

 Striped

 v0.5.0

 Table of contents

 	Modules

 	Stripe

 	Stripe.ApiErrors

 	Stripe.HTTPClient

 	Stripe.List

 	Stripe.SearchResult

 	Stripe.Telemetry

 	Stripe.Balance

 	Stripe.BalanceTransaction

 	Stripe.Charge

 	Stripe.Customer

 	Stripe.Dispute

 	Stripe.Event

 	Stripe.ExchangeRate

 	Stripe.File

 	Stripe.FileLink

 	Stripe.Mandate

 	Stripe.PaymentIntent

 	Stripe.PaymentSource

 	Stripe.Payout

 	Stripe.Refund

 	Stripe.SetupAttempt

 	Stripe.SetupIntent

 	Stripe.Token

 	Stripe.ApplePayDomain

 	Stripe.BankAccount

 	Stripe.Card

 	Stripe.CashBalance

 	Stripe.PaymentMethod

 	Stripe.Source

 	Stripe.SourceTransaction

 	Stripe.Coupon

 	Stripe.Item

 	Stripe.Price

 	Stripe.Product

 	Stripe.PromotionCode

 	Stripe.ShippingRate

 	Stripe.TaxCode

 	Stripe.TaxId

 	Stripe.TaxRate

 	Stripe.Checkout.Session

 	Stripe.PaymentLink

 	Stripe.BillingPortal.Configuration

 	Stripe.BillingPortal.Session

 	Stripe.CreditNote

 	Stripe.CreditNoteLineItem

 	Stripe.CustomerBalanceTransaction

 	Stripe.CustomerCashBalanceTransaction

 	Stripe.Invoice

 	Stripe.Invoiceitem

 	Stripe.LineItem

 	Stripe.Plan

 	Stripe.Quote

 	Stripe.Subscription

 	Stripe.SubscriptionItem

 	Stripe.SubscriptionSchedule

 	Stripe.TestHelpers.TestClock

 	Stripe.UsageRecord

 	Stripe.UsageRecordSummary

 	Stripe.Account

 	Stripe.AccountLink

 	Stripe.ApplicationFee

 	Stripe.Apps.Secret

 	Stripe.Capability

 	Stripe.CountrySpec

 	Stripe.ExternalAccount

 	Stripe.FeeRefund

 	Stripe.LoginLink

 	Stripe.Person

 	Stripe.Topup

 	Stripe.Transfer

 	Stripe.TransferReversal

 	Stripe.Radar.EarlyFraudWarning

 	Stripe.Radar.ValueList

 	Stripe.Radar.ValueListItem

 	Stripe.Review

 	Stripe.EphemeralKey

 	Stripe.FundingInstructions

 	Stripe.Issuing.Authorization

 	Stripe.Issuing.Card

 	Stripe.Issuing.Cardholder

 	Stripe.Issuing.Dispute

 	Stripe.Issuing.Transaction

 	Stripe.Terminal.Configuration

 	Stripe.Terminal.ConnectionToken

 	Stripe.Terminal.Location

 	Stripe.Terminal.Reader

 	Stripe.Treasury.CreditReversal

 	Stripe.Treasury.DebitReversal

 	Stripe.Treasury.FinancialAccount

 	Stripe.Treasury.FinancialAccountFeatures

 	Stripe.Treasury.InboundTransfer

 	Stripe.Treasury.OutboundPayment

 	Stripe.Treasury.OutboundTransfer

 	Stripe.Treasury.ReceivedCredit

 	Stripe.Treasury.ReceivedDebit

 	Stripe.Treasury.Transaction

 	Stripe.Treasury.TransactionEntry

 	Stripe.ScheduledQueryRun

 	Stripe.Reporting.ReportRun

 	Stripe.Reporting.ReportType

 	Stripe.FinancialConnections.Account

 	Stripe.FinancialConnections.AccountOwner

 	Stripe.FinancialConnections.Session

 	Stripe.Identity.VerificationReport

 	Stripe.Identity.VerificationSession

 	Stripe.WebhookEndpoint

 	Stripe.DeletedAccount

 	Stripe.DeletedApplePayDomain

 	Stripe.DeletedCoupon

 	Stripe.DeletedCustomer

 	Stripe.DeletedDiscount

 	Stripe.DeletedExternalAccount

 	Stripe.DeletedInvoice

 	Stripe.DeletedInvoiceitem

 	Stripe.DeletedPaymentSource

 	Stripe.DeletedPerson

 	Stripe.DeletedPlan

 	Stripe.DeletedProduct

 	Stripe.DeletedRadar.ValueList

 	Stripe.DeletedRadar.ValueListItem

 	Stripe.DeletedSubscriptionItem

 	Stripe.DeletedTaxId

 	Stripe.DeletedTerminal.Configuration

 	Stripe.DeletedTerminal.Location

 	Stripe.DeletedTerminal.Reader

 	Stripe.DeletedTestHelpers.TestClock

 	Stripe.DeletedWebhookEndpoint

Stripe

Library to interface with the Stripe Api. Most of the code is generated from the Stripe OpenApi definitions.
Inspiration was drawn from Stripity Stripe and openapi.
Installation
def deps do
 [
 {:striped, "~> 0.5.0"}
]
end
Usage
client = Stripe.new(api_key: "sk_test_123")
{:ok, %Stripe.Customer{}} = Stripe.Customer.retrieve(client, "cus123")

{:ok, %Stripe.Customer{}} =
 Stripe.Customer.create(client, %{
 description: "Test description"
 })

For the exact parameters you can consult the Stripe docs.
Errors
Stripe errors can be found in the Stripe.ApiErrors struct.
Network errors etc. will be found in the error term.
{:error, %Stripe.ApiErrors{}} =
 Stripe.Customer.retrieve(client, "bogus")
Telemetry
Stripe api calls made through this library emit Telemetry events. See the
Stripe.Telemetry module for more information
Api Version
Striped uses the OpenApi definitions to build itself, so it
uses the latest Api Version. You can however override the
version by passing the :version option to the client.
This SDK is generated for version: 2022-11-15
See https://stripe.com/docs/upgrades#2022-11-15 for breaking changes.
Limitations
	File Uploads currently don't work.
	Connected Accounts are not supported yet.

 Anchor for this section

 Summary

 Types

 t()

 Stripe config

 Functions

 new(opts)

 Returns new client.

 request(method, path, client, params, opts \\ [])

 Perform Stripe API requests.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe{
 api_key: binary(),
 base_url: binary(),
 http_client: term(),
 idempotency_key: nil | binary(),
 max_network_retries: pos_integer(),
 user_agent: binary(),
 version: binary()
}

Stripe config

 Anchor for this section

Functions

 Link to this function

 new(opts)

 View Source

 @spec new(Keyword.t()) :: t()

Returns new client.
Options
	:version Set Stripe api version. All requests use your account API settings, unless you override the API version.
	:api_key Set Stripe api keys. Test mode secret keys have the prefix sk_test_ and live mode secret keys have the prefix sk_live_.
	:idempotency_key Override default idempotency key
	:base_url Override default base url. E.g. for local testing
	:http_client Override http client, defaults to Stripe.HTTPClient.HTTPC. Must conform to Stripe.HTTPClient behaviour.

Example
client = Stripe.new()
Stripe.Customer.create(client, %{description: "a description"})

 Link to this function

 request(method, path, client, params, opts \\ [])

 View Source

 @spec request(
 method :: binary(),
 path :: binary(),
 client :: t(),
 params :: map(),
 opts :: Keyword.t()
) :: {:ok, term()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Perform Stripe API requests.

Stripe.ApiErrors

 Anchor for this section

 Summary

 Types

 t()

 The api_errors type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.ApiErrors{
 charge: binary(),
 code: binary(),
 decline_code: binary(),
 doc_url: binary(),
 message: binary(),
 param: binary(),
 payment_intent: Stripe.PaymentIntent.t(),
 payment_method: Stripe.PaymentMethod.t(),
 payment_method_type: binary(),
 request_log_url: binary(),
 setup_intent: Stripe.SetupIntent.t(),
 source: Stripe.PaymentSource.t(),
 type: binary()
}

The api_errors type.
	charge For card errors, the ID of the failed charge.
	code For some errors that could be handled programmatically, a short string indicating the error code reported.
	decline_code For card errors resulting from a card issuer decline, a short string indicating the card issuer's reason for the decline if they provide one.
	doc_url A URL to more information about the error code reported.
	message A human-readable message providing more details about the error. For card errors, these messages can be shown to your users.
	param If the error is parameter-specific, the parameter related to the error. For example, you can use this to display a message near the correct form field.
	payment_intent
	payment_method
	payment_method_type If the error is specific to the type of payment method, the payment method type that had a problem. This field is only populated for invoice-related errors.
	request_log_url A URL to the request log entry in your dashboard.
	setup_intent
	source
	type The type of error returned. One of api_error, card_error, idempotency_error, or invalid_request_error

Stripe.HTTPClient behaviour

 Anchor for this section

 Summary

 Callbacks

 init()

 request(method, url, headers, body, opts)

 Anchor for this section

Callbacks

 Link to this callback

 init()

 View Source

 @callback init() :: :ok

 Link to this callback

 request(method, url, headers, body, opts)

 View Source

 @callback request(
 method :: atom(),
 url :: binary(),
 headers :: [{binary(), binary()}],
 body :: binary(),
 opts :: keyword()
) ::
 {:ok, %{status: 200..599, headers: [{binary(), binary()}], body: binary()}}
 | {:error, term()}

Stripe.List

All top-level API resources have support for bulk fetches via "list" API methods. For instance, you can list charges, list customers, and list invoices. These list API methods share a common structure, taking at least these three parameters: limit, starting_after, and ending_before.
Stripe's list API methods utilize cursor-based pagination via the starting_after and ending_before parameters. Both parameters take an existing object ID value (see below) and return objects in reverse chronological order. The ending_before parameter returns objects listed before the named object. The starting_after parameter returns objects listed after the named object. These parameters are mutually exclusive -- only one of starting_after or ending_before may be used.

 Anchor for this section

 Summary

 Types

 t(value)

 value()

 Anchor for this section

Types

 Link to this type

 t(value)

 View Source

 @type t(value) :: %Stripe.List{
 data: [value],
 has_more: boolean(),
 object: binary(),
 url: binary()
}

 Link to this type

 value()

 View Source

 @type value() :: term()

Stripe.SearchResult

Some top-level API resource have support for retrieval via "search" API methods. For example, you can search charges, search customers, and search subscriptions.
Stripe's search API methods utilize cursor-based pagination via the page request parameter and next_page response parameter. For example, if you make a search request and receive "next_page": "pagination_key" in the response, your subsequent call can include page=pagination_key to fetch the next page of results.
See https://stripe.com/docs/search for more information.

 Anchor for this section

 Summary

 Types

 t(value)

 value()

 Anchor for this section

Types

 Link to this type

 t(value)

 View Source

 @type t(value) :: %Stripe.SearchResult{
 data: [value],
 has_more: boolean(),
 next_page: binary() | nil,
 object: binary(),
 total_count: integer() | nil,
 url: binary()
}

 Link to this type

 value()

 View Source

 @type value() :: term()

Stripe.Telemetry

Telemetry integration.
Unless specified, all times are in :native units.
Stripe executes the following events:
Request Start
[:stripe, :request, :start] - Executed before an api call is made
Measurements
	:system_time - The system time.

Metadata
	:attempt - The number of attempts for this request
	:method - The http method used
	:url - The url used

Request Stop
[:stripe, :request, :stop] - Executed after an api call ended.
Measurements
	:duration - Time taken from the request start event.

Metadata
	:attempt - The number of attempts for this request
	:error - The Stripe error if any
	:status - The http status code
	:request_id - Request ID returned by Stripe
	:result -> :ok for succesful requests, :error otherwise
	:method - The http method used
	:url - The url used

Request Exception
[:stripe, :request, :exception] - Executed when an exception occurs while executing
 an api call.
Measurements
	:duration - The time it took since the start before raising the exception.

Metadata
	:attempt - The number of attempts for this request
	:method - The http method used
	:url - The url used
	:kind - The type of exception.
	:reason - Error description or error data.
	:stacktrace - The stacktrace.

Stripe.Balance

This is an object representing your Stripe balance. You can retrieve it to see
the balance currently on your Stripe account.
You can also retrieve the balance history, which contains a list of
transactions that contributed to the balance
(charges, payouts, and so forth).
The available and pending amounts for each currency are broken down further by
payment source types.
Related guide: Understanding Connect Account Balances.

 Anchor for this section

 Summary

 Types

 t()

 The balance type.

 Functions

 retrieve(client, params \\ %{}, opts \\ [])

 Retrieves the current account balance, based on the authentication that was used to make the request. For a sample request, see Accounting for negative balances.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Balance{
 available: term(),
 connect_reserved: term(),
 instant_available: term(),
 issuing: term(),
 livemode: boolean(),
 object: binary(),
 pending: term()
}

The balance type.
	available Funds that are available to be transferred or paid out, whether automatically by Stripe or explicitly via the Transfers API or Payouts API. The available balance for each currency and payment type can be found in the source_types property.
	connect_reserved Funds held due to negative balances on connected Custom accounts. The connect reserve balance for each currency and payment type can be found in the source_types property.
	instant_available Funds that can be paid out using Instant Payouts.
	issuing
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	pending Funds that are not yet available in the balance, due to the 7-day rolling pay cycle. The pending balance for each currency, and for each payment type, can be found in the source_types property.

 Anchor for this section

Functions

 Link to this function

 retrieve(client, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the current account balance, based on the authentication that was used to make the request. For a sample request, see Accounting for negative balances.
Details
	Method: get
	Path: /v1/balance

Stripe.BalanceTransaction

Balance transactions represent funds moving through your Stripe account.
They're created for every type of transaction that comes into or flows out of your Stripe account balance.
Related guide: Balance Transaction Types.

 Anchor for this section

 Summary

 Types

 available_on()

 created()

 t()

 The balance_transaction type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a list of transactions that have contributed to the Stripe account balance (e.g., charges, transfers, and so forth). The transactions are returned in sorted order, with the most recent transactions appearing first.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the balance transaction with the given ID.

 Anchor for this section

Types

 Link to this type

 available_on()

 View Source

 @type available_on() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.BalanceTransaction{
 amount: integer(),
 available_on: integer(),
 created: integer(),
 currency: binary(),
 description: binary() | nil,
 exchange_rate: term() | nil,
 fee: integer(),
 fee_details: term(),
 id: binary(),
 net: integer(),
 object: binary(),
 reporting_category: binary(),
 source: (binary() | term()) | nil,
 status: binary(),
 type: binary()
}

The balance_transaction type.
	amount Gross amount of the transaction, in %s.
	available_on The date the transaction's net funds will become available in the Stripe balance.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	exchange_rate The exchange rate used, if applicable, for this transaction. Specifically, if money was converted from currency A to currency B, then the amount in currency A, times exchange_rate, would be the amount in currency B. For example, suppose you charged a customer 10.00 EUR. Then the PaymentIntent's amount would be 1000 and currency would be eur. Suppose this was converted into 12.34 USD in your Stripe account. Then the BalanceTransaction's amount would be 1234, currency would be usd, and exchange_rate would be 1.234.
	fee Fees (in %s) paid for this transaction.
	fee_details Detailed breakdown of fees (in %s) paid for this transaction.
	id Unique identifier for the object.
	net Net amount of the transaction, in %s.
	object String representing the object's type. Objects of the same type share the same value.
	reporting_category Learn more about how reporting categories can help you understand balance transactions from an accounting perspective.
	source The Stripe object to which this transaction is related.
	status If the transaction's net funds are available in the Stripe balance yet. Either available or pending.
	type Transaction type: adjustment, advance, advance_funding, anticipation_repayment, application_fee, application_fee_refund, charge, connect_collection_transfer, contribution, issuing_authorization_hold, issuing_authorization_release, issuing_dispute, issuing_transaction, payment, payment_failure_refund, payment_refund, payout, payout_cancel, payout_failure, refund, refund_failure, reserve_transaction, reserved_funds, stripe_fee, stripe_fx_fee, tax_fee, topup, topup_reversal, transfer, transfer_cancel, transfer_failure, or transfer_refund. Learn more about balance transaction types and what they represent. If you are looking to classify transactions for accounting purposes, you might want to consider reporting_category instead.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:available_on) => available_on() | integer(),
 optional(:created) => created() | integer(),
 optional(:currency) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:payout) => binary(),
 optional(:source) => binary(),
 optional(:starting_after) => binary(),
 optional(:type) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of transactions that have contributed to the Stripe account balance (e.g., charges, transfers, and so forth). The transactions are returned in sorted order, with the most recent transactions appearing first.
Note that this endpoint was previously called “Balance history” and used the path /v1/balance/history.
Details
	Method: get
	Path: /v1/balance_transactions

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the balance transaction with the given ID.
Note that this endpoint previously used the path /v1/balance/history/:id.
Details
	Method: get
	Path: /v1/balance_transactions/{id}

Stripe.Charge

To charge a credit or a debit card, you create a Charge object. You can
retrieve and refund individual charges as well as list all charges. Charges
are identified by a unique, random ID.
Related guide: Accept a payment with the Charges API.

 Anchor for this section

 Summary

 Types

 address()

 Shipping address.

 created()

 destination()

 fraud_details()

 A set of key-value pairs you can attach to a charge giving information about its riskiness. If you believe a charge is fraudulent, include a user_report key with a value of fraudulent. If you believe a charge is safe, include a user_report key with a value of safe. Stripe will use the information you send to improve our fraud detection algorithms.

 radar_options()

 Options to configure Radar. See Radar Session for more information.

 shipping()

 Shipping information for the charge. Helps prevent fraud on charges for physical goods.

 t()

 The charge type.

 transfer_data()

 An optional dictionary including the account to automatically transfer to as part of a destination charge. See the Connect documentation for details.

 Functions

 capture(client, charge, params \\ %{}, opts \\ [])

 Capture the payment of an existing, uncaptured, charge. This is the second half of the two-step payment flow, where first you created a charge with the capture option set to false.

 create(client, params \\ %{}, opts \\ [])

 To charge a credit card or other payment source, you create a Charge object. If your API key is in test mode, the supplied payment source (e.g., card) won’t actually be charged, although everything else will occur as if in live mode. (Stripe assumes that the charge would have completed successfully).

 list(client, params \\ %{}, opts \\ [])

 Returns a list of charges you’ve previously created. The charges are returned in sorted order, with the most recent charges appearing first.

 retrieve(client, charge, params \\ %{}, opts \\ [])

 Retrieves the details of a charge that has previously been created. Supply the unique charge ID that was returned from your previous request, and Stripe will return the corresponding charge information. The same information is returned when creating or refunding the charge.

 search(client, params \\ %{}, opts \\ [])

 Search for charges you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.

 update(client, charge, params \\ %{}, opts \\ [])

 Updates the specified charge by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

Shipping address.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 destination()

 View Source

 @type destination() :: %{
 optional(:account) => binary(),
 optional(:amount) => integer()
}

 Link to this type

 fraud_details()

 View Source

 @type fraud_details() :: %{optional(:user_report) => :fraudulent | :safe}

A set of key-value pairs you can attach to a charge giving information about its riskiness. If you believe a charge is fraudulent, include a user_report key with a value of fraudulent. If you believe a charge is safe, include a user_report key with a value of safe. Stripe will use the information you send to improve our fraud detection algorithms.

 Link to this type

 radar_options()

 View Source

 @type radar_options() :: %{optional(:session) => binary()}

Options to configure Radar. See Radar Session for more information.

 Link to this type

 shipping()

 View Source

 @type shipping() :: %{
 optional(:address) => address(),
 optional(:carrier) => binary(),
 optional(:name) => binary(),
 optional(:phone) => binary(),
 optional(:tracking_number) => binary()
}

Shipping information for the charge. Helps prevent fraud on charges for physical goods.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Charge{
 alternate_statement_descriptors: term(),
 amount: integer(),
 amount_captured: integer(),
 amount_refunded: integer(),
 application: (binary() | term()) | nil,
 application_fee: (binary() | Stripe.ApplicationFee.t()) | nil,
 application_fee_amount: integer() | nil,
 authorization_code: binary(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 billing_details: term(),
 calculated_statement_descriptor: binary() | nil,
 captured: boolean(),
 created: integer(),
 currency: binary(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 description: binary() | nil,
 destination: (binary() | Stripe.Account.t()) | nil,
 dispute: (binary() | Stripe.Dispute.t()) | nil,
 disputed: boolean(),
 failure_balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 failure_code: binary() | nil,
 failure_message: binary() | nil,
 fraud_details: term() | nil,
 id: binary(),
 invoice: (binary() | Stripe.Invoice.t()) | nil,
 level3: term(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 outcome: term() | nil,
 paid: boolean(),
 payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
 payment_method: binary() | nil,
 payment_method_details: term() | nil,
 radar_options: term(),
 receipt_email: binary() | nil,
 receipt_number: binary() | nil,
 receipt_url: binary() | nil,
 refunded: boolean(),
 refunds: term() | nil,
 review: (binary() | Stripe.Review.t()) | nil,
 shipping: term() | nil,
 source: Stripe.PaymentSource.t() | nil,
 source_transfer: (binary() | Stripe.Transfer.t()) | nil,
 statement_descriptor: binary() | nil,
 statement_descriptor_suffix: binary() | nil,
 status: binary(),
 transfer: binary() | Stripe.Transfer.t(),
 transfer_data: term() | nil,
 transfer_group: binary() | nil
}

The charge type.
	receipt_url This is the URL to view the receipt for this charge. The receipt is kept up-to-date to the latest state of the charge, including any refunds. If the charge is for an Invoice, the receipt will be stylized as an Invoice receipt.
	payment_method ID of the payment method used in this charge.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	calculated_statement_descriptor The full statement descriptor that is passed to card networks, and that is displayed on your customers' credit card and bank statements. Allows you to see what the statement descriptor looks like after the static and dynamic portions are combined.
	radar_options
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	paid true if the charge succeeded, or was successfully authorized for later capture.
	application_fee The application fee (if any) for the charge. See the Connect documentation for details.
	failure_message Message to user further explaining reason for charge failure if available.
	review ID of the review associated with this charge if one exists.
	payment_intent ID of the PaymentIntent associated with this charge, if one exists.
	refunds A list of refunds that have been applied to the charge.
	alternate_statement_descriptors
	on_behalf_of The account (if any) the charge was made on behalf of without triggering an automatic transfer. See the Connect documentation for details.
	customer ID of the customer this charge is for if one exists.
	fraud_details Information on fraud assessments for the charge.
	amount Amount intended to be collected by this payment. A positive integer representing how much to charge in the smallest currency unit (e.g., 100 cents to charge $1.00 or 100 to charge ¥100, a zero-decimal currency). The minimum amount is $0.50 US or equivalent in charge currency. The amount value supports up to eight digits (e.g., a value of 99999999 for a USD charge of $999,999.99).
	outcome Details about whether the payment was accepted, and why. See understanding declines for details.
	invoice ID of the invoice this charge is for if one exists.
	payment_method_details Details about the payment method at the time of the transaction.
	statement_descriptor For card charges, use statement_descriptor_suffix instead. Otherwise, you can use this value as the complete description of a charge on your customers’ statements. Must contain at least one letter, maximum 22 characters.
	balance_transaction ID of the balance transaction that describes the impact of this charge on your account balance (not including refunds or disputes).
	application ID of the Connect application that created the charge.
	receipt_email This is the email address that the receipt for this charge was sent to.
	failure_balance_transaction ID of the balance transaction that describes the reversal of the balance on your account due to payment failure.
	receipt_number This is the transaction number that appears on email receipts sent for this charge. This attribute will be null until a receipt has been sent.
	failure_code Error code explaining reason for charge failure if available (see the errors section for a list of codes).
	object String representing the object's type. Objects of the same type share the same value.
	amount_captured Amount in %s captured (can be less than the amount attribute on the charge if a partial capture was made).
	billing_details
	level3
	authorization_code Authorization code on the charge.
	source This is a legacy field that will be removed in the future. It contains the Source, Card, or BankAccount object used for the charge. For details about the payment method used for this charge, refer to payment_method or payment_method_details instead.
	captured If the charge was created without capturing, this Boolean represents whether it is still uncaptured or has since been captured.
	amount_refunded Amount in %s refunded (can be less than the amount attribute on the charge if a partial refund was issued).
	refunded Whether the charge has been fully refunded. If the charge is only partially refunded, this attribute will still be false.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	transfer ID of the transfer to the destination account (only applicable if the charge was created using the destination parameter).
	dispute Details about the dispute if the charge has been disputed.
	destination ID of an existing, connected Stripe account to transfer funds to if transfer_data was specified in the charge request.
	source_transfer The transfer ID which created this charge. Only present if the charge came from another Stripe account. See the Connect documentation for details.
	status The status of the payment is either succeeded, pending, or failed.
	transfer_group A string that identifies this transaction as part of a group. See the Connect documentation for details.
	disputed Whether the charge has been disputed.
	application_fee_amount The amount of the application fee (if any) requested for the charge. See the Connect documentation for details.
	statement_descriptor_suffix Provides information about the charge that customers see on their statements. Concatenated with the prefix (shortened descriptor) or statement descriptor that’s set on the account to form the complete statement descriptor. Maximum 22 characters for the concatenated descriptor.
	transfer_data An optional dictionary including the account to automatically transfer to as part of a destination charge. See the Connect documentation for details.
	id Unique identifier for the object.
	shipping Shipping information for the charge.

