

    

        Striped

        v0.5.0



    



  

    Table of contents

    
      


  	Modules
    

    	Stripe


    	Stripe.ApiErrors


    	Stripe.HTTPClient


    	Stripe.List


    	Stripe.SearchResult


    	Stripe.Telemetry


    	Stripe.Balance


    	Stripe.BalanceTransaction


    	Stripe.Charge


    	Stripe.Customer


    	Stripe.Dispute


    	Stripe.Event


    	Stripe.ExchangeRate


    	Stripe.File


    	Stripe.FileLink


    	Stripe.Mandate


    	Stripe.PaymentIntent


    	Stripe.PaymentSource


    	Stripe.Payout


    	Stripe.Refund


    	Stripe.SetupAttempt


    	Stripe.SetupIntent


    	Stripe.Token


    	Stripe.ApplePayDomain


    	Stripe.BankAccount


    	Stripe.Card


    	Stripe.CashBalance


    	Stripe.PaymentMethod


    	Stripe.Source


    	Stripe.SourceTransaction


    	Stripe.Coupon


    	Stripe.Item


    	Stripe.Price


    	Stripe.Product


    	Stripe.PromotionCode


    	Stripe.ShippingRate


    	Stripe.TaxCode


    	Stripe.TaxId


    	Stripe.TaxRate


    	Stripe.Checkout.Session


    	Stripe.PaymentLink


    	Stripe.BillingPortal.Configuration


    	Stripe.BillingPortal.Session


    	Stripe.CreditNote


    	Stripe.CreditNoteLineItem


    	Stripe.CustomerBalanceTransaction


    	Stripe.CustomerCashBalanceTransaction


    	Stripe.Invoice


    	Stripe.Invoiceitem


    	Stripe.LineItem


    	Stripe.Plan


    	Stripe.Quote


    	Stripe.Subscription


    	Stripe.SubscriptionItem


    	Stripe.SubscriptionSchedule


    	Stripe.TestHelpers.TestClock


    	Stripe.UsageRecord


    	Stripe.UsageRecordSummary


    	Stripe.Account


    	Stripe.AccountLink


    	Stripe.ApplicationFee


    	Stripe.Apps.Secret


    	Stripe.Capability


    	Stripe.CountrySpec


    	Stripe.ExternalAccount


    	Stripe.FeeRefund


    	Stripe.LoginLink


    	Stripe.Person


    	Stripe.Topup


    	Stripe.Transfer


    	Stripe.TransferReversal


    	Stripe.Radar.EarlyFraudWarning


    	Stripe.Radar.ValueList


    	Stripe.Radar.ValueListItem


    	Stripe.Review


    	Stripe.EphemeralKey


    	Stripe.FundingInstructions


    	Stripe.Issuing.Authorization


    	Stripe.Issuing.Card


    	Stripe.Issuing.Cardholder


    	Stripe.Issuing.Dispute


    	Stripe.Issuing.Transaction


    	Stripe.Terminal.Configuration


    	Stripe.Terminal.ConnectionToken


    	Stripe.Terminal.Location


    	Stripe.Terminal.Reader


    	Stripe.Treasury.CreditReversal


    	Stripe.Treasury.DebitReversal


    	Stripe.Treasury.FinancialAccount


    	Stripe.Treasury.FinancialAccountFeatures


    	Stripe.Treasury.InboundTransfer


    	Stripe.Treasury.OutboundPayment


    	Stripe.Treasury.OutboundTransfer


    	Stripe.Treasury.ReceivedCredit


    	Stripe.Treasury.ReceivedDebit


    	Stripe.Treasury.Transaction


    	Stripe.Treasury.TransactionEntry


    	Stripe.ScheduledQueryRun


    	Stripe.Reporting.ReportRun


    	Stripe.Reporting.ReportType


    	Stripe.FinancialConnections.Account


    	Stripe.FinancialConnections.AccountOwner


    	Stripe.FinancialConnections.Session


    	Stripe.Identity.VerificationReport


    	Stripe.Identity.VerificationSession


    	Stripe.WebhookEndpoint


    	Stripe.DeletedAccount


    	Stripe.DeletedApplePayDomain


    	Stripe.DeletedCoupon


    	Stripe.DeletedCustomer


    	Stripe.DeletedDiscount


    	Stripe.DeletedExternalAccount


    	Stripe.DeletedInvoice


    	Stripe.DeletedInvoiceitem


    	Stripe.DeletedPaymentSource


    	Stripe.DeletedPerson


    	Stripe.DeletedPlan


    	Stripe.DeletedProduct


    	Stripe.DeletedRadar.ValueList


    	Stripe.DeletedRadar.ValueListItem


    	Stripe.DeletedSubscriptionItem


    	Stripe.DeletedTaxId


    	Stripe.DeletedTerminal.Configuration


    	Stripe.DeletedTerminal.Location


    	Stripe.DeletedTerminal.Reader


    	Stripe.DeletedTestHelpers.TestClock


    	Stripe.DeletedWebhookEndpoint


    

  



      

    


  

    
Stripe 
    



      
Library to interface with the Stripe Api. Most of the code is generated from the Stripe OpenApi definitions.
Inspiration was drawn from Stripity Stripe and openapi.
Installation
def deps do
  [
    {:striped, "~> 0.5.0"}
  ]
end
Usage
client = Stripe.new(api_key: "sk_test_123")
{:ok, %Stripe.Customer{}} = Stripe.Customer.retrieve(client, "cus123")

{:ok, %Stripe.Customer{}} =
               Stripe.Customer.create(client, %{
                 description: "Test description"
               })

For the exact parameters you can consult the Stripe docs.
Errors
Stripe errors can be found in the Stripe.ApiErrors struct. 
Network errors etc. will be found in the error term.
{:error, %Stripe.ApiErrors{}} =
               Stripe.Customer.retrieve(client, "bogus")
Telemetry
Stripe api calls made through this library emit Telemetry events. See the 
Stripe.Telemetry module for more information
Api Version
Striped uses the OpenApi definitions to build itself, so it 
uses the latest Api Version. You can however override the 
version by passing the :version option to the client.
This SDK is generated for version: 2022-11-15
See https://stripe.com/docs/upgrades#2022-11-15 for breaking changes.
Limitations
	File Uploads currently don't work. 
	Connected Accounts are not supported yet. 


      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          Stripe config



      


  


  
    
      Functions
    


      
        
          new(opts)

        


          Returns new client.



      


      
        
          request(method, path, client, params, opts \\ [])

        


          Perform Stripe API requests.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe{
  api_key: binary(),
  base_url: binary(),
  http_client: term(),
  idempotency_key: nil | binary(),
  max_network_retries: pos_integer(),
  user_agent: binary(),
  version: binary()
}


      


Stripe config

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


  
    
      
      Link to this function
    
    new(opts)


      
       
       View Source
     


  


  

      

          @spec new(Keyword.t()) :: t()


      


Returns new client.
Options
	:version Set Stripe api version. All requests use your account API settings, unless you override the API version.
	:api_key Set Stripe api keys. Test mode secret keys have the prefix sk_test_ and live mode secret keys have the prefix sk_live_.
	:idempotency_key Override default idempotency key
	:base_url Override default base url. E.g. for local testing
	:http_client Override http client, defaults to Stripe.HTTPClient.HTTPC. Must conform to Stripe.HTTPClient behaviour.

Example
client = Stripe.new()
Stripe.Customer.create(client, %{description: "a description"})

  



    

  
    
      
      Link to this function
    
    request(method, path, client, params, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec request(
  method :: binary(),
  path :: binary(),
  client :: t(),
  params :: map(),
  opts :: Keyword.t()
) :: {:ok, term()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Perform Stripe API requests.

  


        

      



  

    
Stripe.ApiErrors 
    



      

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          The api_errors type.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.ApiErrors{
  charge: binary(),
  code: binary(),
  decline_code: binary(),
  doc_url: binary(),
  message: binary(),
  param: binary(),
  payment_intent: Stripe.PaymentIntent.t(),
  payment_method: Stripe.PaymentMethod.t(),
  payment_method_type: binary(),
  request_log_url: binary(),
  setup_intent: Stripe.SetupIntent.t(),
  source: Stripe.PaymentSource.t(),
  type: binary()
}


      


The api_errors type.
	charge For card errors, the ID of the failed charge.
	code For some errors that could be handled programmatically, a short string indicating the error code reported.
	decline_code For card errors resulting from a card issuer decline, a short string indicating the card issuer's reason for the decline if they provide one.
	doc_url A URL to more information about the error code reported.
	message A human-readable message providing more details about the error. For card errors, these messages can be shown to your users.
	param If the error is parameter-specific, the parameter related to the error. For example, you can use this to display a message near the correct form field.
	payment_intent 
	payment_method 
	payment_method_type If the error is specific to the type of payment method, the payment method type that had a problem. This field is only populated for invoice-related errors.
	request_log_url A URL to the request log entry in your dashboard.
	setup_intent 
	source 
	type The type of error returned. One of api_error, card_error, idempotency_error, or invalid_request_error


  


        

      



  

    
Stripe.HTTPClient behaviour
    




      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Callbacks
    


      
        
          init()

        


      


      
        
          request(method, url, headers, body, opts)

        


      


  


      


      
        
          
            
            Anchor for this section
          
Callbacks
        

        


  
    
      
      Link to this callback
    
    init()


      
       
       View Source
     


  


  

      

          @callback init() :: :ok


      



  



  
    
      
      Link to this callback
    
    request(method, url, headers, body, opts)


      
       
       View Source
     


  


  

      

          @callback request(
  method :: atom(),
  url :: binary(),
  headers :: [{binary(), binary()}],
  body :: binary(),
  opts :: keyword()
) ::
  {:ok, %{status: 200..599, headers: [{binary(), binary()}], body: binary()}}
  | {:error, term()}


      



  


        

      



  

    
Stripe.List 
    



      
All top-level API resources have support for bulk fetches via "list" API methods. For instance, you can list charges, list customers, and list invoices. These list API methods share a common structure, taking at least these three parameters: limit, starting_after, and ending_before.
Stripe's list API methods utilize cursor-based pagination via the starting_after and ending_before parameters. Both parameters take an existing object ID value (see below) and return objects in reverse chronological order. The ending_before parameter returns objects listed before the named object. The starting_after parameter returns objects listed after the named object. These parameters are mutually exclusive -- only one of starting_after or ending_before may be used.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t(value)

        


      


      
        
          value()

        


      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t(value)


      
       
       View Source
     


  


  

      

          @type t(value) :: %Stripe.List{
  data: [value],
  has_more: boolean(),
  object: binary(),
  url: binary()
}


      



  



  
    
      
      Link to this type
    
    value()


      
       
       View Source
     


  


  

      

          @type value() :: term()


      



  


        

      



  

    
Stripe.SearchResult 
    



      
Some top-level API resource have support for retrieval via "search" API methods. For example, you can search charges, search customers, and search subscriptions.
Stripe's search API methods utilize cursor-based pagination via the page request parameter and next_page response parameter. For example, if you make a search request and receive "next_page": "pagination_key" in the response, your subsequent call can include page=pagination_key to fetch the next page of results.
See https://stripe.com/docs/search for more information.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t(value)

        


      


      
        
          value()

        


      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t(value)


      
       
       View Source
     


  


  

      

          @type t(value) :: %Stripe.SearchResult{
  data: [value],
  has_more: boolean(),
  next_page: binary() | nil,
  object: binary(),
  total_count: integer() | nil,
  url: binary()
}


      



  



  
    
      
      Link to this type
    
    value()


      
       
       View Source
     


  


  

      

          @type value() :: term()


      



  


        

      



  

    
Stripe.Telemetry 
    



      
Telemetry integration.
Unless specified, all times are in :native units.
Stripe executes the following events:
Request Start
[:stripe, :request, :start] - Executed before an api call is made
Measurements
	:system_time - The system time.

Metadata
	:attempt - The number of attempts for this request
	:method - The http method used
	:url - The url used

Request Stop
[:stripe, :request, :stop] - Executed after an api call ended.
Measurements
	:duration - Time taken from the request start event.

Metadata
	:attempt - The number of attempts for this request
	:error - The Stripe error if any
	:status - The http status code
	:request_id - Request ID returned by Stripe
	:result -> :ok for succesful requests, :error otherwise
	:method - The http method used
	:url - The url used

Request Exception
[:stripe, :request, :exception] - Executed when an exception occurs while executing
  an api call.
Measurements
	:duration - The time it took since the start before raising the exception.

Metadata
	:attempt - The number of attempts for this request
	:method - The http method used
	:url - The url used
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.


      





  

    
Stripe.Balance 
    



      
This is an object representing your Stripe balance. You can retrieve it to see
the balance currently on your Stripe account.
You can also retrieve the balance history, which contains a list of
transactions that contributed to the balance
(charges, payouts, and so forth).
The available and pending amounts for each currency are broken down further by
payment source types.
Related guide: Understanding Connect Account Balances.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          The balance type.



      


  


  
    
      Functions
    


      
        
          retrieve(client, params \\ %{}, opts \\ [])

        


          Retrieves the current account balance, based on the authentication that was used to make the request. For a sample request, see Accounting for negative balances.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Balance{
  available: term(),
  connect_reserved: term(),
  instant_available: term(),
  issuing: term(),
  livemode: boolean(),
  object: binary(),
  pending: term()
}


      


The balance type.
	available Funds that are available to be transferred or paid out, whether automatically by Stripe or explicitly via the Transfers API or Payouts API. The available balance for each currency and payment type can be found in the source_types property.
	connect_reserved Funds held due to negative balances on connected Custom accounts. The connect reserve balance for each currency and payment type can be found in the source_types property.
	instant_available Funds that can be paid out using Instant Payouts.
	issuing 
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	pending Funds that are not yet available in the balance, due to the 7-day rolling pay cycle. The pending balance for each currency, and for each payment type, can be found in the source_types property.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    retrieve(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) ::
  {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the current account balance, based on the authentication that was used to make the request. For a sample request, see Accounting for negative balances.
Details
	Method: get
	Path: /v1/balance


  


        

      



  

    
Stripe.BalanceTransaction 
    



      
Balance transactions represent funds moving through your Stripe account.
They're created for every type of transaction that comes into or flows out of your Stripe account balance.
Related guide: Balance Transaction Types.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          available_on()

        


      


      
        
          created()

        


      


      
        
          t()

        


          The balance_transaction type.



      


  


  
    
      Functions
    


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of transactions that have contributed to the Stripe account balance (e.g., charges, transfers, and so forth). The transactions are returned in sorted order, with the most recent transactions appearing first.



      


      
        
          retrieve(client, id, params \\ %{}, opts \\ [])

        


          Retrieves the balance transaction with the given ID.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    available_on()


      
       
       View Source
     


  


  

      

          @type available_on() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.BalanceTransaction{
  amount: integer(),
  available_on: integer(),
  created: integer(),
  currency: binary(),
  description: binary() | nil,
  exchange_rate: term() | nil,
  fee: integer(),
  fee_details: term(),
  id: binary(),
  net: integer(),
  object: binary(),
  reporting_category: binary(),
  source: (binary() | term()) | nil,
  status: binary(),
  type: binary()
}


      


The balance_transaction type.
	amount Gross amount of the transaction, in %s.
	available_on The date the transaction's net funds will become available in the Stripe balance.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	exchange_rate The exchange rate used, if applicable, for this transaction. Specifically, if money was converted from currency A to currency B, then the amount in currency A, times exchange_rate, would be the amount in currency B. For example, suppose you charged a customer 10.00 EUR. Then the PaymentIntent's amount would be 1000 and currency would be eur. Suppose this was converted into 12.34 USD in your Stripe account. Then the BalanceTransaction's amount would be 1234, currency would be usd, and exchange_rate would be 1.234.
	fee Fees (in %s) paid for this transaction.
	fee_details Detailed breakdown of fees (in %s) paid for this transaction.
	id Unique identifier for the object.
	net Net amount of the transaction, in %s.
	object String representing the object's type. Objects of the same type share the same value.
	reporting_category Learn more about how reporting categories can help you understand balance transactions from an accounting perspective.
	source The Stripe object to which this transaction is related.
	status If the transaction's net funds are available in the Stripe balance yet. Either available or pending.
	type Transaction type: adjustment, advance, advance_funding, anticipation_repayment, application_fee, application_fee_refund, charge, connect_collection_transfer, contribution, issuing_authorization_hold, issuing_authorization_release, issuing_dispute, issuing_transaction, payment, payment_failure_refund, payment_refund, payout, payout_cancel, payout_failure, refund, refund_failure, reserve_transaction, reserved_funds, stripe_fee, stripe_fx_fee, tax_fee, topup, topup_reversal, transfer, transfer_cancel, transfer_failure, or transfer_refund. Learn more about balance transaction types and what they represent. If you are looking to classify transactions for accounting purposes, you might want to consider reporting_category instead.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:available_on) => available_on() | integer(),
    optional(:created) => created() | integer(),
    optional(:currency) => binary(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:payout) => binary(),
    optional(:source) => binary(),
    optional(:starting_after) => binary(),
    optional(:type) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of transactions that have contributed to the Stripe account balance (e.g., charges, transfers, and so forth). The transactions are returned in sorted order, with the most recent transactions appearing first.
Note that this endpoint was previously called “Balance history” and used the path /v1/balance/history.
Details
	Method: get
	Path: /v1/balance_transactions


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  id :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the balance transaction with the given ID.
Note that this endpoint previously used the path /v1/balance/history/:id.
Details
	Method: get
	Path: /v1/balance_transactions/{id}


  


        

      



  

    
Stripe.Charge 
    



      
To charge a credit or a debit card, you create a Charge object. You can
retrieve and refund individual charges as well as list all charges. Charges
are identified by a unique, random ID.
Related guide: Accept a payment with the Charges API.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          address()

        


          Shipping address.



      


      
        
          created()

        


      


      
        
          destination()

        


      


      
        
          fraud_details()

        


          A set of key-value pairs you can attach to a charge giving information about its riskiness. If you believe a charge is fraudulent, include a user_report key with a value of fraudulent. If you believe a charge is safe, include a user_report key with a value of safe. Stripe will use the information you send to improve our fraud detection algorithms.



      


      
        
          radar_options()

        


          Options to configure Radar. See Radar Session for more information.



      


      
        
          shipping()

        


          Shipping information for the charge. Helps prevent fraud on charges for physical goods.



      


      
        
          t()

        


          The charge type.



      


      
        
          transfer_data()

        


          An optional dictionary including the account to automatically transfer to as part of a destination charge. See the Connect documentation for details.



      


  


  
    
      Functions
    


      
        
          capture(client, charge, params \\ %{}, opts \\ [])

        


          Capture the payment of an existing, uncaptured, charge. This is the second half of the two-step payment flow, where first you created a charge with the capture option set to false.



      


      
        
          create(client, params \\ %{}, opts \\ [])

        


          To charge a credit card or other payment source, you create a Charge object. If your API key is in test mode, the supplied payment source (e.g., card) won’t actually be charged, although everything else will occur as if in live mode. (Stripe assumes that the charge would have completed successfully).



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of charges you’ve previously created. The charges are returned in sorted order, with the most recent charges appearing first.



      


      
        
          retrieve(client, charge, params \\ %{}, opts \\ [])

        


          Retrieves the details of a charge that has previously been created. Supply the unique charge ID that was returned from your previous request, and Stripe will return the corresponding charge information. The same information is returned when creating or refunding the charge.



      


      
        
          search(client, params \\ %{}, opts \\ [])

        


          Search for charges you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.



      


      
        
          update(client, charge, params \\ %{}, opts \\ [])

        


          Updates the specified charge by setting the values of the parameters passed. Any parameters not provided will be left unchanged.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      


Shipping address.

  



  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    destination()


      
       
       View Source
     


  


  

      

          @type destination() :: %{
  optional(:account) => binary(),
  optional(:amount) => integer()
}


      



  



  
    
      
      Link to this type
    
    fraud_details()


      
       
       View Source
     


  


  

      

          @type fraud_details() :: %{optional(:user_report) => :fraudulent | :safe}


      


A set of key-value pairs you can attach to a charge giving information about its riskiness. If you believe a charge is fraudulent, include a user_report key with a value of fraudulent. If you believe a charge is safe, include a user_report key with a value of safe. Stripe will use the information you send to improve our fraud detection algorithms.

  



  
    
      
      Link to this type
    
    radar_options()


      
       
       View Source
     


  


  

      

          @type radar_options() :: %{optional(:session) => binary()}


      


Options to configure Radar. See Radar Session for more information.

