

 Strukt

 v0.2.1

 Table of contents

 	Usage

 	Schemas

 	JSON Support

 	About

 	License

 	Modules

 	Strukt

Usage
This document details further how Strukt is implemented, and how to use it. Please report any issues on the issue tracker.
Struct Definition
There are two variants, depending on how you want to define your structs, Strukt.defstruct/1 and Strukt.defstruct/2.
The first is used to define a struct associated with the current module being defined:
defmodule Person do
 use Strukt

 defstruct do
 field :name, :string, required: true
 end

 def name(person), do: person.name
end
The second is used to define a struct and its module, inline:
defmodule Entities do
 use Strukt

 defstruct Person do
 field :name, :string, required: true

 def name(person), do: person.name
 end
end
The latter is generally useful only when you want to define multiple modules in the same file, which is
probably relatively rare, but comes up from time to time, and this reduces the boilerplate a bit.
Lastly, it is worth noting that embedded structs behave almost identically to Strukt.defstruct/2:
defmodule Company do
 use Strukt

 defstruct do
 field :name, :string, required: true

 embeds_many :employees, Employee do
 field :name, :string, required: true
 field :email, :string, required: true, format: ~r/^.+@.+$/

 def name(employee), do: employee.name
 end
 end
end
In the above, you'd end up with two modules, Company and Company.Employee. It's generally recommended to
split up the definition of embedded structs, but in simple cases where the embedded type is strictly used only
within the context of the containing type, it may be easier to keep the definitions together like this.
Working with Structs
The typical usage pattern for structs defined with Strukt more or less falls into one of the following buckets:
	Create a new struct, using the generated new/1 function, which returns {:ok, struct} or {:error, changeset}
	Given a struct, and a set of changes, apply them to the struct using change/2, producing an Ecto.Changeset
	Given an Ecto.Changeset representing the struct, get back the struct using from_changeset/1,
which like new/1, returns {:ok, struct} or {:error, changeset}

Both new/1 and change/2 build on a common changeset function that performs casts for fields and embeds, and
runs all of the validation rules, including custom ones defined in validate/1. The primary difference between
the two is that new/1 also performs autogeneration for fields (if applicable), and automatically invokes from_changeset/1
to get back the struct value.
If you need to do custom initialization of your own, then you can override new/1 yourself, making sure that you
invoke super(params) at some point to perform all of the standard initialization logic. For example, if you wanted
to generate a primary key that is based on a hash of the contents of some fields of the struct, you might do something
like this:
defmodule Thing do
 use Strukt

 defstruct do
 # This overrides the default primary key to disable autogeneration
 field :uuid, Ecto.UUID, primary_key: true
 field :name, :string
 field :email, string
 end

 def new(params \\ %{})

 def new(params) do
 with {:ok, thing} <- super(params) do
 hash =
 :crypto.hash_init(:sha256)
 |> :crypto.hash_update(thing.name)
 |> :crypto.hash_update(thing.email)
 |> :rypto.hash_final()
 |> Base.encode32()

 {:ok, %__MODULE__{thing | uuid: UUID.uuid5(:oid, hash, :default)}}
 end
 end
end
More Information
You may also find the Schemas and JSON documents useful for answering more specific questions about those features.

Schemas
Strukt builds on Ecto.Schema, so much of what you need to know can be found in the
Ecto docs. However, there are a few quality-of-life improvements
implemented in Strukt that extend the schema syntax to allow for some additional functionality.
Schema Extensions
The following is list of the changes we've made to the syntax provided by Ecto.Schema:
	Support for defining validations inline with the field definition, i.e. alongside standard
options provided to field/embeds_one/embeds_many.
	Support for autogenerated fields with embedded_schema. Typically autogenerated fields in
Ecto are intended to be provided by the database, but without a database in the loop, nothing
happens. Since we're defining new/1 for the structs we define, it gives us an opportunity to
ensure that the autogenerated fields get values immediately on struct creation.
	Support for defstruct's extended functionality within embeds_one/embeds_many inline
definitions, to any arbitrary nesting depth.