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount) => integer(),
 optional(:destination) => binary()
}

An optional dictionary including the account to automatically transfer to as part of a destination charge. See the Connect documentation for details.

 Anchor for this section

Functions

 Link to this function

 capture(client, charge, params \\ %{}, opts \\ [])

 View Source

 @spec capture(
 client :: Stripe.t(),
 charge :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:application_fee) => integer(),
 optional(:application_fee_amount) => integer(),
 optional(:expand) => [binary()],
 optional(:receipt_email) => binary(),
 optional(:statement_descriptor) => binary(),
 optional(:statement_descriptor_suffix) => binary(),
 optional(:transfer_data) => transfer_data(),
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Capture the payment of an existing, uncaptured, charge. This is the second half of the two-step payment flow, where first you created a charge with the capture option set to false.
Uncaptured payments expire a set number of days after they are created (7 by default). If they are not captured by that point in time, they will be marked as refunded and will no longer be capturable.
Details
	Method: post
	Path: /v1/charges/{charge}/capture

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:application_fee) => integer(),
 optional(:application_fee_amount) => integer(),
 optional(:capture) => boolean(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:destination) => destination(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:on_behalf_of) => binary(),
 optional(:radar_options) => radar_options(),
 optional(:receipt_email) => binary(),
 optional(:shipping) => shipping(),
 optional(:source) => binary(),
 optional(:statement_descriptor) => binary(),
 optional(:statement_descriptor_suffix) => binary(),
 optional(:transfer_data) => transfer_data(),
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

To charge a credit card or other payment source, you create a Charge object. If your API key is in test mode, the supplied payment source (e.g., card) won’t actually be charged, although everything else will occur as if in live mode. (Stripe assumes that the charge would have completed successfully).
Details
	Method: post
	Path: /v1/charges

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:payment_intent) => binary(),
 optional(:starting_after) => binary(),
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of charges you’ve previously created. The charges are returned in sorted order, with the most recent charges appearing first.
Details
	Method: get
	Path: /v1/charges

 Link to this function

 retrieve(client, charge, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 charge :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of a charge that has previously been created. Supply the unique charge ID that was returned from your previous request, and Stripe will return the corresponding charge information. The same information is returned when creating or refunding the charge.
Details
	Method: get
	Path: /v1/charges/{charge}

 Link to this function

 search(client, params \\ %{}, opts \\ [])

 View Source

 @spec search(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:page) => binary(),
 optional(:query) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.SearchResult.t(t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Search for charges you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/charges/search

 Link to this function

 update(client, charge, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 charge :: binary(),
 params :: %{
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:fraud_details) => fraud_details(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:receipt_email) => binary(),
 optional(:shipping) => shipping(),
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified charge by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/charges/{charge}

Stripe.Customer

This object represents a customer of your business. It lets you create recurring charges and track payments that belong to the same customer.
Related guide: Save a card during payment.

 Anchor for this section

 Summary

 Types

 address()

 bank_transfer()

 Additional parameters for bank_transfer funding types

 cash_balance()

 Balance information and default balance settings for this customer.

 created()

 custom_fields()

 eu_bank_transfer()

 Configuration for eu_bank_transfer funding type.

 invoice_settings()

 Default invoice settings for this customer.

 rendering_options()

 settings()

 Settings controlling the behavior of the customer's cash balance,
such as reconciliation of funds received.

 shipping()

 t()

 The customer type.

 tax()

 Tax details about the customer.

 tax_id_data()

 Functions

 balance_transactions(client, customer, params \\ %{}, opts \\ [])

 Returns a list of transactions that updated the customer’s balances.

 create(client, params \\ %{}, opts \\ [])

 Creates a new customer object.

 create_funding_instructions(client, customer, params \\ %{}, opts \\ [])

 Retrieve funding instructions for a customer cash balance. If funding instructions do not yet exist for the customer, newfunding instructions will be created. If funding instructions have already been created for a given customer, the same
funding instructions will be retrieved. In other words, we will return the same funding instructions each time.

 delete(client, customer, opts \\ [])

 Permanently deletes a customer. It cannot be undone. Also immediately cancels any active subscriptions on the customer.

 delete_discount(client, customer, opts \\ [])

 Removes the currently applied discount on a customer.

 fund_cash_balance(client, customer, params \\ %{}, opts \\ [])

 Create an incoming testmode bank transfe.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your customers. The customers are returned sorted by creation date, with the most recent customers appearing first.

 list_payment_methods(client, customer, params \\ %{}, opts \\ [])

 Returns a list of PaymentMethods for a given Custome.

 retrieve(client, customer, params \\ %{}, opts \\ [])

 Retrieves a Customer object.

 retrieve_payment_method(client, customer, payment_method, params \\ %{}, opts \\ [])

 Retrieves a PaymentMethod object for a given Customer.

 search(client, params \\ %{}, opts \\ [])

 Search for customers you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.

 update(client, customer, params \\ %{}, opts \\ [])

 Updates the specified customer by setting the values of the parameters passed. Any parameters not provided will be left unchanged. For example, if you pass the source parameter, that becomes the customer’s active source (e.g., a card) to be used for all charges in the future. When you update a customer to a new valid card source by passing the source parameter: for each of the customer’s current subscriptions, if the subscription bills automatically and is in the past_due state, then the latest open invoice for the subscription with automatic collection enabled will be retried. This retry will not count as an automatic retry, and will not affect the next regularly scheduled payment for the invoice. Changing the default_source for a customer will not trigger this behavior.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

 Link to this type

 bank_transfer()

 View Source

 @type bank_transfer() :: %{
 optional(:eu_bank_transfer) => eu_bank_transfer(),
 optional(:requested_address_types) => [:iban | :sort_code | :spei | :zengin],
 optional(:type) =>
 :eu_bank_transfer
 | :gb_bank_transfer
 | :jp_bank_transfer
 | :mx_bank_transfer
}

Additional parameters for bank_transfer funding types

 Link to this type

 cash_balance()

 View Source

 @type cash_balance() :: %{optional(:settings) => settings()}

Balance information and default balance settings for this customer.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 custom_fields()

 View Source

 @type custom_fields() :: %{optional(:name) => binary(), optional(:value) => binary()}

 Link to this type

 eu_bank_transfer()

 View Source

 @type eu_bank_transfer() :: %{optional(:country) => binary()}

Configuration for eu_bank_transfer funding type.

 Link to this type

 invoice_settings()

 View Source

 @type invoice_settings() :: %{
 optional(:custom_fields) => [custom_fields()] | binary(),
 optional(:default_payment_method) => binary(),
 optional(:footer) => binary(),
 optional(:rendering_options) => rendering_options() | binary()
}

Default invoice settings for this customer.

 Link to this type

 rendering_options()

 View Source

 @type rendering_options() :: %{
 optional(:amount_tax_display) => :exclude_tax | :include_inclusive_tax
}

 Link to this type

 settings()

 View Source

 @type settings() :: %{optional(:reconciliation_mode) => :automatic | :manual}

Settings controlling the behavior of the customer's cash balance,
such as reconciliation of funds received.

 Link to this type

 shipping()

 View Source

 @type shipping() :: %{
 optional(:address) => address(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Customer{
 address: term() | nil,
 balance: integer(),
 cash_balance: Stripe.CashBalance.t() | nil,
 created: integer(),
 currency: binary() | nil,
 default_source: (binary() | Stripe.PaymentSource.t()) | nil,
 delinquent: boolean() | nil,
 description: binary() | nil,
 discount: term() | nil,
 email: binary() | nil,
 id: binary(),
 invoice_credit_balance: term(),
 invoice_prefix: binary() | nil,
 invoice_settings: term(),
 livemode: boolean(),
 metadata: term(),
 name: binary() | nil,
 next_invoice_sequence: integer(),
 object: binary(),
 phone: binary() | nil,
 preferred_locales: term() | nil,
 shipping: term() | nil,
 sources: term(),
 subscriptions: term(),
 tax: term(),
 tax_exempt: binary() | nil,
 tax_ids: term(),
 test_clock: (binary() | Stripe.TestHelpers.TestClock.t()) | nil
}

The customer type.
	address The customer's address.
	balance Current balance, if any, being stored on the customer. If negative, the customer has credit to apply to their next invoice. If positive, the customer has an amount owed that will be added to their next invoice. The balance does not refer to any unpaid invoices; it solely takes into account amounts that have yet to be successfully applied to any invoice. This balance is only taken into account as invoices are finalized.
	cash_balance The current funds being held by Stripe on behalf of the customer. These funds can be applied towards payment intents with source "cash_balance". The settings[reconciliation_mode] field describes whether these funds are applied to such payment intents manually or automatically.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO code for the currency the customer can be charged in for recurring billing purposes.
	default_source ID of the default payment source for the customer.

If you are using payment methods created via the PaymentMethods API, see the invoice_settings.default_payment_method field instead.
	delinquent When the customer's latest invoice is billed by charging automatically, delinquent is true if the invoice's latest charge failed. When the customer's latest invoice is billed by sending an invoice, delinquent is true if the invoice isn't paid by its due date.

If an invoice is marked uncollectible by dunning, delinquent doesn't get reset to false.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	discount Describes the current discount active on the customer, if there is one.
	email The customer's email address.
	id Unique identifier for the object.
	invoice_credit_balance The current multi-currency balances, if any, being stored on the customer. If positive in a currency, the customer has a credit to apply to their next invoice denominated in that currency. If negative, the customer has an amount owed that will be added to their next invoice denominated in that currency. These balances do not refer to any unpaid invoices. They solely track amounts that have yet to be successfully applied to any invoice. A balance in a particular currency is only applied to any invoice as an invoice in that currency is finalized.
	invoice_prefix The prefix for the customer used to generate unique invoice numbers.
	invoice_settings
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name The customer's full name or business name.
	next_invoice_sequence The suffix of the customer's next invoice number, e.g., 0001.
	object String representing the object's type. Objects of the same type share the same value.
	phone The customer's phone number.
	preferred_locales The customer's preferred locales (languages), ordered by preference.
	shipping Mailing and shipping address for the customer. Appears on invoices emailed to this customer.
	sources The customer's payment sources, if any.
	subscriptions The customer's current subscriptions, if any.
	tax
	tax_exempt Describes the customer's tax exemption status. One of none, exempt, or reverse. When set to reverse, invoice and receipt PDFs include the text "Reverse charge".
	tax_ids The customer's tax IDs.
	test_clock ID of the test clock this customer belongs to.

 Link to this type

 tax()

 View Source

 @type tax() :: %{optional(:ip_address) => binary() | binary()}

Tax details about the customer.

 Link to this type

 tax_id_data()

 View Source

 @type tax_id_data() :: %{
 optional(:type) =>
 :ae_trn
 | :au_abn
 | :au_arn
 | :bg_uic
 | :br_cnpj
 | :br_cpf
 | :ca_bn
 | :ca_gst_hst
 | :ca_pst_bc
 | :ca_pst_mb
 | :ca_pst_sk
 | :ca_qst
 | :ch_vat
 | :cl_tin
 | :eg_tin
 | :es_cif
 | :eu_oss_vat
 | :eu_vat
 | :gb_vat
 | :ge_vat
 | :hk_br
 | :hu_tin
 | :id_npwp
 | :il_vat
 | :in_gst
 | :is_vat
 | :jp_cn
 | :jp_rn
 | :jp_trn
 | :ke_pin
 | :kr_brn
 | :li_uid
 | :mx_rfc
 | :my_frp
 | :my_itn
 | :my_sst
 | :no_vat
 | :nz_gst
 | :ph_tin
 | :ru_inn
 | :ru_kpp
 | :sa_vat
 | :sg_gst
 | :sg_uen
 | :si_tin
 | :th_vat
 | :tr_tin
 | :tw_vat
 | :ua_vat
 | :us_ein
 | :za_vat,
 optional(:value) => binary()
}

 Anchor for this section

Functions

 Link to this function

 balance_transactions(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec balance_transactions(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.CustomerBalanceTransaction.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Returns a list of transactions that updated the customer’s balances.
Details
	Method: get
	Path: /v1/customers/{customer}/balance_transactions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:address) => address() | binary(),
 optional(:balance) => integer(),
 optional(:cash_balance) => cash_balance(),
 optional(:coupon) => binary(),
 optional(:description) => binary(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:invoice_prefix) => binary(),
 optional(:invoice_settings) => invoice_settings(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary(),
 optional(:next_invoice_sequence) => integer(),
 optional(:payment_method) => binary(),
 optional(:phone) => binary(),
 optional(:preferred_locales) => [binary()],
 optional(:promotion_code) => binary(),
 optional(:shipping) => shipping() | binary(),
 optional(:source) => binary(),
 optional(:tax) => tax(),
 optional(:tax_exempt) => :exempt | :none | :reverse,
 optional(:tax_id_data) => [tax_id_data()],
 optional(:test_clock) => binary(),
 optional(:validate) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new customer object.
Details
	Method: post
	Path: /v1/customers

 Link to this function

 create_funding_instructions(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec create_funding_instructions(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:bank_transfer) => bank_transfer(),
 optional(:currency) => binary(),
 optional(:expand) => [binary()],
 optional(:funding_type) => :bank_transfer
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.FundingInstructions.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Retrieve funding instructions for a customer cash balance. If funding instructions do not yet exist for the customer, newfunding instructions will be created. If funding instructions have already been created for a given customer, the same
funding instructions will be retrieved. In other words, we will return the same funding instructions each time.
Details
	Method: post
	Path: /v1/customers/{customer}/funding_instructions

 Link to this function

 delete(client, customer, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), customer :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedCustomer.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Permanently deletes a customer. It cannot be undone. Also immediately cancels any active subscriptions on the customer.
Details
	Method: delete
	Path: /v1/customers/{customer}

 Link to this function

 delete_discount(client, customer, opts \\ [])

 View Source

 @spec delete_discount(client :: Stripe.t(), customer :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedDiscount.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Removes the currently applied discount on a customer.
Details
	Method: delete
	Path: /v1/customers/{customer}/discount

 Link to this function

 fund_cash_balance(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec fund_cash_balance(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:expand) => [binary()],
 optional(:reference) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.CustomerCashBalanceTransaction.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Create an incoming testmode bank transfe.
Details
	Method: post
	Path: /v1/test_helpers/customers/{customer}/fund_cash_balance

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:email) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:test_clock) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your customers. The customers are returned sorted by creation date, with the most recent customers appearing first.
Details
	Method: get
	Path: /v1/customers

 Link to this function

 list_payment_methods(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec list_payment_methods(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:type) =>
 :acss_debit
 | :affirm
 | :afterpay_clearpay
 | :alipay
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :blik
 | :boleto
 | :card
 | :card_present
 | :customer_balance
 | :eps
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :klarna
 | :konbini
 | :link
 | :oxxo
 | :p24
 | :paynow
 | :pix
 | :promptpay
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.PaymentMethod.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Returns a list of PaymentMethods for a given Custome.
Details
	Method: get
	Path: /v1/customers/{customer}/payment_methods

 Link to this function

 retrieve(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.DeletedCustomer.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Retrieves a Customer object.
Details
	Method: get
	Path: /v1/customers/{customer}

 Link to this function

 retrieve_payment_method(client, customer, payment_method, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve_payment_method(
 client :: Stripe.t(),
 customer :: binary(),
 payment_method :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.PaymentMethod.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Retrieves a PaymentMethod object for a given Customer.
Details
	Method: get
	Path: /v1/customers/{customer}/payment_methods/{payment_method}

 Link to this function

 search(client, params \\ %{}, opts \\ [])

 View Source

 @spec search(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:page) => binary(),
 optional(:query) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.SearchResult.t(t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Search for customers you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/customers/search

 Link to this function

 update(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:address) => address() | binary(),
 optional(:balance) => integer(),
 optional(:cash_balance) => cash_balance(),
 optional(:coupon) => binary(),
 optional(:default_source) => binary(),
 optional(:description) => binary(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:invoice_prefix) => binary(),
 optional(:invoice_settings) => invoice_settings(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary(),
 optional(:next_invoice_sequence) => integer(),
 optional(:phone) => binary(),
 optional(:preferred_locales) => [binary()],
 optional(:promotion_code) => binary(),
 optional(:shipping) => shipping() | binary(),
 optional(:source) => binary(),
 optional(:tax) => tax(),
 optional(:tax_exempt) => :exempt | :none | :reverse,
 optional(:validate) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified customer by setting the values of the parameters passed. Any parameters not provided will be left unchanged. For example, if you pass the source parameter, that becomes the customer’s active source (e.g., a card) to be used for all charges in the future. When you update a customer to a new valid card source by passing the source parameter: for each of the customer’s current subscriptions, if the subscription bills automatically and is in the past_due state, then the latest open invoice for the subscription with automatic collection enabled will be retried. This retry will not count as an automatic retry, and will not affect the next regularly scheduled payment for the invoice. Changing the default_source for a customer will not trigger this behavior.
This request accepts mostly the same arguments as the customer creation call.
Details
	Method: post
	Path: /v1/customers/{customer}

Stripe.Dispute

A dispute occurs when a customer questions your charge with their card issuer.
When this happens, you're given the opportunity to respond to the dispute with
evidence that shows that the charge is legitimate. You can find more
information about the dispute process in our Disputes and
Fraud documentation.
Related guide: Disputes and Fraud.

 Anchor for this section

 Summary

 Types

 created()

 evidence()

 Evidence to upload, to respond to a dispute. Updating any field in the hash will submit all fields in the hash for review. The combined character count of all fields is limited to 150,000.

 t()

 The dispute type.

 Functions

 close(client, dispute, params \\ %{}, opts \\ [])

 Closing the dispute for a charge indicates that you do not have any evidence to submit and are essentially dismissing the dispute, acknowledging it as lost.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your disputes.

 retrieve(client, dispute, params \\ %{}, opts \\ [])

 Retrieves the dispute with the given ID.

 update(client, dispute, params \\ %{}, opts \\ [])

 When you get a dispute, contacting your customer is always the best first step. If that doesn’t work, you can submit evidence to help us resolve the dispute in your favor. You can do this in your dashboard, but if you prefer, you can use the API to submit evidence programmatically.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 evidence()

 View Source

 @type evidence() :: %{
 optional(:access_activity_log) => binary(),
 optional(:billing_address) => binary(),
 optional(:cancellation_policy) => binary(),
 optional(:cancellation_policy_disclosure) => binary(),
 optional(:cancellation_rebuttal) => binary(),
 optional(:customer_communication) => binary(),
 optional(:customer_email_address) => binary(),
 optional(:customer_name) => binary(),
 optional(:customer_purchase_ip) => binary(),
 optional(:customer_signature) => binary(),
 optional(:duplicate_charge_documentation) => binary(),
 optional(:duplicate_charge_explanation) => binary(),
 optional(:duplicate_charge_id) => binary(),
 optional(:product_description) => binary(),
 optional(:receipt) => binary(),
 optional(:refund_policy) => binary(),
 optional(:refund_policy_disclosure) => binary(),
 optional(:refund_refusal_explanation) => binary(),
 optional(:service_date) => binary(),
 optional(:service_documentation) => binary(),
 optional(:shipping_address) => binary(),
 optional(:shipping_carrier) => binary(),
 optional(:shipping_date) => binary(),
 optional(:shipping_documentation) => binary(),
 optional(:shipping_tracking_number) => binary(),
 optional(:uncategorized_file) => binary(),
 optional(:uncategorized_text) => binary()
}

Evidence to upload, to respond to a dispute. Updating any field in the hash will submit all fields in the hash for review. The combined character count of all fields is limited to 150,000.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Dispute{
 amount: integer(),
 balance_transactions: term(),
 charge: binary() | Stripe.Charge.t(),
 created: integer(),
 currency: binary(),
 evidence: term(),
 evidence_details: term(),
 id: binary(),
 is_charge_refundable: boolean(),
 livemode: boolean(),
 metadata: term(),
 network_reason_code: binary() | nil,
 object: binary(),
 payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
 reason: binary(),
 status: binary()
}

The dispute type.
	amount Disputed amount. Usually the amount of the charge, but can differ (usually because of currency fluctuation or because only part of the order is disputed).
	balance_transactions List of zero, one, or two balance transactions that show funds withdrawn and reinstated to your Stripe account as a result of this dispute.
	charge ID of the charge that was disputed.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	evidence
	evidence_details
	id Unique identifier for the object.
	is_charge_refundable If true, it is still possible to refund the disputed payment. Once the payment has been fully refunded, no further funds will be withdrawn from your Stripe account as a result of this dispute.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	network_reason_code Network-dependent reason code for the dispute.
	object String representing the object's type. Objects of the same type share the same value.
	payment_intent ID of the PaymentIntent that was disputed.
	reason Reason given by cardholder for dispute. Possible values are bank_cannot_process, check_returned, credit_not_processed, customer_initiated, debit_not_authorized, duplicate, fraudulent, general, incorrect_account_details, insufficient_funds, product_not_received, product_unacceptable, subscription_canceled, or unrecognized. Read more about dispute reasons.
	status Current status of dispute. Possible values are warning_needs_response, warning_under_review, warning_closed, needs_response, under_review, charge_refunded, won, or lost.