  



  
    
      
      Link to this type
    
    shipping()


      
       
       View Source
     


  


  

      

          @type shipping() :: %{
  optional(:address) => address(),
  optional(:carrier) => binary(),
  optional(:name) => binary(),
  optional(:phone) => binary(),
  optional(:tracking_number) => binary()
}


      


Shipping information for the charge. Helps prevent fraud on charges for physical goods.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Charge{
  alternate_statement_descriptors: term(),
  amount: integer(),
  amount_captured: integer(),
  amount_refunded: integer(),
  application: (binary() | term()) | nil,
  application_fee: (binary() | Stripe.ApplicationFee.t()) | nil,
  application_fee_amount: integer() | nil,
  authorization_code: binary(),
  balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
  billing_details: term(),
  calculated_statement_descriptor: binary() | nil,
  captured: boolean(),
  created: integer(),
  currency: binary(),
  customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
  description: binary() | nil,
  destination: (binary() | Stripe.Account.t()) | nil,
  dispute: (binary() | Stripe.Dispute.t()) | nil,
  disputed: boolean(),
  failure_balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
  failure_code: binary() | nil,
  failure_message: binary() | nil,
  fraud_details: term() | nil,
  id: binary(),
  invoice: (binary() | Stripe.Invoice.t()) | nil,
  level3: term(),
  livemode: boolean(),
  metadata: term(),
  object: binary(),
  on_behalf_of: (binary() | Stripe.Account.t()) | nil,
  outcome: term() | nil,
  paid: boolean(),
  payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
  payment_method: binary() | nil,
  payment_method_details: term() | nil,
  radar_options: term(),
  receipt_email: binary() | nil,
  receipt_number: binary() | nil,
  receipt_url: binary() | nil,
  refunded: boolean(),
  refunds: term() | nil,
  review: (binary() | Stripe.Review.t()) | nil,
  shipping: term() | nil,
  source: Stripe.PaymentSource.t() | nil,
  source_transfer: (binary() | Stripe.Transfer.t()) | nil,
  statement_descriptor: binary() | nil,
  statement_descriptor_suffix: binary() | nil,
  status: binary(),
  transfer: binary() | Stripe.Transfer.t(),
  transfer_data: term() | nil,
  transfer_group: binary() | nil
}


      


The charge type.
	receipt_url This is the URL to view the receipt for this charge. The receipt is kept up-to-date to the latest state of the charge, including any refunds. If the charge is for an Invoice, the receipt will be stylized as an Invoice receipt.
	payment_method ID of the payment method used in this charge.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	calculated_statement_descriptor The full statement descriptor that is passed to card networks, and that is displayed on your customers' credit card and bank statements. Allows you to see what the statement descriptor looks like after the static and dynamic portions are combined.
	radar_options 
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	paid true if the charge succeeded, or was successfully authorized for later capture.
	application_fee The application fee (if any) for the charge. See the Connect documentation for details.
	failure_message Message to user further explaining reason for charge failure if available.
	review ID of the review associated with this charge if one exists.
	payment_intent ID of the PaymentIntent associated with this charge, if one exists.
	refunds A list of refunds that have been applied to the charge.
	alternate_statement_descriptors 
	on_behalf_of The account (if any) the charge was made on behalf of without triggering an automatic transfer. See the Connect documentation for details.
	customer ID of the customer this charge is for if one exists.
	fraud_details Information on fraud assessments for the charge.
	amount Amount intended to be collected by this payment. A positive integer representing how much to charge in the smallest currency unit (e.g., 100 cents to charge $1.00 or 100 to charge ¥100, a zero-decimal currency). The minimum amount is $0.50 US or equivalent in charge currency. The amount value supports up to eight digits (e.g., a value of 99999999 for a USD charge of $999,999.99).
	outcome Details about whether the payment was accepted, and why. See understanding declines for details.
	invoice ID of the invoice this charge is for if one exists.
	payment_method_details Details about the payment method at the time of the transaction.
	statement_descriptor For card charges, use statement_descriptor_suffix instead. Otherwise, you can use this value as the complete description of a charge on your customers’ statements. Must contain at least one letter, maximum 22 characters.
	balance_transaction ID of the balance transaction that describes the impact of this charge on your account balance (not including refunds or disputes).
	application ID of the Connect application that created the charge.
	receipt_email This is the email address that the receipt for this charge was sent to.
	failure_balance_transaction ID of the balance transaction that describes the reversal of the balance on your account due to payment failure.
	receipt_number This is the transaction number that appears on email receipts sent for this charge. This attribute will be null until a receipt has been sent.
	failure_code Error code explaining reason for charge failure if available (see the errors section for a list of codes).
	object String representing the object's type. Objects of the same type share the same value.
	amount_captured Amount in %s captured (can be less than the amount attribute on the charge if a partial capture was made).
	billing_details 
	level3 
	authorization_code Authorization code on the charge.
	source This is a legacy field that will be removed in the future. It contains the Source, Card, or BankAccount object used for the charge. For details about the payment method used for this charge, refer to payment_method or payment_method_details instead.
	captured If the charge was created without capturing, this Boolean represents whether it is still uncaptured or has since been captured.
	amount_refunded Amount in %s refunded (can be less than the amount attribute on the charge if a partial refund was issued).
	refunded Whether the charge has been fully refunded. If the charge is only partially refunded, this attribute will still be false.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	transfer ID of the transfer to the destination account (only applicable if the charge was created using the destination parameter).
	dispute Details about the dispute if the charge has been disputed.
	destination ID of an existing, connected Stripe account to transfer funds to if transfer_data was specified in the charge request.
	source_transfer The transfer ID which created this charge. Only present if the charge came from another Stripe account. See the Connect documentation for details.
	status The status of the payment is either succeeded, pending, or failed.
	transfer_group A string that identifies this transaction as part of a group. See the Connect documentation for details.
	disputed Whether the charge has been disputed.
	application_fee_amount The amount of the application fee (if any) requested for the charge. See the Connect documentation for details.
	statement_descriptor_suffix Provides information about the charge that customers see on their statements. Concatenated with the prefix (shortened descriptor) or statement descriptor that’s set on the account to form the complete statement descriptor. Maximum 22 characters for the concatenated descriptor.
	transfer_data An optional dictionary including the account to automatically transfer to as part of a destination charge. See the Connect documentation for details.
	id Unique identifier for the object.
	shipping Shipping information for the charge.


  



  
    
      
      Link to this type
    
    transfer_data()


      
       
       View Source
     


  


  

      

          @type transfer_data() :: %{
  optional(:amount) => integer(),
  optional(:destination) => binary()
}


      


An optional dictionary including the account to automatically transfer to as part of a destination charge. See the Connect documentation for details.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    capture(client, charge, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec capture(
  client :: Stripe.t(),
  charge :: binary(),
  params :: %{
    optional(:amount) => integer(),
    optional(:application_fee) => integer(),
    optional(:application_fee_amount) => integer(),
    optional(:expand) => [binary()],
    optional(:receipt_email) => binary(),
    optional(:statement_descriptor) => binary(),
    optional(:statement_descriptor_suffix) => binary(),
    optional(:transfer_data) => transfer_data(),
    optional(:transfer_group) => binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Capture the payment of an existing, uncaptured, charge. This is the second half of the two-step payment flow, where first you created a charge with the capture option set to false.
Uncaptured payments expire a set number of days after they are created (7 by default). If they are not captured by that point in time, they will be marked as refunded and will no longer be capturable.
Details
	Method: post
	Path: /v1/charges/{charge}/capture


  



    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:amount) => integer(),
    optional(:application_fee) => integer(),
    optional(:application_fee_amount) => integer(),
    optional(:capture) => boolean(),
    optional(:currency) => binary(),
    optional(:customer) => binary(),
    optional(:description) => binary(),
    optional(:destination) => destination(),
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:on_behalf_of) => binary(),
    optional(:radar_options) => radar_options(),
    optional(:receipt_email) => binary(),
    optional(:shipping) => shipping(),
    optional(:source) => binary(),
    optional(:statement_descriptor) => binary(),
    optional(:statement_descriptor_suffix) => binary(),
    optional(:transfer_data) => transfer_data(),
    optional(:transfer_group) => binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


To charge a credit card or other payment source, you create a Charge object. If your API key is in test mode, the supplied payment source (e.g., card) won’t actually be charged, although everything else will occur as if in live mode. (Stripe assumes that the charge would have completed successfully).
Details
	Method: post
	Path: /v1/charges


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:created) => created() | integer(),
    optional(:customer) => binary(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:payment_intent) => binary(),
    optional(:starting_after) => binary(),
    optional(:transfer_group) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of charges you’ve previously created. The charges are returned in sorted order, with the most recent charges appearing first.
Details
	Method: get
	Path: /v1/charges


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, charge, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  charge :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the details of a charge that has previously been created. Supply the unique charge ID that was returned from your previous request, and Stripe will return the corresponding charge information. The same information is returned when creating or refunding the charge.
Details
	Method: get
	Path: /v1/charges/{charge}


  



    

    

  
    
      
      Link to this function
    
    search(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec search(
  client :: Stripe.t(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:page) => binary(),
    optional(:query) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.SearchResult.t(t())}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Search for charges you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/charges/search


  



    

    

  
    
      
      Link to this function
    
    update(client, charge, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  charge :: binary(),
  params :: %{
    optional(:customer) => binary(),
    optional(:description) => binary(),
    optional(:expand) => [binary()],
    optional(:fraud_details) => fraud_details(),
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:receipt_email) => binary(),
    optional(:shipping) => shipping(),
    optional(:transfer_group) => binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Updates the specified charge by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/charges/{charge}


  


        

      



  

    
Stripe.Customer 
    



      
This object represents a customer of your business. It lets you create recurring charges and track payments that belong to the same customer.
Related guide: Save a card during payment.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          address()

        


      


      
        
          bank_transfer()

        


          Additional parameters for bank_transfer funding types



      


      
        
          cash_balance()

        


          Balance information and default balance settings for this customer.



      


      
        
          created()

        


      


      
        
          custom_fields()

        


      


      
        
          eu_bank_transfer()

        


          Configuration for eu_bank_transfer funding type.



      


      
        
          invoice_settings()

        


          Default invoice settings for this customer.



      


      
        
          rendering_options()

        


      


      
        
          settings()

        


          Settings controlling the behavior of the customer's cash balance,
such as reconciliation of funds received.



      


      
        
          shipping()

        


      


      
        
          t()

        


          The customer type.



      


      
        
          tax()

        


          Tax details about the customer.



      


      
        
          tax_id_data()

        


      


  


  
    
      Functions
    


      
        
          balance_transactions(client, customer, params \\ %{}, opts \\ [])

        


          Returns a list of transactions that updated the customer’s balances.



      


      
        
          create(client, params \\ %{}, opts \\ [])

        


          Creates a new customer object.



      


      
        
          create_funding_instructions(client, customer, params \\ %{}, opts \\ [])

        


          Retrieve funding instructions for a customer cash balance. If funding instructions do not yet exist for the customer, newfunding instructions will be created. If funding instructions have already been created for a given customer, the same
funding instructions will be retrieved. In other words, we will return the same funding instructions each time.



      


      
        
          delete(client, customer, opts \\ [])

        


          Permanently deletes a customer. It cannot be undone. Also immediately cancels any active subscriptions on the customer.



      


      
        
          delete_discount(client, customer, opts \\ [])

        


          Removes the currently applied discount on a customer.



      


      
        
          fund_cash_balance(client, customer, params \\ %{}, opts \\ [])

        


          Create an incoming testmode bank transfe.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of your customers. The customers are returned sorted by creation date, with the most recent customers appearing first.



      


      
        
          list_payment_methods(client, customer, params \\ %{}, opts \\ [])

        


          Returns a list of PaymentMethods for a given Custome.



      


      
        
          retrieve(client, customer, params \\ %{}, opts \\ [])

        


          Retrieves a Customer object.



      


      
        
          retrieve_payment_method(client, customer, payment_method, params \\ %{}, opts \\ [])

        


          Retrieves a PaymentMethod object for a given Customer.



      


      
        
          search(client, params \\ %{}, opts \\ [])

        


          Search for customers you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.



      


      
        
          update(client, customer, params \\ %{}, opts \\ [])

        


          Updates the specified customer by setting the values of the parameters passed. Any parameters not provided will be left unchanged. For example, if you pass the source parameter, that becomes the customer’s active source (e.g., a card) to be used for all charges in the future. When you update a customer to a new valid card source by passing the source parameter: for each of the customer’s current subscriptions, if the subscription bills automatically and is in the past_due state, then the latest open invoice for the subscription with automatic collection enabled will be retried. This retry will not count as an automatic retry, and will not affect the next regularly scheduled payment for the invoice. Changing the default_source for a customer will not trigger this behavior.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      



  



  
    
      
      Link to this type
    
    bank_transfer()


      
       
       View Source
     


  


  

      

          @type bank_transfer() :: %{
  optional(:eu_bank_transfer) => eu_bank_transfer(),
  optional(:requested_address_types) => [:iban | :sort_code | :spei | :zengin],
  optional(:type) =>
    :eu_bank_transfer
    | :gb_bank_transfer
    | :jp_bank_transfer
    | :mx_bank_transfer
}


      


Additional parameters for bank_transfer funding types

  



  
    
      
      Link to this type
    
    cash_balance()


      
       
       View Source
     


  


  

      

          @type cash_balance() :: %{optional(:settings) => settings()}


      


Balance information and default balance settings for this customer.

  



  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    custom_fields()


      
       
       View Source
     


  


  

      

          @type custom_fields() :: %{optional(:name) => binary(), optional(:value) => binary()}


      



  



  
    
      
      Link to this type
    
    eu_bank_transfer()


      
       
       View Source
     


  


  

      

          @type eu_bank_transfer() :: %{optional(:country) => binary()}


      


Configuration for eu_bank_transfer funding type.

  



  
    
      
      Link to this type
    
    invoice_settings()


      
       
       View Source
     


  


  

      

          @type invoice_settings() :: %{
  optional(:custom_fields) => [custom_fields()] | binary(),
  optional(:default_payment_method) => binary(),
  optional(:footer) => binary(),
  optional(:rendering_options) => rendering_options() | binary()
}


      


Default invoice settings for this customer.

  



  
    
      
      Link to this type
    
    rendering_options()


      
       
       View Source
     


  


  

      

          @type rendering_options() :: %{
  optional(:amount_tax_display) => :exclude_tax | :include_inclusive_tax
}


      



  



  
    
      
      Link to this type
    
    settings()


      
       
       View Source
     


  


  

      

          @type settings() :: %{optional(:reconciliation_mode) => :automatic | :manual}


      


Settings controlling the behavior of the customer's cash balance,
such as reconciliation of funds received.

  



  
    
      
      Link to this type
    
    shipping()


      
       
       View Source
     


  


  

      

          @type shipping() :: %{
  optional(:address) => address(),
  optional(:name) => binary(),
  optional(:phone) => binary()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Customer{
  address: term() | nil,
  balance: integer(),
  cash_balance: Stripe.CashBalance.t() | nil,
  created: integer(),
  currency: binary() | nil,
  default_source: (binary() | Stripe.PaymentSource.t()) | nil,
  delinquent: boolean() | nil,
  description: binary() | nil,
  discount: term() | nil,
  email: binary() | nil,
  id: binary(),
  invoice_credit_balance: term(),
  invoice_prefix: binary() | nil,
  invoice_settings: term(),
  livemode: boolean(),
  metadata: term(),
  name: binary() | nil,
  next_invoice_sequence: integer(),
  object: binary(),
  phone: binary() | nil,
  preferred_locales: term() | nil,
  shipping: term() | nil,
  sources: term(),
  subscriptions: term(),
  tax: term(),
  tax_exempt: binary() | nil,
  tax_ids: term(),
  test_clock: (binary() | Stripe.TestHelpers.TestClock.t()) | nil
}


      


The customer type.
	address The customer's address.
	balance Current balance, if any, being stored on the customer. If negative, the customer has credit to apply to their next invoice. If positive, the customer has an amount owed that will be added to their next invoice. The balance does not refer to any unpaid invoices; it solely takes into account amounts that have yet to be successfully applied to any invoice. This balance is only taken into account as invoices are finalized.
	cash_balance The current funds being held by Stripe on behalf of the customer. These funds can be applied towards payment intents with source "cash_balance". The settings[reconciliation_mode] field describes whether these funds are applied to such payment intents manually or automatically.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO code for the currency the customer can be charged in for recurring billing purposes.
	default_source ID of the default payment source for the customer.

If you are using payment methods created via the PaymentMethods API, see the invoice_settings.default_payment_method field instead.
	delinquent When the customer's latest invoice is billed by charging automatically, delinquent is true if the invoice's latest charge failed. When the customer's latest invoice is billed by sending an invoice, delinquent is true if the invoice isn't paid by its due date.

If an invoice is marked uncollectible by dunning, delinquent doesn't get reset to false.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	discount Describes the current discount active on the customer, if there is one.
	email The customer's email address.
	id Unique identifier for the object.
	invoice_credit_balance The current multi-currency balances, if any, being stored on the customer. If positive in a currency, the customer has a credit to apply to their next invoice denominated in that currency. If negative, the customer has an amount owed that will be added to their next invoice denominated in that currency. These balances do not refer to any unpaid invoices. They solely track amounts that have yet to be successfully applied to any invoice. A balance in a particular currency is only applied to any invoice as an invoice in that currency is finalized.
	invoice_prefix The prefix for the customer used to generate unique invoice numbers.
	invoice_settings 
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name The customer's full name or business name.
	next_invoice_sequence The suffix of the customer's next invoice number, e.g., 0001.
	object String representing the object's type. Objects of the same type share the same value.
	phone The customer's phone number.
	preferred_locales The customer's preferred locales (languages), ordered by preference.
	shipping Mailing and shipping address for the customer. Appears on invoices emailed to this customer.
	sources The customer's payment sources, if any.
	subscriptions The customer's current subscriptions, if any.
	tax 
	tax_exempt Describes the customer's tax exemption status. One of none, exempt, or reverse. When set to reverse, invoice and receipt PDFs include the text "Reverse charge".
	tax_ids The customer's tax IDs.
	test_clock ID of the test clock this customer belongs to.


  



  
    
      
      Link to this type
    
    tax()


      
       
       View Source
     


  


  

      

          @type tax() :: %{optional(:ip_address) => binary() | binary()}


      


Tax details about the customer.

