin:e.NUMBER_RE,relevance:0},e.C_NUMBER_MODE={className:"number",begin:e.C_NUMBER_RE,relevance:0},e.BINARY_NUMBER_MODE={className:"number",begin:e.BINARY_NUMBER_RE,relevance:0},e.CSS_NUMBER_MODE={className:"number",begin:e.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},e.REGEXP_MODE={className:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[e.BACKSLASH_ESCAPE,{begin:/\[/,end:/\]/,relevance:0,contains:[e.BACKSLASH_ESCAPE]}]},e.TITLE_MODE={className:"title",begin:e.IDENT_RE,relevance:0},e.UNDERSCORE_TITLE_MODE={className:"title",begin:e.UNDERSCORE_IDENT_RE,relevance:0},e.METHOD_GUARD={begin:"\\.\\s*"+e.UNDERSCORE_IDENT_RE,relevance:0}})(n)}()},,,,,,,function(e,n){e.exports=function(e){var n={className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{(.*?)}/}]},a={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,n,{className:"variable",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]}]};return{aliases:["sh","zsh"],lexemes:/-?[a-z\._]+/,keywords:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},contains:[{className:"meta",begin:/^#![^\n]+sh\s*$/,relevance:10},{className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0},e.HASH_COMMENT_MODE,a,{className:"string",begin:/'/,end:/'/},n]}}},function(e,n){e.exports=function(e){var n={begin:/[A-Z_\.\-]+\s*:/,returnBegin:!0,end:";",endsWithParent:!0,contains:[{className:"attribute",begin:/\S/,end:":",excludeEnd:!0,starts:{endsWithParent:!0,excludeEnd:!0,contains:[{begin:/[\w-]+\(/,returnBegin:!0,contains:[{className:"built_in",begin:/[\w-]+/},{begin:/\(/,end:/\)/,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]}]},e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{className:"number",begin:"#[0-9A-Fa-f]+"},{className:"meta",begin:"!important"}]}}]};return{case_insensitive:!0,illegal:/[=\/|'\$]/,contains:[e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:/#[A-Za-z0-9_-]+/},{className:"selector-class",begin:/\.[A-Za-z0-9_-]+/},{className:"selector-attr",begin:/\[/,end:/\]/,illegal:"$"},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{begin:"@(font-face|page)",lexemes:"[a-z-]+",keywords:"font-face page"},{begin:"@",end:"[{;]",illegal:/:/,contains:[{className:"keyword",begin:/\w+/},{begin:/\s/,endsWithParent:!0,excludeEnd:!0,relevance:0,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},{className:"selector-tag",begin:"[a-zA-Z-][a-zA-Z0-9_-]*",relevance:0},{begin:"{",end:"}",illegal:/\S/,contains:[e.C_BLOCK_COMMENT_MODE,n]}]}}},function(e,n){e.exports=function(e){return{aliases:["patch"],contains:[{className:"meta",relevance:10,variants:[{begin:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{begin:/^*** +\d+,\d+ +****$/},{begin:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{className:"comment",variants:[{begin:/Index: /,end:/$/},{begin:/={3,}/,end:/$/},{begin:/^\-{3}/,end:/$/},{begin:/^*{3} /,end:/$/},{begin:/^\+{3}/,end:/$/},{begin:/*{5}/,end:/*{5}$/}]},{className:"addition",begin:"^\\+",end:"$"},{className:"deletion",begin:"^\\-",end:"$"},{className:"addition",begin:"^\\!",end:"$"}]}}},function(e,n){e.exports=function(e){return{aliases:["https"],illegal:"\\S",contains:[{begin:"^HTTP/[0-9\\.]+",end:"$",contains:[{className:"number",begin:"\\b\\d{3}\\b"}]},{begin:"^[A-Z]+ (.*?) HTTP/[0-9\\.]+$",returnBegin:!0,end:"$",contains:[{className:"string",begin:" ",end:" ",excludeBegin:!0,excludeEnd:!0},{begin:"HTTP/[0-9\\.]+"},{className:"keyword",begin:"[A-Z]+"}]},{className:"attribute",begin:"^\\w",end:": ",excludeEnd:!0,illegal:"\\n|\\s|=",starts:{end:"$",relevance:0}},{begin:"\\n\\n",starts:{subLanguage:[],endsWithParent:!0}}]}}},function(e,n){e.exports=function(e){var n="[A-Za-z$_][0-9A-Za-z$_]*",a={keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},t={className:"number",variants:[{begin:"\\b(0[bB][01]+)"},{begin:"\\b(0[oO][0-7]+)"},{begin:e.C_NUMBER_RE}],relevance:0},r={className:"subst",begin:"\\$\\{",end:"\\}",keywords:a,contains:[]},i={className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE,r]};r.contains=[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,i,t,e.REGEXP_MODE];var s=r.contains.concat([e.C_BLOCK_COMMENT_MODE,e.C_LINE_COMMENT_MODE]);return{aliases:["js","jsx"],keywords:a,contains:[{className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},{className:"meta",begin:/^#!/,end:/$/},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,i,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,t,{begin:/[{,]\s*/,relevance:0,contains:[{begin:n+"\\s*:",returnBegin:!0,relevance:0,contains:[{className:"attr",begin:n,relevance:0}]}]},{begin:"("+e.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.REGEXP_MODE,{className:"function",begin:"(\\(.*?