 Anchor for this section

Functions

 Link to this function

 close(client, dispute, params \\ %{}, opts \\ [])

 View Source

 @spec close(
 client :: Stripe.t(),
 dispute :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Closing the dispute for a charge indicates that you do not have any evidence to submit and are essentially dismissing the dispute, acknowledging it as lost.
The status of the dispute will change from needs_response to lost. Closing a dispute is irreversible.
Details
	Method: post
	Path: /v1/disputes/{dispute}/close

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:charge) => binary(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:payment_intent) => binary(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your disputes.
Details
	Method: get
	Path: /v1/disputes

 Link to this function

 retrieve(client, dispute, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 dispute :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the dispute with the given ID.
Details
	Method: get
	Path: /v1/disputes/{dispute}

 Link to this function

 update(client, dispute, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 dispute :: binary(),
 params :: %{
 optional(:evidence) => evidence(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:submit) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

When you get a dispute, contacting your customer is always the best first step. If that doesn’t work, you can submit evidence to help us resolve the dispute in your favor. You can do this in your dashboard, but if you prefer, you can use the API to submit evidence programmatically.
Depending on your dispute type, different evidence fields will give you a better chance of winning your dispute. To figure out which evidence fields to provide, see our guide to dispute types.
Details
	Method: post
	Path: /v1/disputes/{dispute}

Stripe.Event

Events are our way of letting you know when something interesting happens in
your account. When an interesting event occurs, we create a new Event
object. For example, when a charge succeeds, we create a charge.succeeded
event; and when an invoice payment attempt fails, we create an
invoice.payment_failed event. Note that many API requests may cause multiple
events to be created. For example, if you create a new subscription for a
customer, you will receive both a customer.subscription.created event and a
charge.succeeded event.
Events occur when the state of another API resource changes. The state of that
resource at the time of the change is embedded in the event's data field. For
example, a charge.succeeded event will contain a charge, and an
invoice.payment_failed event will contain an invoice.
As with other API resources, you can use endpoints to retrieve an
individual event or a list of events
from the API. We also have a separate
webhooks system for sending the
Event objects directly to an endpoint on your server. Webhooks are managed
in your
account settings,
and our Using Webhooks guide will help you get set up.
When using Connect, you can also receive notifications of
events that occur in connected accounts. For these events, there will be an
additional account attribute in the received Event object.
NOTE: Right now, access to events through the Retrieve Event API is
guaranteed only for 30 days.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The event type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 List events, going back up to 30 days. Each event data is rendered according to Stripe API version at its creation time, specified in event object api_version attribute (not according to your current Stripe API version or Stripe-Version header).

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an event. Supply the unique identifier of the event, which you might have received in a webhook.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Event{
 account: binary(),
 api_version: binary() | nil,
 created: integer(),
 data: term(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 pending_webhooks: integer(),
 request: term() | nil,
 type: binary()
}

The event type.
	account The connected account that originated the event.
	api_version The Stripe API version used to render data. Note: This property is populated only for events on or after October 31, 2014.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	data
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	pending_webhooks Number of webhooks that have yet to be successfully delivered (i.e., to return a 20x response) to the URLs you've specified.
	request Information on the API request that instigated the event.
	type Description of the event (e.g., invoice.created or charge.refunded).

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:delivery_success) => boolean(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:type) => binary(),
 optional(:types) => [binary()]
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

List events, going back up to 30 days. Each event data is rendered according to Stripe API version at its creation time, specified in event object api_version attribute (not according to your current Stripe API version or Stripe-Version header).
Details
	Method: get
	Path: /v1/events

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an event. Supply the unique identifier of the event, which you might have received in a webhook.
Details
	Method: get
	Path: /v1/events/{id}

Stripe.ExchangeRate

Exchange Rate objects allow you to determine the rates that Stripe is
currently using to convert from one currency to another. Since this number is
variable throughout the day, there are various reasons why you might want to
know the current rate (for example, to dynamically price an item for a user
with a default payment in a foreign currency).
If you want a guarantee that the charge is made with a certain exchange rate
you expect is current, you can pass in exchange_rate to charges endpoints.
If the value is no longer up to date, the charge won't go through. Please
refer to our Exchange Rates API guide for more
details.

 Anchor for this section

 Summary

 Types

 t()

 The exchange_rate type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a list of objects that contain the rates at which foreign currencies are converted to one another. Only shows the currencies for which Stripe supports.

 retrieve(client, rate_id, params \\ %{}, opts \\ [])

 Retrieves the exchange rates from the given currency to every supported currency.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.ExchangeRate{id: binary(), object: binary(), rates: term()}

The exchange_rate type.
	id Unique identifier for the object. Represented as the three-letter ISO currency code in lowercase.
	object String representing the object's type. Objects of the same type share the same value.
	rates Hash where the keys are supported currencies and the values are the exchange rate at which the base id currency converts to the key currency.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of objects that contain the rates at which foreign currencies are converted to one another. Only shows the currencies for which Stripe supports.
Details
	Method: get
	Path: /v1/exchange_rates

 Link to this function

 retrieve(client, rate_id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 rate_id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the exchange rates from the given currency to every supported currency.
Details
	Method: get
	Path: /v1/exchange_rates/{rate_id}

Stripe.File

This is an object representing a file hosted on Stripe's servers. The
file may have been uploaded by yourself using the create file
request (for example, when uploading dispute evidence) or it may have
been created by Stripe (for example, the results of a Sigma scheduled
query).
Related guide: File Upload Guide.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The file type.

 Functions

 create(client, opts \\ [])

 To upload a file to Stripe, you’ll need to send a request of type multipart/form-data. The request should contain the file you would like to upload, as well as the parameters for creating a file.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of the files that your account has access to. The files are returned sorted by creation date, with the most recently created files appearing first.

 retrieve(client, file, params \\ %{}, opts \\ [])

 Retrieves the details of an existing file object. Supply the unique file ID from a file, and Stripe will return the corresponding file object. To access file contents, see the File Upload Guide.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.File{
 created: integer(),
 expires_at: integer() | nil,
 filename: binary() | nil,
 id: binary(),
 links: term() | nil,
 object: binary(),
 purpose: binary(),
 size: integer(),
 title: binary() | nil,
 type: binary() | nil,
 url: binary() | nil
}

The file type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	expires_at The time at which the file expires and is no longer available in epoch seconds.
	filename A filename for the file, suitable for saving to a filesystem.
	id Unique identifier for the object.
	links A list of file links that point at this file.
	object String representing the object's type. Objects of the same type share the same value.
	purpose The purpose of the uploaded file.
	size The size in bytes of the file object.
	title A user friendly title for the document.
	type The type of the file returned (e.g., csv, pdf, jpg, or png).
	url The URL from which the file can be downloaded using your live secret API key.

 Anchor for this section

Functions

 Link to this function

 create(client, opts \\ [])

 View Source

 @spec create(client :: Stripe.t(), opts :: Keyword.t()) ::
 {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

To upload a file to Stripe, you’ll need to send a request of type multipart/form-data. The request should contain the file you would like to upload, as well as the parameters for creating a file.
All of Stripe’s officially supported Client libraries should have support for sending multipart/form-data.
Details
	Method: post
	Path: /v1/files

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:purpose) =>
 :account_requirement
 | :additional_verification
 | :business_icon
 | :business_logo
 | :customer_signature
 | :dispute_evidence
 | :document_provider_identity_document
 | :finance_report_run
 | :identity_document
 | :identity_document_downloadable
 | :pci_document
 | :selfie
 | :sigma_scheduled_query
 | :tax_document_user_upload
 | :terminal_reader_splashscreen,
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of the files that your account has access to. The files are returned sorted by creation date, with the most recently created files appearing first.
Details
	Method: get
	Path: /v1/files

 Link to this function

 retrieve(client, file, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 file :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing file object. Supply the unique file ID from a file, and Stripe will return the corresponding file object. To access file contents, see the File Upload Guide.
Details
	Method: get
	Path: /v1/files/{file}

Stripe.FileLink

To share the contents of a File object with non-Stripe users, you can
create a FileLink. FileLinks contain a URL that can be used to
retrieve the contents of the file without authentication.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The file_link type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new file link object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of file links.

 retrieve(client, link, params \\ %{}, opts \\ [])

 Retrieves the file link with the given ID.

 update(client, link, params \\ %{}, opts \\ [])

 Updates an existing file link object. Expired links can no longer be updated.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.FileLink{
 created: integer(),
 expired: boolean(),
 expires_at: integer() | nil,
 file: binary() | Stripe.File.t(),
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 url: binary() | nil
}

The file_link type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	expired Whether this link is already expired.
	expires_at Time at which the link expires.
	file The file object this link points to.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	url The publicly accessible URL to download the file.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:expires_at) => integer(),
 optional(:file) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new file link object.
Details
	Method: post
	Path: /v1/file_links

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:expired) => boolean(),
 optional(:file) => binary(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of file links.
Details
	Method: get
	Path: /v1/file_links

 Link to this function

 retrieve(client, link, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 link :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the file link with the given ID.
Details
	Method: get
	Path: /v1/file_links/{link}

 Link to this function

 update(client, link, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 link :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:expires_at) => :now | integer() | binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing file link object. Expired links can no longer be updated.
Details
	Method: post
	Path: /v1/file_links/{link}

Stripe.Mandate

A Mandate is a record of the permission a customer has given you to debit their payment method.

 Anchor for this section

 Summary

 Types

 t()

 The mandate type.

 Functions

 retrieve(client, mandate, params \\ %{}, opts \\ [])

 Retrieves a Mandate object.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Mandate{
 customer_acceptance: term(),
 id: binary(),
 livemode: boolean(),
 multi_use: term(),
 object: binary(),
 payment_method: binary() | Stripe.PaymentMethod.t(),
 payment_method_details: term(),
 single_use: term(),
 status: binary(),
 type: binary()
}

The mandate type.
	customer_acceptance
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	multi_use
	object String representing the object's type. Objects of the same type share the same value.
	payment_method ID of the payment method associated with this mandate.
	payment_method_details
	single_use
	status The status of the mandate, which indicates whether it can be used to initiate a payment.
	type The type of the mandate.

 Anchor for this section

Functions

 Link to this function

 retrieve(client, mandate, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 mandate :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a Mandate object.
Details
	Method: get
	Path: /v1/mandates/{mandate}

Stripe.PaymentIntent

A PaymentIntent guides you through the process of collecting a payment from your customer.
We recommend that you create exactly one PaymentIntent for each order or
customer session in your system. You can reference the PaymentIntent later to
see the history of payment attempts for a particular session.
A PaymentIntent transitions through
multiple statuses
throughout its lifetime as it interfaces with Stripe.js to perform
authentication flows and ultimately creates at most one successful charge.
Related guide: Payment Intents API.

 Anchor for this section

 Summary

 Types

 acss_debit()

 If this is an acss_debit PaymentMethod, this hash contains details about the ACSS Debit payment method.

 address()

 Shipping address.

 affirm()

 afterpay_clearpay()

 alipay()

 au_becs_debit()

 automatic_payment_methods()

 When enabled, this PaymentIntent will accept payment methods that you have enabled in the Dashboard and are compatible with this PaymentIntent's other parameters.

 bacs_debit()

 bancontact()

 bank_transfer()

 Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 billing_details()

 Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

 blik()

 boleto()

 card()

 card_present()

 created()

 customer_acceptance()

 This hash contains details about the customer acceptance of the Mandate.

 customer_balance()

 dob()

 Customer's date of birth

 eps()

 eu_bank_transfer()

 financial_connections()

 Additional fields for Financial Connections Session creation

 fpx()

 giropay()

 grabpay()

 ideal()

 installments()

 Installment configuration for payments attempted on this PaymentIntent (Mexico Only).

 klarna()

 konbini()

 link()

 mandate_data()

 This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.

 mandate_options()

 Configuration options for setting up an eMandate for cards issued in India.

 networks()

 Additional fields for network related functions

 online()

 If this is a Mandate accepted online, this hash contains details about the online acceptance.

 oxxo()

 p24()

 payment_method_data()

 If provided, this hash will be used to create a PaymentMethod. The new PaymentMethod will appear
in the payment_method
property on the PaymentIntent.

 payment_method_options()

 Payment-method-specific configuration for this PaymentIntent.

 paynow()

 pix()

 plan()

 promptpay()

 radar_options()

 Options to configure Radar. See Radar Session for more information.

 sepa_debit()

 shipping()

 Shipping information for this PaymentIntent.

 sofort()

 t()

 The payment_intent type.

 transfer_data()

 The parameters used to automatically create a Transfer when the payment succeeds.
For more information, see the PaymentIntents use case for connected accounts.

 us_bank_account()

 wechat_pay()

 Functions

 apply_customer_balance(client, intent, params \\ %{}, opts \\ [])

 Manually reconcile the remaining amount for a customer_balance PaymentIntent.

 cancel(client, intent, params \\ %{}, opts \\ [])

 A PaymentIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_capture, requires_confirmation, requires_action, or processing..

 capture(client, intent, params \\ %{}, opts \\ [])

 Capture the funds of an existing uncaptured PaymentIntent when its status is requires_capture.

 confirm(client, intent, params \\ %{}, opts \\ [])

 Confirm that your customer intends to pay with current or providedpayment method. Upon confirmation, the PaymentIntent will attempt to initiate
a payment.
If the selected payment method requires additional authentication steps, the
PaymentIntent will transition to the requires_action status and
suggest additional actions via next_action. If payment fails,
the PaymentIntent will transition to the requires_payment_method status. If
payment succeeds, the PaymentIntent will transition to the succeeded
status (or requires_capture, if capture_method is set to manual).
If the confirmation_method is automatic, payment may be attempted
using our client SDKs
and the PaymentIntent’s client_secret.
After next_actions are handled by the client, no additional
confirmation is required to complete the payment.
If the confirmation_method is manual, all payment attempts must be
initiated using a secret key.
If any actions are required for the payment, the PaymentIntent will
return to the requires_confirmation state
after those actions are completed. Your server needs to then
explicitly re-confirm the PaymentIntent to initiate the next payment
attempt. Read the expanded documentation
to learn more about manual confirmation.

 create(client, params \\ %{}, opts \\ [])

 Creates a PaymentIntent object.

 increment_authorization(client, intent, params \\ %{}, opts \\ [])

 Perform an incremental authorization on an eligiblePaymentIntent. To be eligible, the
PaymentIntent’s status must be requires_capture and
incremental_authorization_supported
must be true.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of PaymentIntents.

 retrieve(client, intent, params \\ %{}, opts \\ [])

 Retrieves the details of a PaymentIntent that has previously been created..

 search(client, params \\ %{}, opts \\ [])

 Search for PaymentIntents you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.

 update(client, intent, params \\ %{}, opts \\ [])

 Updates properties on a PaymentIntent object without confirming.

 verify_microdeposits(client, intent, params \\ %{}, opts \\ [])

 Verifies microdeposits on a PaymentIntent object.

 Anchor for this section

Types

 Link to this type

 acss_debit()

 View Source

 @type acss_debit() :: %{
 optional(:account_number) => binary(),
 optional(:institution_number) => binary(),
 optional(:transit_number) => binary()
}

If this is an acss_debit PaymentMethod, this hash contains details about the ACSS Debit payment method.

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

Shipping address.

 Link to this type

 affirm()

 View Source

 @type affirm() :: %{
 optional(:capture_method) => :manual,
 optional(:setup_future_usage) => :none
}

 Link to this type

 afterpay_clearpay()

 View Source

 @type afterpay_clearpay() :: %{
 optional(:capture_method) => :manual,
 optional(:reference) => binary(),
 optional(:setup_future_usage) => :none
}

 Link to this type

 alipay()

 View Source

 @type alipay() :: %{optional(:setup_future_usage) => :none | :off_session}

 Link to this type

 au_becs_debit()

 View Source

 @type au_becs_debit() :: %{
 optional(:setup_future_usage) => :none | :off_session | :on_session
}

 Link to this type

 automatic_payment_methods()

 View Source

 @type automatic_payment_methods() :: %{optional(:enabled) => boolean()}

When enabled, this PaymentIntent will accept payment methods that you have enabled in the Dashboard and are compatible with this PaymentIntent's other parameters.

 Link to this type

 bacs_debit()

 View Source

 @type bacs_debit() :: %{
 optional(:setup_future_usage) => :none | :off_session | :on_session
}

 Link to this type

 bancontact()

 View Source

 @type bancontact() :: %{
 optional(:preferred_language) => :de | :en | :fr | :nl,
 optional(:setup_future_usage) => :none | :off_session
}

 Link to this type

 bank_transfer()

 View Source

 @type bank_transfer() :: %{
 optional(:eu_bank_transfer) => eu_bank_transfer(),
 optional(:requested_address_types) => [
 :iban | :sepa | :sort_code | :spei | :zengin
],
 optional(:type) =>
 :eu_bank_transfer
 | :gb_bank_transfer
 | :jp_bank_transfer
 | :mx_bank_transfer
}

Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 Link to this type

 billing_details()

 View Source

 @type billing_details() :: %{
 optional(:address) => address() | binary(),
 optional(:email) => binary() | binary(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

 Link to this type

 blik()

 View Source

 @type blik() :: %{optional(:code) => binary()}

 Link to this type

 boleto()

 View Source

 @type boleto() :: %{
 optional(:expires_after_days) => integer(),
 optional(:setup_future_usage) => :none | :off_session | :on_session
}

 Link to this type

 card()

 View Source

 @type card() :: %{
 optional(:capture_method) => :manual,
 optional(:cvc_token) => binary(),
 optional(:installments) => installments(),
 optional(:mandate_options) => mandate_options(),
 optional(:moto) => boolean(),
 optional(:network) =>
 :amex
 | :cartes_bancaires
 | :diners
 | :discover
 | :interac
 | :jcb
 | :mastercard
 | :unionpay
 | :unknown
 | :visa,
 optional(:request_three_d_secure) => :any | :automatic,
 optional(:setup_future_usage) => :none | :off_session | :on_session,
 optional(:statement_descriptor_suffix_kana) => binary() | binary(),
 optional(:statement_descriptor_suffix_kanji) => binary() | binary()
}

 Link to this type

 card_present()

 View Source

 @type card_present() :: %{
 optional(:request_extended_authorization) => boolean(),
 optional(:request_incremental_authorization_support) => boolean()
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 customer_acceptance()

 View Source

 @type customer_acceptance() :: %{
 optional(:accepted_at) => integer(),
 optional(:offline) => map(),
 optional(:online) => online(),
 optional(:type) => :offline | :online
}

This hash contains details about the customer acceptance of the Mandate.

 Link to this type

 customer_balance()

 View Source

 @type customer_balance() :: %{
 optional(:bank_transfer) => bank_transfer(),
 optional(:funding_type) => :bank_transfer,
 optional(:setup_future_usage) => :none
}

 Link to this type

 dob()

 View Source

 @type dob() :: %{
 optional(:day) => integer(),
 optional(:month) => integer(),
 optional(:year) => integer()
}

Customer's date of birth

 Link to this type

 eps()

 View Source

 @type eps() :: %{optional(:setup_future_usage) => :none}

 Link to this type

 eu_bank_transfer()

 View Source

 @type eu_bank_transfer() :: %{optional(:country) => binary()}

 Link to this type

 financial_connections()

 View Source

 @type financial_connections() :: %{
 optional(:permissions) => [
 :balances | :ownership | :payment_method | :transactions
],
 optional(:return_url) => binary()
}

Additional fields for Financial Connections Session creation

 Link to this type

 fpx()

 View Source

 @type fpx() :: %{optional(:setup_future_usage) => :none}

 Link to this type

 giropay()

 View Source

 @type giropay() :: %{optional(:setup_future_usage) => :none}

 Link to this type

 grabpay()

 View Source

 @type grabpay() :: %{optional(:setup_future_usage) => :none}

 Link to this type

 ideal()

 View Source

 @type ideal() :: %{optional(:setup_future_usage) => :none | :off_session}

 Link to this type

 installments()

 View Source

 @type installments() :: %{
 optional(:enabled) => boolean(),
 optional(:plan) => plan() | binary()
}

Installment configuration for payments attempted on this PaymentIntent (Mexico Only).
For more information, see the installments integration guide.

 Link to this type

 klarna()

 View Source

 @type klarna() :: %{
 optional(:capture_method) => :manual,
 optional(:preferred_locale) =>
 :"da-DK"
 | :"de-AT"
 | :"de-CH"
 | :"de-DE"
 | :"en-AT"
 | :"en-AU"
 | :"en-BE"
 | :"en-CA"
 | :"en-CH"
 | :"en-DE"
 | :"en-DK"
 | :"en-ES"
 | :"en-FI"
 | :"en-FR"
 | :"en-GB"
 | :"en-IE"
 | :"en-IT"
 | :"en-NL"
 | :"en-NO"
 | :"en-NZ"
 | :"en-PL"
 | :"en-PT"
 | :"en-SE"
 | :"en-US"
 | :"es-ES"
 | :"es-US"
 | :"fi-FI"
 | :"fr-BE"
 | :"fr-CA"
 | :"fr-CH"
 | :"fr-FR"
 | :"it-CH"
 | :"it-IT"
 | :"nb-NO"
 | :"nl-BE"
 | :"nl-NL"
 | :"pl-PL"
 | :"pt-PT"
 | :"sv-FI"
 | :"sv-SE",
 optional(:setup_future_usage) => :none
}

 Link to this type

 konbini()

 View Source

 @type konbini() :: %{
 optional(:confirmation_number) => binary(),
 optional(:expires_after_days) => integer() | binary(),
 optional(:expires_at) => integer() | binary(),
 optional(:product_description) => binary(),
 optional(:setup_future_usage) => :none
}

 Link to this type

 link()

 View Source

 @type link() :: %{
 optional(:capture_method) => :manual,
 optional(:persistent_token) => binary(),
 optional(:setup_future_usage) => :none | :off_session
}

 Link to this type

 mandate_data()

 View Source

 @type mandate_data() :: %{optional(:customer_acceptance) => customer_acceptance()}

This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.