  



  
    
      
      Link to this type
    
    tax_id_data()


      
       
       View Source
     


  


  

      

          @type tax_id_data() :: %{
  optional(:type) =>
    :ae_trn
    | :au_abn
    | :au_arn
    | :bg_uic
    | :br_cnpj
    | :br_cpf
    | :ca_bn
    | :ca_gst_hst
    | :ca_pst_bc
    | :ca_pst_mb
    | :ca_pst_sk
    | :ca_qst
    | :ch_vat
    | :cl_tin
    | :eg_tin
    | :es_cif
    | :eu_oss_vat
    | :eu_vat
    | :gb_vat
    | :ge_vat
    | :hk_br
    | :hu_tin
    | :id_npwp
    | :il_vat
    | :in_gst
    | :is_vat
    | :jp_cn
    | :jp_rn
    | :jp_trn
    | :ke_pin
    | :kr_brn
    | :li_uid
    | :mx_rfc
    | :my_frp
    | :my_itn
    | :my_sst
    | :no_vat
    | :nz_gst
    | :ph_tin
    | :ru_inn
    | :ru_kpp
    | :sa_vat
    | :sg_gst
    | :sg_uen
    | :si_tin
    | :th_vat
    | :tr_tin
    | :tw_vat
    | :ua_vat
    | :us_ein
    | :za_vat,
  optional(:value) => binary()
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    balance_transactions(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec balance_transactions(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(Stripe.CustomerBalanceTransaction.t())}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Returns a list of transactions that updated the customer’s balances.
Details
	Method: get
	Path: /v1/customers/{customer}/balance_transactions


  



    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:address) => address() | binary(),
    optional(:balance) => integer(),
    optional(:cash_balance) => cash_balance(),
    optional(:coupon) => binary(),
    optional(:description) => binary(),
    optional(:email) => binary(),
    optional(:expand) => [binary()],
    optional(:invoice_prefix) => binary(),
    optional(:invoice_settings) => invoice_settings(),
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:name) => binary(),
    optional(:next_invoice_sequence) => integer(),
    optional(:payment_method) => binary(),
    optional(:phone) => binary(),
    optional(:preferred_locales) => [binary()],
    optional(:promotion_code) => binary(),
    optional(:shipping) => shipping() | binary(),
    optional(:source) => binary(),
    optional(:tax) => tax(),
    optional(:tax_exempt) => :exempt | :none | :reverse,
    optional(:tax_id_data) => [tax_id_data()],
    optional(:test_clock) => binary(),
    optional(:validate) => boolean()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Creates a new customer object.
Details
	Method: post
	Path: /v1/customers


  



    

    

  
    
      
      Link to this function
    
    create_funding_instructions(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create_funding_instructions(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:bank_transfer) => bank_transfer(),
    optional(:currency) => binary(),
    optional(:expand) => [binary()],
    optional(:funding_type) => :bank_transfer
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.FundingInstructions.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Retrieve funding instructions for a customer cash balance. If funding instructions do not yet exist for the customer, newfunding instructions will be created. If funding instructions have already been created for a given customer, the same
funding instructions will be retrieved. In other words, we will return the same funding instructions each time.
Details
	Method: post
	Path: /v1/customers/{customer}/funding_instructions


  



    

  
    
      
      Link to this function
    
    delete(client, customer, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec delete(client :: Stripe.t(), customer :: binary(), opts :: Keyword.t()) ::
  {:ok, Stripe.DeletedCustomer.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Permanently deletes a customer. It cannot be undone. Also immediately cancels any active subscriptions on the customer.
Details
	Method: delete
	Path: /v1/customers/{customer}


  



    

  
    
      
      Link to this function
    
    delete_discount(client, customer, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec delete_discount(client :: Stripe.t(), customer :: binary(), opts :: Keyword.t()) ::
  {:ok, Stripe.DeletedDiscount.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Removes the currently applied discount on a customer.
Details
	Method: delete
	Path: /v1/customers/{customer}/discount


  



    

    

  
    
      
      Link to this function
    
    fund_cash_balance(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec fund_cash_balance(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:amount) => integer(),
    optional(:currency) => binary(),
    optional(:expand) => [binary()],
    optional(:reference) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.CustomerCashBalanceTransaction.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Create an incoming testmode bank transfe.
Details
	Method: post
	Path: /v1/test_helpers/customers/{customer}/fund_cash_balance


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:created) => created() | integer(),
    optional(:email) => binary(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary(),
    optional(:test_clock) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of your customers. The customers are returned sorted by creation date, with the most recent customers appearing first.
Details
	Method: get
	Path: /v1/customers


  



    

    

  
    
      
      Link to this function
    
    list_payment_methods(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list_payment_methods(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary(),
    optional(:type) =>
      :acss_debit
      | :affirm
      | :afterpay_clearpay
      | :alipay
      | :au_becs_debit
      | :bacs_debit
      | :bancontact
      | :blik
      | :boleto
      | :card
      | :card_present
      | :customer_balance
      | :eps
      | :fpx
      | :giropay
      | :grabpay
      | :ideal
      | :klarna
      | :konbini
      | :link
      | :oxxo
      | :p24
      | :paynow
      | :pix
      | :promptpay
      | :sepa_debit
      | :sofort
      | :us_bank_account
      | :wechat_pay
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(Stripe.PaymentMethod.t())}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Returns a list of PaymentMethods for a given Custome.
Details
	Method: get
	Path: /v1/customers/{customer}/payment_methods


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) ::
  {:ok, t() | Stripe.DeletedCustomer.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Retrieves a Customer object.
Details
	Method: get
	Path: /v1/customers/{customer}


  



    

    

  
    
      
      Link to this function
    
    retrieve_payment_method(client, customer, payment_method, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve_payment_method(
  client :: Stripe.t(),
  customer :: binary(),
  payment_method :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) ::
  {:ok, Stripe.PaymentMethod.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Retrieves a PaymentMethod object for a given Customer.
Details
	Method: get
	Path: /v1/customers/{customer}/payment_methods/{payment_method}


  



    

    

  
    
      
      Link to this function
    
    search(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec search(
  client :: Stripe.t(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:page) => binary(),
    optional(:query) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.SearchResult.t(t())}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Search for customers you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/customers/search


  



    

    

  
    
      
      Link to this function
    
    update(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:address) => address() | binary(),
    optional(:balance) => integer(),
    optional(:cash_balance) => cash_balance(),
    optional(:coupon) => binary(),
    optional(:default_source) => binary(),
    optional(:description) => binary(),
    optional(:email) => binary(),
    optional(:expand) => [binary()],
    optional(:invoice_prefix) => binary(),
    optional(:invoice_settings) => invoice_settings(),
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:name) => binary(),
    optional(:next_invoice_sequence) => integer(),
    optional(:phone) => binary(),
    optional(:preferred_locales) => [binary()],
    optional(:promotion_code) => binary(),
    optional(:shipping) => shipping() | binary(),
    optional(:source) => binary(),
    optional(:tax) => tax(),
    optional(:tax_exempt) => :exempt | :none | :reverse,
    optional(:validate) => boolean()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Updates the specified customer by setting the values of the parameters passed. Any parameters not provided will be left unchanged. For example, if you pass the source parameter, that becomes the customer’s active source (e.g., a card) to be used for all charges in the future. When you update a customer to a new valid card source by passing the source parameter: for each of the customer’s current subscriptions, if the subscription bills automatically and is in the past_due state, then the latest open invoice for the subscription with automatic collection enabled will be retried. This retry will not count as an automatic retry, and will not affect the next regularly scheduled payment for the invoice. Changing the default_source for a customer will not trigger this behavior.
This request accepts mostly the same arguments as the customer creation call.
Details
	Method: post
	Path: /v1/customers/{customer}


  


        

      



  

    
Stripe.Dispute 
    



      
A dispute occurs when a customer questions your charge with their card issuer.
When this happens, you're given the opportunity to respond to the dispute with
evidence that shows that the charge is legitimate. You can find more
information about the dispute process in our Disputes and
Fraud documentation.
Related guide: Disputes and Fraud.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          created()

        


      


      
        
          evidence()

        


          Evidence to upload, to respond to a dispute. Updating any field in the hash will submit all fields in the hash for review. The combined character count of all fields is limited to 150,000.



      


      
        
          t()

        


          The dispute type.



      


  


  
    
      Functions
    


      
        
          close(client, dispute, params \\ %{}, opts \\ [])

        


          Closing the dispute for a charge indicates that you do not have any evidence to submit and are essentially dismissing the dispute, acknowledging it as lost.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of your disputes.



      


      
        
          retrieve(client, dispute, params \\ %{}, opts \\ [])

        


          Retrieves the dispute with the given ID.



      


      
        
          update(client, dispute, params \\ %{}, opts \\ [])

        


          When you get a dispute, contacting your customer is always the best first step. If that doesn’t work, you can submit evidence to help us resolve the dispute in your favor. You can do this in your dashboard, but if you prefer, you can use the API to submit evidence programmatically.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    evidence()


      
       
       View Source
     


  


  

      

          @type evidence() :: %{
  optional(:access_activity_log) => binary(),
  optional(:billing_address) => binary(),
  optional(:cancellation_policy) => binary(),
  optional(:cancellation_policy_disclosure) => binary(),
  optional(:cancellation_rebuttal) => binary(),
  optional(:customer_communication) => binary(),
  optional(:customer_email_address) => binary(),
  optional(:customer_name) => binary(),
  optional(:customer_purchase_ip) => binary(),
  optional(:customer_signature) => binary(),
  optional(:duplicate_charge_documentation) => binary(),
  optional(:duplicate_charge_explanation) => binary(),
  optional(:duplicate_charge_id) => binary(),
  optional(:product_description) => binary(),
  optional(:receipt) => binary(),
  optional(:refund_policy) => binary(),
  optional(:refund_policy_disclosure) => binary(),
  optional(:refund_refusal_explanation) => binary(),
  optional(:service_date) => binary(),
  optional(:service_documentation) => binary(),
  optional(:shipping_address) => binary(),
  optional(:shipping_carrier) => binary(),
  optional(:shipping_date) => binary(),
  optional(:shipping_documentation) => binary(),
  optional(:shipping_tracking_number) => binary(),
  optional(:uncategorized_file) => binary(),
  optional(:uncategorized_text) => binary()
}


      


Evidence to upload, to respond to a dispute. Updating any field in the hash will submit all fields in the hash for review. The combined character count of all fields is limited to 150,000.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Dispute{
  amount: integer(),
  balance_transactions: term(),
  charge: binary() | Stripe.Charge.t(),
  created: integer(),
  currency: binary(),
  evidence: term(),
  evidence_details: term(),
  id: binary(),
  is_charge_refundable: boolean(),
  livemode: boolean(),
  metadata: term(),
  network_reason_code: binary() | nil,
  object: binary(),
  payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
  reason: binary(),
  status: binary()
}


      


The dispute type.
	amount Disputed amount. Usually the amount of the charge, but can differ (usually because of currency fluctuation or because only part of the order is disputed).
	balance_transactions List of zero, one, or two balance transactions that show funds withdrawn and reinstated to your Stripe account as a result of this dispute.
	charge ID of the charge that was disputed.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	evidence 
	evidence_details 
	id Unique identifier for the object.
	is_charge_refundable If true, it is still possible to refund the disputed payment. Once the payment has been fully refunded, no further funds will be withdrawn from your Stripe account as a result of this dispute.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	network_reason_code Network-dependent reason code for the dispute.
	object String representing the object's type. Objects of the same type share the same value.
	payment_intent ID of the PaymentIntent that was disputed.
	reason Reason given by cardholder for dispute. Possible values are bank_cannot_process, check_returned, credit_not_processed, customer_initiated, debit_not_authorized, duplicate, fraudulent, general, incorrect_account_details, insufficient_funds, product_not_received, product_unacceptable, subscription_canceled, or unrecognized. Read more about dispute reasons.
	status Current status of dispute. Possible values are warning_needs_response, warning_under_review, warning_closed, needs_response, under_review, charge_refunded, won, or lost.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    close(client, dispute, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec close(
  client :: Stripe.t(),
  dispute :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Closing the dispute for a charge indicates that you do not have any evidence to submit and are essentially dismissing the dispute, acknowledging it as lost.
The status of the dispute will change from needs_response to lost. Closing a dispute is irreversible.
Details
	Method: post
	Path: /v1/disputes/{dispute}/close


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:charge) => binary(),
    optional(:created) => created() | integer(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:payment_intent) => binary(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of your disputes.
Details
	Method: get
	Path: /v1/disputes


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, dispute, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  dispute :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the dispute with the given ID.
Details
	Method: get
	Path: /v1/disputes/{dispute}


  



    

    

  
    
      
      Link to this function
    
    update(client, dispute, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  dispute :: binary(),
  params :: %{
    optional(:evidence) => evidence(),
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:submit) => boolean()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


When you get a dispute, contacting your customer is always the best first step. If that doesn’t work, you can submit evidence to help us resolve the dispute in your favor. You can do this in your dashboard, but if you prefer, you can use the API to submit evidence programmatically.
Depending on your dispute type, different evidence fields will give you a better chance of winning your dispute. To figure out which evidence fields to provide, see our guide to dispute types.
Details
	Method: post
	Path: /v1/disputes/{dispute}


  


        

      



  

    
Stripe.Event 
    



      
Events are our way of letting you know when something interesting happens in
your account. When an interesting event occurs, we create a new Event
object. For example, when a charge succeeds, we create a charge.succeeded
event; and when an invoice payment attempt fails, we create an
invoice.payment_failed event. Note that many API requests may cause multiple
events to be created. For example, if you create a new subscription for a
customer, you will receive both a customer.subscription.created event and a
charge.succeeded event.
Events occur when the state of another API resource changes. The state of that
resource at the time of the change is embedded in the event's data field. For
example, a charge.succeeded event will contain a charge, and an
invoice.payment_failed event will contain an invoice.
As with other API resources, you can use endpoints to retrieve an
individual event or a list of events
from the API. We also have a separate
webhooks system for sending the
Event objects directly to an endpoint on your server. Webhooks are managed
in your
account settings,
and our Using Webhooks guide will help you get set up.
When using Connect, you can also receive notifications of
events that occur in connected accounts. For these events, there will be an
additional account attribute in the received Event object.
NOTE: Right now, access to events through the Retrieve Event API is
guaranteed only for 30 days.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          created()

        


      


      
        
          t()

        


          The event type.



      


  


  
    
      Functions
    


      
        
          list(client, params \\ %{}, opts \\ [])

        


          List events, going back up to 30 days. Each event data is rendered according to Stripe API version at its creation time, specified in event object api_version attribute (not according to your current Stripe API version or Stripe-Version header).



      


      
        
          retrieve(client, id, params \\ %{}, opts \\ [])

        


          Retrieves the details of an event. Supply the unique identifier of the event, which you might have received in a webhook.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Event{
  account: binary(),
  api_version: binary() | nil,
  created: integer(),
  data: term(),
  id: binary(),
  livemode: boolean(),
  object: binary(),
  pending_webhooks: integer(),
  request: term() | nil,
  type: binary()
}


      


The event type.
	account The connected account that originated the event.
	api_version The Stripe API version used to render data. Note: This property is populated only for events on or after October 31, 2014.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	data 
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	pending_webhooks Number of webhooks that have yet to be successfully delivered (i.e., to return a 20x response) to the URLs you've specified.
	request Information on the API request that instigated the event.
	type Description of the event (e.g., invoice.created or charge.refunded).


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:created) => created() | integer(),
    optional(:delivery_success) => boolean(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary(),
    optional(:type) => binary(),
    optional(:types) => [binary()]
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


List events, going back up to 30 days. Each event data is rendered according to Stripe API version at its creation time, specified in event object api_version attribute (not according to your current Stripe API version or Stripe-Version header).
Details
	Method: get
	Path: /v1/events


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  id :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the details of an event. Supply the unique identifier of the event, which you might have received in a webhook.
Details
	Method: get
	Path: /v1/events/{id}


  


        

      



  

    
Stripe.ExchangeRate 
    



      
Exchange Rate objects allow you to determine the rates that Stripe is
currently using to convert from one currency to another. Since this number is
variable throughout the day, there are various reasons why you might want to
know the current rate (for example, to dynamically price an item for a user
with a default payment in a foreign currency).
If you want a guarantee that the charge is made with a certain exchange rate
you expect is current, you can pass in exchange_rate to charges endpoints.
If the value is no longer up to date, the charge won't go through. Please
refer to our Exchange Rates API guide for more
details.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          The exchange_rate type.



      


  


  
    
      Functions
    


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of objects that contain the rates at which foreign currencies are converted to one another. Only shows the currencies for which Stripe supports.



      


      
        
          retrieve(client, rate_id, params \\ %{}, opts \\ [])

        


          Retrieves the exchange rates from the given currency to every supported currency.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.ExchangeRate{id: binary(), object: binary(), rates: term()}


      


The exchange_rate type.
	id Unique identifier for the object. Represented as the three-letter ISO currency code in lowercase.
	object String representing the object's type. Objects of the same type share the same value.
	rates Hash where the keys are supported currencies and the values are the exchange rate at which the base id currency converts to the key currency.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of objects that contain the rates at which foreign currencies are converted to one another. Only shows the currencies for which Stripe supports.
Details
	Method: get
	Path: /v1/exchange_rates


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, rate_id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  rate_id :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the exchange rates from the given currency to every supported currency.
Details
	Method: get
	Path: /v1/exchange_rates/{rate_id}


  


        

      



  

    
Stripe.File 
    



      
This is an object representing a file hosted on Stripe's servers. The
file may have been uploaded by yourself using the create file
request (for example, when uploading dispute evidence) or it may have
been created by Stripe (for example, the results of a Sigma scheduled
query).
Related guide: File Upload Guide.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          created()

        


      


      
        
          t()

        


          The file type.



      


  


  
    
      Functions
    


      
        
          create(client, opts \\ [])

        


          To upload a file to Stripe, you’ll need to send a request of type multipart/form-data. The request should contain the file you would like to upload, as well as the parameters for creating a file.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of the files that your account has access to. The files are returned sorted by creation date, with the most recently created files appearing first.



      


      
        
          retrieve(client, file, params \\ %{}, opts \\ [])

        


          Retrieves the details of an existing file object. Supply the unique file ID from a file, and Stripe will return the corresponding file object. To access file contents, see the File Upload Guide.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.File{
  created: integer(),
  expires_at: integer() | nil,
  filename: binary() | nil,
  id: binary(),
  links: term() | nil,
  object: binary(),
  purpose: binary(),
  size: integer(),
  title: binary() | nil,
  type: binary() | nil,
  url: binary() | nil
}


      


The file type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	expires_at The time at which the file expires and is no longer available in epoch seconds.
	filename A filename for the file, suitable for saving to a filesystem.
	id Unique identifier for the object.
	links A list of file links that point at this file.
	object String representing the object's type. Objects of the same type share the same value.
	purpose The purpose of the uploaded file.
	size The size in bytes of the file object.
	title A user friendly title for the document.
	type The type of the file returned (e.g., csv, pdf, jpg, or png).
	url The URL from which the file can be downloaded using your live secret API key.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    create(client, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(client :: Stripe.t(), opts :: Keyword.t()) ::
  {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


To upload a file to Stripe, you’ll need to send a request of type multipart/form-data. The request should contain the file you would like to upload, as well as the parameters for creating a file.
All of Stripe’s officially supported Client libraries should have support for sending multipart/form-data.
Details
	Method: post
	Path: /v1/files


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:created) => created() | integer(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:purpose) =>
      :account_requirement
      | :additional_verification
      | :business_icon
      | :business_logo
      | :customer_signature
      | :dispute_evidence
      | :document_provider_identity_document
      | :finance_report_run
      | :identity_document
      | :identity_document_downloadable
      | :pci_document
      | :selfie
      | :sigma_scheduled_query
      | :tax_document_user_upload
      | :terminal_reader_splashscreen,
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of the files that your account has access to. The files are returned sorted by creation date, with the most recently created files appearing first.
Details
	Method: get
	Path: /v1/files


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, file, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  file :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the details of an existing file object. Supply the unique file ID from a file, and Stripe will return the corresponding file object. To access file contents, see the File Upload Guide.
Details
	Method: get
	Path: /v1/files/{file}


  


        

      



  

    
Stripe.FileLink 
    



      
To share the contents of a File object with non-Stripe users, you can
create a FileLink. FileLinks contain a URL that can be used to
retrieve the contents of the file without authentication.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          created()

        


      


      
        
          t()

        


          The file_link type.



      


  


  
    
      Functions
    


      
        
          create(client, params \\ %{}, opts \\ [])

        


          Creates a new file link object.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of file links.



      


      
        
          retrieve(client, link, params \\ %{}, opts \\ [])

        


          Retrieves the file link with the given ID.



      


      
        
          update(client, link, params \\ %{}, opts \\ [])

        


          Updates an existing file link object. Expired links can no longer be updated.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.FileLink{
  created: integer(),
  expired: boolean(),
  expires_at: integer() | nil,
  file: binary() | Stripe.File.t(),
  id: binary(),
  livemode: boolean(),
  metadata: term(),
  object: binary(),
  url: binary() | nil
}


      


The file_link type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	expired Whether this link is already expired.
	expires_at Time at which the link expires.
	file The file object this link points to.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	url The publicly accessible URL to download the file.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:expires_at) => integer(),
    optional(:file) => binary(),
    optional(:metadata) => %{optional(binary()) => binary()} | binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Creates a new file link object.
Details
	Method: post
	Path: /v1/file_links


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:created) => created() | integer(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:expired) => boolean(),
    optional(:file) => binary(),
    optional(:limit) => integer(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of file links.
Details
	Method: get
	Path: /v1/file_links


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, link, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  link :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the file link with the given ID.
Details
	Method: get
	Path: /v1/file_links/{link}


  



    

    

  
    
      
      Link to this function
    
    update(client, link, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  link :: binary(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:expires_at) => :now | integer() | binary(),
    optional(:metadata) => %{optional(binary()) => binary()} | binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Updates an existing file link object. Expired links can no longer be updated.
Details
	Method: post
	Path: /v1/file_links/{link}


  


        

      



  

    
Stripe.Mandate 
    



      
A Mandate is a record of the permission a customer has given you to debit their payment method.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          The mandate type.



      


  


  
    
      Functions
    


      
        
          retrieve(client, mandate, params \\ %{}, opts \\ [])

        


          Retrieves a Mandate object.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Mandate{
  customer_acceptance: term(),
  id: binary(),
  livemode: boolean(),
  multi_use: term(),
  object: binary(),
  payment_method: binary() | Stripe.PaymentMethod.t(),
  payment_method_details: term(),
  single_use: term(),
  status: binary(),
  type: binary()
}


      


The mandate type.
	customer_acceptance 
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	multi_use 
	object String representing the object's type. Objects of the same type share the same value.
	payment_method ID of the payment method associated with this mandate.
	payment_method_details 
	single_use 
	status The status of the mandate, which indicates whether it can be used to initiate a payment.
	type The type of the mandate.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    retrieve(client, mandate, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  mandate :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves a Mandate object.
Details
	Method: get
	Path: /v1/mandates/{mandate}


  


        

      



  

    
Stripe.PaymentIntent 
    



      
A PaymentIntent guides you through the process of collecting a payment from your customer.
We recommend that you create exactly one PaymentIntent for each order or
customer session in your system. You can reference the PaymentIntent later to
see the history of payment attempts for a particular session.
A PaymentIntent transitions through
multiple statuses
throughout its lifetime as it interfaces with Stripe.js to perform
authentication flows and ultimately creates at most one successful charge.
Related guide: Payment Intents API.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          acss_debit()

        


          If this is an acss_debit PaymentMethod, this hash contains details about the ACSS Debit payment method.



      


      
        
          address()

        


          Shipping address.