One of the biggest quality-of-life improvements provided here is the ability to express
validations inline with the field definition, as well as the automatic generation of validation
code which is automatically applied when you call change/2 or changeset/2. These build upon
and operate on Ecto.Changeset, which is a powerful way of expressing constraints, and they
compose well, especially when you have embeds involved.
Expressing Validations
Let's take a look at the use of inline validation rules, which you pass along with the standard
options to macros like field/3. The following validation options are provided:
	required: boolean | Keyword.t, options same as validate_required/3
	length: Keyword.t, options same as validate_length/3
	format: Keyword.t, options same as validate_format/4
	one_of: list(term) | [values: list(term), message: String.t], i.e. validate_inclusion/4
	none_of: list(term) | [values: list(term), message: String.t], i.e. validate_exclusion/4
	subset_of: list(term) | [values: list(term), message: String.t], i.e. validate_subset/4
	range: Range.t | [value: Range.t, message: String.t], i.e. validate_inclusion/4
	number: Keyword.t, i.e. validate_number/4

In all of the above, you can provide a custom validation message using the keyword list variant,
and setting :message to the desired format string.
Custom Validations
If you need to perform custom validation, or express conditional constraints, then you can override
the definition of validate/1, which takes an Ecto.Changeset on which you can apply arbitrary
validation logic. This callback is also invoked any time you call new/1, so be aware that if you need
to conditionally apply validation rules, you will need to be able to determine the condition from
the data the changeset is based on, see the Ecto.Changeset API if you aren't sure how to do that.

JSON Support
Support for JSON serialization is built upon Ecto.embedded_dump/2, but must be explicitly enabled. This is to allow
you to provide your own implementation if you don't desire to use the generated one. However, deriving the
encoder is dead simple, and looks just like it would for any old struct. For example:
defstruct/1
defmodule Person do
 @derives [Jason.Encoder]
 defstruct do
 field :name, :string

 timestamps()
 end
end

defstruct/2
defstruct Person do
 @derives [Jason.Encoder]

 field :name, :string

 timestamps()
end
Internally, defstruct provides a concrete implementation of Jason.Encoder that calls out to Ecto.embedded_dump/2.
For deserialization, from_json/1 is defined for the struct's module, and uses Ecto.embedded_load/3 to deserialize
back to the original struct using the canonical deserializer for each field type.
The difference versus just letting @derives [Jason.Encoder] do its thing, is that embedded_dump/2 and embedded_load/3
ensure that the types are dumped/loaded according to their respective Ecto type definitions, which should produce canonical
JSON encodings, as opposed to naively encoding fields based on their raw Elixir representation.
NOTE: Currently, we only implement special support for Jason.Encoder, if you use another JSON library, it
is recommended that you implement the relevant encoder yourself using Ecto.embedded_dump/2, much like we do
for our implementation of Jason.Encoder.

Strukt
Strukt provides an extended defstruct macro which builds on top of Ecto.Schema
and Ecto.Changeset to remove the boilerplate of defining type specifications,
implementing validations, generating changesets from parameters, JSON serialization,
and support for autogenerated fields.
This builds on top of Ecto embedded schemas, so the same familiar syntax you use today
to define schema'd types in Ecto, can now be used to define structs for general purpose
usage.
The functionality provided by the defstruct macro in this module is strictly a superset
of the functionality provided both by Kernel.defstruct/1, as well as Ecto.Schema. If
you import it in a scope where you use Kernel.defstruct/1 already, it will not interfere.
Likewise, the support for defining validation rules inline with usage of field/3, embeds_one/3,
etc., is strictly additive, and those additions are stripped from the AST before field/3
and friends ever see it.
Installation
def deps do
 [
 {:strukt, "~> 0.1"}
]
end
Example
The following is an example of using defstruct/1 to define a struct with types, autogenerated
primary key, and validation rules.
defmodule Person do
 use Strukt

 @derives [Jason.Encoder]
 @primary_key {:uuid, Ecto.UUID, autogenerate: true}
 @timestamps_opts [autogenerate: {NaiveDateTime, :utc_now, []}]

 defstruct do
 field :name, :string, required: true
 field :email, :string, format: ~r/^.+@.+$/

 timestamps()
 end
end
And an example of how you would create and use this struct:
Creating from params, with autogeneration of fields
iex> {:ok, person} = Person.new(name: "Paul", email: "bitwalker@example.com")
...> person
%Person{
 uuid: "d420aa8a-9294-4977-8b00-bacf3789c702",
 name: "Paul",
 email: "bitwalker@example.com",
 inserted_at: ~N[2021-06-08 22:21:23.490554],
 updated_at: ~N[2021-06-08 22:21:23.490554]
}

Validation (Create)
iex> {:error, %Ecto.Changeset{valid?: false, errors: errors}} = Person.new(email: "bitwalker@example.com")
...> errors
[name: {"can't be blank", [validation: :required]}]

Validation (Update)
iex> {:ok, person} = Person.new(name: "Paul", email: "bitwalker@example.com")
...> {:error, %Ecto.Changeset{valid?: false, errors: errors}} = Person.change(person, email: "foo")
...> errors
[email: {"has invalid format", [validation: :format]}]