 Link to this type

 mandate_options()

 View Source

 @type mandate_options() :: %{
 optional(:amount) => integer(),
 optional(:amount_type) => :fixed | :maximum,
 optional(:description) => binary(),
 optional(:end_date) => integer(),
 optional(:interval) => :day | :month | :sporadic | :week | :year,
 optional(:interval_count) => integer(),
 optional(:reference) => binary(),
 optional(:start_date) => integer(),
 optional(:supported_types) => [:india]
}

Configuration options for setting up an eMandate for cards issued in India.

 Link to this type

 networks()

 View Source

 @type networks() :: %{optional(:requested) => [:ach | :us_domestic_wire]}

Additional fields for network related functions

 Link to this type

 online()

 View Source

 @type online() :: %{
 optional(:ip_address) => binary(),
 optional(:user_agent) => binary()
}

If this is a Mandate accepted online, this hash contains details about the online acceptance.

 Link to this type

 oxxo()

 View Source

 @type oxxo() :: %{
 optional(:expires_after_days) => integer(),
 optional(:setup_future_usage) => :none
}

 Link to this type

 p24()

 View Source

 @type p24() :: %{
 optional(:setup_future_usage) => :none,
 optional(:tos_shown_and_accepted) => boolean()
}

 Link to this type

 payment_method_data()

 View Source

 @type payment_method_data() :: %{
 optional(:acss_debit) => acss_debit(),
 optional(:affirm) => map(),
 optional(:afterpay_clearpay) => map(),
 optional(:alipay) => map(),
 optional(:au_becs_debit) => au_becs_debit(),
 optional(:bacs_debit) => bacs_debit(),
 optional(:bancontact) => map(),
 optional(:billing_details) => billing_details(),
 optional(:blik) => map(),
 optional(:boleto) => boleto(),
 optional(:customer_balance) => map(),
 optional(:eps) => eps(),
 optional(:fpx) => fpx(),
 optional(:giropay) => map(),
 optional(:grabpay) => map(),
 optional(:ideal) => ideal(),
 optional(:interac_present) => map(),
 optional(:klarna) => klarna(),
 optional(:konbini) => map(),
 optional(:link) => map(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:oxxo) => map(),
 optional(:p24) => p24(),
 optional(:paynow) => map(),
 optional(:pix) => map(),
 optional(:promptpay) => map(),
 optional(:radar_options) => radar_options(),
 optional(:sepa_debit) => sepa_debit(),
 optional(:sofort) => sofort(),
 optional(:type) =>
 :acss_debit
 | :affirm
 | :afterpay_clearpay
 | :alipay
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :blik
 | :boleto
 | :customer_balance
 | :eps
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :klarna
 | :konbini
 | :link
 | :oxxo
 | :p24
 | :paynow
 | :pix
 | :promptpay
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay,
 optional(:us_bank_account) => us_bank_account(),
 optional(:wechat_pay) => map()
}

If provided, this hash will be used to create a PaymentMethod. The new PaymentMethod will appear
in the payment_method
property on the PaymentIntent.

 Link to this type

 payment_method_options()

 View Source

 @type payment_method_options() :: %{
 optional(:acss_debit) => acss_debit() | binary(),
 optional(:affirm) => affirm() | binary(),
 optional(:afterpay_clearpay) => afterpay_clearpay() | binary(),
 optional(:alipay) => alipay() | binary(),
 optional(:au_becs_debit) => au_becs_debit() | binary(),
 optional(:bacs_debit) => bacs_debit() | binary(),
 optional(:bancontact) => bancontact() | binary(),
 optional(:blik) => blik() | binary(),
 optional(:boleto) => boleto() | binary(),
 optional(:card) => card() | binary(),
 optional(:card_present) => card_present() | binary(),
 optional(:customer_balance) => customer_balance() | binary(),
 optional(:eps) => eps() | binary(),
 optional(:fpx) => fpx() | binary(),
 optional(:giropay) => giropay() | binary(),
 optional(:grabpay) => grabpay() | binary(),
 optional(:ideal) => ideal() | binary(),
 optional(:interac_present) => map() | binary(),
 optional(:klarna) => klarna() | binary(),
 optional(:konbini) => konbini() | binary(),
 optional(:link) => link() | binary(),
 optional(:oxxo) => oxxo() | binary(),
 optional(:p24) => p24() | binary(),
 optional(:paynow) => paynow() | binary(),
 optional(:pix) => pix() | binary(),
 optional(:promptpay) => promptpay() | binary(),
 optional(:sepa_debit) => sepa_debit() | binary(),
 optional(:sofort) => sofort() | binary(),
 optional(:us_bank_account) => us_bank_account() | binary(),
 optional(:wechat_pay) => wechat_pay() | binary()
}

Payment-method-specific configuration for this PaymentIntent.

 Link to this type

 paynow()

 View Source

 @type paynow() :: %{optional(:setup_future_usage) => :none}

 Link to this type

 pix()

 View Source

 @type pix() :: %{
 optional(:expires_after_seconds) => integer(),
 optional(:expires_at) => integer(),
 optional(:setup_future_usage) => :none
}

 Link to this type

 plan()

 View Source

 @type plan() :: %{
 optional(:count) => integer(),
 optional(:interval) => :month,
 optional(:type) => :fixed_count
}

 Link to this type

 promptpay()

 View Source

 @type promptpay() :: %{optional(:setup_future_usage) => :none}

 Link to this type

 radar_options()

 View Source

 @type radar_options() :: %{optional(:session) => binary()}

Options to configure Radar. See Radar Session for more information.

 Link to this type

 sepa_debit()

 View Source

 @type sepa_debit() :: %{
 optional(:mandate_options) => map(),
 optional(:setup_future_usage) => :none | :off_session | :on_session
}

 Link to this type

 shipping()

 View Source

 @type shipping() :: %{
 optional(:address) => address(),
 optional(:carrier) => binary(),
 optional(:name) => binary(),
 optional(:phone) => binary(),
 optional(:tracking_number) => binary()
}

Shipping information for this PaymentIntent.

 Link to this type

 sofort()

 View Source

 @type sofort() :: %{
 optional(:preferred_language) => :de | :en | :es | :fr | :it | :nl | :pl,
 optional(:setup_future_usage) => :none | :off_session
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.PaymentIntent{
 amount: integer(),
 amount_capturable: integer(),
 amount_details: term(),
 amount_received: integer(),
 application: (binary() | term()) | nil,
 application_fee_amount: integer() | nil,
 automatic_payment_methods: term() | nil,
 canceled_at: integer() | nil,
 cancellation_reason: binary() | nil,
 capture_method: binary(),
 client_secret: binary() | nil,
 confirmation_method: binary(),
 created: integer(),
 currency: binary(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 description: binary() | nil,
 id: binary(),
 invoice: (binary() | Stripe.Invoice.t()) | nil,
 last_payment_error: Stripe.ApiErrors.t() | nil,
 latest_charge: (binary() | Stripe.Charge.t()) | nil,
 livemode: boolean(),
 metadata: term(),
 next_action: term() | nil,
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 payment_method: (binary() | Stripe.PaymentMethod.t()) | nil,
 payment_method_options: term() | nil,
 payment_method_types: term(),
 processing: term() | nil,
 receipt_email: binary() | nil,
 review: (binary() | Stripe.Review.t()) | nil,
 setup_future_usage: binary() | nil,
 shipping: term() | nil,
 source:
 (binary() | Stripe.PaymentSource.t() | Stripe.DeletedPaymentSource.t())
 | nil,
 statement_descriptor: binary() | nil,
 statement_descriptor_suffix: binary() | nil,
 status: binary(),
 transfer_data: term() | nil,
 transfer_group: binary() | nil
}

The payment_intent type.
	setup_future_usage Indicates that you intend to make future payments with this PaymentIntent's payment method.

Providing this parameter will attach the payment method to the PaymentIntent's Customer, if present, after the PaymentIntent is confirmed and any required actions from the user are complete. If no Customer was provided, the payment method can still be attached to a Customer after the transaction completes.
When processing card payments, Stripe also uses setup_future_usage to dynamically optimize your payment flow and comply with regional legislation and network rules, such as SCA.
	payment_method ID of the payment method used in this PaymentIntent.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	processing If present, this property tells you about the processing state of the payment.
	capture_method Controls when the funds will be captured from the customer's account.
	payment_method_options Payment-method-specific configuration for this PaymentIntent.
	amount_received Amount that was collected by this PaymentIntent.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format. For more information, see the documentation.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	payment_method_types The list of payment method types (e.g. card) that this PaymentIntent is allowed to use.
	amount_capturable Amount that can be captured from this PaymentIntent.
	review ID of the review associated with this PaymentIntent, if any.
	confirmation_method
	next_action If present, this property tells you what actions you need to take in order for your customer to fulfill a payment using the provided source.
	on_behalf_of The account (if any) for which the funds of the PaymentIntent are intended. See the PaymentIntents use case for connected accounts for details.
	customer ID of the Customer this PaymentIntent belongs to, if one exists.

Payment methods attached to other Customers cannot be used with this PaymentIntent.
If present in combination with setup_future_usage, this PaymentIntent's payment method will be attached to the Customer after the PaymentIntent has been confirmed and any required actions from the user are complete.
	amount Amount intended to be collected by this PaymentIntent. A positive integer representing how much to charge in the smallest currency unit (e.g., 100 cents to charge $1.00 or 100 to charge ¥100, a zero-decimal currency). The minimum amount is $0.50 US or equivalent in charge currency. The amount value supports up to eight digits (e.g., a value of 99999999 for a USD charge of $999,999.99).
	invoice ID of the invoice that created this PaymentIntent, if it exists.
	automatic_payment_methods Settings to configure compatible payment methods from the Stripe Dashboard
	statement_descriptor For non-card charges, you can use this value as the complete description that appears on your customers’ statements. Must contain at least one letter, maximum 22 characters.
	latest_charge The latest charge created by this payment intent.
	application ID of the Connect application that created the PaymentIntent.
	client_secret The client secret of this PaymentIntent. Used for client-side retrieval using a publishable key.

The client secret can be used to complete a payment from your frontend. It should not be stored, logged, or exposed to anyone other than the customer. Make sure that you have TLS enabled on any page that includes the client secret.
Refer to our docs to accept a payment and learn about how client_secret should be handled.
	receipt_email Email address that the receipt for the resulting payment will be sent to. If receipt_email is specified for a payment in live mode, a receipt will be sent regardless of your email settings.
	object String representing the object's type. Objects of the same type share the same value.
	source This is a legacy field that will be removed in the future. It is the ID of the Source object that is associated with this PaymentIntent, if one was supplied.
	last_payment_error The payment error encountered in the previous PaymentIntent confirmation. It will be cleared if the PaymentIntent is later updated for any reason.
	canceled_at Populated when status is canceled, this is the time at which the PaymentIntent was canceled. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	cancellation_reason Reason for cancellation of this PaymentIntent, either user-provided (duplicate, fraudulent, requested_by_customer, or abandoned) or generated by Stripe internally (failed_invoice, void_invoice, or automatic).
	status Status of this PaymentIntent, one of requires_payment_method, requires_confirmation, requires_action, processing, requires_capture, canceled, or succeeded. Read more about each PaymentIntent status.
	transfer_group A string that identifies the resulting payment as part of a group. See the PaymentIntents use case for connected accounts for details.
	amount_details
	application_fee_amount The amount of the application fee (if any) that will be requested to be applied to the payment and transferred to the application owner's Stripe account. The amount of the application fee collected will be capped at the total payment amount. For more information, see the PaymentIntents use case for connected accounts.
	statement_descriptor_suffix Provides information about a card payment that customers see on their statements. Concatenated with the prefix (shortened descriptor) or statement descriptor that’s set on the account to form the complete statement descriptor. Maximum 22 characters for the concatenated descriptor.
	transfer_data The data with which to automatically create a Transfer when the payment is finalized. See the PaymentIntents use case for connected accounts for details.
	id Unique identifier for the object.
	shipping Shipping information for this PaymentIntent.

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount) => integer(),
 optional(:destination) => binary()
}

The parameters used to automatically create a Transfer when the payment succeeds.
For more information, see the PaymentIntents use case for connected accounts.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{
 optional(:financial_connections) => financial_connections(),
 optional(:networks) => networks(),
 optional(:setup_future_usage) => :none | :off_session | :on_session,
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

 Link to this type

 wechat_pay()

 View Source

 @type wechat_pay() :: %{
 optional(:app_id) => binary(),
 optional(:client) => :android | :ios | :web,
 optional(:setup_future_usage) => :none
}

 Anchor for this section

Functions

 Link to this function

 apply_customer_balance(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec apply_customer_balance(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Manually reconcile the remaining amount for a customer_balance PaymentIntent.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/apply_customer_balance

 Link to this function

 cancel(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:cancellation_reason) =>
 :abandoned | :duplicate | :fraudulent | :requested_by_customer,
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A PaymentIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_capture, requires_confirmation, requires_action, or processing..
Once canceled, no additional charges will be made by the PaymentIntent and any operations on the PaymentIntent will fail with an error. For PaymentIntents with status=’requires_capture’, the remaining amount_capturable will automatically be refunded..
You cannot cancel the PaymentIntent for a Checkout Session. Expire the Checkout Session instea.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/cancel

 Link to this function

 capture(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec capture(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:amount_to_capture) => integer(),
 optional(:application_fee_amount) => integer(),
 optional(:expand) => [binary()],
 optional(:statement_descriptor) => binary(),
 optional(:statement_descriptor_suffix) => binary(),
 optional(:transfer_data) => transfer_data()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Capture the funds of an existing uncaptured PaymentIntent when its status is requires_capture.
Uncaptured PaymentIntents will be canceled a set number of days after they are created (7 by default).
Learn more about separate authorization and capture.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/capture

 Link to this function

 confirm(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec confirm(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:capture_method) => :automatic | :manual,
 optional(:error_on_requires_action) => boolean(),
 optional(:expand) => [binary()],
 optional(:mandate) => binary(),
 optional(:mandate_data) => mandate_data() | mandate_data(),
 optional(:off_session) => boolean() | :one_off | :recurring,
 optional(:payment_method) => binary(),
 optional(:payment_method_data) => payment_method_data(),
 optional(:payment_method_options) => payment_method_options(),
 optional(:radar_options) => radar_options(),
 optional(:receipt_email) => binary() | binary(),
 optional(:return_url) => binary(),
 optional(:setup_future_usage) => :off_session | :on_session,
 optional(:shipping) => shipping() | binary(),
 optional(:use_stripe_sdk) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Confirm that your customer intends to pay with current or providedpayment method. Upon confirmation, the PaymentIntent will attempt to initiate
a payment.
If the selected payment method requires additional authentication steps, the
PaymentIntent will transition to the requires_action status and
suggest additional actions via next_action. If payment fails,
the PaymentIntent will transition to the requires_payment_method status. If
payment succeeds, the PaymentIntent will transition to the succeeded
status (or requires_capture, if capture_method is set to manual).
If the confirmation_method is automatic, payment may be attempted
using our client SDKs
and the PaymentIntent’s client_secret.
After next_actions are handled by the client, no additional
confirmation is required to complete the payment.
If the confirmation_method is manual, all payment attempts must be
initiated using a secret key.
If any actions are required for the payment, the PaymentIntent will
return to the requires_confirmation state
after those actions are completed. Your server needs to then
explicitly re-confirm the PaymentIntent to initiate the next payment
attempt. Read the expanded documentation
to learn more about manual confirmation.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/confirm

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:application_fee_amount) => integer(),
 optional(:automatic_payment_methods) => automatic_payment_methods(),
 optional(:capture_method) => :automatic | :manual,
 optional(:confirm) => boolean(),
 optional(:confirmation_method) => :automatic | :manual,
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:error_on_requires_action) => boolean(),
 optional(:expand) => [binary()],
 optional(:mandate) => binary(),
 optional(:mandate_data) => mandate_data(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:off_session) => boolean() | :one_off | :recurring,
 optional(:on_behalf_of) => binary(),
 optional(:payment_method) => binary(),
 optional(:payment_method_data) => payment_method_data(),
 optional(:payment_method_options) => payment_method_options(),
 optional(:payment_method_types) => [binary()],
 optional(:radar_options) => radar_options(),
 optional(:receipt_email) => binary(),
 optional(:return_url) => binary(),
 optional(:setup_future_usage) => :off_session | :on_session,
 optional(:shipping) => shipping(),
 optional(:statement_descriptor) => binary(),
 optional(:statement_descriptor_suffix) => binary(),
 optional(:transfer_data) => transfer_data(),
 optional(:transfer_group) => binary(),
 optional(:use_stripe_sdk) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a PaymentIntent object.
After the PaymentIntent is created, attach a payment method and confirmto continue the payment. You can read more about the different payment flows
available via the Payment Intents API here.
When confirm=true is used during creation, it is equivalent to creatingand confirming the PaymentIntent in the same call. You may use any parameters
available in the confirm API when confirm=true
is supplied.
Details
	Method: post
	Path: /v1/payment_intents

 Link to this function

 increment_authorization(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec increment_authorization(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:application_fee_amount) => integer(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:statement_descriptor) => binary(),
 optional(:transfer_data) => transfer_data()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Perform an incremental authorization on an eligiblePaymentIntent. To be eligible, the
PaymentIntent’s status must be requires_capture and
incremental_authorization_supported
must be true.
Incremental authorizations attempt to increase the authorized amount onyour customer’s card to the new, higher amount provided. As with the
initial authorization, incremental authorizations may be declined. A
single PaymentIntent can call this endpoint multiple times to further
increase the authorized amount.
If the incremental authorization succeeds, the PaymentIntent object isreturned with the updated
amount.
If the incremental authorization fails, a
card_declined error is returned, and no
fields on the PaymentIntent or Charge are updated. The PaymentIntent
object remains capturable for the previously authorized amount.
Each PaymentIntent can have a maximum of 10 incremental authorization attempts, including declines.Once captured, a PaymentIntent can no longer be incremented.
Learn more about incremental authorizations.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/increment_authorization

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of PaymentIntents.
Details
	Method: get
	Path: /v1/payment_intents

 Link to this function

 retrieve(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:client_secret) => binary(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of a PaymentIntent that has previously been created..
Client-side retrieval using a publishable key is allowed when the client_secret is provided in the query string..
When retrieved with a publishable key, only a subset of properties will be returned. Please refer to the payment intent object reference for more details.
Details
	Method: get
	Path: /v1/payment_intents/{intent}

 Link to this function

 search(client, params \\ %{}, opts \\ [])

 View Source

 @spec search(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:page) => binary(),
 optional(:query) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.SearchResult.t(t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Search for PaymentIntents you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/payment_intents/search

 Link to this function

 update(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:application_fee_amount) => integer() | binary(),
 optional(:capture_method) => :automatic | :manual,
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:payment_method) => binary(),
 optional(:payment_method_data) => payment_method_data(),
 optional(:payment_method_options) => payment_method_options(),
 optional(:payment_method_types) => [binary()],
 optional(:receipt_email) => binary() | binary(),
 optional(:setup_future_usage) => :off_session | :on_session,
 optional(:shipping) => shipping() | binary(),
 optional(:statement_descriptor) => binary(),
 optional(:statement_descriptor_suffix) => binary(),
 optional(:transfer_data) => transfer_data(),
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates properties on a PaymentIntent object without confirming.
Depending on which properties you update, you may need to confirm thePaymentIntent again. For example, updating the payment_method will
always require you to confirm the PaymentIntent again. If you prefer to
update and confirm at the same time, we recommend updating properties via
the confirm API instead.
Details
	Method: post
	Path: /v1/payment_intents/{intent}

 Link to this function

 verify_microdeposits(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec verify_microdeposits(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:amounts) => [integer()],
 optional(:descriptor_code) => binary(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Verifies microdeposits on a PaymentIntent object.
Details
	Method: post
	Path: /v1/payment_intents/{intent}/verify_microdeposits

Stripe.PaymentSource

 Anchor for this section

 Summary

 Types

 t()

 The payment_source type.

 Functions

 create(client, customer, params \\ %{}, opts \\ [])

 When you create a new credit card, you must specify a customer or recipient on which to create it.

 list(client, customer, params \\ %{}, opts \\ [])

 List sources for a specified customer.

 retrieve(client, customer, id, params \\ %{}, opts \\ [])

 Retrieve a specified source for a given customer.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.PaymentSource{}

The payment_source type.

 Anchor for this section

Functions

 Link to this function

 create(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:source) => binary(),
 optional(:validate) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

When you create a new credit card, you must specify a customer or recipient on which to create it.
If the card’s owner has no default card, then the new card will become the default.However, if the owner already has a default, then it will not change.
To change the default, you should update the customer to have a new default_source.
Details
	Method: post
	Path: /v1/customers/{customer}/sources

 Link to this function

 list(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:object) => binary(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

List sources for a specified customer.
Details
	Method: get
	Path: /v1/customers/{customer}/sources

 Link to this function

 retrieve(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieve a specified source for a given customer.
Details
	Method: get
	Path: /v1/customers/{customer}/sources/{id}

Stripe.Payout

A Payout object is created when you receive funds from Stripe, or when you
initiate a payout to either a bank account or debit card of a connected
Stripe account. You can retrieve individual payouts,
as well as list all payouts. Payouts are made on varying
schedules, depending on your country and
industry.
Related guide: Receiving Payouts.

 Anchor for this section

 Summary

 Types

 arrival_date()

 created()

 t()

 The payout type.

 Functions

 cancel(client, payout, params \\ %{}, opts \\ [])

 A previously created payout can be canceled if it has not yet been paid out. Funds will be refunded to your available balance. You may not cancel automatic Stripe payouts.

 create(client, params \\ %{}, opts \\ [])

 To send funds to your own bank account, you create a new payout object. Your Stripe balance must be able to cover the payout amount, or you’ll receive an “Insufficient Funds” error.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of existing payouts sent to third-party bank accounts or that Stripe has sent you. The payouts are returned in sorted order, with the most recently created payouts appearing first.

 retrieve(client, payout, params \\ %{}, opts \\ [])

 Retrieves the details of an existing payout. Supply the unique payout ID from either a payout creation request or the payout list, and Stripe will return the corresponding payout information.

 reverse(client, payout, params \\ %{}, opts \\ [])

 Reverses a payout by debiting the destination bank account. Only payouts for connected accounts to US bank accounts may be reversed at this time. If the payout is in the pending status, /v1/payouts/:id/cancel should be used instead.

 update(client, payout, params \\ %{}, opts \\ [])

 Updates the specified payout by setting the values of the parameters passed. Any parameters not provided will be left unchanged. This request accepts only the metadata as arguments.