      


      
        
          affirm()

        


      


      
        
          afterpay_clearpay()

        


      


      
        
          alipay()

        


      


      
        
          au_becs_debit()

        


      


      
        
          automatic_payment_methods()

        


          When enabled, this PaymentIntent will accept payment methods that you have enabled in the Dashboard and are compatible with this PaymentIntent's other parameters.



      


      
        
          bacs_debit()

        


      


      
        
          bancontact()

        


      


      
        
          bank_transfer()

        


          Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.



      


      
        
          billing_details()

        


          Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.



      


      
        
          blik()

        


      


      
        
          boleto()

        


      


      
        
          card()

        


      


      
        
          card_present()

        


      


      
        
          created()

        


      


      
        
          customer_acceptance()

        


          This hash contains details about the customer acceptance of the Mandate.



      


      
        
          customer_balance()

        


      


      
        
          dob()

        


          Customer's date of birth



      


      
        
          eps()

        


      


      
        
          eu_bank_transfer()

        


      


      
        
          financial_connections()

        


          Additional fields for Financial Connections Session creation



      


      
        
          fpx()

        


      


      
        
          giropay()

        


      


      
        
          grabpay()

        


      


      
        
          ideal()

        


      


      
        
          installments()

        


          Installment configuration for payments attempted on this PaymentIntent (Mexico Only).



      


      
        
          klarna()

        


      


      
        
          konbini()

        


      


      
        
          link()

        


      


      
        
          mandate_data()

        


          This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.



      


      
        
          mandate_options()

        


          Configuration options for setting up an eMandate for cards issued in India.



      


      
        
          networks()

        


          Additional fields for network related functions



      


      
        
          online()

        


          If this is a Mandate accepted online, this hash contains details about the online acceptance.



      


      
        
          oxxo()

        


      


      
        
          p24()

        


      


      
        
          payment_method_data()

        


          If provided, this hash will be used to create a PaymentMethod. The new PaymentMethod will appear
in the payment_method
property on the PaymentIntent.



      


      
        
          payment_method_options()

        


          Payment-method-specific configuration for this PaymentIntent.



      


      
        
          paynow()

        


      


      
        
          pix()

        


      


      
        
          plan()

        


      


      
        
          promptpay()

        


      


      
        
          radar_options()

        


          Options to configure Radar. See Radar Session for more information.



      


      
        
          sepa_debit()

        


      


      
        
          shipping()

        


          Shipping information for this PaymentIntent.



      


      
        
          sofort()

        


      


      
        
          t()

        


          The payment_intent type.



      


      
        
          transfer_data()

        


          The parameters used to automatically create a Transfer when the payment succeeds.
For more information, see the PaymentIntents use case for connected accounts.



      


      
        
          us_bank_account()

        


      


      
        
          wechat_pay()

        


      


  


  
    
      Functions
    


      
        
          apply_customer_balance(client, intent, params \\ %{}, opts \\ [])

        


          Manually reconcile the remaining amount for a customer_balance PaymentIntent.



      


      
        
          cancel(client, intent, params \\ %{}, opts \\ [])

        


          A PaymentIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_capture, requires_confirmation, requires_action, or processing..



      


      
        
          capture(client, intent, params \\ %{}, opts \\ [])

        


          Capture the funds of an existing uncaptured PaymentIntent when its status is requires_capture.



      


      
        
          confirm(client, intent, params \\ %{}, opts \\ [])

        


          Confirm that your customer intends to pay with current or providedpayment method. Upon confirmation, the PaymentIntent will attempt to initiate
a payment.
If the selected payment method requires additional authentication steps, the
PaymentIntent will transition to the requires_action status and
suggest additional actions via next_action. If payment fails,
the PaymentIntent will transition to the requires_payment_method status. If
payment succeeds, the PaymentIntent will transition to the succeeded
status (or requires_capture, if capture_method is set to manual).
If the confirmation_method is automatic, payment may be attempted
using our client SDKs
and the PaymentIntent’s client_secret.
After next_actions are handled by the client, no additional
confirmation is required to complete the payment.
If the confirmation_method is manual, all payment attempts must be
initiated using a secret key.
If any actions are required for the payment, the PaymentIntent will
return to the requires_confirmation state
after those actions are completed. Your server needs to then
explicitly re-confirm the PaymentIntent to initiate the next payment
attempt. Read the expanded documentation
to learn more about manual confirmation.



      


      
        
          create(client, params \\ %{}, opts \\ [])

        


          Creates a PaymentIntent object.



      


      
        
          increment_authorization(client, intent, params \\ %{}, opts \\ [])

        


          Perform an incremental authorization on an eligiblePaymentIntent. To be eligible, the
PaymentIntent’s status must be requires_capture and
incremental_authorization_supported
must be true.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of PaymentIntents.



      


      
        
          retrieve(client, intent, params \\ %{}, opts \\ [])

        


          Retrieves the details of a PaymentIntent that has previously been created..



      


      
        
          search(client, params \\ %{}, opts \\ [])

        


          Search for PaymentIntents you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.



      


      
        
          update(client, intent, params \\ %{}, opts \\ [])

        


          Updates properties on a PaymentIntent object without confirming.



      


      
        
          verify_microdeposits(client, intent, params \\ %{}, opts \\ [])

        


          Verifies microdeposits on a PaymentIntent object.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    acss_debit()


      
       
       View Source
     


  


  

      

          @type acss_debit() :: %{
  optional(:account_number) => binary(),
  optional(:institution_number) => binary(),
  optional(:transit_number) => binary()
}


      


If this is an acss_debit PaymentMethod, this hash contains details about the ACSS Debit payment method.

  



  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      


Shipping address.

  



  
    
      
      Link to this type
    
    affirm()


      
       
       View Source
     


  


  

      

          @type affirm() :: %{
  optional(:capture_method) => :manual,
  optional(:setup_future_usage) => :none
}


      



  



  
    
      
      Link to this type
    
    afterpay_clearpay()


      
       
       View Source
     


  


  

      

          @type afterpay_clearpay() :: %{
  optional(:capture_method) => :manual,
  optional(:reference) => binary(),
  optional(:setup_future_usage) => :none
}


      



  



  
    
      
      Link to this type
    
    alipay()


      
       
       View Source
     


  


  

      

          @type alipay() :: %{optional(:setup_future_usage) => :none | :off_session}


      



  



  
    
      
      Link to this type
    
    au_becs_debit()


      
       
       View Source
     


  


  

      

          @type au_becs_debit() :: %{
  optional(:setup_future_usage) => :none | :off_session | :on_session
}


      



  



  
    
      
      Link to this type
    
    automatic_payment_methods()


      
       
       View Source
     


  


  

      

          @type automatic_payment_methods() :: %{optional(:enabled) => boolean()}


      


When enabled, this PaymentIntent will accept payment methods that you have enabled in the Dashboard and are compatible with this PaymentIntent's other parameters.

  



  
    
      
      Link to this type
    
    bacs_debit()


      
       
       View Source
     


  


  

      

          @type bacs_debit() :: %{
  optional(:setup_future_usage) => :none | :off_session | :on_session
}


      



  



  
    
      
      Link to this type
    
    bancontact()


      
       
       View Source
     


  


  

      

          @type bancontact() :: %{
  optional(:preferred_language) => :de | :en | :fr | :nl,
  optional(:setup_future_usage) => :none | :off_session
}


      



  



  
    
      
      Link to this type
    
    bank_transfer()


      
       
       View Source
     


  


  

      

          @type bank_transfer() :: %{
  optional(:eu_bank_transfer) => eu_bank_transfer(),
  optional(:requested_address_types) => [
    :iban | :sepa | :sort_code | :spei | :zengin
  ],
  optional(:type) =>
    :eu_bank_transfer
    | :gb_bank_transfer
    | :jp_bank_transfer
    | :mx_bank_transfer
}


      


Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

  



  
    
      
      Link to this type
    
    billing_details()


      
       
       View Source
     


  


  

      

          @type billing_details() :: %{
  optional(:address) => address() | binary(),
  optional(:email) => binary() | binary(),
  optional(:name) => binary(),
  optional(:phone) => binary()
}


      


Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

  



  
    
      
      Link to this type
    
    blik()


      
       
       View Source
     


  


  

      

          @type blik() :: %{optional(:code) => binary()}


      



  



  
    
      
      Link to this type
    
    boleto()


      
       
       View Source
     


  


  

      

          @type boleto() :: %{
  optional(:expires_after_days) => integer(),
  optional(:setup_future_usage) => :none | :off_session | :on_session
}


      



  



  
    
      
      Link to this type
    
    card()


      
       
       View Source
     


  


  

      

          @type card() :: %{
  optional(:capture_method) => :manual,
  optional(:cvc_token) => binary(),
  optional(:installments) => installments(),
  optional(:mandate_options) => mandate_options(),
  optional(:moto) => boolean(),
  optional(:network) =>
    :amex
    | :cartes_bancaires
    | :diners
    | :discover
    | :interac
    | :jcb
    | :mastercard
    | :unionpay
    | :unknown
    | :visa,
  optional(:request_three_d_secure) => :any | :automatic,
  optional(:setup_future_usage) => :none | :off_session | :on_session,
  optional(:statement_descriptor_suffix_kana) => binary() | binary(),
  optional(:statement_descriptor_suffix_kanji) => binary() | binary()
}


      



  



  
    
      
      Link to this type
    
    card_present()


      
       
       View Source
     


  


  

      

          @type card_present() :: %{
  optional(:request_extended_authorization) => boolean(),
  optional(:request_incremental_authorization_support) => boolean()
}


      



  



  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    customer_acceptance()


      
       
       View Source
     


  


  

      

          @type customer_acceptance() :: %{
  optional(:accepted_at) => integer(),
  optional(:offline) => map(),
  optional(:online) => online(),
  optional(:type) => :offline | :online
}


      


This hash contains details about the customer acceptance of the Mandate.

  



  
    
      
      Link to this type
    
    customer_balance()


      
       
       View Source
     


  


  

      

          @type customer_balance() :: %{
  optional(:bank_transfer) => bank_transfer(),
  optional(:funding_type) => :bank_transfer,
  optional(:setup_future_usage) => :none
}


      



  



  
    
      
      Link to this type
    
    dob()


      
       
       View Source
     


  


  

      

          @type dob() :: %{
  optional(:day) => integer(),
  optional(:month) => integer(),
  optional(:year) => integer()
}


      


Customer's date of birth

  



  
    
      
      Link to this type
    
    eps()


      
       
       View Source
     


  


  

      

          @type eps() :: %{optional(:setup_future_usage) => :none}


      



  



  
    
      
      Link to this type
    
    eu_bank_transfer()


      
       
       View Source
     


  


  

      

          @type eu_bank_transfer() :: %{optional(:country) => binary()}


      



  



  
    
      
      Link to this type
    
    financial_connections()


      
       
       View Source
     


  


  

      

          @type financial_connections() :: %{
  optional(:permissions) => [
    :balances | :ownership | :payment_method | :transactions
  ],
  optional(:return_url) => binary()
}


      


Additional fields for Financial Connections Session creation

  



  
    
      
      Link to this type
    
    fpx()


      
       
       View Source
     


  


  

      

          @type fpx() :: %{optional(:setup_future_usage) => :none}


      



  



  
    
      
      Link to this type
    
    giropay()


      
       
       View Source
     


  


  

      

          @type giropay() :: %{optional(:setup_future_usage) => :none}


      



  



  
    
      
      Link to this type
    
    grabpay()


      
       
       View Source
     


  


  

      

          @type grabpay() :: %{optional(:setup_future_usage) => :none}


      



  



  
    
      
      Link to this type
    
    ideal()


      
       
       View Source
     


  


  

      

          @type ideal() :: %{optional(:setup_future_usage) => :none | :off_session}


      



  



  
    
      
      Link to this type
    
    installments()


      
       
       View Source
     


  


  

      

          @type installments() :: %{
  optional(:enabled) => boolean(),
  optional(:plan) => plan() | binary()
}


      


Installment configuration for payments attempted on this PaymentIntent (Mexico Only).
For more information, see the installments integration guide.

  



  
    
      
      Link to this type
    
    klarna()


      
       
       View Source
     


  


  

      

          @type klarna() :: %{
  optional(:capture_method) => :manual,
  optional(:preferred_locale) =>
    :"da-DK"
    | :"de-AT"
    | :"de-CH"
    | :"de-DE"
    | :"en-AT"
    | :"en-AU"
    | :"en-BE"
    | :"en-CA"
    | :"en-CH"
    | :"en-DE"
    | :"en-DK"
    | :"en-ES"
    | :"en-FI"
    | :"en-FR"
    | :"en-GB"
    | :"en-IE"
    | :"en-IT"
    | :"en-NL"
    | :"en-NO"
    | :"en-NZ"
    | :"en-PL"
    | :"en-PT"
    | :"en-SE"
    | :"en-US"
    | :"es-ES"
    | :"es-US"
    | :"fi-FI"
    | :"fr-BE"
    | :"fr-CA"
    | :"fr-CH"
    | :"fr-FR"
    | :"it-CH"
    | :"it-IT"
    | :"nb-NO"
    | :"nl-BE"
    | :"nl-NL"
    | :"pl-PL"
    | :"pt-PT"
    | :"sv-FI"
    | :"sv-SE",
  optional(:setup_future_usage) => :none
}


      



  



  
    
      
      Link to this type
    
    konbini()


      
       
       View Source
     


  


  

      

          @type konbini() :: %{
  optional(:confirmation_number) => binary(),
  optional(:expires_after_days) => integer() | binary(),
  optional(:expires_at) => integer() | binary(),
  optional(:product_description) => binary(),
  optional(:setup_future_usage) => :none
}


      



  



  
    
      
      Link to this type
    
    link()


      
       
       View Source
     


  


  

      

          @type link() :: %{
  optional(:capture_method) => :manual,
  optional(:persistent_token) => binary(),
  optional(:setup_future_usage) => :none | :off_session
}


      



  



  
    
      
      Link to this type
    
    mandate_data()


      
       
       View Source
     


  


  

      

          @type mandate_data() :: %{optional(:customer_acceptance) => customer_acceptance()}


      


This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.

  



  
    
      
      Link to this type
    
    mandate_options()


      
       
       View Source
     


  


  

      

          @type mandate_options() :: %{
  optional(:amount) => integer(),
  optional(:amount_type) => :fixed | :maximum,
  optional(:description) => binary(),
  optional(:end_date) => integer(),
  optional(:interval) => :day | :month | :sporadic | :week | :year,
  optional(:interval_count) => integer(),
  optional(:reference) => binary(),
  optional(:start_date) => integer(),
  optional(:supported_types) => [:india]
}


      


Configuration options for setting up an eMandate for cards issued in India.

  



  
    
      
      Link to this type
    
    networks()


      
       
       View Source
     


  


  

      

          @type networks() :: %{optional(:requested) => [:ach | :us_domestic_wire]}


      


Additional fields for network related functions

  



  
    
      
      Link to this type
    
    online()


      
       
       View Source
     


  


  

      

          @type online() :: %{
  optional(:ip_address) => binary(),
  optional(:user_agent) => binary()
}


      


If this is a Mandate accepted online, this hash contains details about the online acceptance.

  



  
    
      
      Link to this type
    
    oxxo()


      
       
       View Source
     


  


  

      

          @type oxxo() :: %{
  optional(:expires_after_days) => integer(),
  optional(:setup_future_usage) => :none
}


      



  



  
    
      
      Link to this type
    
    p24()


      
       
       View Source
     


  


  

      

          @type p24() :: %{
  optional(:setup_future_usage) => :none,
  optional(:tos_shown_and_accepted) => boolean()
}


      



  



  
    
      
      Link to this type
    
    payment_method_data()


      
       
       View Source
     


  


  

      

          @type payment_method_data() :: %{
  optional(:acss_debit) => acss_debit(),
  optional(:affirm) => map(),
  optional(:afterpay_clearpay) => map(),
  optional(:alipay) => map(),
  optional(:au_becs_debit) => au_becs_debit(),
  optional(:bacs_debit) => bacs_debit(),
  optional(:bancontact) => map(),
  optional(:billing_details) => billing_details(),
  optional(:blik) => map(),
  optional(:boleto) => boleto(),
  optional(:customer_balance) => map(),
  optional(:eps) => eps(),
  optional(:fpx) => fpx(),
  optional(:giropay) => map(),
  optional(:grabpay) => map(),
  optional(:ideal) => ideal(),
  optional(:interac_present) => map(),
  optional(:klarna) => klarna(),
  optional(:konbini) => map(),
  optional(:link) => map(),
  optional(:metadata) => %{optional(binary()) => binary()},
  optional(:oxxo) => map(),
  optional(:p24) => p24(),
  optional(:paynow) => map(),
  optional(:pix) => map(),
  optional(:promptpay) => map(),
  optional(:radar_options) => radar_options(),
  optional(:sepa_debit) => sepa_debit(),
  optional(:sofort) => sofort(),
  optional(:type) =>
    :acss_debit
    | :affirm
    | :afterpay_clearpay
    | :alipay
    | :au_becs_debit
    | :bacs_debit
    | :bancontact
    | :blik
    | :boleto
    | :customer_balance
    | :eps
    | :fpx
    | :giropay
    | :grabpay
    | :ideal
    | :klarna
    | :konbini
    | :link
    | :oxxo
    | :p24
    | :paynow
    | :pix
    | :promptpay
    | :sepa_debit
    | :sofort
    | :us_bank_account
    | :wechat_pay,
  optional(:us_bank_account) => us_bank_account(),
  optional(:wechat_pay) => map()
}


      


If provided, this hash will be used to create a PaymentMethod. The new PaymentMethod will appear
in the payment_method
property on the PaymentIntent.

  



  
    
      
      Link to this type
    
    payment_method_options()


      
       
       View Source
     


  


  

      

          @type payment_method_options() :: %{
  optional(:acss_debit) => acss_debit() | binary(),
  optional(:affirm) => affirm() | binary(),
  optional(:afterpay_clearpay) => afterpay_clearpay() | binary(),
  optional(:alipay) => alipay() | binary(),
  optional(:au_becs_debit) => au_becs_debit() | binary(),
  optional(:bacs_debit) => bacs_debit() | binary(),
  optional(:bancontact) => bancontact() | binary(),
  optional(:blik) => blik() | binary(),
  optional(:boleto) => boleto() | binary(),
  optional(:card) => card() | binary(),
  optional(:card_present) => card_present() | binary(),
  optional(:customer_balance) => customer_balance() | binary(),
  optional(:eps) => eps() | binary(),
  optional(:fpx) => fpx() | binary(),
  optional(:giropay) => giropay() | binary(),
  optional(:grabpay) => grabpay() | binary(),
  optional(:ideal) => ideal() | binary(),
  optional(:interac_present) => map() | binary(),
  optional(:klarna) => klarna() | binary(),
  optional(:konbini) => konbini() | binary(),
  optional(:link) => link() | binary(),
  optional(:oxxo) => oxxo() | binary(),
  optional(:p24) => p24() | binary(),
  optional(:paynow) => paynow() | binary(),
  optional(:pix) => pix() | binary(),
  optional(:promptpay) => promptpay() | binary(),
  optional(:sepa_debit) => sepa_debit() | binary(),
  optional(:sofort) => sofort() | binary(),
  optional(:us_bank_account) => us_bank_account() | binary(),
  optional(:wechat_pay) => wechat_pay() | binary()
}


      


Payment-method-specific configuration for this PaymentIntent.

  



  
    
      
      Link to this type
    
    paynow()


      
       
       View Source
     


  


  

      

          @type paynow() :: %{optional(:setup_future_usage) => :none}


      



  



  
    
      
      Link to this type
    
    pix()


      
       
       View Source
     


  


  

      

          @type pix() :: %{
  optional(:expires_after_seconds) => integer(),
  optional(:expires_at) => integer(),
  optional(:setup_future_usage) => :none
}


      



  



  
    
      
      Link to this type
    
    plan()


      
       
       View Source
     


  


  

      

          @type plan() :: %{
  optional(:count) => integer(),
  optional(:interval) => :month,
  optional(:type) => :fixed_count
}


      



  



  
    
      
      Link to this type
    
    promptpay()


      
       
       View Source
     


  


  

      

          @type promptpay() :: %{optional(:setup_future_usage) => :none}


      



  



  
    
      
      Link to this type
    
    radar_options()


      
       
       View Source
     


  


  

      

          @type radar_options() :: %{optional(:session) => binary()}


      


Options to configure Radar. See Radar Session for more information.

  



  
    
      
      Link to this type
    
    sepa_debit()


      
       
       View Source
     


  


  

      

          @type sepa_debit() :: %{
  optional(:mandate_options) => map(),
  optional(:setup_future_usage) => :none | :off_session | :on_session
}


      



  



  
    
      
      Link to this type
    
    shipping()


      
       
       View Source
     


  


  

      

          @type shipping() :: %{
  optional(:address) => address(),
  optional(:carrier) => binary(),
  optional(:name) => binary(),
  optional(:phone) => binary(),
  optional(:tracking_number) => binary()
}


      


Shipping information for this PaymentIntent.