\\)|"+n+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:n},{begin:/\(\s*\)/},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:a,contains:s}]}]},{begin:/</,end:/(\/\w+|\w+\/)>/,subLanguage:"xml",contains:[{begin:/<\w+\s*\/>/,skip:!0},{begin:/<\w+/,end:/(\/\w+|\w+\/)>/,skip:!0,contains:[{begin:/<\w+\s*\/>/,skip:!0},"self"]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:n}),{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:s}],illegal:/\[|%/},{begin:/\$[(.]/},e.METHOD_GUARD,{className:"class",beginKeywords:"class",end:/[{;=]/,excludeEnd:!0,illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"constructor",end:/\{/,excludeEnd:!0}],illegal:/#(?!!)/}}},function(e,n){e.exports=function(e){var n={literal:"true false null"},a=[e.QUOTE_STRING_MODE,e.C_NUMBER_MODE],t={end:",",endsWithParent:!0,excludeEnd:!0,contains:a,keywords:n},r={begin:"{",end:"}",contains:[{className:"attr",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE],illegal:"\\n"},e.inherit(t,{begin:/:/})],illegal:"\\S"},i={begin:"\\[",end:"\\]",contains:[e.inherit(t)],illegal:"\\S"};return a.splice(a.length,0,r,i),{contains:a,keywords:n,illegal:"\\S"}}},function(e,n){e.exports=function(e){return{aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$"},{begin:"^.+?\\n[=-]{2,}$"}]},{begin:"<",end:">",subLanguage:"xml",relevance:0},{className:"bullet",begin:"^([*+-]|(\\d+\\.))\\s+"},{className:"strong",begin:"[*_]{2}.+?[*_]{2}"},{className:"emphasis",variants:[{begin:"*.+?*"},{begin:"_.+?_",relevance:0}]},{className:"quote",begin:"^>\\s+",end:"$"},{className:"code",variants:[{begin:"^```w*s*$",end:"^```s*$"},{begin:"`.+?`"},{begin:"^({4}|\t)",end:"$",relevance:0}]},{begin:"^[-*]{3,}",end:"$"},{begin:"\\[.+?\\][\\(\\[].*?[\\)\\]]",returnBegin:!0,contains:[{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0,relevance:0},{className:"link",begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}],relevance:10},{begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]}]}}},function(e,n){e.exports=function(e){var n=e.COMMENT("--","$");return{case_insensitive:!0,illegal:/[<>{}*#]/,contains:[{beginKeywords:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment",end:/;/,endsWithParent:!0,lexemes:/[\w\.]+/,keywords:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},contains:[{className:"string",begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE,{begin:"''"}]},{className:"string",begin:'"',end:'"',contains:[e.BACKSLASH_ESCAPE,{begin:'""'}]},{className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,n]},e.C_BLOCK_COMMENT_MODE,n]}}},function(e,n){e.exports=function(e){var n={endsWithParent:!0,illegal:/</,relevance:0,contains:[{className:"attr",begin:"[A-Za-z0-9\\._:-]+",relevance:0},{begin:/=\s*/,relevance:0,contains:[{className:"string",endsParent:!0,variants:[{begin:/"/,end:/"/},{begin:/'/,end:/'/},{begin:/[^\s"'=<>`]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xjb","xsd","xsl","plist"],case_insensitive:!0,contains:[{className:"meta",begin:"<!DOCTYPE",end:">",relevance:10,contains:[{begin:"\\[",end:"\\]"}]},e.COMMENT("\x3c!--","--\x3e",{relevance:10}),{begin:"<\\!\\[CDATA\\[",end:"\\]\\]>",relevance:10},{begin:/<\?(php)?/,end:/\?>/,subLanguage:"php",contains:[{begin:"/*",end:"*/",skip:!0}]},{className:"tag",begin:"<style(?=\\s|>|$)",end:">",keywords:{name:"style"},contains:[n],starts:{end:"</style>",returnEnd:!0,subLanguage:["css","xml"]}},{className:"tag",begin:"<script(?=\\s|>|$)",end:">",keywords:{name:"script"},contains:[n],starts:{end:"<\/script>",returnEnd:!0,subLanguage:["actionscript","javascript","handlebars","xml"]}},{className:"meta",variants:[{begin:/<\?xml/,end:/\?>/,relevance:10},{begin:/<\?\w+/,end:/\?>/}]},{className:"tag",begin:"</?",end:"/?>",contains:[{className:"name",begin:/[^\/><\s]+/,relevance:0},n]}]}}},function(e,n,a){"use strict";a.d(n,"a",(function(){return i}));function t(e){for(var n=e.target.getAttribute("data-group-id"),a=document.querySelectorAll("[data-group-id='"+n+"']"),t=0;t<a.length;++t)a[t].classList.add("hll")}function r(e){for(var n=e.target.getAttribute("data-group-id"),a=document.querySelectorAll("[data-group-id='"+n+"']"),t=0;t<a.length;++t)a[t].classList.remove("hll")}function i(){for(var e=document.querySelectorAll("[data-group-id]"),n=0;n<e.length;n++){var a=e[n];a.addEventListener("mouseenter",t),a.addEventListener("mouseleave",r)}}},,,,,,,,,,,,,,,,,,,,,,function(e,n,a){"use strict";a.r(n);var t=a(1),r=a.n(t),i=a(8),s=a.n(i),o=a(9),l=a.n(o),c=a(10),d=a.n(c),u=a(11),g=a.n(u),m=a(12),p=a.n(m),_=a(13),b=a.n(_),f=a(14),h=a.n(f),v=a(15),y=a.n(v),E=a(16),x=a.n(E),w=a(17);r.a.configure({tabReplace:" ",languages:[]}),r.a.registerLanguage("bash",s.a),r.a.registerLanguage("css",l.a),r.a.registerLanguage("diff",d.a),r.a.registerLanguage("http",g.a),r.a.registerLanguage("javascript",p.a),r.a.registerLanguage("json",b.a),r.a.registerLanguage("markdown",h.a),r.a.registerLanguage("sql",y.a),r.a.registerLanguage("xml",x.a),Object(w.a)(),r.a.initHighlightingOnLoad()}]);