 Anchor for this section

Types

 Link to this type

 arrival_date()

 View Source

 @type arrival_date() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Payout{
 amount: integer(),
 arrival_date: integer(),
 automatic: boolean(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 created: integer(),
 currency: binary(),
 description: binary() | nil,
 destination:
 (binary() | Stripe.ExternalAccount.t() | Stripe.DeletedExternalAccount.t())
 | nil,
 failure_balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 failure_code: binary() | nil,
 failure_message: binary() | nil,
 id: binary(),
 livemode: boolean(),
 metadata: term() | nil,
 method: binary(),
 object: binary(),
 original_payout: (binary() | t()) | nil,
 reversed_by: (binary() | t()) | nil,
 source_type: binary(),
 statement_descriptor: binary() | nil,
 status: binary(),
 type: binary()
}

The payout type.
	amount Amount (in %s) to be transferred to your bank account or debit card.
	arrival_date Date the payout is expected to arrive in the bank. This factors in delays like weekends or bank holidays.
	automatic Returns true if the payout was created by an automated payout schedule, and false if it was requested manually.
	balance_transaction ID of the balance transaction that describes the impact of this payout on your account balance.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	destination ID of the bank account or card the payout was sent to.
	failure_balance_transaction If the payout failed or was canceled, this will be the ID of the balance transaction that reversed the initial balance transaction, and puts the funds from the failed payout back in your balance.
	failure_code Error code explaining reason for payout failure if available. See Types of payout failures for a list of failure codes.
	failure_message Message to user further explaining reason for payout failure if available.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	method The method used to send this payout, which can be standard or instant. instant is only supported for payouts to debit cards. (See Instant payouts for marketplaces for more information.)
	object String representing the object's type. Objects of the same type share the same value.
	original_payout If the payout reverses another, this is the ID of the original payout.
	reversed_by If the payout was reversed, this is the ID of the payout that reverses this payout.
	source_type The source balance this payout came from. One of card, fpx, or bank_account.
	statement_descriptor Extra information about a payout to be displayed on the user's bank statement.
	status Current status of the payout: paid, pending, in_transit, canceled or failed. A payout is pending until it is submitted to the bank, when it becomes in_transit. The status then changes to paid if the transaction goes through, or to failed or canceled (within 5 business days). Some failed payouts may initially show as paid but then change to failed.
	type Can be bank_account or card.

 Anchor for this section

Functions

 Link to this function

 cancel(client, payout, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 payout :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A previously created payout can be canceled if it has not yet been paid out. Funds will be refunded to your available balance. You may not cancel automatic Stripe payouts.
Details
	Method: post
	Path: /v1/payouts/{payout}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:destination) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:method) => :instant | :standard,
 optional(:source_type) => :bank_account | :card | :fpx,
 optional(:statement_descriptor) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

To send funds to your own bank account, you create a new payout object. Your Stripe balance must be able to cover the payout amount, or you’ll receive an “Insufficient Funds” error.
If your API key is in test mode, money won’t actually be sent, though everything else will occur as if in live mode.
If you are creating a manual payout on a Stripe account that uses multiple payment source types, you’ll need to specify the source type balance that the payout should draw from. The balance object details available and pending amounts by source type.
Details
	Method: post
	Path: /v1/payouts

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:arrival_date) => arrival_date() | integer(),
 optional(:created) => created() | integer(),
 optional(:destination) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of existing payouts sent to third-party bank accounts or that Stripe has sent you. The payouts are returned in sorted order, with the most recently created payouts appearing first.
Details
	Method: get
	Path: /v1/payouts

 Link to this function

 retrieve(client, payout, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 payout :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing payout. Supply the unique payout ID from either a payout creation request or the payout list, and Stripe will return the corresponding payout information.
Details
	Method: get
	Path: /v1/payouts/{payout}

 Link to this function

 reverse(client, payout, params \\ %{}, opts \\ [])

 View Source

 @spec reverse(
 client :: Stripe.t(),
 payout :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()}
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Reverses a payout by debiting the destination bank account. Only payouts for connected accounts to US bank accounts may be reversed at this time. If the payout is in the pending status, /v1/payouts/:id/cancel should be used instead.
By requesting a reversal via /v1/payouts/:id/reverse, you confirm that the authorized signatory of the selected bank account has authorized the debit on the bank account and that no other authorization is required.
Details
	Method: post
	Path: /v1/payouts/{payout}/reverse

 Link to this function

 update(client, payout, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 payout :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified payout by setting the values of the parameters passed. Any parameters not provided will be left unchanged. This request accepts only the metadata as arguments.
Details
	Method: post
	Path: /v1/payouts/{payout}

Stripe.Refund

Refund objects allow you to refund a charge that has previously been created
but not yet refunded. Funds will be refunded to the credit or debit card that
was originally charged.
Related guide: Refunds.

 Anchor for this section

 Summary

 Types

 t()

 The refund type.

 Functions

 cancel(client, refund, params \\ %{}, opts \\ [])

 Cancels a refund with a status of requires_action.

 create(client, params \\ %{}, opts \\ [])

 Create a refund.

 expire(client, refund, params \\ %{}, opts \\ [])

 Expire a refund with a status of requires_action.

 list(client, charge, params \\ %{}, opts \\ [])

 You can see a list of the refunds belonging to a specific charge. Note that the 10 most recent refunds are always available by default on the charge object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional refunds.

 retrieve(client, charge, refund, params \\ %{}, opts \\ [])

 Retrieves the details of an existing refund.

 update(client, refund, params \\ %{}, opts \\ [])

 Updates the specified refund by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Refund{
 amount: integer(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 charge: (binary() | Stripe.Charge.t()) | nil,
 created: integer(),
 currency: binary(),
 description: binary(),
 failure_balance_transaction: binary() | Stripe.BalanceTransaction.t(),
 failure_reason: binary(),
 id: binary(),
 instructions_email: binary(),
 metadata: term() | nil,
 next_action: term(),
 object: binary(),
 payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
 reason: binary() | nil,
 receipt_number: binary() | nil,
 source_transfer_reversal: (binary() | Stripe.TransferReversal.t()) | nil,
 status: binary() | nil,
 transfer_reversal: (binary() | Stripe.TransferReversal.t()) | nil
}

The refund type.
	amount Amount, in %s.
	balance_transaction Balance transaction that describes the impact on your account balance.
	charge ID of the charge that was refunded.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users. (Available on non-card refunds only)
	failure_balance_transaction If the refund failed, this balance transaction describes the adjustment made on your account balance that reverses the initial balance transaction.
	failure_reason If the refund failed, the reason for refund failure if known. Possible values are lost_or_stolen_card, expired_or_canceled_card, or unknown.
	id Unique identifier for the object.
	instructions_email Email to which refund instructions, if required, are sent to.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	next_action
	object String representing the object's type. Objects of the same type share the same value.
	payment_intent ID of the PaymentIntent that was refunded.
	reason Reason for the refund, either user-provided (duplicate, fraudulent, or requested_by_customer) or generated by Stripe internally (expired_uncaptured_charge).
	receipt_number This is the transaction number that appears on email receipts sent for this refund.
	source_transfer_reversal The transfer reversal that is associated with the refund. Only present if the charge came from another Stripe account. See the Connect documentation for details.
	status Status of the refund. For credit card refunds, this can be pending, succeeded, or failed. For other types of refunds, it can be pending, requires_action, succeeded, failed, or canceled. Refer to our refunds documentation for more details.
	transfer_reversal If the accompanying transfer was reversed, the transfer reversal object. Only applicable if the charge was created using the destination parameter.

 Anchor for this section

Functions

 Link to this function

 cancel(client, refund, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 refund :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancels a refund with a status of requires_action.
Refunds in other states cannot be canceled, and only refunds for payment methods that require customer action will enter the requires_action state.
Details
	Method: post
	Path: /v1/refunds/{refund}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:charge) => binary(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:expand) => [binary()],
 optional(:instructions_email) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:origin) => :customer_balance,
 optional(:payment_intent) => binary(),
 optional(:reason) => :duplicate | :fraudulent | :requested_by_customer,
 optional(:refund_application_fee) => boolean(),
 optional(:reverse_transfer) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Create a refund.
Details
	Method: post
	Path: /v1/refunds

 Link to this function

 expire(client, refund, params \\ %{}, opts \\ [])

 View Source

 @spec expire(
 client :: Stripe.t(),
 refund :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Expire a refund with a status of requires_action.
Details
	Method: post
	Path: /v1/test_helpers/refunds/{refund}/expire

 Link to this function

 list(client, charge, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 charge :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

You can see a list of the refunds belonging to a specific charge. Note that the 10 most recent refunds are always available by default on the charge object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional refunds.
Details
	Method: get
	Path: /v1/charges/{charge}/refunds

 Link to this function

 retrieve(client, charge, refund, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 charge :: binary(),
 refund :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing refund.
Details
	Method: get
	Path: /v1/charges/{charge}/refunds/{refund}

 Link to this function

 update(client, refund, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 refund :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified refund by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
This request only accepts metadata as an argument.
Details
	Method: post
	Path: /v1/refunds/{refund}

Stripe.SetupAttempt

A SetupAttempt describes one attempted confirmation of a SetupIntent,
whether that confirmation was successful or unsuccessful. You can use
SetupAttempts to inspect details of a specific attempt at setting up a
payment method using a SetupIntent.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The setup_attempt type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a list of SetupAttempts associated with a provided SetupIntent.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.SetupAttempt{
 application: (binary() | term()) | nil,
 attach_to_self: boolean(),
 created: integer(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 flow_directions: term() | nil,
 id: binary(),
 livemode: boolean(),
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 payment_method: binary() | Stripe.PaymentMethod.t(),
 payment_method_details: term(),
 setup_error: Stripe.ApiErrors.t() | nil,
 setup_intent: binary() | Stripe.SetupIntent.t(),
 status: binary(),
 usage: binary()
}

The setup_attempt type.
	application The value of application on the SetupIntent at the time of this confirmation.
	attach_to_self If present, the SetupIntent's payment method will be attached to the in-context Stripe Account.

It can only be used for this Stripe Account’s own money movement flows like InboundTransfer and OutboundTransfers. It cannot be set to true when setting up a PaymentMethod for a Customer, and defaults to false when attaching a PaymentMethod to a Customer.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	customer The value of customer on the SetupIntent at the time of this confirmation.
	flow_directions Indicates the directions of money movement for which this payment method is intended to be used.

Include inbound if you intend to use the payment method as the origin to pull funds from. Include outbound if you intend to use the payment method as the destination to send funds to. You can include both if you intend to use the payment method for both purposes.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	on_behalf_of The value of on_behalf_of on the SetupIntent at the time of this confirmation.
	payment_method ID of the payment method used with this SetupAttempt.
	payment_method_details
	setup_error The error encountered during this attempt to confirm the SetupIntent, if any.
	setup_intent ID of the SetupIntent that this attempt belongs to.
	status Status of this SetupAttempt, one of requires_confirmation, requires_action, processing, succeeded, failed, or abandoned.
	usage The value of usage on the SetupIntent at the time of this confirmation, one of off_session or on_session.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:setup_intent) => binary(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of SetupAttempts associated with a provided SetupIntent.
Details
	Method: get
	Path: /v1/setup_attempts

Stripe.SetupIntent

A SetupIntent guides you through the process of setting up and saving a customer's payment credentials for future payments.
For example, you could use a SetupIntent to set up and save your customer's card without immediately collecting a payment.
Later, you can use PaymentIntents to drive the payment flow.
Create a SetupIntent as soon as you're ready to collect your customer's payment credentials.
Do not maintain long-lived, unconfirmed SetupIntents as they may no longer be valid.
The SetupIntent then transitions through multiple statuses as it guides
you through the setup process.
Successful SetupIntents result in payment credentials that are optimized for future payments.
For example, cardholders in certain regions may need to be run through
Strong Customer Authentication at the time of payment method collection
in order to streamline later off-session payments.
If the SetupIntent is used with a Customer, upon success,
it will automatically attach the resulting payment method to that Customer.
We recommend using SetupIntents or setup_future_usage on
PaymentIntents to save payment methods in order to prevent saving invalid or unoptimized payment methods.
By using SetupIntents, you ensure that your customers experience the minimum set of required friction,
even as regulations change over time.
Related guide: Setup Intents API.

 Anchor for this section

 Summary

 Types

 acss_debit()

 If this is a acss_debit SetupIntent, this sub-hash contains details about the ACSS Debit payment method options.

 address()

 au_becs_debit()

 If this is an au_becs_debit PaymentMethod, this hash contains details about the bank account.

 bacs_debit()

 If this is a bacs_debit PaymentMethod, this hash contains details about the Bacs Direct Debit bank account.

 billing_details()

 Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

 blik()

 If this is a blik PaymentMethod, this hash contains details about the BLIK payment method.

 boleto()

 If this is a boleto PaymentMethod, this hash contains details about the Boleto payment method.

 card()

 Configuration for any card setup attempted on this SetupIntent.

 created()

 customer_acceptance()

 This hash contains details about the customer acceptance of the Mandate.

 dob()

 Customer's date of birth

 eps()

 If this is an eps PaymentMethod, this hash contains details about the EPS payment method.

 financial_connections()

 Additional fields for Financial Connections Session creation

 fpx()

 If this is an fpx PaymentMethod, this hash contains details about the FPX payment method.

 ideal()

 If this is an ideal PaymentMethod, this hash contains details about the iDEAL payment method.

 klarna()

 If this is a klarna PaymentMethod, this hash contains details about the Klarna payment method.

 link()

 If this is a link PaymentMethod, this sub-hash contains details about the Link payment method options.

 mandate_data()

 This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.

 mandate_options()

 Additional fields for Mandate creation

 networks()

 Additional fields for network related functions

 online()

 If this is a Mandate accepted online, this hash contains details about the online acceptance.

 p24()

 If this is a p24 PaymentMethod, this hash contains details about the P24 payment method.

 payment_method_data()

 When included, this hash creates a PaymentMethod that is set as the payment_method
value in the SetupIntent.

 payment_method_options()

 Payment-method-specific configuration for this SetupIntent.

 radar_options()

 Options to configure Radar. See Radar Session for more information.

 sepa_debit()

 If this is a sepa_debit PaymentMethod, this hash contains details about the SEPA debit bank account.

 single_use()

 If this hash is populated, this SetupIntent will generate a single_use Mandate on success.

 sofort()

 If this is a sofort PaymentMethod, this hash contains details about the SOFORT payment method.

 t()

 The setup_intent type.

 us_bank_account()

 If this is a us_bank_account SetupIntent, this sub-hash contains details about the US bank account payment method options.

 Functions

 cancel(client, intent, params \\ %{}, opts \\ [])

 A SetupIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_confirmation, or requires_action..

 confirm(client, intent, params \\ %{}, opts \\ [])

 Confirm that your customer intends to set up the current orprovided payment method. For example, you would confirm a SetupIntent
when a customer hits the “Save” button on a payment method management
page on your website.

 create(client, params \\ %{}, opts \\ [])

 Creates a SetupIntent object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of SetupIntents.

 retrieve(client, intent, params \\ %{}, opts \\ [])

 Retrieves the details of a SetupIntent that has previously been created..

 update(client, intent, params \\ %{}, opts \\ [])

 Updates a SetupIntent object.

 verify_microdeposits(client, intent, params \\ %{}, opts \\ [])

 Verifies microdeposits on a SetupIntent object.

 Anchor for this section

Types

 Link to this type

 acss_debit()

 View Source

 @type acss_debit() :: %{
 optional(:currency) => :cad | :usd,
 optional(:mandate_options) => mandate_options(),
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

If this is a acss_debit SetupIntent, this sub-hash contains details about the ACSS Debit payment method options.

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

 Link to this type

 au_becs_debit()

 View Source

 @type au_becs_debit() :: %{
 optional(:account_number) => binary(),
 optional(:bsb_number) => binary()
}

If this is an au_becs_debit PaymentMethod, this hash contains details about the bank account.

 Link to this type

 bacs_debit()

 View Source

 @type bacs_debit() :: %{
 optional(:account_number) => binary(),
 optional(:sort_code) => binary()
}

If this is a bacs_debit PaymentMethod, this hash contains details about the Bacs Direct Debit bank account.

 Link to this type

 billing_details()

 View Source

 @type billing_details() :: %{
 optional(:address) => address() | binary(),
 optional(:email) => binary() | binary(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

 Link to this type

 blik()

 View Source

 @type blik() :: %{optional(:code) => binary()}

If this is a blik PaymentMethod, this hash contains details about the BLIK payment method.

 Link to this type

 boleto()

 View Source

 @type boleto() :: %{optional(:tax_id) => binary()}

If this is a boleto PaymentMethod, this hash contains details about the Boleto payment method.

 Link to this type

 card()

 View Source

 @type card() :: %{
 optional(:mandate_options) => mandate_options(),
 optional(:moto) => boolean(),
 optional(:network) =>
 :amex
 | :cartes_bancaires
 | :diners
 | :discover
 | :interac
 | :jcb
 | :mastercard
 | :unionpay
 | :unknown
 | :visa,
 optional(:request_three_d_secure) => :any | :automatic
}

Configuration for any card setup attempted on this SetupIntent.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 customer_acceptance()

 View Source

 @type customer_acceptance() :: %{
 optional(:accepted_at) => integer(),
 optional(:offline) => map(),
 optional(:online) => online(),
 optional(:type) => :offline | :online
}

This hash contains details about the customer acceptance of the Mandate.

 Link to this type

 dob()

 View Source

 @type dob() :: %{
 optional(:day) => integer(),
 optional(:month) => integer(),
 optional(:year) => integer()
}

Customer's date of birth

 Link to this type

 eps()

 View Source

 @type eps() :: %{
 optional(:bank) =>
 :arzte_und_apotheker_bank
 | :austrian_anadi_bank_ag
 | :bank_austria
 | :bankhaus_carl_spangler
 | :bankhaus_schelhammer_und_schattera_ag
 | :bawag_psk_ag
 | :bks_bank_ag
 | :brull_kallmus_bank_ag
 | :btv_vier_lander_bank
 | :capital_bank_grawe_gruppe_ag
 | :deutsche_bank_ag
 | :dolomitenbank
 | :easybank_ag
 | :erste_bank_und_sparkassen
 | :hypo_alpeadriabank_international_ag
 | :hypo_bank_burgenland_aktiengesellschaft
 | :hypo_noe_lb_fur_niederosterreich_u_wien
 | :hypo_oberosterreich_salzburg_steiermark
 | :hypo_tirol_bank_ag
 | :hypo_vorarlberg_bank_ag
 | :marchfelder_bank
 | :oberbank_ag
 | :raiffeisen_bankengruppe_osterreich
 | :schoellerbank_ag
 | :sparda_bank_wien
 | :volksbank_gruppe
 | :volkskreditbank_ag
 | :vr_bank_braunau
}

If this is an eps PaymentMethod, this hash contains details about the EPS payment method.

 Link to this type

 financial_connections()

 View Source

 @type financial_connections() :: %{
 optional(:permissions) => [
 :balances | :ownership | :payment_method | :transactions
],
 optional(:return_url) => binary()
}

Additional fields for Financial Connections Session creation

 Link to this type

 fpx()

 View Source

 @type fpx() :: %{
 optional(:account_holder_type) => :company | :individual,
 optional(:bank) =>
 :affin_bank
 | :agrobank
 | :alliance_bank
 | :ambank
 | :bank_islam
 | :bank_muamalat
 | :bank_of_china
 | :bank_rakyat
 | :bsn
 | :cimb
 | :deutsche_bank
 | :hong_leong_bank
 | :hsbc
 | :kfh
 | :maybank2e
 | :maybank2u
 | :ocbc
 | :pb_enterprise
 | :public_bank
 | :rhb
 | :standard_chartered
 | :uob
}

If this is an fpx PaymentMethod, this hash contains details about the FPX payment method.

 Link to this type

 ideal()

 View Source

 @type ideal() :: %{
 optional(:bank) =>
 :abn_amro
 | :asn_bank
 | :bunq
 | :handelsbanken
 | :ing
 | :knab
 | :moneyou
 | :rabobank
 | :regiobank
 | :revolut
 | :sns_bank
 | :triodos_bank
 | :van_lanschot
}

If this is an ideal PaymentMethod, this hash contains details about the iDEAL payment method.

 Link to this type

 klarna()

 View Source

 @type klarna() :: %{optional(:dob) => dob()}

If this is a klarna PaymentMethod, this hash contains details about the Klarna payment method.

 Link to this type

 link()

 View Source

 @type link() :: %{optional(:persistent_token) => binary()}

If this is a link PaymentMethod, this sub-hash contains details about the Link payment method options.

 Link to this type

 mandate_data()

 View Source

 @type mandate_data() :: %{optional(:customer_acceptance) => customer_acceptance()}

This hash contains details about the Mandate to create. This parameter can only be used with confirm=true.

 Link to this type

 mandate_options()

 View Source

 @type mandate_options() :: %{
 optional(:custom_mandate_url) => binary() | binary(),
 optional(:default_for) => [:invoice | :subscription],
 optional(:interval_description) => binary(),
 optional(:payment_schedule) => :combined | :interval | :sporadic,
 optional(:transaction_type) => :business | :personal
}

Additional fields for Mandate creation

 Link to this type

 networks()

 View Source

 @type networks() :: %{optional(:requested) => [:ach | :us_domestic_wire]}

Additional fields for network related functions

 Link to this type

 online()

 View Source

 @type online() :: %{
 optional(:ip_address) => binary(),
 optional(:user_agent) => binary()
}

If this is a Mandate accepted online, this hash contains details about the online acceptance.

 Link to this type

 p24()

 View Source

 @type p24() :: %{
 optional(:bank) =>
 :alior_bank
 | :bank_millennium
 | :bank_nowy_bfg_sa
 | :bank_pekao_sa
 | :banki_spbdzielcze
 | :blik
 | :bnp_paribas
 | :boz
 | :citi_handlowy
 | :credit_agricole
 | :envelobank
 | :etransfer_pocztowy24
 | :getin_bank
 | :ideabank
 | :ing
 | :inteligo
 | :mbank_mtransfer
 | :nest_przelew
 | :noble_pay
 | :pbac_z_ipko
 | :plus_bank
 | :santander_przelew24
 | :tmobile_usbugi_bankowe
 | :toyota_bank
 | :volkswagen_bank
}

If this is a p24 PaymentMethod, this hash contains details about the P24 payment method.

 Link to this type

 payment_method_data()

 View Source

 @type payment_method_data() :: %{
 optional(:acss_debit) => acss_debit(),
 optional(:affirm) => map(),
 optional(:afterpay_clearpay) => map(),
 optional(:alipay) => map(),
 optional(:au_becs_debit) => au_becs_debit(),
 optional(:bacs_debit) => bacs_debit(),
 optional(:bancontact) => map(),
 optional(:billing_details) => billing_details(),
 optional(:blik) => map(),
 optional(:boleto) => boleto(),
 optional(:customer_balance) => map(),
 optional(:eps) => eps(),
 optional(:fpx) => fpx(),
 optional(:giropay) => map(),
 optional(:grabpay) => map(),
 optional(:ideal) => ideal(),
 optional(:interac_present) => map(),
 optional(:klarna) => klarna(),
 optional(:konbini) => map(),
 optional(:link) => map(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:oxxo) => map(),
 optional(:p24) => p24(),
 optional(:paynow) => map(),
 optional(:pix) => map(),
 optional(:promptpay) => map(),
 optional(:radar_options) => radar_options(),
 optional(:sepa_debit) => sepa_debit(),
 optional(:sofort) => sofort(),
 optional(:type) =>
 :acss_debit
 | :affirm
 | :afterpay_clearpay
 | :alipay
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :blik
 | :boleto
 | :customer_balance
 | :eps
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :klarna
 | :konbini
 | :link
 | :oxxo
 | :p24
 | :paynow
 | :pix
 | :promptpay
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay,
 optional(:us_bank_account) => us_bank_account(),
 optional(:wechat_pay) => map()
}

When included, this hash creates a PaymentMethod that is set as the payment_method
value in the SetupIntent.