  



  
    
      
      Link to this type
    
    sofort()


      
       
       View Source
     


  


  

      

          @type sofort() :: %{
  optional(:preferred_language) => :de | :en | :es | :fr | :it | :nl | :pl,
  optional(:setup_future_usage) => :none | :off_session
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.PaymentIntent{
  amount: integer(),
  amount_capturable: integer(),
  amount_details: term(),
  amount_received: integer(),
  application: (binary() | term()) | nil,
  application_fee_amount: integer() | nil,
  automatic_payment_methods: term() | nil,
  canceled_at: integer() | nil,
  cancellation_reason: binary() | nil,
  capture_method: binary(),
  client_secret: binary() | nil,
  confirmation_method: binary(),
  created: integer(),
  currency: binary(),
  customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
  description: binary() | nil,
  id: binary(),
  invoice: (binary() | Stripe.Invoice.t()) | nil,
  last_payment_error: Stripe.ApiErrors.t() | nil,
  latest_charge: (binary() | Stripe.Charge.t()) | nil,
  livemode: boolean(),
  metadata: term(),
  next_action: term() | nil,
  object: binary(),
  on_behalf_of: (binary() | Stripe.Account.t()) | nil,
  payment_method: (binary() | Stripe.PaymentMethod.t()) | nil,
  payment_method_options: term() | nil,
  payment_method_types: term(),
  processing: term() | nil,
  receipt_email: binary() | nil,
  review: (binary() | Stripe.Review.t()) | nil,
  setup_future_usage: binary() | nil,
  shipping: term() | nil,
  source:
    (binary() | Stripe.PaymentSource.t() | Stripe.DeletedPaymentSource.t())
    | nil,
  statement_descriptor: binary() | nil,
  statement_descriptor_suffix: binary() | nil,
  status: binary(),
  transfer_data: term() | nil,
  transfer_group: binary() | nil
}


      


The payment_intent type.
	setup_future_usage Indicates that you intend to make future payments with this PaymentIntent's payment method.

Providing this parameter will attach the payment method to the PaymentIntent's Customer, if present, after the PaymentIntent is confirmed and any required actions from the user are complete. If no Customer was provided, the payment method can still be attached to a Customer after the transaction completes.
When processing card payments, Stripe also uses setup_future_usage to dynamically optimize your payment flow and comply with regional legislation and network rules, such as SCA.
	payment_method ID of the payment method used in this PaymentIntent.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	processing If present, this property tells you about the processing state of the payment.
	capture_method Controls when the funds will be captured from the customer's account.
	payment_method_options Payment-method-specific configuration for this PaymentIntent.
	amount_received Amount that was collected by this PaymentIntent.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format. For more information, see the documentation.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	payment_method_types The list of payment method types (e.g. card) that this PaymentIntent is allowed to use.
	amount_capturable Amount that can be captured from this PaymentIntent.
	review ID of the review associated with this PaymentIntent, if any.
	confirmation_method 
	next_action If present, this property tells you what actions you need to take in order for your customer to fulfill a payment using the provided source.
	on_behalf_of The account (if any) for which the funds of the PaymentIntent are intended. See the PaymentIntents use case for connected accounts for details.
	customer ID of the Customer this PaymentIntent belongs to, if one exists.

Payment methods attached to other Customers cannot be used with this PaymentIntent.
If present in combination with setup_future_usage, this PaymentIntent's payment method will be attached to the Customer after the PaymentIntent has been confirmed and any required actions from the user are complete.
	amount Amount intended to be collected by this PaymentIntent. A positive integer representing how much to charge in the smallest currency unit (e.g., 100 cents to charge $1.00 or 100 to charge ¥100, a zero-decimal currency). The minimum amount is $0.50 US or equivalent in charge currency. The amount value supports up to eight digits (e.g., a value of 99999999 for a USD charge of $999,999.99).
	invoice ID of the invoice that created this PaymentIntent, if it exists.
	automatic_payment_methods Settings to configure compatible payment methods from the Stripe Dashboard
	statement_descriptor For non-card charges, you can use this value as the complete description that appears on your customers’ statements. Must contain at least one letter, maximum 22 characters.
	latest_charge The latest charge created by this payment intent.
	application ID of the Connect application that created the PaymentIntent.
	client_secret The client secret of this PaymentIntent. Used for client-side retrieval using a publishable key. 

The client secret can be used to complete a payment from your frontend. It should not be stored, logged, or exposed to anyone other than the customer. Make sure that you have TLS enabled on any page that includes the client secret.
Refer to our docs to accept a payment and learn about how client_secret should be handled.
	receipt_email Email address that the receipt for the resulting payment will be sent to. If receipt_email is specified for a payment in live mode, a receipt will be sent regardless of your email settings.
	object String representing the object's type. Objects of the same type share the same value.
	source This is a legacy field that will be removed in the future. It is the ID of the Source object that is associated with this PaymentIntent, if one was supplied.
	last_payment_error The payment error encountered in the previous PaymentIntent confirmation. It will be cleared if the PaymentIntent is later updated for any reason.
	canceled_at Populated when status is canceled, this is the time at which the PaymentIntent was canceled. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	cancellation_reason Reason for cancellation of this PaymentIntent, either user-provided (duplicate, fraudulent, requested_by_customer, or abandoned) or generated by Stripe internally (failed_invoice, void_invoice, or automatic).
	status Status of this PaymentIntent, one of requires_payment_method, requires_confirmation, requires_action, processing, requires_capture, canceled, or succeeded. Read more about each PaymentIntent status.
	transfer_group A string that identifies the resulting payment as part of a group. See the PaymentIntents use case for connected accounts for details.
	amount_details 
	application_fee_amount The amount of the application fee (if any) that will be requested to be applied to the payment and transferred to the application owner's Stripe account. The amount of the application fee collected will be capped at the total payment amount. For more information, see the PaymentIntents use case for connected accounts.
	statement_descriptor_suffix Provides information about a card payment that customers see on their statements. Concatenated with the prefix (shortened descriptor) or statement descriptor that’s set on the account to form the complete statement descriptor. Maximum 22 characters for the concatenated descriptor.
	transfer_data The data with which to automatically create a Transfer when the payment is finalized. See the PaymentIntents use case for connected accounts for details.
	id Unique identifier for the object.
	shipping Shipping information for this PaymentIntent.


  



  
    
      
      Link to this type
    
    transfer_data()


      
       
       View Source
     


  


  

      

          @type transfer_data() :: %{
  optional(:amount) => integer(),
  optional(:destination) => binary()
}


      


The parameters used to automatically create a Transfer when the payment succeeds.
For more information, see the PaymentIntents use case for connected accounts.

  



  
    
      
      Link to this type
    
    us_bank_account()


      
       
       View Source
     


  


  

      

          @type us_bank_account() :: %{
  optional(:financial_connections) => financial_connections(),
  optional(:networks) => networks(),
  optional(:setup_future_usage) => :none | :off_session | :on_session,
  optional(:verification_method) => :automatic | :instant | :microdeposits
}


      



  



  
    
      
      Link to this type
    
    wechat_pay()


      
       
       View Source
     


  


  

      

          @type wechat_pay() :: %{
  optional(:app_id) => binary(),
  optional(:client) => :android | :ios | :web,
  optional(:setup_future_usage) => :none
}


      



  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    apply_customer_balance(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec apply_customer_balance(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:amount) => integer(),
    optional(:currency) => binary(),
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Manually reconcile the remaining amount for a customer_balance PaymentIntent.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/apply_customer_balance


  



    

    

  
    
      
      Link to this function
    
    cancel(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec cancel(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:cancellation_reason) =>
      :abandoned | :duplicate | :fraudulent | :requested_by_customer,
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


A PaymentIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_capture, requires_confirmation, requires_action, or processing..
Once canceled, no additional charges will be made by the PaymentIntent and any operations on the PaymentIntent will fail with an error. For PaymentIntents with status=’requires_capture’, the remaining amount_capturable will automatically be refunded..
You cannot cancel the PaymentIntent for a Checkout Session. Expire the Checkout Session instea.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/cancel


  



    

    

  
    
      
      Link to this function
    
    capture(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec capture(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:amount_to_capture) => integer(),
    optional(:application_fee_amount) => integer(),
    optional(:expand) => [binary()],
    optional(:statement_descriptor) => binary(),
    optional(:statement_descriptor_suffix) => binary(),
    optional(:transfer_data) => transfer_data()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Capture the funds of an existing uncaptured PaymentIntent when its status is requires_capture.
Uncaptured PaymentIntents will be canceled a set number of days after they are created (7 by default).
Learn more about separate authorization and capture.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/capture


  



    

    

  
    
      
      Link to this function
    
    confirm(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec confirm(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:capture_method) => :automatic | :manual,
    optional(:error_on_requires_action) => boolean(),
    optional(:expand) => [binary()],
    optional(:mandate) => binary(),
    optional(:mandate_data) => mandate_data() | mandate_data(),
    optional(:off_session) => boolean() | :one_off | :recurring,
    optional(:payment_method) => binary(),
    optional(:payment_method_data) => payment_method_data(),
    optional(:payment_method_options) => payment_method_options(),
    optional(:radar_options) => radar_options(),
    optional(:receipt_email) => binary() | binary(),
    optional(:return_url) => binary(),
    optional(:setup_future_usage) => :off_session | :on_session,
    optional(:shipping) => shipping() | binary(),
    optional(:use_stripe_sdk) => boolean()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Confirm that your customer intends to pay with current or providedpayment method. Upon confirmation, the PaymentIntent will attempt to initiate
a payment.
If the selected payment method requires additional authentication steps, the
PaymentIntent will transition to the requires_action status and
suggest additional actions via next_action. If payment fails,
the PaymentIntent will transition to the requires_payment_method status. If
payment succeeds, the PaymentIntent will transition to the succeeded
status (or requires_capture, if capture_method is set to manual).
If the confirmation_method is automatic, payment may be attempted
using our client SDKs
and the PaymentIntent’s client_secret.
After next_actions are handled by the client, no additional
confirmation is required to complete the payment.
If the confirmation_method is manual, all payment attempts must be
initiated using a secret key.
If any actions are required for the payment, the PaymentIntent will
return to the requires_confirmation state
after those actions are completed. Your server needs to then
explicitly re-confirm the PaymentIntent to initiate the next payment
attempt. Read the expanded documentation
to learn more about manual confirmation.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/confirm


  



    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:amount) => integer(),
    optional(:application_fee_amount) => integer(),
    optional(:automatic_payment_methods) => automatic_payment_methods(),
    optional(:capture_method) => :automatic | :manual,
    optional(:confirm) => boolean(),
    optional(:confirmation_method) => :automatic | :manual,
    optional(:currency) => binary(),
    optional(:customer) => binary(),
    optional(:description) => binary(),
    optional(:error_on_requires_action) => boolean(),
    optional(:expand) => [binary()],
    optional(:mandate) => binary(),
    optional(:mandate_data) => mandate_data(),
    optional(:metadata) => %{optional(binary()) => binary()},
    optional(:off_session) => boolean() | :one_off | :recurring,
    optional(:on_behalf_of) => binary(),
    optional(:payment_method) => binary(),
    optional(:payment_method_data) => payment_method_data(),
    optional(:payment_method_options) => payment_method_options(),
    optional(:payment_method_types) => [binary()],
    optional(:radar_options) => radar_options(),
    optional(:receipt_email) => binary(),
    optional(:return_url) => binary(),
    optional(:setup_future_usage) => :off_session | :on_session,
    optional(:shipping) => shipping(),
    optional(:statement_descriptor) => binary(),
    optional(:statement_descriptor_suffix) => binary(),
    optional(:transfer_data) => transfer_data(),
    optional(:transfer_group) => binary(),
    optional(:use_stripe_sdk) => boolean()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Creates a PaymentIntent object.
After the PaymentIntent is created, attach a payment method and confirmto continue the payment. You can read more about the different payment flows
available via the Payment Intents API here.
When confirm=true is used during creation, it is equivalent to creatingand confirming the PaymentIntent in the same call. You may use any parameters
available in the confirm API when confirm=true
is supplied.
Details
	Method: post
	Path: /v1/payment_intents


  



    

    

  
    
      
      Link to this function
    
    increment_authorization(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec increment_authorization(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:amount) => integer(),
    optional(:application_fee_amount) => integer(),
    optional(:description) => binary(),
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()},
    optional(:statement_descriptor) => binary(),
    optional(:transfer_data) => transfer_data()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Perform an incremental authorization on an eligiblePaymentIntent. To be eligible, the
PaymentIntent’s status must be requires_capture and
incremental_authorization_supported
must be true.
Incremental authorizations attempt to increase the authorized amount onyour customer’s card to the new, higher amount provided. As with the
initial authorization, incremental authorizations may be declined. A
single PaymentIntent can call this endpoint multiple times to further
increase the authorized amount.
If the incremental authorization succeeds, the PaymentIntent object isreturned with the updated
amount.
If the incremental authorization fails, a
card_declined error is returned, and no
fields on the PaymentIntent or Charge are updated. The PaymentIntent
object remains capturable for the previously authorized amount.
Each PaymentIntent can have a maximum of 10 incremental authorization attempts, including declines.Once captured, a PaymentIntent can no longer be incremented.
Learn more about incremental authorizations.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/increment_authorization


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:created) => created() | integer(),
    optional(:customer) => binary(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of PaymentIntents.
Details
	Method: get
	Path: /v1/payment_intents


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:client_secret) => binary(),
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the details of a PaymentIntent that has previously been created..
Client-side retrieval using a publishable key is allowed when the client_secret is provided in the query string..
When retrieved with a publishable key, only a subset of properties will be returned. Please refer to the payment intent object reference for more details.
Details
	Method: get
	Path: /v1/payment_intents/{intent}


  



    

    

  
    
      
      Link to this function
    
    search(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec search(
  client :: Stripe.t(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:page) => binary(),
    optional(:query) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.SearchResult.t(t())}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Search for PaymentIntents you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/payment_intents/search


  



    

    

  
    
      
      Link to this function
    
    update(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:amount) => integer(),
    optional(:application_fee_amount) => integer() | binary(),
    optional(:capture_method) => :automatic | :manual,
    optional(:currency) => binary(),
    optional(:customer) => binary(),
    optional(:description) => binary(),
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:payment_method) => binary(),
    optional(:payment_method_data) => payment_method_data(),
    optional(:payment_method_options) => payment_method_options(),
    optional(:payment_method_types) => [binary()],
    optional(:receipt_email) => binary() | binary(),
    optional(:setup_future_usage) => :off_session | :on_session,
    optional(:shipping) => shipping() | binary(),
    optional(:statement_descriptor) => binary(),
    optional(:statement_descriptor_suffix) => binary(),
    optional(:transfer_data) => transfer_data(),
    optional(:transfer_group) => binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Updates properties on a PaymentIntent object without confirming.
Depending on which properties you update, you may need to confirm thePaymentIntent again. For example, updating the payment_method will
always require you to confirm the PaymentIntent again. If you prefer to
update and confirm at the same time, we recommend updating properties via
the confirm API instead.
Details
	Method: post
	Path: /v1/payment_intents/{intent}


  



    

    

  
    
      
      Link to this function
    
    verify_microdeposits(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec verify_microdeposits(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:amounts) => [integer()],
    optional(:descriptor_code) => binary(),
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Verifies microdeposits on a PaymentIntent object.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/verify_microdeposits


  


        

      



  

    
Stripe.PaymentSource 
    



      

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          The payment_source type.



      


  


  
    
      Functions
    


      
        
          create(client, customer, params \\ %{}, opts \\ [])

        


          When you create a new credit card, you must specify a customer or recipient on which to create it.



      


      
        
          list(client, customer, params \\ %{}, opts \\ [])

        


          List sources for a specified customer.



      


      
        
          retrieve(client, customer, id, params \\ %{}, opts \\ [])

        


          Retrieve a specified source for a given customer.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.PaymentSource{}


      


The payment_source type.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    create(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()},
    optional(:source) => binary(),
    optional(:validate) => boolean()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


When you create a new credit card, you must specify a customer or recipient on which to create it.
If the card’s owner has no default card, then the new card will become the default.However, if the owner already has a default, then it will not change.
To change the default, you should update the customer to have a new default_source.
Details
	Method: post
	Path: /v1/customers/{customer}/sources


  



    

    

  
    
      
      Link to this function
    
    list(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:object) => binary(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


List sources for a specified customer.
Details
	Method: get
	Path: /v1/customers/{customer}/sources


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, customer, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  customer :: binary(),
  id :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieve a specified source for a given customer.
Details
	Method: get
	Path: /v1/customers/{customer}/sources/{id}


  


        

      



  

    
Stripe.Payout 
    



      
A Payout object is created when you receive funds from Stripe, or when you
initiate a payout to either a bank account or debit card of a connected
Stripe account. You can retrieve individual payouts,
as well as list all payouts. Payouts are made on varying
schedules, depending on your country and
industry.
Related guide: Receiving Payouts.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          arrival_date()

        


      


      
        
          created()

        


      


      
        
          t()

        


          The payout type.



      


  


  
    
      Functions
    


      
        
          cancel(client, payout, params \\ %{}, opts \\ [])

        


          A previously created payout can be canceled if it has not yet been paid out. Funds will be refunded to your available balance. You may not cancel automatic Stripe payouts.



      


      
        
          create(client, params \\ %{}, opts \\ [])

        


          To send funds to your own bank account, you create a new payout object. Your Stripe balance must be able to cover the payout amount, or you’ll receive an “Insufficient Funds” error.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of existing payouts sent to third-party bank accounts or that Stripe has sent you. The payouts are returned in sorted order, with the most recently created payouts appearing first.



      


      
        
          retrieve(client, payout, params \\ %{}, opts \\ [])

        


          Retrieves the details of an existing payout. Supply the unique payout ID from either a payout creation request or the payout list, and Stripe will return the corresponding payout information.



      


      
        
          reverse(client, payout, params \\ %{}, opts \\ [])

        


          Reverses a payout by debiting the destination bank account. Only payouts for connected accounts to US bank accounts may be reversed at this time. If the payout is in the pending status, /v1/payouts/:id/cancel should be used instead.



      


      
        
          update(client, payout, params \\ %{}, opts \\ [])

        


          Updates the specified payout by setting the values of the parameters passed. Any parameters not provided will be left unchanged. This request accepts only the metadata as arguments.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    arrival_date()


      
       
       View Source
     


  


  

      

          @type arrival_date() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Payout{
  amount: integer(),
  arrival_date: integer(),
  automatic: boolean(),
  balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
  created: integer(),
  currency: binary(),
  description: binary() | nil,
  destination:
    (binary() | Stripe.ExternalAccount.t() | Stripe.DeletedExternalAccount.t())
    | nil,
  failure_balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
  failure_code: binary() | nil,
  failure_message: binary() | nil,
  id: binary(),
  livemode: boolean(),
  metadata: term() | nil,
  method: binary(),
  object: binary(),
  original_payout: (binary() | t()) | nil,
  reversed_by: (binary() | t()) | nil,
  source_type: binary(),
  statement_descriptor: binary() | nil,
  status: binary(),
  type: binary()
}


      


The payout type.
	amount Amount (in %s) to be transferred to your bank account or debit card.
	arrival_date Date the payout is expected to arrive in the bank. This factors in delays like weekends or bank holidays.
	automatic Returns true if the payout was created by an automated payout schedule, and false if it was requested manually.
	balance_transaction ID of the balance transaction that describes the impact of this payout on your account balance.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	destination ID of the bank account or card the payout was sent to.
	failure_balance_transaction If the payout failed or was canceled, this will be the ID of the balance transaction that reversed the initial balance transaction, and puts the funds from the failed payout back in your balance.
	failure_code Error code explaining reason for payout failure if available. See Types of payout failures for a list of failure codes.
	failure_message Message to user further explaining reason for payout failure if available.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	method The method used to send this payout, which can be standard or instant. instant is only supported for payouts to debit cards. (See Instant payouts for marketplaces for more information.)
	object String representing the object's type. Objects of the same type share the same value.
	original_payout If the payout reverses another, this is the ID of the original payout.
	reversed_by If the payout was reversed, this is the ID of the payout that reverses this payout.
	source_type The source balance this payout came from. One of card, fpx, or bank_account.
	statement_descriptor Extra information about a payout to be displayed on the user's bank statement.
	status Current status of the payout: paid, pending, in_transit, canceled or failed. A payout is pending until it is submitted to the bank, when it becomes in_transit. The status then changes to paid if the transaction goes through, or to failed or canceled (within 5 business days). Some failed payouts may initially show as paid but then change to failed.
	type Can be bank_account or card.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    cancel(client, payout, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec cancel(
  client :: Stripe.t(),
  payout :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


A previously created payout can be canceled if it has not yet been paid out. Funds will be refunded to your available balance. You may not cancel automatic Stripe payouts.
Details
	Method: post
	Path: /v1/payouts/{payout}/cancel


  



    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:amount) => integer(),
    optional(:currency) => binary(),
    optional(:description) => binary(),
    optional(:destination) => binary(),
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()},
    optional(:method) => :instant | :standard,
    optional(:source_type) => :bank_account | :card | :fpx,
    optional(:statement_descriptor) => binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


To send funds to your own bank account, you create a new payout object. Your Stripe balance must be able to cover the payout amount, or you’ll receive an “Insufficient Funds” error.
If your API key is in test mode, money won’t actually be sent, though everything else will occur as if in live mode.
If you are creating a manual payout on a Stripe account that uses multiple payment source types, you’ll need to specify the source type balance that the payout should draw from. The balance object details available and pending amounts by source type.
Details
	Method: post
	Path: /v1/payouts


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:arrival_date) => arrival_date() | integer(),
    optional(:created) => created() | integer(),
    optional(:destination) => binary(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary(),
    optional(:status) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of existing payouts sent to third-party bank accounts or that Stripe has sent you. The payouts are returned in sorted order, with the most recently created payouts appearing first.
Details
	Method: get
	Path: /v1/payouts


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, payout, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  payout :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the details of an existing payout. Supply the unique payout ID from either a payout creation request or the payout list, and Stripe will return the corresponding payout information.
Details
	Method: get
	Path: /v1/payouts/{payout}


  



    

    

  
    
      
      Link to this function
    
    reverse(client, payout, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec reverse(
  client :: Stripe.t(),
  payout :: binary(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()}
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Reverses a payout by debiting the destination bank account. Only payouts for connected accounts to US bank accounts may be reversed at this time. If the payout is in the pending status, /v1/payouts/:id/cancel should be used instead.
By requesting a reversal via /v1/payouts/:id/reverse, you confirm that the authorized signatory of the selected bank account has authorized the debit on the bank account and that no other authorization is required.
Details
	Method: post
	Path: /v1/payouts/{payout}/reverse


  



    

    

  
    
      
      Link to this function
    
    update(client, payout, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  payout :: binary(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()} | binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Updates the specified payout by setting the values of the parameters passed. Any parameters not provided will be left unchanged. This request accepts only the metadata as arguments.
Details
	Method: post
	Path: /v1/payouts/{payout}


  


        

      



  

    
Stripe.Refund 
    



      
Refund objects allow you to refund a charge that has previously been created
but not yet refunded. Funds will be refunded to the credit or debit card that
was originally charged.
Related guide: Refunds.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          The refund type.