JSON Serialization/Deserialization
...> person == person |> Jason.encode!() |> Person.from_json()
true
For more, see the usage docs

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/
 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
	Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

	Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

	Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

	Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

	Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

	Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

	Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

	Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

	Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS
 APPENDIX: How to apply the Apache License to your work.
 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "{}"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.
 Copyright 2018 Paul Schoenfelder
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Strukt behaviour

 Anchor for this section

 Summary

 Functions

 defstruct(arg)

 This variant of defstruct can accept a list of fields, just like Kernel.defstruct/1, in which
case it simply defers to Kernel.defstruct/1 and does nothing; or it can be passed a block
containing an Ecto.Schema definition. The resulting struct/schema is defined in the current
module scope, and will inherit attributes like @derive, @primary_key, etc., which are already
defined in the current scope.

 defstruct(name, list)

 This variant of defstruct takes a module name and block containing a struct schema and
any other module contents desired, and defines a new module with that name, generating
a struct just like Strukt.defstruct/1.

 Callbacks

 change(arg1)

 See change/2

 change(arg1, arg2)

 This callback can be overridden to provide custom change behavior.

 new()

 See new/1

 new(arg1)

 This callback can be overridden to provide custom initialization behavior.

 validate(arg1)

 This callback can be overridden to provide custom validation logic.

 Anchor for this section

Functions

 Link to this macro

 defstruct(arg)

 View Source

 (macro)

This variant of defstruct can accept a list of fields, just like Kernel.defstruct/1, in which
case it simply defers to Kernel.defstruct/1 and does nothing; or it can be passed a block
containing an Ecto.Schema definition. The resulting struct/schema is defined in the current
module scope, and will inherit attributes like @derive, @primary_key, etc., which are already
defined in the current scope.

 Example

defmodule Passthrough do
 use Strukt

 defstruct [:name]
end

defmodule Person do
 use Strukt

 @derive [Jason.Encoder]
 defstruct do
 field :name, :string
 end

 def say_hello(%__MODULE__{name: name}), do: "Hello #{name}!"
end
Above, even though Strukt.defstruct/1 is in scope, it simply passes through the list of fields
to Kernel.defstruct/1, as without a proper schema, there isn't much useful we can do. This allows
intermixing uses of defstruct/1 in the same scope without conflict.

 Link to this macro

 defstruct(name, list)

 View Source

 (macro)

This variant of defstruct takes a module name and block containing a struct schema and
any other module contents desired, and defines a new module with that name, generating
a struct just like Strukt.defstruct/1.

 Example

use Strukt

defstruct Person do
 @derive [Jason.Encoder]

 field :name, :string

 def say_hello(%__MODULE__{name: name}), do: "Hello #{name}!"
end
NOTE: Unlike Strukt.defstruct/1, which inherits attributes like @derive or @primary_key from
the surrounding scope; this macro requires them to be defined in the body, as shown above.

 Anchor for this section

Callbacks

 Link to this callback

 change(arg1)

 View Source

 Specs

 change(Ecto.Changeset.t() | term()) :: Ecto.Changeset.t()

See change/2

 Link to this callback

 change(arg1, arg2)

 View Source

 Specs

 change(Ecto.Changeset.t() | term(), Keyword.t() | map()) :: Ecto.Changeset.t()

This callback can be overridden to provide custom change behavior.
The default implementation provided for you creates a changeset and applies
all of the inline validations defined on the schema.
NOTE: It is recommended that if you need to perform custom validations, that
you override validate/1 instead. If you need to override this callback
specifically for some reason, make sure you call super/2 at some point during
your implementation to ensure that validations are run.

 Link to this callback

 new()

 View Source

 Specs

 new() :: {:ok, struct()} | {:error, Ecto.Changeset.t()}

See new/1

 Link to this callback

 new(arg1)

 View Source

 Specs

 new(Keyword.t() | map()) :: {:ok, struct()} | {:error, Ecto.Changeset.t()}

This callback can be overridden to provide custom initialization behavior.
The default implementation provided for you performs all of the necessary
validation and autogeneration of fields with those options set.
NOTE: It is critical that if you do override this callback, that you call
super/1 to run the default implementation at some point in your implementation.

 Link to this callback

 validate(arg1)

 View Source

 Specs

 validate(Ecto.Changeset.t()) :: Ecto.Changeset.t()

This callback can be overridden to provide custom validation logic.
The default implementation simply returns the changeset it is given. Validations
defined inline with fields are handled by a specially generated __validate__/1
function which is called directly by new/1 and change/2.
NOTE: If you override this function, there is no need to invoke super/1

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