 Link to this type

 payment_method_options()

 View Source

 @type payment_method_options() :: %{
 optional(:acss_debit) => acss_debit(),
 optional(:blik) => blik(),
 optional(:card) => card(),
 optional(:link) => link(),
 optional(:sepa_debit) => sepa_debit(),
 optional(:us_bank_account) => us_bank_account()
}

Payment-method-specific configuration for this SetupIntent.

 Link to this type

 radar_options()

 View Source

 @type radar_options() :: %{optional(:session) => binary()}

Options to configure Radar. See Radar Session for more information.

 Link to this type

 sepa_debit()

 View Source

 @type sepa_debit() :: %{optional(:iban) => binary()}

If this is a sepa_debit PaymentMethod, this hash contains details about the SEPA debit bank account.

 Link to this type

 single_use()

 View Source

 @type single_use() :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary()
}

If this hash is populated, this SetupIntent will generate a single_use Mandate on success.

 Link to this type

 sofort()

 View Source

 @type sofort() :: %{optional(:country) => :AT | :BE | :DE | :ES | :IT | :NL}

If this is a sofort PaymentMethod, this hash contains details about the SOFORT payment method.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.SetupIntent{
 application: (binary() | term()) | nil,
 attach_to_self: boolean(),
 cancellation_reason: binary() | nil,
 client_secret: binary() | nil,
 created: integer(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 description: binary() | nil,
 flow_directions: term() | nil,
 id: binary(),
 last_setup_error: Stripe.ApiErrors.t() | nil,
 latest_attempt: (binary() | Stripe.SetupAttempt.t()) | nil,
 livemode: boolean(),
 mandate: (binary() | Stripe.Mandate.t()) | nil,
 metadata: term() | nil,
 next_action: term() | nil,
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 payment_method: (binary() | Stripe.PaymentMethod.t()) | nil,
 payment_method_options: term() | nil,
 payment_method_types: term(),
 single_use_mandate: (binary() | Stripe.Mandate.t()) | nil,
 status: binary(),
 usage: binary()
}

The setup_intent type.
	application ID of the Connect application that created the SetupIntent.
	attach_to_self If present, the SetupIntent's payment method will be attached to the in-context Stripe Account.

It can only be used for this Stripe Account’s own money movement flows like InboundTransfer and OutboundTransfers. It cannot be set to true when setting up a PaymentMethod for a Customer, and defaults to false when attaching a PaymentMethod to a Customer.
	cancellation_reason Reason for cancellation of this SetupIntent, one of abandoned, requested_by_customer, or duplicate.
	client_secret The client secret of this SetupIntent. Used for client-side retrieval using a publishable key.

The client secret can be used to complete payment setup from your frontend. It should not be stored, logged, or exposed to anyone other than the customer. Make sure that you have TLS enabled on any page that includes the client secret.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	customer ID of the Customer this SetupIntent belongs to, if one exists.

If present, the SetupIntent's payment method will be attached to the Customer on successful setup. Payment methods attached to other Customers cannot be used with this SetupIntent.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	flow_directions Indicates the directions of money movement for which this payment method is intended to be used.

Include inbound if you intend to use the payment method as the origin to pull funds from. Include outbound if you intend to use the payment method as the destination to send funds to. You can include both if you intend to use the payment method for both purposes.
	id Unique identifier for the object.
	last_setup_error The error encountered in the previous SetupIntent confirmation.
	latest_attempt The most recent SetupAttempt for this SetupIntent.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	mandate ID of the multi use Mandate generated by the SetupIntent.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	next_action If present, this property tells you what actions you need to take in order for your customer to continue payment setup.
	object String representing the object's type. Objects of the same type share the same value.
	on_behalf_of The account (if any) for which the setup is intended.
	payment_method ID of the payment method used with this SetupIntent.
	payment_method_options Payment-method-specific configuration for this SetupIntent.
	payment_method_types The list of payment method types (e.g. card) that this SetupIntent is allowed to set up.
	single_use_mandate ID of the single_use Mandate generated by the SetupIntent.
	status Status of this SetupIntent, one of requires_payment_method, requires_confirmation, requires_action, processing, canceled, or succeeded.
	usage Indicates how the payment method is intended to be used in the future.

Use on_session if you intend to only reuse the payment method when the customer is in your checkout flow. Use off_session if your customer may or may not be in your checkout flow. If not provided, this value defaults to off_session.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{
 optional(:financial_connections) => financial_connections(),
 optional(:networks) => networks(),
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

If this is a us_bank_account SetupIntent, this sub-hash contains details about the US bank account payment method options.

 Anchor for this section

Functions

 Link to this function

 cancel(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:cancellation_reason) =>
 :abandoned | :duplicate | :requested_by_customer,
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A SetupIntent object can be canceled when it is in one of these statuses: requires_payment_method, requires_confirmation, or requires_action..
Once canceled, setup is abandoned and any operations on the SetupIntent will fail with an error.
Details
	Method: post
	Path: /v1/setup_intents/{intent}/cancel

 Link to this function

 confirm(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec confirm(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:mandate_data) => mandate_data() | mandate_data(),
 optional(:payment_method) => binary(),
 optional(:payment_method_data) => payment_method_data(),
 optional(:payment_method_options) => payment_method_options(),
 optional(:return_url) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Confirm that your customer intends to set up the current orprovided payment method. For example, you would confirm a SetupIntent
when a customer hits the “Save” button on a payment method management
page on your website.
If the selected payment method does not require any additionalsteps from the customer, the SetupIntent will transition to the
succeeded status.
Otherwise, it will transition to the requires_action status andsuggest additional actions via next_action. If setup fails,
the SetupIntent will transition to the
requires_payment_method status.
Details
	Method: post
	Path: /v1/setup_intents/{intent}/confirm

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:attach_to_self) => boolean(),
 optional(:confirm) => boolean(),
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:flow_directions) => [:inbound | :outbound],
 optional(:mandate_data) => mandate_data(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary(),
 optional(:payment_method) => binary(),
 optional(:payment_method_data) => payment_method_data(),
 optional(:payment_method_options) => payment_method_options(),
 optional(:payment_method_types) => [binary()],
 optional(:return_url) => binary(),
 optional(:single_use) => single_use(),
 optional(:usage) => :off_session | :on_session
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a SetupIntent object.
After the SetupIntent is created, attach a payment method and confirmto collect any required permissions to charge the payment method later.
Details
	Method: post
	Path: /v1/setup_intents

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:attach_to_self) => boolean(),
 optional(:created) => created() | integer(),
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:payment_method) => binary(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of SetupIntents.
Details
	Method: get
	Path: /v1/setup_intents

 Link to this function

 retrieve(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:client_secret) => binary(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of a SetupIntent that has previously been created..
Client-side retrieval using a publishable key is allowed when the client_secret is provided in the query string..
When retrieved with a publishable key, only a subset of properties will be returned. Please refer to the SetupIntent object reference for more details.
Details
	Method: get
	Path: /v1/setup_intents/{intent}

 Link to this function

 update(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:attach_to_self) => boolean(),
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:flow_directions) => [:inbound | :outbound],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:payment_method) => binary(),
 optional(:payment_method_data) => payment_method_data(),
 optional(:payment_method_options) => payment_method_options(),
 optional(:payment_method_types) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates a SetupIntent object.
Details
	Method: post
	Path: /v1/setup_intents/{intent}

 Link to this function

 verify_microdeposits(client, intent, params \\ %{}, opts \\ [])

 View Source

 @spec verify_microdeposits(
 client :: Stripe.t(),
 intent :: binary(),
 params :: %{
 optional(:amounts) => [integer()],
 optional(:descriptor_code) => binary(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Verifies microdeposits on a SetupIntent object.
Details
	Method: post
	Path: /v1/setup_intents/{intent}/verify_microdeposits

Stripe.Token

Tokenization is the process Stripe uses to collect sensitive card or bank
account details, or personally identifiable information (PII), directly from
your customers in a secure manner. A token representing this information is
returned to your server to use. You should use our
recommended payments integrations to perform this process
client-side. This ensures that no sensitive card data touches your server,
and allows your integration to operate in a PCI-compliant way.
If you cannot use client-side tokenization, you can also create tokens using
the API with either your publishable or secret API key. Keep in mind that if
your integration uses this method, you are responsible for any PCI compliance
that may be required, and you must keep your secret API key safe. Unlike with
client-side tokenization, your customer's information is not sent directly to
Stripe, so we cannot determine how it is handled or stored.
Tokens cannot be stored or used more than once. To store card or bank account
information for later use, you can create Customer
objects or Custom accounts. Note that
Radar, our integrated solution for automatic fraud protection,
performs best with integrations that use client-side tokenization.
Related guide: Accept a payment

 Anchor for this section

 Summary

 Types

 account()

 Information for the account this token will represent.

 additional_document()

 A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.

 address()

 The company's primary address.

 address_kana()

 The Kana variation of the company's primary address (Japan only).

 address_kanji()

 The Kanji variation of the company's primary address (Japan only).

 bank_account()

 The bank account this token will represent.

 card()

 company()

 Information about the company or business.

 company_authorization()

 One or more documents that demonstrate proof that this person is authorized to represent the company.

 cvc_update()

 The updated CVC value this token will represent.

 dob()

 document()

 A document verifying the business.

 documents()

 Documents that may be submitted to satisfy various informational requests.

 individual()

 Information about the person represented by the account.

 ownership_declaration()

 This hash is used to attest that the beneficial owner information provided to Stripe is both current and correct.

 passport()

 One or more documents showing the person's passport page with photo and personal data.

 person()

 Information for the person this token will represent.

 pii()

 The PII this token will represent.

 registered_address()

 The individual's registered address.

 relationship()

 The relationship that this person has with the account's legal entity.

 t()

 The token type.

 verification()

 Information on the verification state of the company.

 visa()

 One or more documents showing the person's visa required for living in the country where they are residing.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a single-use token that represents a bank account’s details.This token can be used with any API method in place of a bank account dictionary. This token can be used only once, by attaching it to a Custom account.

 retrieve(client, token, params \\ %{}, opts \\ [])

 Retrieves the token with the given ID.

 Anchor for this section

Types

 Link to this type

 account()

 View Source

 @type account() :: %{
 optional(:business_type) =>
 :company | :government_entity | :individual | :non_profit,
 optional(:company) => company(),
 optional(:individual) => individual(),
 optional(:tos_shown_and_accepted) => boolean()
}

Information for the account this token will represent.

 Link to this type

 additional_document()

 View Source

 @type additional_document() :: %{
 optional(:back) => binary(),
 optional(:front) => binary()
}

A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The company's primary address.

 Link to this type

 address_kana()

 View Source

 @type address_kana() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary(),
 optional(:town) => binary()
}

The Kana variation of the company's primary address (Japan only).

 Link to this type

 address_kanji()

 View Source

 @type address_kanji() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary(),
 optional(:town) => binary()
}

The Kanji variation of the company's primary address (Japan only).

 Link to this type

 bank_account()

 View Source

 @type bank_account() :: %{
 optional(:account_holder_name) => binary(),
 optional(:account_holder_type) => :company | :individual,
 optional(:account_number) => binary(),
 optional(:account_type) => :checking | :futsu | :savings | :toza,
 optional(:country) => binary(),
 optional(:currency) => binary(),
 optional(:routing_number) => binary()
}

The bank account this token will represent.

 Link to this type

 card()

 View Source

 @type card() :: %{
 optional(:address_city) => binary(),
 optional(:address_country) => binary(),
 optional(:address_line1) => binary(),
 optional(:address_line2) => binary(),
 optional(:address_state) => binary(),
 optional(:address_zip) => binary(),
 optional(:currency) => binary(),
 optional(:cvc) => binary(),
 optional(:exp_month) => binary(),
 optional(:exp_year) => binary(),
 optional(:name) => binary(),
 optional(:number) => binary()
}

 Link to this type

 company()

 View Source

 @type company() :: %{
 optional(:address) => address(),
 optional(:address_kana) => address_kana(),
 optional(:address_kanji) => address_kanji(),
 optional(:directors_provided) => boolean(),
 optional(:executives_provided) => boolean(),
 optional(:name) => binary(),
 optional(:name_kana) => binary(),
 optional(:name_kanji) => binary(),
 optional(:owners_provided) => boolean(),
 optional(:ownership_declaration) => ownership_declaration(),
 optional(:ownership_declaration_shown_and_signed) => boolean(),
 optional(:phone) => binary(),
 optional(:registration_number) => binary(),
 optional(:structure) =>
 :free_zone_establishment
 | :free_zone_llc
 | :government_instrumentality
 | :governmental_unit
 | :incorporated_non_profit
 | :limited_liability_partnership
 | :llc
 | :multi_member_llc
 | :private_company
 | :private_corporation
 | :private_partnership
 | :public_company
 | :public_corporation
 | :public_partnership
 | :single_member_llc
 | :sole_establishment
 | :sole_proprietorship
 | :tax_exempt_government_instrumentality
 | :unincorporated_association
 | :unincorporated_non_profit,
 optional(:tax_id) => binary(),
 optional(:tax_id_registrar) => binary(),
 optional(:vat_id) => binary(),
 optional(:verification) => verification()
}

Information about the company or business.

 Link to this type

 company_authorization()

 View Source

 @type company_authorization() :: %{optional(:files) => [binary()]}

One or more documents that demonstrate proof that this person is authorized to represent the company.

 Link to this type

 cvc_update()

 View Source

 @type cvc_update() :: %{optional(:cvc) => binary()}

The updated CVC value this token will represent.

 Link to this type

 dob()

 View Source

 @type dob() :: %{
 optional(:day) => integer(),
 optional(:month) => integer(),
 optional(:year) => integer()
}

 Link to this type

 document()

 View Source

 @type document() :: %{optional(:back) => binary(), optional(:front) => binary()}

A document verifying the business.

 Link to this type

 documents()

 View Source

 @type documents() :: %{
 optional(:company_authorization) => company_authorization(),
 optional(:passport) => passport(),
 optional(:visa) => visa()
}

Documents that may be submitted to satisfy various informational requests.

 Link to this type

 individual()

 View Source

 @type individual() :: %{
 optional(:address) => address(),
 optional(:address_kana) => address_kana(),
 optional(:address_kanji) => address_kanji(),
 optional(:dob) => dob() | binary(),
 optional(:email) => binary(),
 optional(:first_name) => binary(),
 optional(:first_name_kana) => binary(),
 optional(:first_name_kanji) => binary(),
 optional(:full_name_aliases) => [binary()] | binary(),
 optional(:gender) => binary(),
 optional(:id_number) => binary(),
 optional(:id_number_secondary) => binary(),
 optional(:last_name) => binary(),
 optional(:last_name_kana) => binary(),
 optional(:last_name_kanji) => binary(),
 optional(:maiden_name) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:phone) => binary(),
 optional(:political_exposure) => :existing | :none,
 optional(:registered_address) => registered_address(),
 optional(:ssn_last_4) => binary(),
 optional(:verification) => verification()
}

Information about the person represented by the account.

 Link to this type

 ownership_declaration()

 View Source

 @type ownership_declaration() :: %{
 optional(:date) => integer(),
 optional(:ip) => binary(),
 optional(:user_agent) => binary()
}

This hash is used to attest that the beneficial owner information provided to Stripe is both current and correct.

 Link to this type

 passport()

 View Source

 @type passport() :: %{optional(:files) => [binary()]}

One or more documents showing the person's passport page with photo and personal data.

 Link to this type

 person()

 View Source

 @type person() :: %{
 optional(:address) => address(),
 optional(:address_kana) => address_kana(),
 optional(:address_kanji) => address_kanji(),
 optional(:dob) => dob() | binary(),
 optional(:documents) => documents(),
 optional(:email) => binary(),
 optional(:first_name) => binary(),
 optional(:first_name_kana) => binary(),
 optional(:first_name_kanji) => binary(),
 optional(:full_name_aliases) => [binary()] | binary(),
 optional(:gender) => binary(),
 optional(:id_number) => binary(),
 optional(:id_number_secondary) => binary(),
 optional(:last_name) => binary(),
 optional(:last_name_kana) => binary(),
 optional(:last_name_kanji) => binary(),
 optional(:maiden_name) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:nationality) => binary(),
 optional(:phone) => binary(),
 optional(:political_exposure) => binary(),
 optional(:registered_address) => registered_address(),
 optional(:relationship) => relationship(),
 optional(:ssn_last_4) => binary(),
 optional(:verification) => verification()
}

Information for the person this token will represent.

 Link to this type

 pii()

 View Source

 @type pii() :: %{optional(:id_number) => binary()}

The PII this token will represent.

 Link to this type

 registered_address()

 View Source

 @type registered_address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The individual's registered address.

 Link to this type

 relationship()

 View Source

 @type relationship() :: %{
 optional(:director) => boolean(),
 optional(:executive) => boolean(),
 optional(:owner) => boolean(),
 optional(:percent_ownership) => number() | binary(),
 optional(:representative) => boolean(),
 optional(:title) => binary()
}

The relationship that this person has with the account's legal entity.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Token{
 bank_account: Stripe.BankAccount.t(),
 card: Stripe.Card.t(),
 client_ip: binary() | nil,
 created: integer(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 type: binary(),
 used: boolean()
}

The token type.
	bank_account
	card
	client_ip IP address of the client that generated the token.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	type Type of the token: account, bank_account, card, or pii.
	used Whether this token has already been used (tokens can be used only once).

 Link to this type

 verification()

 View Source

 @type verification() :: %{optional(:document) => document()}

Information on the verification state of the company.

 Link to this type

 visa()

 View Source

 @type visa() :: %{optional(:files) => [binary()]}

One or more documents showing the person's visa required for living in the country where they are residing.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:account) => account(),
 optional(:bank_account) => bank_account(),
 optional(:card) => card() | binary(),
 optional(:customer) => binary(),
 optional(:cvc_update) => cvc_update(),
 optional(:expand) => [binary()],
 optional(:person) => person(),
 optional(:pii) => pii()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a single-use token that represents a bank account’s details.This token can be used with any API method in place of a bank account dictionary. This token can be used only once, by attaching it to a Custom account.
Details
	Method: post
	Path: /v1/tokens

 Link to this function

 retrieve(client, token, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 token :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the token with the given ID.
Details
	Method: get
	Path: /v1/tokens/{token}

Stripe.ApplePayDomain

 Anchor for this section

 Summary

 Types

 t()

 The apple_pay_domain type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Create an apple pay domain.

 delete(client, domain, opts \\ [])

 Delete an apple pay domain.

 list(client, params \\ %{}, opts \\ [])

 List apple pay domains.

 retrieve(client, domain, params \\ %{}, opts \\ [])

 Retrieve an apple pay domain.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.ApplePayDomain{
 created: integer(),
 domain_name: binary(),
 id: binary(),
 livemode: boolean(),
 object: binary()
}

The apple_pay_domain type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	domain_name
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:domain_name) => binary(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Create an apple pay domain.
Details
	Method: post
	Path: /v1/apple_pay/domains

 Link to this function

 delete(client, domain, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), domain :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedApplePayDomain.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Delete an apple pay domain.
Details
	Method: delete
	Path: /v1/apple_pay/domains/{domain}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:domain_name) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

List apple pay domains.
Details
	Method: get
	Path: /v1/apple_pay/domains

 Link to this function

 retrieve(client, domain, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 domain :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieve an apple pay domain.
Details
	Method: get
	Path: /v1/apple_pay/domains/{domain}

Stripe.BankAccount

These bank accounts are payment methods on Customer objects.
On the other hand External Accounts are transfer
destinations on Account objects for Custom accounts.
They can be bank accounts or debit cards as well, and are documented in the links above.
Related guide: Bank Debits and Transfers.

 Anchor for this section

 Summary

 Types

 address()

 Owner's address.

 owner()

 t()

 The bank_account type.

 Functions

 delete(client, customer, id, params \\ %{}, opts \\ [])

 Delete a specified source for a given customer.

 update(client, customer, id, params \\ %{}, opts \\ [])

 Update a specified source for a given customer.

 verify(client, customer, id, params \\ %{}, opts \\ [])

 Verify a specified bank account for a given customer.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

Owner's address.

 Link to this type

 owner()

 View Source

 @type owner() :: %{
 optional(:address) => address(),
 optional(:email) => binary(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.BankAccount{
 account: (binary() | Stripe.Account.t()) | nil,
 account_holder_name: binary() | nil,
 account_holder_type: binary() | nil,
 account_type: binary() | nil,
 available_payout_methods: term() | nil,
 bank_name: binary() | nil,
 country: binary(),
 currency: binary(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 default_for_currency: boolean() | nil,
 fingerprint: binary() | nil,
 id: binary(),
 last4: binary(),
 metadata: term() | nil,
 object: binary(),
 routing_number: binary() | nil,
 status: binary()
}

The bank_account type.
	account The ID of the account that the bank account is associated with.
	account_holder_name The name of the person or business that owns the bank account.
	account_holder_type The type of entity that holds the account. This can be either individual or company.
	account_type The bank account type. This can only be checking or savings in most countries. In Japan, this can only be futsu or toza.
	available_payout_methods A set of available payout methods for this bank account. Only values from this set should be passed as the method when creating a payout.
	bank_name Name of the bank associated with the routing number (e.g., WELLS FARGO).
	country Two-letter ISO code representing the country the bank account is located in.
	currency Three-letter ISO code for the currency paid out to the bank account.
	customer The ID of the customer that the bank account is associated with.
	default_for_currency Whether this bank account is the default external account for its currency.
	fingerprint Uniquely identifies this particular bank account. You can use this attribute to check whether two bank accounts are the same.
	id Unique identifier for the object.
	last4 The last four digits of the bank account number.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	routing_number The routing transit number for the bank account.
	status For bank accounts, possible values are new, validated, verified, verification_failed, or errored. A bank account that hasn't had any activity or validation performed is new. If Stripe can determine that the bank account exists, its status will be validated. Note that there often isn’t enough information to know (e.g., for smaller credit unions), and the validation is not always run. If customer bank account verification has succeeded, the bank account status will be verified. If the verification failed for any reason, such as microdeposit failure, the status will be verification_failed. If a transfer sent to this bank account fails, we'll set the status to errored and will not continue to send transfers until the bank details are updated.