      


  


  
    
      Functions
    


      
        
          cancel(client, refund, params \\ %{}, opts \\ [])

        


          Cancels a refund with a status of requires_action.



      


      
        
          create(client, params \\ %{}, opts \\ [])

        


          Create a refund.



      


      
        
          expire(client, refund, params \\ %{}, opts \\ [])

        


          Expire a refund with a status of requires_action.



      


      
        
          list(client, charge, params \\ %{}, opts \\ [])

        


          You can see a list of the refunds belonging to a specific charge. Note that the 10 most recent refunds are always available by default on the charge object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional refunds.



      


      
        
          retrieve(client, charge, refund, params \\ %{}, opts \\ [])

        


          Retrieves the details of an existing refund.



      


      
        
          update(client, refund, params \\ %{}, opts \\ [])

        


          Updates the specified refund by setting the values of the parameters passed. Any parameters not provided will be left unchanged.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Refund{
  amount: integer(),
  balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
  charge: (binary() | Stripe.Charge.t()) | nil,
  created: integer(),
  currency: binary(),
  description: binary(),
  failure_balance_transaction: binary() | Stripe.BalanceTransaction.t(),
  failure_reason: binary(),
  id: binary(),
  instructions_email: binary(),
  metadata: term() | nil,
  next_action: term(),
  object: binary(),
  payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
  reason: binary() | nil,
  receipt_number: binary() | nil,
  source_transfer_reversal: (binary() | Stripe.TransferReversal.t()) | nil,
  status: binary() | nil,
  transfer_reversal: (binary() | Stripe.TransferReversal.t()) | nil
}


      


The refund type.
	amount Amount, in %s.
	balance_transaction Balance transaction that describes the impact on your account balance.
	charge ID of the charge that was refunded.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users. (Available on non-card refunds only)
	failure_balance_transaction If the refund failed, this balance transaction describes the adjustment made on your account balance that reverses the initial balance transaction.
	failure_reason If the refund failed, the reason for refund failure if known. Possible values are lost_or_stolen_card, expired_or_canceled_card, or unknown.
	id Unique identifier for the object.
	instructions_email Email to which refund instructions, if required, are sent to.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	next_action 
	object String representing the object's type. Objects of the same type share the same value.
	payment_intent ID of the PaymentIntent that was refunded.
	reason Reason for the refund, either user-provided (duplicate, fraudulent, or requested_by_customer) or generated by Stripe internally (expired_uncaptured_charge).
	receipt_number This is the transaction number that appears on email receipts sent for this refund.
	source_transfer_reversal The transfer reversal that is associated with the refund. Only present if the charge came from another Stripe account. See the Connect documentation for details.
	status Status of the refund. For credit card refunds, this can be pending, succeeded, or failed. For other types of refunds, it can be pending, requires_action, succeeded, failed, or canceled. Refer to our refunds documentation for more details.
	transfer_reversal If the accompanying transfer was reversed, the transfer reversal object. Only applicable if the charge was created using the destination parameter.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    cancel(client, refund, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec cancel(
  client :: Stripe.t(),
  refund :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Cancels a refund with a status of requires_action.
Refunds in other states cannot be canceled, and only refunds for payment methods that require customer action will enter the requires_action state.
Details
	Method: post
	Path: /v1/refunds/{refund}/cancel


  



    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:amount) => integer(),
    optional(:charge) => binary(),
    optional(:currency) => binary(),
    optional(:customer) => binary(),
    optional(:expand) => [binary()],
    optional(:instructions_email) => binary(),
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:origin) => :customer_balance,
    optional(:payment_intent) => binary(),
    optional(:reason) => :duplicate | :fraudulent | :requested_by_customer,
    optional(:refund_application_fee) => boolean(),
    optional(:reverse_transfer) => boolean()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Create a refund.
Details
	Method: post
	Path: /v1/refunds


  



    

    

  
    
      
      Link to this function
    
    expire(client, refund, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec expire(
  client :: Stripe.t(),
  refund :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Expire a refund with a status of requires_action.
Details
	Method: post
	Path: /v1/test_helpers/refunds/{refund}/expire


  



    

    

  
    
      
      Link to this function
    
    list(client, charge, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  charge :: binary(),
  params :: %{
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


You can see a list of the refunds belonging to a specific charge. Note that the 10 most recent refunds are always available by default on the charge object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional refunds.
Details
	Method: get
	Path: /v1/charges/{charge}/refunds


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, charge, refund, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  charge :: binary(),
  refund :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the details of an existing refund.
Details
	Method: get
	Path: /v1/charges/{charge}/refunds/{refund}


  



    

    

  
    
      
      Link to this function
    
    update(client, refund, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  refund :: binary(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()} | binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Updates the specified refund by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
This request only accepts metadata as an argument.
Details
	Method: post
	Path: /v1/refunds/{refund}


  


        

      



  

    
Stripe.SetupAttempt 
    



      
A SetupAttempt describes one attempted confirmation of a SetupIntent,
whether that confirmation was successful or unsuccessful. You can use
SetupAttempts to inspect details of a specific attempt at setting up a
payment method using a SetupIntent.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          created()

        


      


      
        
          t()

        


          The setup_attempt type.



      


  


  
    
      Functions
    


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of SetupAttempts associated with a provided SetupIntent.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.SetupAttempt{
  application: (binary() | term()) | nil,
  attach_to_self: boolean(),
  created: integer(),
  customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
  flow_directions: term() | nil,
  id: binary(),
  livemode: boolean(),
  object: binary(),
  on_behalf_of: (binary() | Stripe.Account.t()) | nil,
  payment_method: binary() | Stripe.PaymentMethod.t(),
  payment_method_details: term(),
  setup_error: Stripe.ApiErrors.t() | nil,
  setup_intent: binary() | Stripe.SetupIntent.t(),
  status: binary(),
  usage: binary()
}


      


The setup_attempt type.
	application The value of application on the SetupIntent at the time of this confirmation.
	attach_to_self If present, the SetupIntent's payment method will be attached to the in-context Stripe Account.

It can only be used for this Stripe Account’s own money movement flows like InboundTransfer and OutboundTransfers. It cannot be set to true when setting up a PaymentMethod for a Customer, and defaults to false when attaching a PaymentMethod to a Customer.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	customer The value of customer on the SetupIntent at the time of this confirmation.
	flow_directions Indicates the directions of money movement for which this payment method is intended to be used.

Include inbound if you intend to use the payment method as the origin to pull funds from. Include outbound if you intend to use the payment method as the destination to send funds to. You can include both if you intend to use the payment method for both purposes.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	on_behalf_of The value of on_behalf_of on the SetupIntent at the time of this confirmation.
	payment_method ID of the payment method used with this SetupAttempt.
	payment_method_details 
	setup_error The error encountered during this attempt to confirm the SetupIntent, if any.
	setup_intent ID of the SetupIntent that this attempt belongs to.
	status Status of this SetupAttempt, one of requires_confirmation, requires_action, processing, succeeded, failed, or abandoned.
	usage The value of usage on the SetupIntent at the time of this confirmation, one of off_session or on_session.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:created) => created() | integer(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:setup_intent) => binary(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of SetupAttempts associated with a provided SetupIntent.
Details
	Method: get
	Path: /v1/setup_attempts


  


        

      



  

    
Stripe.SetupIntent 
    



      
A SetupIntent guides you through the process of setting up and saving a customer's payment credentials for future payments.
For example, you could use a SetupIntent to set up and save your customer's card without immediately collecting a payment.
Later, you can use PaymentIntents to drive the payment flow.
Create a SetupIntent as soon as you're ready to collect your customer's payment credentials.
Do not maintain long-lived, unconfirmed SetupIntents as they may no longer be valid.
The SetupIntent then transitions through multiple statuses as it guides
you through the setup process.
Successful SetupIntents result in payment credentials that are optimized for future payments.
For example, cardholders in certain regions may need to be run through
Strong Customer Authentication at the time of payment method collection
in order to streamline later off-session payments.
If the SetupIntent is used with a Customer, upon success,
it will automatically attach the resulting payment method to that Customer.
We recommend using SetupIntents or setup_future_usage on
PaymentIntents to save payment methods in order to prevent saving invalid or unoptimized payment methods.
By using SetupIntents, you ensure that your customers experience the minimum set of required friction,
even as regulations change over time.
Related guide: Setup Intents API.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          acss_debit()

        


          If this is a acss_debit SetupIntent, this sub-hash contains details about the ACSS Debit payment method options.



      


      
        
          address()

        


      


      
        
          au_becs_debit()

        


          If this is an au_becs_debit PaymentMethod, this hash contains details about the bank account.



      


      
        
          bacs_debit()

        


          If this is a bacs_debit PaymentMethod, this hash contains details about the Bacs Direct Debit bank account.



      


      
        
          billing_details()

        


          Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.



      


      
        
          blik()

        


          If this is a blik PaymentMethod, this hash contains details about the BLIK payment method.



      


      
        
          boleto()

        


          If this is a boleto PaymentMethod, this hash contains details about the Boleto payment method.



      


      
        
          card()

        


          Configuration for any card setup attempted on this SetupIntent.



      


      
        
          created()

        


      


      
        
          customer_acceptance()

        


          This hash contains details about the customer acceptance of the Mandate.



      


      
        
          dob()

        


          Customer's date of birth



      


      
        
          eps()

        


          If this is an eps PaymentMethod, this hash contains details about the EPS payment method.



      


      
        
          financial_connections()

        


          Additional fields for Financial Connections Session creation



      


      
        
          fpx()

        


          If this is an fpx PaymentMethod, this hash contains details about the FPX payment method.



      


      
        
          ideal()

        


          If this is an ideal PaymentMethod, this hash contains details about the iDEAL payment method.



      


      
        
          klarna()

        


          If this is a klarna PaymentMethod, this hash contains details about the Klarna payment method.



      


      
        
          link()

        


          If this is a link PaymentMethod, this sub-hash contains details about the Link payment method options.



      


      
        
          mandate_data()

        


          This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.



      


      
        
          mandate_options()

        


          Additional fields for Mandate creation



      


      
        
          networks()

        


          Additional fields for network related functions



      


      
        
          online()

        


          If this is a Mandate accepted online, this hash contains details about the online acceptance.



      


      
        
          p24()

        


          If this is a p24 PaymentMethod, this hash contains details about the P24 payment method.



      


      
        
          payment_method_data()

        


          When included, this hash creates a PaymentMethod that is set as the payment_method
value in the SetupIntent.



      


      
        
          payment_method_options()

        


          Payment-method-specific configuration for this SetupIntent.



      


      
        
          radar_options()

        


          Options to configure Radar. See Radar Session for more information.



      


      
        
          sepa_debit()

        


          If this is a sepa_debit PaymentMethod, this hash contains details about the SEPA debit bank account.



      


      
        
          single_use()

        


          If this hash is populated, this SetupIntent will generate a single_use Mandate on success.



      


      
        
          sofort()

        


          If this is a sofort PaymentMethod, this hash contains details about the SOFORT payment method.



      


      
        
          t()

        


          The setup_intent type.



      


      
        
          us_bank_account()

        


          If this is a us_bank_account SetupIntent, this sub-hash contains details about the US bank account payment method options.



      


  


  
    
      Functions
    


      
        
          cancel(client, intent, params \\ %{}, opts \\ [])

        


          A SetupIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_confirmation, or requires_action..



      


      
        
          confirm(client, intent, params \\ %{}, opts \\ [])

        


          Confirm that your customer intends to set up the current orprovided payment method. For example, you would confirm a SetupIntent
when a customer hits the “Save” button on a payment method management
page on your website.



      


      
        
          create(client, params \\ %{}, opts \\ [])

        


          Creates a SetupIntent object.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          Returns a list of SetupIntents.



      


      
        
          retrieve(client, intent, params \\ %{}, opts \\ [])

        


          Retrieves the details of a SetupIntent that has previously been created..



      


      
        
          update(client, intent, params \\ %{}, opts \\ [])

        


          Updates a SetupIntent object.



      


      
        
          verify_microdeposits(client, intent, params \\ %{}, opts \\ [])

        


          Verifies microdeposits on a SetupIntent object.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    acss_debit()


      
       
       View Source
     


  


  

      

          @type acss_debit() :: %{
  optional(:currency) => :cad | :usd,
  optional(:mandate_options) => mandate_options(),
  optional(:verification_method) => :automatic | :instant | :microdeposits
}


      


If this is a acss_debit SetupIntent, this sub-hash contains details about the ACSS Debit payment method options.

  



  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      



  



  
    
      
      Link to this type
    
    au_becs_debit()


      
       
       View Source
     


  


  

      

          @type au_becs_debit() :: %{
  optional(:account_number) => binary(),
  optional(:bsb_number) => binary()
}


      


If this is an au_becs_debit PaymentMethod, this hash contains details about the bank account.

  



  
    
      
      Link to this type
    
    bacs_debit()


      
       
       View Source
     


  


  

      

          @type bacs_debit() :: %{
  optional(:account_number) => binary(),
  optional(:sort_code) => binary()
}


      


If this is a bacs_debit PaymentMethod, this hash contains details about the Bacs Direct Debit bank account.

  



  
    
      
      Link to this type
    
    billing_details()


      
       
       View Source
     


  


  

      

          @type billing_details() :: %{
  optional(:address) => address() | binary(),
  optional(:email) => binary() | binary(),
  optional(:name) => binary(),
  optional(:phone) => binary()
}


      


Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

  



  
    
      
      Link to this type
    
    blik()


      
       
       View Source
     


  


  

      

          @type blik() :: %{optional(:code) => binary()}


      


If this is a blik PaymentMethod, this hash contains details about the BLIK payment method.

  



  
    
      
      Link to this type
    
    boleto()


      
       
       View Source
     


  


  

      

          @type boleto() :: %{optional(:tax_id) => binary()}


      


If this is a boleto PaymentMethod, this hash contains details about the Boleto payment method.

  



  
    
      
      Link to this type
    
    card()


      
       
       View Source
     


  


  

      

          @type card() :: %{
  optional(:mandate_options) => mandate_options(),
  optional(:moto) => boolean(),
  optional(:network) =>
    :amex
    | :cartes_bancaires
    | :diners
    | :discover
    | :interac
    | :jcb
    | :mastercard
    | :unionpay
    | :unknown
    | :visa,
  optional(:request_three_d_secure) => :any | :automatic
}


      


Configuration for any card setup attempted on this SetupIntent.

  



  
    
      
      Link to this type
    
    created()


      
       
       View Source
     


  


  

      

          @type created() :: %{
  optional(:gt) => integer(),
  optional(:gte) => integer(),
  optional(:lt) => integer(),
  optional(:lte) => integer()
}


      



  



  
    
      
      Link to this type
    
    customer_acceptance()


      
       
       View Source
     


  


  

      

          @type customer_acceptance() :: %{
  optional(:accepted_at) => integer(),
  optional(:offline) => map(),
  optional(:online) => online(),
  optional(:type) => :offline | :online
}


      


This hash contains details about the customer acceptance of the Mandate.

  



  
    
      
      Link to this type
    
    dob()


      
       
       View Source
     


  


  

      

          @type dob() :: %{
  optional(:day) => integer(),
  optional(:month) => integer(),
  optional(:year) => integer()
}


      


Customer's date of birth

  



  
    
      
      Link to this type
    
    eps()


      
       
       View Source
     


  


  

      

          @type eps() :: %{
  optional(:bank) =>
    :arzte_und_apotheker_bank
    | :austrian_anadi_bank_ag
    | :bank_austria
    | :bankhaus_carl_spangler
    | :bankhaus_schelhammer_und_schattera_ag
    | :bawag_psk_ag
    | :bks_bank_ag
    | :brull_kallmus_bank_ag
    | :btv_vier_lander_bank
    | :capital_bank_grawe_gruppe_ag
    | :deutsche_bank_ag
    | :dolomitenbank
    | :easybank_ag
    | :erste_bank_und_sparkassen
    | :hypo_alpeadriabank_international_ag
    | :hypo_bank_burgenland_aktiengesellschaft
    | :hypo_noe_lb_fur_niederosterreich_u_wien
    | :hypo_oberosterreich_salzburg_steiermark
    | :hypo_tirol_bank_ag
    | :hypo_vorarlberg_bank_ag
    | :marchfelder_bank
    | :oberbank_ag
    | :raiffeisen_bankengruppe_osterreich
    | :schoellerbank_ag
    | :sparda_bank_wien
    | :volksbank_gruppe
    | :volkskreditbank_ag
    | :vr_bank_braunau
}


      


If this is an eps PaymentMethod, this hash contains details about the EPS payment method.

  



  
    
      
      Link to this type
    
    financial_connections()


      
       
       View Source
     


  


  

      

          @type financial_connections() :: %{
  optional(:permissions) => [
    :balances | :ownership | :payment_method | :transactions
  ],
  optional(:return_url) => binary()
}


      


Additional fields for Financial Connections Session creation

  



  
    
      
      Link to this type
    
    fpx()


      
       
       View Source
     


  


  

      

          @type fpx() :: %{
  optional(:account_holder_type) => :company | :individual,
  optional(:bank) =>
    :affin_bank
    | :agrobank
    | :alliance_bank
    | :ambank
    | :bank_islam
    | :bank_muamalat
    | :bank_of_china
    | :bank_rakyat
    | :bsn
    | :cimb
    | :deutsche_bank
    | :hong_leong_bank
    | :hsbc
    | :kfh
    | :maybank2e
    | :maybank2u
    | :ocbc
    | :pb_enterprise
    | :public_bank
    | :rhb
    | :standard_chartered
    | :uob
}


      


If this is an fpx PaymentMethod, this hash contains details about the FPX payment method.

  



  
    
      
      Link to this type
    
    ideal()


      
       
       View Source
     


  


  

      

          @type ideal() :: %{
  optional(:bank) =>
    :abn_amro
    | :asn_bank
    | :bunq
    | :handelsbanken
    | :ing
    | :knab
    | :moneyou
    | :rabobank
    | :regiobank
    | :revolut
    | :sns_bank
    | :triodos_bank
    | :van_lanschot
}


      


If this is an ideal PaymentMethod, this hash contains details about the iDEAL payment method.

  



  
    
      
      Link to this type
    
    klarna()


      
       
       View Source
     


  


  

      

          @type klarna() :: %{optional(:dob) => dob()}


      


If this is a klarna PaymentMethod, this hash contains details about the Klarna payment method.