For external accounts, possible values are new and errored. Validations aren't run against external accounts because they're only used for payouts. This means the other statuses don't apply. If a transfer fails, the status is set to errored and transfers are stopped until account details are updated.

 Anchor for this section

Functions

 Link to this function

 delete(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec delete(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.PaymentSource.t() | Stripe.DeletedPaymentSource.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Delete a specified source for a given customer.
Details
	Method: delete
	Path: /v1/customers/{customer}/sources/{id}

 Link to this function

 update(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{
 optional(:account_holder_name) => binary(),
 optional(:account_holder_type) => :company | :individual,
 optional(:address_city) => binary(),
 optional(:address_country) => binary(),
 optional(:address_line1) => binary(),
 optional(:address_line2) => binary(),
 optional(:address_state) => binary(),
 optional(:address_zip) => binary(),
 optional(:exp_month) => binary(),
 optional(:exp_year) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary(),
 optional(:owner) => owner()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.Card.t() | t() | Stripe.Source.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Update a specified source for a given customer.
Details
	Method: post
	Path: /v1/customers/{customer}/sources/{id}

 Link to this function

 verify(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec verify(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{
 optional(:amounts) => [integer()],
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Verify a specified bank account for a given customer.
Details
	Method: post
	Path: /v1/customers/{customer}/sources/{id}/verify

Stripe.Card

You can store multiple cards on a customer in order to charge the customer
later. You can also store multiple debit cards on a recipient in order to
transfer to those cards later.
Related guide: Card Payments with Sources.

 Anchor for this section

 Summary

 Types

 address()

 Owner's address.

 owner()

 t()

 The card type.

 Functions

 delete(client, customer, id, params \\ %{}, opts \\ [])

 Delete a specified source for a given customer.

 update(client, customer, id, params \\ %{}, opts \\ [])

 Update a specified source for a given customer.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

Owner's address.

 Link to this type

 owner()

 View Source

 @type owner() :: %{
 optional(:address) => address(),
 optional(:email) => binary(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Card{
 account: (binary() | Stripe.Account.t()) | nil,
 address_city: binary() | nil,
 address_country: binary() | nil,
 address_line1: binary() | nil,
 address_line1_check: binary() | nil,
 address_line2: binary() | nil,
 address_state: binary() | nil,
 address_zip: binary() | nil,
 address_zip_check: binary() | nil,
 available_payout_methods: term() | nil,
 brand: binary(),
 country: binary() | nil,
 currency: binary() | nil,
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 cvc_check: binary() | nil,
 default_for_currency: boolean() | nil,
 description: binary(),
 dynamic_last4: binary() | nil,
 exp_month: integer(),
 exp_year: integer(),
 fingerprint: binary() | nil,
 funding: binary(),
 id: binary(),
 iin: binary(),
 issuer: binary(),
 last4: binary(),
 metadata: term() | nil,
 name: binary() | nil,
 object: binary(),
 status: binary() | nil,
 tokenization_method: binary() | nil
}

The card type.
	account The account this card belongs to. This attribute will not be in the card object if the card belongs to a customer or recipient instead.
	address_city City/District/Suburb/Town/Village.
	address_country Billing address country, if provided when creating card.
	address_line1 Address line 1 (Street address/PO Box/Company name).
	address_line1_check If address_line1 was provided, results of the check: pass, fail, unavailable, or unchecked.
	address_line2 Address line 2 (Apartment/Suite/Unit/Building).
	address_state State/County/Province/Region.
	address_zip ZIP or postal code.
	address_zip_check If address_zip was provided, results of the check: pass, fail, unavailable, or unchecked.
	available_payout_methods A set of available payout methods for this card. Only values from this set should be passed as the method when creating a payout.
	brand Card brand. Can be American Express, Diners Club, Discover, JCB, MasterCard, UnionPay, Visa, or Unknown.
	country Two-letter ISO code representing the country of the card. You could use this attribute to get a sense of the international breakdown of cards you've collected.
	currency Three-letter ISO code for currency. Only applicable on accounts (not customers or recipients). The card can be used as a transfer destination for funds in this currency.
	customer The customer that this card belongs to. This attribute will not be in the card object if the card belongs to an account or recipient instead.
	cvc_check If a CVC was provided, results of the check: pass, fail, unavailable, or unchecked. A result of unchecked indicates that CVC was provided but hasn't been checked yet. Checks are typically performed when attaching a card to a Customer object, or when creating a charge. For more details, see Check if a card is valid without a charge.
	default_for_currency Whether this card is the default external account for its currency.
	description A high-level description of the type of cards issued in this range. (For internal use only and not typically available in standard API requests.)
	dynamic_last4 (For tokenized numbers only.) The last four digits of the device account number.
	exp_month Two-digit number representing the card's expiration month.
	exp_year Four-digit number representing the card's expiration year.
	fingerprint Uniquely identifies this particular card number. You can use this attribute to check whether two customers who’ve signed up with you are using the same card number, for example. For payment methods that tokenize card information (Apple Pay, Google Pay), the tokenized number might be provided instead of the underlying card number.

Starting May 1, 2021, card fingerprint in India for Connect will change to allow two fingerprints for the same card --- one for India and one for the rest of the world.
	funding Card funding type. Can be credit, debit, prepaid, or unknown.
	id Unique identifier for the object.
	iin Issuer identification number of the card. (For internal use only and not typically available in standard API requests.)
	issuer The name of the card's issuing bank. (For internal use only and not typically available in standard API requests.)
	last4 The last four digits of the card.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name Cardholder name.
	object String representing the object's type. Objects of the same type share the same value.
	status For external accounts, possible values are new and errored. If a transfer fails, the status is set to errored and transfers are stopped until account details are updated.
	tokenization_method If the card number is tokenized, this is the method that was used. Can be android_pay (includes Google Pay), apple_pay, masterpass, visa_checkout, or null.

 Anchor for this section

Functions

 Link to this function

 delete(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec delete(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.PaymentSource.t() | Stripe.DeletedPaymentSource.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Delete a specified source for a given customer.
Details
	Method: delete
	Path: /v1/customers/{customer}/sources/{id}

 Link to this function

 update(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{
 optional(:account_holder_name) => binary(),
 optional(:account_holder_type) => :company | :individual,
 optional(:address_city) => binary(),
 optional(:address_country) => binary(),
 optional(:address_line1) => binary(),
 optional(:address_line2) => binary(),
 optional(:address_state) => binary(),
 optional(:address_zip) => binary(),
 optional(:exp_month) => binary(),
 optional(:exp_year) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary(),
 optional(:owner) => owner()
 },
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.BankAccount.t() | Stripe.Source.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Update a specified source for a given customer.
Details
	Method: post
	Path: /v1/customers/{customer}/sources/{id}

Stripe.CashBalance

A customer's Cash balance represents real funds. Customers can add funds to their cash balance by sending a bank transfer. These funds can be used for payment and can eventually be paid out to your bank account.

 Anchor for this section

 Summary

 Types

 settings()

 A hash of settings for this cash balance.

 t()

 The cash_balance type.

 Functions

 retrieve(client, customer, params \\ %{}, opts \\ [])

 Retrieves a customer’s cash balance.

 update(client, customer, params \\ %{}, opts \\ [])

 Changes the settings on a customer’s cash balance.

 Anchor for this section

Types

 Link to this type

 settings()

 View Source

 @type settings() :: %{optional(:reconciliation_mode) => :automatic | :manual}

A hash of settings for this cash balance.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.CashBalance{
 available: term() | nil,
 customer: binary(),
 livemode: boolean(),
 object: binary(),
 settings: term()
}

The cash_balance type.
	available A hash of all cash balances available to this customer. You cannot delete a customer with any cash balances, even if the balance is 0. Amounts are represented in the smallest currency unit.
	customer The ID of the customer whose cash balance this object represents.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	settings

 Anchor for this section

Functions

 Link to this function

 retrieve(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a customer’s cash balance.
Details
	Method: get
	Path: /v1/customers/{customer}/cash_balance

 Link to this function

 update(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:settings) => settings()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Changes the settings on a customer’s cash balance.
Details
	Method: post
	Path: /v1/customers/{customer}/cash_balance

Stripe.PaymentMethod

PaymentMethod objects represent your customer's payment instruments.
You can use them with PaymentIntents to collect payments or save them to
Customer objects to store instrument details for future payments.
Related guides: Payment Methods and More Payment Scenarios.

 Anchor for this section

 Summary

 Types

 acss_debit()

 If this is an acss_debit PaymentMethod, this hash contains details about the ACSS Debit payment method.

 address()

 au_becs_debit()

 If this is an au_becs_debit PaymentMethod, this hash contains details about the bank account.

 bacs_debit()

 If this is a bacs_debit PaymentMethod, this hash contains details about the Bacs Direct Debit bank account.

 billing_details()

 Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

 boleto()

 If this is a boleto PaymentMethod, this hash contains details about the Boleto payment method.

 card()

 dob()

 Customer's date of birth

 eps()

 If this is an eps PaymentMethod, this hash contains details about the EPS payment method.

 fpx()

 If this is an fpx PaymentMethod, this hash contains details about the FPX payment method.

 ideal()

 If this is an ideal PaymentMethod, this hash contains details about the iDEAL payment method.

 klarna()

 If this is a klarna PaymentMethod, this hash contains details about the Klarna payment method.

 p24()

 If this is a p24 PaymentMethod, this hash contains details about the P24 payment method.

 radar_options()

 Options to configure Radar. See Radar Session for more information.

 sepa_debit()

 If this is a sepa_debit PaymentMethod, this hash contains details about the SEPA debit bank account.

 sofort()

 If this is a sofort PaymentMethod, this hash contains details about the SOFORT payment method.

 t()

 The payment_method type.

 us_bank_account()

 If this is an us_bank_account PaymentMethod, this hash contains details about the US bank account payment method.

 Functions

 attach(client, payment_method, params \\ %{}, opts \\ [])

 Attaches a PaymentMethod object to a Customer.

 create(client, params \\ %{}, opts \\ [])

 Creates a PaymentMethod object. Read the Stripe.js reference to learn how to create PaymentMethods via Stripe.js.

 detach(client, payment_method, params \\ %{}, opts \\ [])

 Detaches a PaymentMethod object from a Customer. After a PaymentMethod is detached, it can no longer be used for a payment or re-attached to a Customer.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of PaymentMethods for Treasury flows. If you want to list the PaymentMethods attached to a Customer for payments, you should use the List a Customer’s PaymentMethods API instead.

 retrieve(client, payment_method, params \\ %{}, opts \\ [])

 Retrieves a PaymentMethod object attached to the StripeAccount. To retrieve a payment method attached to a Customer, you should use Retrieve a Customer’s PaymentMethods

 Stripe.Source - Striped v0.5.0

Stripe.Source

Source objects allow you to accept a variety of payment methods. They
represent a customer's payment instrument, and can be used with the Stripe API
just like a Card object: once chargeable, they can be charged, or can be
attached to customers.
Stripe doesn't recommend using the deprecated Sources API.
We recommend that you adopt the PaymentMethods API.
This newer API provides access to our latest features and payment method types.
Related guides: Sources API and Sources & Customers.

 Anchor for this section

 Summary

 Types

 acceptance()

 The parameters required to notify Stripe of a mandate acceptance or refusal by the customer.

 address()

 Owner's address.

 items()

 mandate()

 Information about a mandate possibility attached to a source object (generally for bank debits) as well as its acceptance status.

 offline()

 The parameters required to store a mandate accepted offline. Should only be set if mandate[type] is offline

 online()

 The parameters required to store a mandate accepted online. Should only be set if mandate[type] is online

 owner()

 Information about the owner of the payment instrument that may be used or required by particular source types.

 receiver()

 Optional parameters for the receiver flow. Can be set only if the source is a receiver (flow is receiver).

 redirect()

 Parameters required for the redirect flow. Required if the source is authenticated by a redirect (flow is redirect).

 shipping()

 Shipping address for the order. Required if any of the SKUs are for products that have shippable set to true.

 source_order()

 Information about the items and shipping associated with the source. Required for transactional credit (for example Klarna) sources before you can charge it.

 t()

 The source type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new source object.

 detach(client, customer, id, params \\ %{}, opts \\ [])

 Delete a specified source for a given customer.

 retrieve(client, source, params \\ %{}, opts \\ [])

 Retrieves an existing source object. Supply the unique source ID from a source creation request and Stripe will return the corresponding up-to-date source object information.

 source_transactions(client, source, params \\ %{}, opts \\ [])

 List source transactions for a given source.

 update(client, source, params \\ %{}, opts \\ [])

 Updates the specified source by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 verify(client, source, params \\ %{}, opts \\ [])

 Verify a given source.

 Anchor for this section

Types

 Link to this type

 acceptance()

 View Source

 @type acceptance() :: %{
 optional(:date) => integer(),
 optional(:ip) => binary(),
 optional(:offline) => offline(),
 optional(:online) => online(),
 optional(:status) => :accepted | :pending | :refused | :revoked,
 optional(:type) => :offline | :online,
 optional(:user_agent) => binary()
}

The parameters required to notify Stripe of a mandate acceptance or refusal by the customer.

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

Owner's address.

 Link to this type

 items()

 View Source

 @type items() :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:parent) => binary(),
 optional(:quantity) => integer(),
 optional(:type) => :discount | :shipping | :sku | :tax
}

 Link to this type

 mandate()

 View Source

 @type mandate() :: %{
 optional(:acceptance) => acceptance(),
 optional(:amount) => integer() | binary(),
 optional(:currency) => binary(),
 optional(:interval) => :one_time | :scheduled | :variable,
 optional(:notification_method) =>
 :deprecated_none | :email | :manual | :none | :stripe_email
}

Information about a mandate possibility attached to a source object (generally for bank debits) as well as its acceptance status.

 Link to this type

 offline()

 View Source

 @type offline() :: %{optional(:contact_email) => binary()}

The parameters required to store a mandate accepted offline. Should only be set if mandate[type] is offline

 Link to this type

 online()

 View Source

 @type online() :: %{
 optional(:date) => integer(),
 optional(:ip) => binary(),
 optional(:user_agent) => binary()
}

The parameters required to store a mandate accepted online. Should only be set if mandate[type] is online

 Link to this type

 owner()

 View Source

 @type owner() :: %{
 optional(:address) => address(),
 optional(:email) => binary(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

Information about the owner of the payment instrument that may be used or required by particular source types.

 Link to this type

 receiver()

 View Source

 @type receiver() :: %{optional(:refund_attributes_method) => :email | :manual | :none}

Optional parameters for the receiver flow. Can be set only if the source is a receiver (flow is receiver).

 Link to this type

 redirect()

 View Source

 @type redirect() :: %{optional(:return_url) => binary()}

Parameters required for the redirect flow. Required if the source is authenticated by a redirect (flow is redirect).

 Link to this type

 shipping()

 View Source

 @type shipping() :: %{
 optional(:address) => address(),
 optional(:carrier) => binary(),
 optional(:name) => binary(),
 optional(:phone) => binary(),
 optional(:tracking_number) => binary()
}

Shipping address for the order. Required if any of the SKUs are for products that have shippable set to true.

 Link to this type

 source_order()

 View Source

 @type source_order() :: %{
 optional(:items) => [items()],
 optional(:shipping) => shipping()
}

Information about the items and shipping associated with the source. Required for transactional credit (for example Klarna) sources before you can charge it.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Source{
 ach_credit_transfer: term(),
 ach_debit: term(),
 acss_debit: term(),
 alipay: term(),
 amount: integer() | nil,
 au_becs_debit: term(),
 bancontact: term(),
 card: term(),
 card_present: term(),
 client_secret: binary(),
 code_verification: term(),
 created: integer(),
 currency: binary() | nil,
 customer: binary(),
 eps: term(),
 flow: binary(),
 giropay: term(),
 id: binary(),
 ideal: term(),
 klarna: term(),
 livemode: boolean(),
 metadata: term() | nil,
 multibanco: term(),
 object: binary(),
 owner: term() | nil,
 p24: term(),
 receiver: term(),
 redirect: term(),
 sepa_credit_transfer: term(),
 sepa_debit: term(),
 sofort: term(),
 source_order: term(),
 statement_descriptor: binary() | nil,
 status: binary(),
 three_d_secure: term(),
 type: binary(),
 usage: binary() | nil,
 wechat: term()
}

The source type.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	acss_debit
	ach_debit
	alipay
	giropay
	redirect
	ideal
	code_verification
	card
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	multibanco
	sepa_credit_transfer
	usage Either reusable or single_use. Whether this source should be reusable or not. Some source types may or may not be reusable by construction, while others may leave the option at creation. If an incompatible value is passed, an error will be returned.
	receiver
	customer The ID of the customer to which this source is attached. This will not be present when the source has not been attached to a customer.
	ach_credit_transfer
	amount A positive integer in the smallest currency unit (that is, 100 cents for $1.00, or 1 for ¥1, Japanese Yen being a zero-decimal currency) representing the total amount associated with the source. This is the amount for which the source will be chargeable once ready. Required for single_use sources.
	statement_descriptor Extra information about a source. This will appear on your customer's statement every time you charge the source.
	wechat
	client_secret The client secret of the source. Used for client-side retrieval using a publishable key.
	object String representing the object's type. Objects of the same type share the same value.
	sofort
	p24
	currency Three-letter ISO code for the currency associated with the source. This is the currency for which the source will be chargeable once ready. Required for single_use sources.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	type The type of the source. The type is a payment method, one of ach_credit_transfer, ach_debit, alipay, bancontact, card, card_present, eps, giropay, ideal, multibanco, klarna, p24, sepa_debit, sofort, three_d_secure, or wechat. An additional hash is included on the source with a name matching this value. It contains additional information specific to the payment method used.
	status The status of the source, one of canceled, chargeable, consumed, failed, or pending. Only chargeable sources can be used to create a charge.
	bancontact
	three_d_secure
	au_becs_debit
	card_present
	flow The authentication flow of the source. flow is one of redirect, receiver, code_verification, none.
	sepa_debit
	klarna
	source_order
	id Unique identifier for the object.
	owner Information about the owner of the payment instrument that may be used or required by particular source types.
	eps

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:expand) => [binary()],
 optional(:flow) => :code_verification | :none | :receiver | :redirect,
 optional(:mandate) => mandate(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:original_source) => binary(),
 optional(:owner) => owner(),
 optional(:receiver) => receiver(),
 optional(:redirect) => redirect(),
 optional(:source_order) => source_order(),
 optional(:statement_descriptor) => binary(),
 optional(:token) => binary(),
 optional(:type) => binary(),
 optional(:usage) => :reusable | :single_use
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new source object.
Details
	Method: post
	Path: /v1/sources

 Link to this function

 detach(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec detach(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.PaymentSource.t() | Stripe.DeletedPaymentSource.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Delete a specified source for a given customer.
Details
	Method: delete
	Path: /v1/customers/{customer}/sources/{id}

 Link to this function

 retrieve(client, source, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 source :: binary(),
 params :: %{
 optional(:client_secret) => binary(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an existing source object. Supply the unique source ID from a source creation request and Stripe will return the corresponding up-to-date source object information.
Details
	Method: get
	Path: /v1/sources/{source}

 Link to this function

 source_transactions(client, source, params \\ %{}, opts \\ [])

 View Source

 @spec source_transactions(
 client :: Stripe.t(),
 source :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.SourceTransaction.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

List source transactions for a given source.
Details
	Method: get
	Path: /v1/sources/{source}/source_transactions

 Link to this function

 update(client, source, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 source :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:expand) => [binary()],
 optional(:mandate) => mandate(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:owner) => owner(),
 optional(:source_order) => source_order()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified source by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
This request accepts the metadata and owner as arguments. It is also possible to update type specific information for selected payment methods. Please refer to our payment method guides for more detail.
Details
	Method: post
	Path: /v1/sources/{source}

 Link to this function

 verify(client, source, params \\ %{}, opts \\ [])

 View Source

 @spec verify(
 client :: Stripe.t(),
 source :: binary(),
 params :: %{optional(:expand) => [binary()], optional(:values) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Verify a given source.
Details
	Method: post
	Path: /v1/sources/{source}/verify

 Stripe.SourceTransaction - Striped v0.5.0

Stripe.SourceTransaction

Some payment methods have no required amount that a customer must send.
Customers can be instructed to send any amount, and it can be made up of
multiple transactions. As such, sources can have multiple associated
transactions.

 Anchor for this section

 Summary

 Types

 t()

 The source_transaction type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.SourceTransaction{
 ach_credit_transfer: term(),
 amount: integer(),
 chf_credit_transfer: term(),
 created: integer(),
 currency: binary(),
 gbp_credit_transfer: term(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 paper_check: term(),
 sepa_credit_transfer: term(),
 source: binary(),
 status: binary(),
 type: binary()
}

The source_transaction type.
	ach_credit_transfer
	amount A positive integer in the smallest currency unit (that is, 100 cents for $1.00, or 1 for ¥1, Japanese Yen being a zero-decimal currency) representing the amount your customer has pushed to the receiver.
	chf_credit_transfer
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	gbp_credit_transfer
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	paper_check
	sepa_credit_transfer
	source The ID of the source this transaction is attached to.
	status The status of the transaction, one of succeeded, pending, or failed.
	type The type of source this transaction is attached to.

 Stripe.Coupon - Striped v0.5.0

Stripe.Coupon

A coupon contains information about a percent-off or amount-off discount you
might want to apply to a customer. Coupons may be applied to subscriptions, invoices,
checkout sessions, quotes, and more. Coupons do not work with conventional one-off charges or payment intents.

 Anchor for this section

 Summary

 Types

 applies_to()

 A hash containing directions for what this Coupon will apply discounts to.

 created()

 t()

 The coupon type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 You can create coupons easily via the coupon management page of the Stripe dashboard. Coupon creation is also accessible via the API if you need to create coupons on the fly.

 delete(client, coupon, opts \\ [])

 You can delete coupons via the coupon management page of the Stripe dashboard. However, deleting a coupon does not affect any customers who have already applied the coupon; it means that new customers can’t redeem the coupon. You can also delete coupons via the API.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your coupons.

 retrieve(client, coupon, params \\ %{}, opts \\ [])

 Retrieves the coupon with the given ID.

 update(client, coupon, params \\ %{}, opts \\ [])

 Updates the metadata of a coupon. Other coupon details (currency, duration, amount_off) are, by design, not editable.