  



  
    
      
      Link to this type
    
    link()


      
       
       View Source
     


  


  

      

          @type link() :: %{optional(:persistent_token) => binary()}


      


If this is a link PaymentMethod, this sub-hash contains details about the Link payment method options.

  



  
    
      
      Link to this type
    
    mandate_data()


      
       
       View Source
     


  


  

      

          @type mandate_data() :: %{optional(:customer_acceptance) => customer_acceptance()}


      


This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.

  



  
    
      
      Link to this type
    
    mandate_options()


      
       
       View Source
     


  


  

      

          @type mandate_options() :: %{
  optional(:custom_mandate_url) => binary() | binary(),
  optional(:default_for) => [:invoice | :subscription],
  optional(:interval_description) => binary(),
  optional(:payment_schedule) => :combined | :interval | :sporadic,
  optional(:transaction_type) => :business | :personal
}


      


Additional fields for Mandate creation

  



  
    
      
      Link to this type
    
    networks()


      
       
       View Source
     


  


  

      

          @type networks() :: %{optional(:requested) => [:ach | :us_domestic_wire]}


      


Additional fields for network related functions

  



  
    
      
      Link to this type
    
    online()


      
       
       View Source
     


  


  

      

          @type online() :: %{
  optional(:ip_address) => binary(),
  optional(:user_agent) => binary()
}


      


If this is a Mandate accepted online, this hash contains details about the online acceptance.

  



  
    
      
      Link to this type
    
    p24()


      
       
       View Source
     


  


  

      

          @type p24() :: %{
  optional(:bank) =>
    :alior_bank
    | :bank_millennium
    | :bank_nowy_bfg_sa
    | :bank_pekao_sa
    | :banki_spbdzielcze
    | :blik
    | :bnp_paribas
    | :boz
    | :citi_handlowy
    | :credit_agricole
    | :envelobank
    | :etransfer_pocztowy24
    | :getin_bank
    | :ideabank
    | :ing
    | :inteligo
    | :mbank_mtransfer
    | :nest_przelew
    | :noble_pay
    | :pbac_z_ipko
    | :plus_bank
    | :santander_przelew24
    | :tmobile_usbugi_bankowe
    | :toyota_bank
    | :volkswagen_bank
}


      


If this is a p24 PaymentMethod, this hash contains details about the P24 payment method.

  



  
    
      
      Link to this type
    
    payment_method_data()


      
       
       View Source
     


  


  

      

          @type payment_method_data() :: %{
  optional(:acss_debit) => acss_debit(),
  optional(:affirm) => map(),
  optional(:afterpay_clearpay) => map(),
  optional(:alipay) => map(),
  optional(:au_becs_debit) => au_becs_debit(),
  optional(:bacs_debit) => bacs_debit(),
  optional(:bancontact) => map(),
  optional(:billing_details) => billing_details(),
  optional(:blik) => map(),
  optional(:boleto) => boleto(),
  optional(:customer_balance) => map(),
  optional(:eps) => eps(),
  optional(:fpx) => fpx(),
  optional(:giropay) => map(),
  optional(:grabpay) => map(),
  optional(:ideal) => ideal(),
  optional(:interac_present) => map(),
  optional(:klarna) => klarna(),
  optional(:konbini) => map(),
  optional(:link) => map(),
  optional(:metadata) => %{optional(binary()) => binary()},
  optional(:oxxo) => map(),
  optional(:p24) => p24(),
  optional(:paynow) => map(),
  optional(:pix) => map(),
  optional(:promptpay) => map(),
  optional(:radar_options) => radar_options(),
  optional(:sepa_debit) => sepa_debit(),
  optional(:sofort) => sofort(),
  optional(:type) =>
    :acss_debit
    | :affirm
    | :afterpay_clearpay
    | :alipay
    | :au_becs_debit
    | :bacs_debit
    | :bancontact
    | :blik
    | :boleto
    | :customer_balance
    | :eps
    | :fpx
    | :giropay
    | :grabpay
    | :ideal
    | :klarna
    | :konbini
    | :link
    | :oxxo
    | :p24
    | :paynow
    | :pix
    | :promptpay
    | :sepa_debit
    | :sofort
    | :us_bank_account
    | :wechat_pay,
  optional(:us_bank_account) => us_bank_account(),
  optional(:wechat_pay) => map()
}


      


When included, this hash creates a PaymentMethod that is set as the payment_method
value in the SetupIntent.

  



  
    
      
      Link to this type
    
    payment_method_options()


      
       
       View Source
     


  


  

      

          @type payment_method_options() :: %{
  optional(:acss_debit) => acss_debit(),
  optional(:blik) => blik(),
  optional(:card) => card(),
  optional(:link) => link(),
  optional(:sepa_debit) => sepa_debit(),
  optional(:us_bank_account) => us_bank_account()
}


      


Payment-method-specific configuration for this SetupIntent.

  



  
    
      
      Link to this type
    
    radar_options()


      
       
       View Source
     


  


  

      

          @type radar_options() :: %{optional(:session) => binary()}


      


Options to configure Radar. See Radar Session for more information.

  



  
    
      
      Link to this type
    
    sepa_debit()


      
       
       View Source
     


  


  

      

          @type sepa_debit() :: %{optional(:iban) => binary()}


      


If this is a sepa_debit PaymentMethod, this hash contains details about the SEPA debit bank account.

  



  
    
      
      Link to this type
    
    single_use()


      
       
       View Source
     


  


  

      

          @type single_use() :: %{
  optional(:amount) => integer(),
  optional(:currency) => binary()
}


      


If this hash is populated, this SetupIntent will generate a single_use Mandate on success.

  



  
    
      
      Link to this type
    
    sofort()


      
       
       View Source
     


  


  

      

          @type sofort() :: %{optional(:country) => :AT | :BE | :DE | :ES | :IT | :NL}


      


If this is a sofort PaymentMethod, this hash contains details about the SOFORT payment method.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.SetupIntent{
  application: (binary() | term()) | nil,
  attach_to_self: boolean(),
  cancellation_reason: binary() | nil,
  client_secret: binary() | nil,
  created: integer(),
  customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
  description: binary() | nil,
  flow_directions: term() | nil,
  id: binary(),
  last_setup_error: Stripe.ApiErrors.t() | nil,
  latest_attempt: (binary() | Stripe.SetupAttempt.t()) | nil,
  livemode: boolean(),
  mandate: (binary() | Stripe.Mandate.t()) | nil,
  metadata: term() | nil,
  next_action: term() | nil,
  object: binary(),
  on_behalf_of: (binary() | Stripe.Account.t()) | nil,
  payment_method: (binary() | Stripe.PaymentMethod.t()) | nil,
  payment_method_options: term() | nil,
  payment_method_types: term(),
  single_use_mandate: (binary() | Stripe.Mandate.t()) | nil,
  status: binary(),
  usage: binary()
}


      


The setup_intent type.
	application ID of the Connect application that created the SetupIntent.
	attach_to_self If present, the SetupIntent's payment method will be attached to the in-context Stripe Account.

It can only be used for this Stripe Account’s own money movement flows like InboundTransfer and OutboundTransfers. It cannot be set to true when setting up a PaymentMethod for a Customer, and defaults to false when attaching a PaymentMethod to a Customer.
	cancellation_reason Reason for cancellation of this SetupIntent, one of abandoned, requested_by_customer, or duplicate.
	client_secret The client secret of this SetupIntent. Used for client-side retrieval using a publishable key.

The client secret can be used to complete payment setup from your frontend. It should not be stored, logged, or exposed to anyone other than the customer. Make sure that you have TLS enabled on any page that includes the client secret.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	customer ID of the Customer this SetupIntent belongs to, if one exists.

If present, the SetupIntent's payment method will be attached to the Customer on successful setup. Payment methods attached to other Customers cannot be used with this SetupIntent.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	flow_directions Indicates the directions of money movement for which this payment method is intended to be used.

Include inbound if you intend to use the payment method as the origin to pull funds from. Include outbound if you intend to use the payment method as the destination to send funds to. You can include both if you intend to use the payment method for both purposes.
	id Unique identifier for the object.
	last_setup_error The error encountered in the previous SetupIntent confirmation.
	latest_attempt The most recent SetupAttempt for this SetupIntent.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	mandate ID of the multi use Mandate generated by the SetupIntent.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	next_action If present, this property tells you what actions you need to take in order for your customer to continue payment setup.
	object String representing the object's type. Objects of the same type share the same value.
	on_behalf_of The account (if any) for which the setup is intended.
	payment_method ID of the payment method used with this SetupIntent.
	payment_method_options Payment-method-specific configuration for this SetupIntent.
	payment_method_types The list of payment method types (e.g. card) that this SetupIntent is allowed to set up.
	single_use_mandate ID of the single_use Mandate generated by the SetupIntent.
	status Status of this SetupIntent, one of requires_payment_method, requires_confirmation, requires_action, processing, canceled, or succeeded.
	usage Indicates how the payment method is intended to be used in the future.

Use on_session if you intend to only reuse the payment method when the customer is in your checkout flow. Use off_session if your customer may or may not be in your checkout flow. If not provided, this value defaults to off_session.

  



  
    
      
      Link to this type
    
    us_bank_account()


      
       
       View Source
     


  


  

      

          @type us_bank_account() :: %{
  optional(:financial_connections) => financial_connections(),
  optional(:networks) => networks(),
  optional(:verification_method) => :automatic | :instant | :microdeposits
}


      


If this is a us_bank_account SetupIntent, this sub-hash contains details about the US bank account payment method options.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    cancel(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec cancel(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:cancellation_reason) =>
      :abandoned | :duplicate | :requested_by_customer,
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


A SetupIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_confirmation, or requires_action..
Once canceled, setup is abandoned and any operations on the SetupIntent will fail with an error.
Details
	Method: post
	Path: /v1/setup_intents/{intent}/cancel


  



    

    

  
    
      
      Link to this function
    
    confirm(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec confirm(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:mandate_data) => mandate_data() | mandate_data(),
    optional(:payment_method) => binary(),
    optional(:payment_method_data) => payment_method_data(),
    optional(:payment_method_options) => payment_method_options(),
    optional(:return_url) => binary()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Confirm that your customer intends to set up the current orprovided payment method. For example, you would confirm a SetupIntent
when a customer hits the “Save” button on a payment method management
page on your website.
If the selected payment method does not require any additionalsteps from the customer, the SetupIntent will transition to the
succeeded status.
Otherwise, it will transition to the requires_action status andsuggest additional actions via next_action. If setup fails,
the SetupIntent will transition to the
requires_payment_method status.
Details
	Method: post
	Path: /v1/setup_intents/{intent}/confirm


  



    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:attach_to_self) => boolean(),
    optional(:confirm) => boolean(),
    optional(:customer) => binary(),
    optional(:description) => binary(),
    optional(:expand) => [binary()],
    optional(:flow_directions) => [:inbound | :outbound],
    optional(:mandate_data) => mandate_data(),
    optional(:metadata) => %{optional(binary()) => binary()},
    optional(:on_behalf_of) => binary(),
    optional(:payment_method) => binary(),
    optional(:payment_method_data) => payment_method_data(),
    optional(:payment_method_options) => payment_method_options(),
    optional(:payment_method_types) => [binary()],
    optional(:return_url) => binary(),
    optional(:single_use) => single_use(),
    optional(:usage) => :off_session | :on_session
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Creates a SetupIntent object.
After the SetupIntent is created, attach a payment method and confirmto collect any required permissions to charge the payment method later.
Details
	Method: post
	Path: /v1/setup_intents


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:attach_to_self) => boolean(),
    optional(:created) => created() | integer(),
    optional(:customer) => binary(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:payment_method) => binary(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Returns a list of SetupIntents.
Details
	Method: get
	Path: /v1/setup_intents


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:client_secret) => binary(),
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the details of a SetupIntent that has previously been created..
Client-side retrieval using a publishable key is allowed when the client_secret is provided in the query string..
When retrieved with a publishable key, only a subset of properties will be returned. Please refer to the SetupIntent object reference for more details.
Details
	Method: get
	Path: /v1/setup_intents/{intent}


  



    

    

  
    
      
      Link to this function
    
    update(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:attach_to_self) => boolean(),
    optional(:customer) => binary(),
    optional(:description) => binary(),
    optional(:expand) => [binary()],
    optional(:flow_directions) => [:inbound | :outbound],
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:payment_method) => binary(),
    optional(:payment_method_data) => payment_method_data(),
    optional(:payment_method_options) => payment_method_options(),
    optional(:payment_method_types) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Updates a SetupIntent object.
Details
	Method: post
	Path: /v1/setup_intents/{intent}


  



    

    

  
    
      
      Link to this function
    
    verify_microdeposits(client, intent, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec verify_microdeposits(
  client :: Stripe.t(),
  intent :: binary(),
  params :: %{
    optional(:amounts) => [integer()],
    optional(:descriptor_code) => binary(),
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Verifies microdeposits on a SetupIntent object.
Details
	Method: post
	Path: /v1/setup_intents/{intent}/verify_microdeposits


  


        

      



  

    
Stripe.Token 
    



      
Tokenization is the process Stripe uses to collect sensitive card or bank
account details, or personally identifiable information (PII), directly from
your customers in a secure manner. A token representing this information is
returned to your server to use. You should use our
recommended payments integrations to perform this process
client-side. This ensures that no sensitive card data touches your server,
and allows your integration to operate in a PCI-compliant way.
If you cannot use client-side tokenization, you can also create tokens using
the API with either your publishable or secret API key. Keep in mind that if
your integration uses this method, you are responsible for any PCI compliance
that may be required, and you must keep your secret API key safe. Unlike with
client-side tokenization, your customer's information is not sent directly to
Stripe, so we cannot determine how it is handled or stored.
Tokens cannot be stored or used more than once. To store card or bank account
information for later use, you can create Customer
objects or Custom accounts. Note that
Radar, our integrated solution for automatic fraud protection,
performs best with integrations that use client-side tokenization.
Related guide: Accept a payment

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          account()

        


          Information for the account this token will represent.



      


      
        
          additional_document()

        


          A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.



      


      
        
          address()

        


          The company's primary address.



      


      
        
          address_kana()

        


          The Kana variation of the company's primary address (Japan only).



      


      
        
          address_kanji()

        


          The Kanji variation of the company's primary address (Japan only).



      


      
        
          bank_account()

        


          The bank account this token will represent.



      


      
        
          card()

        


      


      
        
          company()

        


          Information about the company or business.



      


      
        
          company_authorization()

        


          One or more documents that demonstrate proof that this person is authorized to represent the company.



      


      
        
          cvc_update()

        


          The updated CVC value this token will represent.



      


      
        
          dob()

        


      


      
        
          document()

        


          A document verifying the business.



      


      
        
          documents()

        


          Documents that may be submitted to satisfy various informational requests.



      


      
        
          individual()

        


          Information about the person represented by the account.



      


      
        
          ownership_declaration()

        


          This hash is used to attest that the beneficial owner information provided to Stripe is both current and correct.



      


      
        
          passport()

        


          One or more documents showing the person's passport page with photo and personal data.



      


      
        
          person()

        


          Information for the person this token will represent.



      


      
        
          pii()

        


          The PII this token will represent.



      


      
        
          registered_address()

        


          The individual's registered address.



      


      
        
          relationship()

        


          The relationship that this person has with the account's legal entity.



      


      
        
          t()

        


          The token type.



      


      
        
          verification()

        


          Information on the verification state of the company.



      


      
        
          visa()

        


          One or more documents showing the person's visa required for living in the country where they are residing.



      


  


  
    
      Functions
    


      
        
          create(client, params \\ %{}, opts \\ [])

        


          Creates a single-use token that represents a bank account’s details.This token can be used with any API method in place of a bank account dictionary. This token can be used only once, by attaching it to a Custom account.



      


      
        
          retrieve(client, token, params \\ %{}, opts \\ [])

        


          Retrieves the token with the given ID.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    account()


      
       
       View Source
     


  


  

      

          @type account() :: %{
  optional(:business_type) =>
    :company | :government_entity | :individual | :non_profit,
  optional(:company) => company(),
  optional(:individual) => individual(),
  optional(:tos_shown_and_accepted) => boolean()
}


      


Information for the account this token will represent.

  



  
    
      
      Link to this type
    
    additional_document()


      
       
       View Source
     


  


  

      

          @type additional_document() :: %{
  optional(:back) => binary(),
  optional(:front) => binary()
}


      


A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.

  



  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      


The company's primary address.

  



  
    
      
      Link to this type
    
    address_kana()


      
       
       View Source
     


  


  

      

          @type address_kana() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary(),
  optional(:town) => binary()
}


      


The Kana variation of the company's primary address (Japan only).

  



  
    
      
      Link to this type
    
    address_kanji()


      
       
       View Source
     


  


  

      

          @type address_kanji() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary(),
  optional(:town) => binary()
}


      


The Kanji variation of the company's primary address (Japan only).

  



  
    
      
      Link to this type
    
    bank_account()


      
       
       View Source
     


  


  

      

          @type bank_account() :: %{
  optional(:account_holder_name) => binary(),
  optional(:account_holder_type) => :company | :individual,
  optional(:account_number) => binary(),
  optional(:account_type) => :checking | :futsu | :savings | :toza,
  optional(:country) => binary(),
  optional(:currency) => binary(),
  optional(:routing_number) => binary()
}


      


The bank account this token will represent.

  



  
    
      
      Link to this type
    
    card()


      
       
       View Source
     


  


  

      

          @type card() :: %{
  optional(:address_city) => binary(),
  optional(:address_country) => binary(),
  optional(:address_line1) => binary(),
  optional(:address_line2) => binary(),
  optional(:address_state) => binary(),
  optional(:address_zip) => binary(),
  optional(:currency) => binary(),
  optional(:cvc) => binary(),
  optional(:exp_month) => binary(),
  optional(:exp_year) => binary(),
  optional(:name) => binary(),
  optional(:number) => binary()
}


      



  



  
    
      
      Link to this type
    
    company()


      
       
       View Source
     


  


  

      

          @type company() :: %{
  optional(:address) => address(),
  optional(:address_kana) => address_kana(),
  optional(:address_kanji) => address_kanji(),
  optional(:directors_provided) => boolean(),
  optional(:executives_provided) => boolean(),
  optional(:name) => binary(),
  optional(:name_kana) => binary(),
  optional(:name_kanji) => binary(),
  optional(:owners_provided) => boolean(),
  optional(:ownership_declaration) => ownership_declaration(),
  optional(:ownership_declaration_shown_and_signed) => boolean(),
  optional(:phone) => binary(),
  optional(:registration_number) => binary(),
  optional(:structure) =>
    :free_zone_establishment
    | :free_zone_llc
    | :government_instrumentality
    | :governmental_unit
    | :incorporated_non_profit
    | :limited_liability_partnership
    | :llc
    | :multi_member_llc
    | :private_company
    | :private_corporation
    | :private_partnership
    | :public_company
    | :public_corporation
    | :public_partnership
    | :single_member_llc
    | :sole_establishment
    | :sole_proprietorship
    | :tax_exempt_government_instrumentality
    | :unincorporated_association
    | :unincorporated_non_profit,
  optional(:tax_id) => binary(),
  optional(:tax_id_registrar) => binary(),
  optional(:vat_id) => binary(),
  optional(:verification) => verification()
}


      


Information about the company or business.

  



  
    
      
      Link to this type
    
    company_authorization()


      
       
       View Source
     


  


  

      

          @type company_authorization() :: %{optional(:files) => [binary()]}


      


One or more documents that demonstrate proof that this person is authorized to represent the company.

  



  
    
      
      Link to this type
    
    cvc_update()


      
       
       View Source
     


  


  

      

          @type cvc_update() :: %{optional(:cvc) => binary()}


      


The updated CVC value this token will represent.

  



  
    
      
      Link to this type
    
    dob()


      
       
       View Source
     


  


  

      

          @type dob() :: %{
  optional(:day) => integer(),
  optional(:month) => integer(),
  optional(:year) => integer()
}


      



  



  
    
      
      Link to this type
    
    document()


      
       
       View Source
     


  


  

      

          @type document() :: %{optional(:back) => binary(), optional(:front) => binary()}


      


A document verifying the business.

  



  
    
      
      Link to this type
    
    documents()


      
       
       View Source
     


  


  

      

          @type documents() :: %{
  optional(:company_authorization) => company_authorization(),
  optional(:passport) => passport(),
  optional(:visa) => visa()
}


      


Documents that may be submitted to satisfy various informational requests.

  



  
    
      
      Link to this type
    
    individual()


      
       
       View Source
     


  


  

      

          @type individual() :: %{
  optional(:address) => address(),
  optional(:address_kana) => address_kana(),
  optional(:address_kanji) => address_kanji(),
  optional(:dob) => dob() | binary(),
  optional(:email) => binary(),
  optional(:first_name) => binary(),
  optional(:first_name_kana) => binary(),
  optional(:first_name_kanji) => binary(),
  optional(:full_name_aliases) => [binary()] | binary(),
  optional(:gender) => binary(),
  optional(:id_number) => binary(),
  optional(:id_number_secondary) => binary(),
  optional(:last_name) => binary(),
  optional(:last_name_kana) => binary(),
  optional(:last_name_kanji) => binary(),
  optional(:maiden_name) => binary(),
  optional(:metadata) => %{optional(binary()) => binary()} | binary(),
  optional(:phone) => binary(),
  optional(:political_exposure) => :existing | :none,
  optional(:registered_address) => registered_address(),
  optional(:ssn_last_4) => binary(),
  optional(:verification) => verification()
}


      


Information about the person represented by the account.

  



  
    
      
      Link to this type
    
    ownership_declaration()


      
       
       View Source
     


  


  

      

          @type ownership_declaration() :: %{
  optional(:date) => integer(),
  optional(:ip) => binary(),
  optional(:user_agent) => binary()
}


      


This hash is used to attest that the beneficial owner information provided to Stripe is both current and correct.

  



  
    
      
      Link to this type
    
    passport()


      
       
       View Source
     


  


  

      

          @type passport() :: %{optional(:files) => [binary()]}


      


One or more documents showing the person's passport page with photo and personal data.

  



  
    
      
      Link to this type
    
    person()


      
       
       View Source
     


  


  

      

          @type person() :: %{
  optional(:address) => address(),
  optional(:address_kana) => address_kana(),
  optional(:address_kanji) => address_kanji(),
  optional(:dob) => dob() | binary(),
  optional(:documents) => documents(),
  optional(:email) => binary(),
  optional(:first_name) => binary(),
  optional(:first_name_kana) => binary(),
  optional(:first_name_kanji) => binary(),
  optional(:full_name_aliases) => [binary()] | binary(),
  optional(:gender) => binary(),
  optional(:id_number) => binary(),
  optional(:id_number_secondary) => binary(),
  optional(:last_name) => binary(),
  optional(:last_name_kana) => binary(),
  optional(:last_name_kanji) => binary(),
  optional(:maiden_name) => binary(),
  optional(:metadata) => %{optional(binary()) => binary()} | binary(),
  optional(:nationality) => binary(),
  optional(:phone) => binary(),
  optional(:political_exposure) => binary(),
  optional(:registered_address) => registered_address(),
  optional(:relationship) => relationship(),
  optional(:ssn_last_4) => binary(),
  optional(:verification) => verification()
}


      


Information for the person this token will represent.

  



  
    
      
      Link to this type
    
    pii()


      
       
       View Source
     


  


  

      

          @type pii() :: %{optional(:id_number) => binary()}


      


The PII this token will represent.

  



  
    
      
      Link to this type
    
    registered_address()


      
       
       View Source
     


  


  

      

          @type registered_address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      


The individual's registered address.

  



  
    
      
      Link to this type
    
    relationship()


      
       
       View Source
     


  


  

      

          @type relationship() :: %{
  optional(:director) => boolean(),
  optional(:executive) => boolean(),
  optional(:owner) => boolean(),
  optional(:percent_ownership) => number() | binary(),
  optional(:representative) => boolean(),
  optional(:title) => binary()
}


      


The relationship that this person has with the account's legal entity.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Token{
  bank_account: Stripe.BankAccount.t(),
  card: Stripe.Card.t(),
  client_ip: binary() | nil,
  created: integer(),
  id: binary(),
  livemode: boolean(),
  object: binary(),
  type: binary(),
  used: boolean()
}


      


The token type.
	bank_account 
	card 
	client_ip IP address of the client that generated the token.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	type Type of the token: account, bank_account, card, or pii.
	used Whether this token has already been used (tokens can be used only once).


  



  
    
      
      Link to this type
    
    verification()


      
       
       View Source
     


  


  

      

          @type verification() :: %{optional(:document) => document()}


      


Information on the verification state of the company.

  



  
    
      
      Link to this type
    
    visa()


      
       
       View Source
     


  


  

      

          @type visa() :: %{optional(:files) => [binary()]}


      


One or more documents showing the person's visa required for living in the country where they are residing.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:account) => account(),
    optional(:bank_account) => bank_account(),
    optional(:card) => card() | binary(),
    optional(:customer) => binary(),
    optional(:cvc_update) => cvc_update(),
    optional(:expand) => [binary()],
    optional(:person) => person(),
    optional(:pii) => pii()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Creates a single-use token that represents a bank account’s details.This token can be used with any API method in place of a bank account dictionary. This token can be used only once, by attaching it to a Custom account.
Details
	Method: post
	Path: /v1/tokens


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, token, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  token :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves the token with the given ID.
Details
	Method: get
	Path: /v1/tokens/{token}


  


        

      



  

    
Stripe.ApplePayDomain 
    



      

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          t()

        


          The apple_pay_domain type.



      


  


  
    
      Functions
    


      
        
          create(client, params \\ %{}, opts \\ [])

        


          Create an apple pay domain.



      


      
        
          delete(client, domain, opts \\ [])

        


          Delete an apple pay domain.



      


      
        
          list(client, params \\ %{}, opts \\ [])

        


          List apple pay domains.



      


      
        
          retrieve(client, domain, params \\ %{}, opts \\ [])

        


          Retrieve an apple pay domain.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.ApplePayDomain{
  created: integer(),
  domain_name: binary(),
  id: binary(),
  livemode: boolean(),
  object: binary()
}


      


The apple_pay_domain type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	domain_name 
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    create(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec create(
  client :: Stripe.t(),
  params :: %{
    optional(:domain_name) => binary(),
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Create an apple pay domain.
Details
	Method: post
	Path: /v1/apple_pay/domains


  



    

  
    
      
      Link to this function
    
    delete(client, domain, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec delete(client :: Stripe.t(), domain :: binary(), opts :: Keyword.t()) ::
  {:ok, Stripe.DeletedApplePayDomain.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Delete an apple pay domain.
Details
	Method: delete
	Path: /v1/apple_pay/domains/{domain}


  



    

    

  
    
      
      Link to this function
    
    list(client, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec list(
  client :: Stripe.t(),
  params :: %{
    optional(:domain_name) => binary(),
    optional(:ending_before) => binary(),
    optional(:expand) => [binary()],
    optional(:limit) => integer(),
    optional(:starting_after) => binary()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


List apple pay domains.
Details
	Method: get
	Path: /v1/apple_pay/domains


  



    

    

  
    
      
      Link to this function
    
    retrieve(client, domain, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  domain :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieve an apple pay domain.
Details
	Method: get
	Path: /v1/apple_pay/domains/{domain}


  


        

      



  

    
Stripe.BankAccount 
    



      
These bank accounts are payment methods on Customer objects.
On the other hand External Accounts are transfer
destinations on Account objects for Custom accounts.
They can be bank accounts or debit cards as well, and are documented in the links above.
Related guide: Bank Debits and Transfers.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          address()

        


          Owner's address.



      


      
        
          owner()

        


      


      
        
          t()

        


          The bank_account type.



      


  


  
    
      Functions
    


      
        
          delete(client, customer, id, params \\ %{}, opts \\ [])

        


          Delete a specified source for a given customer.



      


      
        
          update(client, customer, id, params \\ %{}, opts \\ [])

        


          Update a specified source for a given customer.



      


      
        
          verify(client, customer, id, params \\ %{}, opts \\ [])

        


          Verify a specified bank account for a given customer.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      


Owner's address.

  



  
    
      
      Link to this type
    
    owner()


      
       
       View Source
     


  


  

      

          @type owner() :: %{
  optional(:address) => address(),
  optional(:email) => binary(),
  optional(:name) => binary(),
  optional(:phone) => binary()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.BankAccount{
  account: (binary() | Stripe.Account.t()) | nil,
  account_holder_name: binary() | nil,
  account_holder_type: binary() | nil,
  account_type: binary() | nil,
  available_payout_methods: term() | nil,
  bank_name: binary() | nil,
  country: binary(),
  currency: binary(),
  customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
  default_for_currency: boolean() | nil,
  fingerprint: binary() | nil,
  id: binary(),
  last4: binary(),
  metadata: term() | nil,
  object: binary(),
  routing_number: binary() | nil,
  status: binary()
}


      


The bank_account type.
	account The ID of the account that the bank account is associated with.
	account_holder_name The name of the person or business that owns the bank account.
	account_holder_type The type of entity that holds the account. This can be either individual or company.
	account_type The bank account type. This can only be checking or savings in most countries. In Japan, this can only be futsu or toza.
	available_payout_methods A set of available payout methods for this bank account. Only values from this set should be passed as the method when creating a payout.
	bank_name Name of the bank associated with the routing number (e.g., WELLS FARGO).
	country Two-letter ISO code representing the country the bank account is located in.
	currency Three-letter ISO code for the currency paid out to the bank account.
	customer The ID of the customer that the bank account is associated with.
	default_for_currency Whether this bank account is the default external account for its currency.
	fingerprint Uniquely identifies this particular bank account. You can use this attribute to check whether two bank accounts are the same.
	id Unique identifier for the object.
	last4 The last four digits of the bank account number.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	routing_number The routing transit number for the bank account.
	status For bank accounts, possible values are new, validated, verified, verification_failed, or errored. A bank account that hasn't had any activity or validation performed is new. If Stripe can determine that the bank account exists, its status will be validated. Note that there often isn’t enough information to know (e.g., for smaller credit unions), and the validation is not always run. If customer bank account verification has succeeded, the bank account status will be verified. If the verification failed for any reason, such as microdeposit failure, the status will be verification_failed. If a transfer sent to this bank account fails, we'll set the status to errored and will not continue to send transfers until the bank details are updated.

For external accounts, possible values are new and errored. Validations aren't run against external accounts because they're only used for payouts. This means the other statuses don't apply. If a transfer fails, the status is set to errored and transfers are stopped until account details are updated.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    delete(client, customer, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec delete(
  client :: Stripe.t(),
  customer :: binary(),
  id :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) ::
  {:ok, Stripe.PaymentSource.t() | Stripe.DeletedPaymentSource.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Delete a specified source for a given customer.
Details
	Method: delete
	Path: /v1/customers/{customer}/sources/{id}


  



    

    

  
    
      
      Link to this function
    
    update(client, customer, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  customer :: binary(),
  id :: binary(),
  params :: %{
    optional(:account_holder_name) => binary(),
    optional(:account_holder_type) => :company | :individual,
    optional(:address_city) => binary(),
    optional(:address_country) => binary(),
    optional(:address_line1) => binary(),
    optional(:address_line2) => binary(),
    optional(:address_state) => binary(),
    optional(:address_zip) => binary(),
    optional(:exp_month) => binary(),
    optional(:exp_year) => binary(),
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:name) => binary(),
    optional(:owner) => owner()
  },
  opts :: Keyword.t()
) ::
  {:ok, Stripe.Card.t() | t() | Stripe.Source.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Update a specified source for a given customer.
Details
	Method: post
	Path: /v1/customers/{customer}/sources/{id}


  



    

    

  
    
      
      Link to this function
    
    verify(client, customer, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec verify(
  client :: Stripe.t(),
  customer :: binary(),
  id :: binary(),
  params :: %{
    optional(:amounts) => [integer()],
    optional(:expand) => [binary()]
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Verify a specified bank account for a given customer.
Details
	Method: post
	Path: /v1/customers/{customer}/sources/{id}/verify


  


        

      



  

    
Stripe.Card 
    



      
You can store multiple cards on a customer in order to charge the customer
later. You can also store multiple debit cards on a recipient in order to
transfer to those cards later.
Related guide: Card Payments with Sources.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          address()

        


          Owner's address.



      


      
        
          owner()

        


      


      
        
          t()

        


          The card type.



      


  


  
    
      Functions
    


      
        
          delete(client, customer, id, params \\ %{}, opts \\ [])

        


          Delete a specified source for a given customer.



      


      
        
          update(client, customer, id, params \\ %{}, opts \\ [])

        


          Update a specified source for a given customer.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    address()


      
       
       View Source
     


  


  

      

          @type address() :: %{
  optional(:city) => binary(),
  optional(:country) => binary(),
  optional(:line1) => binary(),
  optional(:line2) => binary(),
  optional(:postal_code) => binary(),
  optional(:state) => binary()
}


      


Owner's address.

  



  
    
      
      Link to this type
    
    owner()


      
       
       View Source
     


  


  

      

          @type owner() :: %{
  optional(:address) => address(),
  optional(:email) => binary(),
  optional(:name) => binary(),
  optional(:phone) => binary()
}


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.Card{
  account: (binary() | Stripe.Account.t()) | nil,
  address_city: binary() | nil,
  address_country: binary() | nil,
  address_line1: binary() | nil,
  address_line1_check: binary() | nil,
  address_line2: binary() | nil,
  address_state: binary() | nil,
  address_zip: binary() | nil,
  address_zip_check: binary() | nil,
  available_payout_methods: term() | nil,
  brand: binary(),
  country: binary() | nil,
  currency: binary() | nil,
  customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
  cvc_check: binary() | nil,
  default_for_currency: boolean() | nil,
  description: binary(),
  dynamic_last4: binary() | nil,
  exp_month: integer(),
  exp_year: integer(),
  fingerprint: binary() | nil,
  funding: binary(),
  id: binary(),
  iin: binary(),
  issuer: binary(),
  last4: binary(),
  metadata: term() | nil,
  name: binary() | nil,
  object: binary(),
  status: binary() | nil,
  tokenization_method: binary() | nil
}


      


The card type.
	account The account this card belongs to. This attribute will not be in the card object if the card belongs to a customer or recipient instead.
	address_city City/District/Suburb/Town/Village.
	address_country Billing address country, if provided when creating card.
	address_line1 Address line 1 (Street address/PO Box/Company name).
	address_line1_check If address_line1 was provided, results of the check: pass, fail, unavailable, or unchecked.
	address_line2 Address line 2 (Apartment/Suite/Unit/Building).
	address_state State/County/Province/Region.
	address_zip ZIP or postal code.
	address_zip_check If address_zip was provided, results of the check: pass, fail, unavailable, or unchecked.
	available_payout_methods A set of available payout methods for this card. Only values from this set should be passed as the method when creating a payout.
	brand Card brand. Can be American Express, Diners Club, Discover, JCB, MasterCard, UnionPay, Visa, or Unknown.
	country Two-letter ISO code representing the country of the card. You could use this attribute to get a sense of the international breakdown of cards you've collected.
	currency Three-letter ISO code for currency. Only applicable on accounts (not customers or recipients). The card can be used as a transfer destination for funds in this currency.
	customer The customer that this card belongs to. This attribute will not be in the card object if the card belongs to an account or recipient instead.
	cvc_check If a CVC was provided, results of the check: pass, fail, unavailable, or unchecked. A result of unchecked indicates that CVC was provided but hasn't been checked yet. Checks are typically performed when attaching a card to a Customer object, or when creating a charge. For more details, see Check if a card is valid without a charge.
	default_for_currency Whether this card is the default external account for its currency.
	description A high-level description of the type of cards issued in this range. (For internal use only and not typically available in standard API requests.)
	dynamic_last4 (For tokenized numbers only.) The last four digits of the device account number.
	exp_month Two-digit number representing the card's expiration month.
	exp_year Four-digit number representing the card's expiration year.
	fingerprint Uniquely identifies this particular card number. You can use this attribute to check whether two customers who’ve signed up with you are using the same card number, for example. For payment methods that tokenize card information (Apple Pay, Google Pay), the tokenized number might be provided instead of the underlying card number.

Starting May 1, 2021, card fingerprint in India for Connect will change to allow two fingerprints for the same card --- one for India and one for the rest of the world.
	funding Card funding type. Can be credit, debit, prepaid, or unknown.
	id Unique identifier for the object.
	iin Issuer identification number of the card. (For internal use only and not typically available in standard API requests.)
	issuer The name of the card's issuing bank. (For internal use only and not typically available in standard API requests.)
	last4 The last four digits of the card.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name Cardholder name.
	object String representing the object's type. Objects of the same type share the same value.
	status For external accounts, possible values are new and errored. If a transfer fails, the status is set to errored and transfers are stopped until account details are updated.
	tokenization_method If the card number is tokenized, this is the method that was used. Can be android_pay (includes Google Pay), apple_pay, masterpass, visa_checkout, or null.


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    delete(client, customer, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec delete(
  client :: Stripe.t(),
  customer :: binary(),
  id :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) ::
  {:ok, Stripe.PaymentSource.t() | Stripe.DeletedPaymentSource.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Delete a specified source for a given customer.
Details
	Method: delete
	Path: /v1/customers/{customer}/sources/{id}


  



    

    

  
    
      
      Link to this function
    
    update(client, customer, id, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  customer :: binary(),
  id :: binary(),
  params :: %{
    optional(:account_holder_name) => binary(),
    optional(:account_holder_type) => :company | :individual,
    optional(:address_city) => binary(),
    optional(:address_country) => binary(),
    optional(:address_line1) => binary(),
    optional(:address_line2) => binary(),
    optional(:address_state) => binary(),
    optional(:address_zip) => binary(),
    optional(:exp_month) => binary(),
    optional(:exp_year) => binary(),
    optional(:expand) => [binary()],
    optional(:metadata) => %{optional(binary()) => binary()} | binary(),
    optional(:name) => binary(),
    optional(:owner) => owner()
  },
  opts :: Keyword.t()
) ::
  {:ok, t() | Stripe.BankAccount.t() | Stripe.Source.t()}
  | {:error, Stripe.ApiErrors.t()}
  | {:error, term()}


      


Update a specified source for a given customer.
Details
	Method: post
	Path: /v1/customers/{customer}/sources/{id}


  


        

      



  

    
Stripe.CashBalance 
    



      
A customer's Cash balance represents real funds. Customers can add funds to their cash balance by sending a bank transfer. These funds can be used for payment and can eventually be paid out to your bank account.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          settings()

        


          A hash of settings for this cash balance.



      


      
        
          t()

        


          The cash_balance type.



      


  


  
    
      Functions
    


      
        
          retrieve(client, customer, params \\ %{}, opts \\ [])

        


          Retrieves a customer’s cash balance.



      


      
        
          update(client, customer, params \\ %{}, opts \\ [])

        


          Changes the settings on a customer’s cash balance.



      


  


      


      
        
          
            
            Anchor for this section
          
Types
        

        


  
    
      
      Link to this type
    
    settings()


      
       
       View Source
     


  


  

      

          @type settings() :: %{optional(:reconciliation_mode) => :automatic | :manual}


      


A hash of settings for this cash balance.

  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: %Stripe.CashBalance{
  available: term() | nil,
  customer: binary(),
  livemode: boolean(),
  object: binary(),
  settings: term()
}


      


The cash_balance type.
	available A hash of all cash balances available to this customer. You cannot delete a customer with any cash balances, even if the balance is 0. Amounts are represented in the smallest currency unit.
	customer The ID of the customer whose cash balance this object represents.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	settings 


  


        

      

      
        
          
            
            Anchor for this section
          
Functions
        

        


    

    

  
    
      
      Link to this function
    
    retrieve(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec retrieve(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{optional(:expand) => [binary()]},
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Retrieves a customer’s cash balance.
Details
	Method: get
	Path: /v1/customers/{customer}/cash_balance


  



    

    

  
    
      
      Link to this function
    
    update(client, customer, params \\ %{}, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec update(
  client :: Stripe.t(),
  customer :: binary(),
  params :: %{
    optional(:expand) => [binary()],
    optional(:settings) => settings()
  },
  opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}


      


Changes the settings on a customer’s cash balance.
Details
	Method: post
	Path: /v1/customers/{customer}/cash_balance


  


        

      



  

    
Stripe.PaymentMethod 
    



      
PaymentMethod objects represent your customer's payment instruments.
You can use them with PaymentIntents to collect payments or save them to
Customer objects to store instrument details for future payments.
Related guides: Payment Methods and More Payment Scenarios.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Types
    


      
        
          acss_debit()

        


          If this is an acss_debit PaymentMethod, this hash contains details about the ACSS Debit payment method.



      


      
        
          address()

        


      


      
        
          au_becs_debit()

        


          If this is an au_becs_debit PaymentMethod, this hash contains details about the bank account.



      


      
        
          bacs_debit()

        


          If this is a bacs_debit PaymentMethod, this hash contains details about the Bacs Direct Debit bank account.



      


      
        
          billing_details()

        


          Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.



      


      
        
          boleto()

        


          If this is a boleto PaymentMethod, this hash contains details about the Boleto payment method.



      


      
        
          card()

        


      


      
        
          dob()

        


          Customer's date of birth



      


      
        
          eps()

        


          If this is an eps PaymentMethod, this hash contains details about the EPS payment method.



      


      
        
          fpx()

        


          If this is an fpx PaymentMethod, this hash contains details about the FPX payment method.



      


      
        
          ideal()

        


          If this is an ideal PaymentMethod, this hash contains details about the iDEAL payment method.



      


      
        
          klarna()

  