 Anchor for this section

Types

 Link to this type

 applies_to()

 View Source

 @type applies_to() :: %{optional(:products) => [binary()]}

A hash containing directions for what this Coupon will apply discounts to.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Coupon{
 amount_off: integer() | nil,
 applies_to: term(),
 created: integer(),
 currency: binary() | nil,
 currency_options: term(),
 duration: binary(),
 duration_in_months: integer() | nil,
 id: binary(),
 livemode: boolean(),
 max_redemptions: integer() | nil,
 metadata: term() | nil,
 name: binary() | nil,
 object: binary(),
 percent_off: term() | nil,
 redeem_by: integer() | nil,
 times_redeemed: integer(),
 valid: boolean()
}

The coupon type.
	amount_off Amount (in the currency specified) that will be taken off the subtotal of any invoices for this customer.
	applies_to
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency If amount_off has been set, the three-letter ISO code for the currency of the amount to take off.
	currency_options Coupons defined in each available currency option. Each key must be a three-letter ISO currency code and a supported currency.
	duration One of forever, once, and repeating. Describes how long a customer who applies this coupon will get the discount.
	duration_in_months If duration is repeating, the number of months the coupon applies. Null if coupon duration is forever or once.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	max_redemptions Maximum number of times this coupon can be redeemed, in total, across all customers, before it is no longer valid.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name Name of the coupon displayed to customers on for instance invoices or receipts.
	object String representing the object's type. Objects of the same type share the same value.
	percent_off Percent that will be taken off the subtotal of any invoices for this customer for the duration of the coupon. For example, a coupon with percent_off of 50 will make a %s100 invoice %s50 instead.
	redeem_by Date after which the coupon can no longer be redeemed.
	times_redeemed Number of times this coupon has been applied to a customer.
	valid Taking account of the above properties, whether this coupon can still be applied to a customer.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount_off) => integer(),
 optional(:applies_to) => applies_to(),
 optional(:currency) => binary(),
 optional(:currency_options) => map(),
 optional(:duration) => :forever | :once | :repeating,
 optional(:duration_in_months) => integer(),
 optional(:expand) => [binary()],
 optional(:id) => binary(),
 optional(:max_redemptions) => integer(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary(),
 optional(:percent_off) => number(),
 optional(:redeem_by) => integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

You can create coupons easily via the coupon management page of the Stripe dashboard. Coupon creation is also accessible via the API if you need to create coupons on the fly.
A coupon has either a percent_off or an amount_off and currency. If you set an amount_off, that amount will be subtracted from any invoice’s subtotal. For example, an invoice with a subtotal of 100 will have a final total of 0 if a coupon with an amount_off of 200 is applied to it and an invoice with a subtotal of 300 will have a final total of 100 if a coupon with an amount_off of 200 is applied to it.
Details
	Method: post
	Path: /v1/coupons

 Link to this function

 delete(client, coupon, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), coupon :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedCoupon.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

You can delete coupons via the coupon management page of the Stripe dashboard. However, deleting a coupon does not affect any customers who have already applied the coupon; it means that new customers can’t redeem the coupon. You can also delete coupons via the API.
Details
	Method: delete
	Path: /v1/coupons/{coupon}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your coupons.
Details
	Method: get
	Path: /v1/coupons

 Link to this function

 retrieve(client, coupon, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 coupon :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the coupon with the given ID.
Details
	Method: get
	Path: /v1/coupons/{coupon}

 Link to this function

 update(client, coupon, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 coupon :: binary(),
 params :: %{
 optional(:currency_options) => map(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the metadata of a coupon. Other coupon details (currency, duration, amount_off) are, by design, not editable.
Details
	Method: post
	Path: /v1/coupons/{coupon}

 Stripe.Item - Striped v0.5.0

Stripe.Item

A line item.

 Anchor for this section

 Summary

 Types

 t()

 The item type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Item{
 amount_discount: integer(),
 amount_subtotal: integer(),
 amount_tax: integer(),
 amount_total: integer(),
 currency: binary(),
 description: binary(),
 discounts: term(),
 id: binary(),
 object: binary(),
 price: Stripe.Price.t() | nil,
 quantity: integer() | nil,
 taxes: term()
}

The item type.
	amount_discount Total discount amount applied. If no discounts were applied, defaults to 0.
	amount_subtotal Total before any discounts or taxes are applied.
	amount_tax Total tax amount applied. If no tax was applied, defaults to 0.
	amount_total Total after discounts and taxes.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users. Defaults to product name.
	discounts The discounts applied to the line item.
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.
	price The price used to generate the line item.
	quantity The quantity of products being purchased.
	taxes The taxes applied to the line item.

 Stripe.Price - Striped v0.5.0

Stripe.Price

Prices define the unit cost, currency, and (optional) billing cycle for both recurring and one-time purchases of products.
Products help you track inventory or provisioning, and prices help you track payment terms. Different physical goods or levels of service should be represented by products, and pricing options should be represented by prices. This approach lets you change prices without having to change your provisioning scheme.
For example, you might have a single "gold" product that has prices for $10/month, $100/year, and €9 once.
Related guides: Set up a subscription, create an invoice, and more about products and prices.

 Anchor for this section

 Summary

 Types

 created()

 custom_unit_amount()

 When set, provides configuration for the amount to be adjusted by the customer during Checkout Sessions and Payment Links.

 product_data()

 These fields can be used to create a new product that this price will belong to.

 recurring()

 t()

 The price type.

 tiers()

 transform_quantity()

 Apply a transformation to the reported usage or set quantity before computing the billed price. Cannot be combined with tiers.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new price for an existing product. The price can be recurring or one-time.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your prices.

 retrieve(client, price, params \\ %{}, opts \\ [])

 Retrieves the price with the given ID.

 search(client, params \\ %{}, opts \\ [])

 Search for prices you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.

 update(client, price, params \\ %{}, opts \\ [])

 Updates the specified price by setting the values of the parameters passed. Any parameters not provided are left unchanged.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 custom_unit_amount()

 View Source

 @type custom_unit_amount() :: %{
 optional(:enabled) => boolean(),
 optional(:maximum) => integer(),
 optional(:minimum) => integer(),
 optional(:preset) => integer()
}

When set, provides configuration for the amount to be adjusted by the customer during Checkout Sessions and Payment Links.

 Link to this type

 product_data()

 View Source

 @type product_data() :: %{
 optional(:active) => boolean(),
 optional(:id) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:name) => binary(),
 optional(:statement_descriptor) => binary(),
 optional(:tax_code) => binary(),
 optional(:unit_label) => binary()
}

These fields can be used to create a new product that this price will belong to.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:usage_type) => :licensed | :metered
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Price{
 active: boolean(),
 billing_scheme: binary(),
 created: integer(),
 currency: binary(),
 currency_options: term(),
 custom_unit_amount: term() | nil,
 id: binary(),
 livemode: boolean(),
 lookup_key: binary() | nil,
 metadata: term(),
 nickname: binary() | nil,
 object: binary(),
 product: binary() | Stripe.Product.t() | Stripe.DeletedProduct.t(),
 recurring: term() | nil,
 tax_behavior: binary() | nil,
 tiers: term(),
 tiers_mode: binary() | nil,
 transform_quantity: term() | nil,
 type: binary(),
 unit_amount: integer() | nil,
 unit_amount_decimal: binary() | nil
}

The price type.
	active Whether the price can be used for new purchases.
	billing_scheme Describes how to compute the price per period. Either per_unit or tiered. per_unit indicates that the fixed amount (specified in unit_amount or unit_amount_decimal) will be charged per unit in quantity (for prices with usage_type=licensed), or per unit of total usage (for prices with usage_type=metered). tiered indicates that the unit pricing will be computed using a tiering strategy as defined using the tiers and tiers_mode attributes.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	currency_options Prices defined in each available currency option. Each key must be a three-letter ISO currency code and a supported currency.
	custom_unit_amount When set, provides configuration for the amount to be adjusted by the customer during Checkout Sessions and Payment Links.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	lookup_key A lookup key used to retrieve prices dynamically from a static string. This may be up to 200 characters.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	nickname A brief description of the price, hidden from customers.
	object String representing the object's type. Objects of the same type share the same value.
	product The ID of the product this price is associated with.
	recurring The recurring components of a price such as interval and usage_type.
	tax_behavior Specifies whether the price is considered inclusive of taxes or exclusive of taxes. One of inclusive, exclusive, or unspecified. Once specified as either inclusive or exclusive, it cannot be changed.
	tiers Each element represents a pricing tier. This parameter requires billing_scheme to be set to tiered. See also the documentation for billing_scheme.
	tiers_mode Defines if the tiering price should be graduated or volume based. In volume-based tiering, the maximum quantity within a period determines the per unit price. In graduated tiering, pricing can change as the quantity grows.
	transform_quantity Apply a transformation to the reported usage or set quantity before computing the amount billed. Cannot be combined with tiers.
	type One of one_time or recurring depending on whether the price is for a one-time purchase or a recurring (subscription) purchase.
	unit_amount The unit amount in %s to be charged, represented as a whole integer if possible. Only set if billing_scheme=per_unit.
	unit_amount_decimal The unit amount in %s to be charged, represented as a decimal string with at most 12 decimal places. Only set if billing_scheme=per_unit.

 Link to this type

 tiers()

 View Source

 @type tiers() :: %{
 optional(:flat_amount) => integer(),
 optional(:flat_amount_decimal) => binary(),
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary(),
 optional(:up_to) => :inf | integer()
}

 Link to this type

 transform_quantity()

 View Source

 @type transform_quantity() :: %{
 optional(:divide_by) => integer(),
 optional(:round) => :down | :up
}

Apply a transformation to the reported usage or set quantity before computing the billed price. Cannot be combined with tiers.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:billing_scheme) => :per_unit | :tiered,
 optional(:currency) => binary(),
 optional(:currency_options) => map(),
 optional(:custom_unit_amount) => custom_unit_amount(),
 optional(:expand) => [binary()],
 optional(:lookup_key) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:nickname) => binary(),
 optional(:product) => binary(),
 optional(:product_data) => product_data(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:tiers) => [tiers()],
 optional(:tiers_mode) => :graduated | :volume,
 optional(:transfer_lookup_key) => boolean(),
 optional(:transform_quantity) => transform_quantity(),
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new price for an existing product. The price can be recurring or one-time.
Details
	Method: post
	Path: /v1/prices

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:created) => created() | integer(),
 optional(:currency) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:lookup_keys) => [binary()],
 optional(:product) => binary(),
 optional(:recurring) => recurring(),
 optional(:starting_after) => binary(),
 optional(:type) => :one_time | :recurring
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your prices.
Details
	Method: get
	Path: /v1/prices

 Link to this function

 retrieve(client, price, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 price :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the price with the given ID.
Details
	Method: get
	Path: /v1/prices/{price}

 Link to this function

 search(client, params \\ %{}, opts \\ [])

 View Source

 @spec search(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:page) => binary(),
 optional(:query) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.SearchResult.t(t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Search for prices you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/prices/search

 Link to this function

 update(client, price, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 price :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:currency_options) => map() | binary(),
 optional(:expand) => [binary()],
 optional(:lookup_key) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:nickname) => binary(),
 optional(:recurring) => recurring() | binary(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:transfer_lookup_key) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified price by setting the values of the parameters passed. Any parameters not provided are left unchanged.
Details
	Method: post
	Path: /v1/prices/{price}

 Stripe.Product - Striped v0.5.0

Stripe.Product

Products describe the specific goods or services you offer to your customers.
For example, you might offer a Standard and Premium version of your goods or service; each version would be a separate Product.
They can be used in conjunction with Prices to configure pricing in Payment Links, Checkout, and Subscriptions.
Related guides: Set up a subscription,
share a Payment Link,
accept payments with Checkout,
and more about Products and Prices

 Anchor for this section

 Summary

 Types

 created()

 default_price_data()

 Data used to generate a new Price object. This Price will be set as the default price for this product.

 package_dimensions()

 The dimensions of this product for shipping purposes.

 recurring()

 The recurring components of a price such as interval and interval_count.

 t()

 The product type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new product object.

 delete(client, id, opts \\ [])

 Delete a product. Deleting a product is only possible if it has no prices associated with it. Additionally, deleting a product with type=good is only possible if it has no SKUs associated with it.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your products. The products are returned sorted by creation date, with the most recently created products appearing first.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an existing product. Supply the unique product ID from either a product creation request or the product list, and Stripe will return the corresponding product information.

 search(client, params \\ %{}, opts \\ [])

 Search for products you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.

 update(client, id, params \\ %{}, opts \\ [])

 Updates the specific product by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 default_price_data()

 View Source

 @type default_price_data() :: %{
 optional(:currency) => binary(),
 optional(:currency_options) => map(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object. This Price will be set as the default price for this product.

 Link to this type

 package_dimensions()

 View Source

 @type package_dimensions() :: %{
 optional(:height) => number(),
 optional(:length) => number(),
 optional(:weight) => number(),
 optional(:width) => number()
}

The dimensions of this product for shipping purposes.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

The recurring components of a price such as interval and interval_count.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Product{
 active: boolean(),
 attributes: term() | nil,
 caption: binary() | nil,
 created: integer(),
 deactivate_on: term(),
 default_price: (binary() | Stripe.Price.t()) | nil,
 description: binary() | nil,
 id: binary(),
 images: term(),
 livemode: boolean(),
 metadata: term(),
 name: binary(),
 object: binary(),
 package_dimensions: term() | nil,
 shippable: boolean() | nil,
 statement_descriptor: binary() | nil,
 tax_code: (binary() | Stripe.TaxCode.t()) | nil,
 type: binary(),
 unit_label: binary() | nil,
 updated: integer(),
 url: binary() | nil
}

The product type.
	active Whether the product is currently available for purchase.
	attributes A list of up to 5 attributes that each SKU can provide values for (e.g., ["color", "size"]).
	caption A short one-line description of the product, meant to be displayable to the customer. Only applicable to products of type=good.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	deactivate_on An array of connect application identifiers that cannot purchase this product. Only applicable to products of type=good.
	default_price The ID of the Price object that is the default price for this product.
	description The product's description, meant to be displayable to the customer. Use this field to optionally store a long form explanation of the product being sold for your own rendering purposes.
	id Unique identifier for the object.
	images A list of up to 8 URLs of images for this product, meant to be displayable to the customer.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name The product's name, meant to be displayable to the customer.
	object String representing the object's type. Objects of the same type share the same value.
	package_dimensions The dimensions of this product for shipping purposes.
	shippable Whether this product is shipped (i.e., physical goods).
	statement_descriptor Extra information about a product which will appear on your customer's credit card statement. In the case that multiple products are billed at once, the first statement descriptor will be used.
	tax_code A tax code ID.
	type The type of the product. The product is either of type good, which is eligible for use with Orders and SKUs, or service, which is eligible for use with Subscriptions and Plans.
	unit_label A label that represents units of this product in Stripe and on customers’ receipts and invoices. When set, this will be included in associated invoice line item descriptions.
	updated Time at which the object was last updated. Measured in seconds since the Unix epoch.
	url A URL of a publicly-accessible webpage for this product.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:attributes) => [binary()],
 optional(:caption) => binary(),
 optional(:deactivate_on) => [binary()],
 optional(:default_price_data) => default_price_data(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:id) => binary(),
 optional(:images) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:name) => binary(),
 optional(:package_dimensions) => package_dimensions(),
 optional(:shippable) => boolean(),
 optional(:statement_descriptor) => binary(),
 optional(:tax_code) => binary(),
 optional(:type) => :good | :service,
 optional(:unit_label) => binary(),
 optional(:url) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new product object.
Details
	Method: post
	Path: /v1/products

 Link to this function

 delete(client, id, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), id :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedProduct.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Delete a product. Deleting a product is only possible if it has no prices associated with it. Additionally, deleting a product with type=good is only possible if it has no SKUs associated with it.
Details
	Method: delete
	Path: /v1/products/{id}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:ids) => [binary()],
 optional(:limit) => integer(),
 optional(:shippable) => boolean(),
 optional(:starting_after) => binary(),
 optional(:type) => :good | :service,
 optional(:url) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your products. The products are returned sorted by creation date, with the most recently created products appearing first.
Details
	Method: get
	Path: /v1/products

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing product. Supply the unique product ID from either a product creation request or the product list, and Stripe will return the corresponding product information.
Details
	Method: get
	Path: /v1/products/{id}

 Link to this function

 search(client, params \\ %{}, opts \\ [])

 View Source

 @spec search(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:page) => binary(),
 optional(:query) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.SearchResult.t(t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Search for products you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/products/search

 Link to this function

 update(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:attributes) => [binary()] | binary(),
 optional(:caption) => binary(),
 optional(:deactivate_on) => [binary()],
 optional(:default_price) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:images) => [binary()] | binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary(),
 optional(:package_dimensions) => package_dimensions() | binary(),
 optional(:shippable) => boolean(),
 optional(:statement_descriptor) => binary(),
 optional(:tax_code) => binary() | binary(),
 optional(:unit_label) => binary(),
 optional(:url) => binary() | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specific product by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/products/{id}

 Stripe.PromotionCode - Striped v0.5.0

Stripe.PromotionCode

A Promotion Code represents a customer-redeemable code for a coupon. It can be used to
create multiple codes for a single coupon.

 Anchor for this section

 Summary

 Types

 created()

 restrictions()

 Settings that restrict the redemption of the promotion code.

 t()

 The promotion_code type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 A promotion code points to a coupon. You can optionally restrict the code to a specific customer, redemption limit, and expiration date.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your promotion codes.

 retrieve(client, promotion_code, params \\ %{}, opts \\ [])

 Retrieves the promotion code with the given ID. In order to retrieve a promotion code by the customer-facing code use list with the desired code.

 update(client, promotion_code, params \\ %{}, opts \\ [])

 Updates the specified promotion code by setting the values of the parameters passed. Most fields are, by design, not editable.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 restrictions()

 View Source

 @type restrictions() :: %{
 optional(:currency_options) => map(),
 optional(:first_time_transaction) => boolean(),
 optional(:minimum_amount) => integer(),
 optional(:minimum_amount_currency) => binary()
}

Settings that restrict the redemption of the promotion code.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.PromotionCode{
 active: boolean(),
 code: binary(),
 coupon: Stripe.Coupon.t(),
 created: integer(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 expires_at: integer() | nil,
 id: binary(),
 livemode: boolean(),
 max_redemptions: integer() | nil,
 metadata: term() | nil,
 object: binary(),
 restrictions: term(),
 times_redeemed: integer()
}

The promotion_code type.
	active Whether the promotion code is currently active. A promotion code is only active if the coupon is also valid.
	code The customer-facing code. Regardless of case, this code must be unique across all active promotion codes for each customer.
	coupon
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	customer The customer that this promotion code can be used by.
	expires_at Date at which the promotion code can no longer be redeemed.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	max_redemptions Maximum number of times this promotion code can be redeemed.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	restrictions
	times_redeemed Number of times this promotion code has been used.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:code) => binary(),
 optional(:coupon) => binary(),
 optional(:customer) => binary(),
 optional(:expand) => [binary()],
 optional(:expires_at) => integer(),
 optional(:max_redemptions) => integer(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:restrictions) => restrictions()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A promotion code points to a coupon. You can optionally restrict the code to a specific customer, redemption limit, and expiration date.
Details
	Method: post
	Path: /v1/promotion_codes

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:code) => binary(),
 optional(:coupon) => binary(),
 optional(:created) => created() | integer(),
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your promotion codes.
Details
	Method: get
	Path: /v1/promotion_codes

 Link to this function

 retrieve(client, promotion_code, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 promotion_code :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the promotion code with the given ID. In order to retrieve a promotion code by the customer-facing code use list with the desired code.
Details
	Method: get
	Path: /v1/promotion_codes/{promotion_code}

 Link to this function

 update(client, promotion_code, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 promotion_code :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:restrictions) => restrictions()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified promotion code by setting the values of the parameters passed. Most fields are, by design, not editable.
Details
	Method: post
	Path: /v1/promotion_codes/{promotion_code}

 Stripe.ShippingRate - Striped v0.5.0

Stripe.ShippingRate

Shipping rates describe the price of shipping presented to your customers and can be
applied to Checkout Sessions
and Orders to collect shipping costs.

 Anchor for this section

 Summary

 Types

 created()

 delivery_estimate()

 The estimated range for how long shipping will take, meant to be displayable to the customer. This will appear on CheckoutSessions.

 fixed_amount()

 Describes a fixed amount to charge for shipping. Must be present if type is fixed_amount.

 maximum()

 The upper bound of the estimated range. If empty, represents no upper bound i.e., infinite.

 minimum()

 The lower bound of the estimated range. If empty, represents no lower bound.

 t()

 The shipping_rate type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new shipping rate object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your shipping rates.

 retrieve(client, shipping_rate_token, params \\ %{}, opts \\ [])

 Returns the shipping rate object with the given ID.

 update(client, shipping_rate_token, params \\ %{}, opts \\ [])

 Updates an existing shipping rate object.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 delivery_estimate()

 View Source

 @type delivery_estimate() :: %{
 optional(:maximum) => maximum(),
 optional(:minimum) => minimum()
}

The estimated range for how long shipping will take, meant to be displayable to the customer. This will appear on CheckoutSessions.

 Link to this type

 fixed_amount()

 View Source

 @type fixed_amount() :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:currency_options) => map()
}

Describes a fixed amount to charge for shipping. Must be present if type is fixed_amount.

 Link to this type

 maximum()

 View Source

 @type maximum() :: %{
 optional(:unit) => :business_day | :day | :hour | :month | :week,
 optional(:value) => integer()
}

The upper bound of the estimated range. If empty, represents no upper bound i.e., infinite.

 Link to this type

 minimum()

 View Source

 @type minimum() :: %{
 optional(:unit) => :business_day | :day | :hour | :month | :week,
 optional(:value) => integer()
}

The lower bound of the estimated range. If empty, represents no lower bound.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.ShippingRate{
 active: boolean(),
 created: integer(),
 delivery_estimate: term() | nil,
 display_name: binary() | nil,
 fixed_amount: term(),
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 tax_behavior: binary() | nil,
 tax_code: (binary() | Stripe.TaxCode.t()) | nil,
 type: binary()
}

The shipping_rate type.
	active Whether the shipping rate can be used for new purchases. Defaults to true.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	delivery_estimate The estimated range for how long shipping will take, meant to be displayable to the customer. This will appear on CheckoutSessions.
	display_name The name of the shipping rate, meant to be displayable to the customer. This will appear on CheckoutSessions.
	fixed_amount
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	tax_behavior Specifies whether the rate is considered inclusive of taxes or exclusive of taxes. One of inclusive, exclusive, or unspecified.
	tax_code A tax code ID. The Shipping tax code is txcd_92010001.
	type The type of calculation to use on the shipping rate. Can only be fixed_amount for now.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:delivery_estimate) => delivery_estimate(),
 optional(:display_name) => binary(),
 optional(:expand) => [binary()],
 optional(:fixed_amount) => fixed_amount(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:tax_code) => binary(),
 optional(:type) => :fixed_amount
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new shipping rate object.
Details
	Method: post
	Path: /v1/shipping_rates

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:created) => created() | integer(),
 optional(:currency) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your shipping rates.
Details
	Method: get
	Path: /v1/shipping_rates

 Link to this function

 retrieve(client, shipping_rate_token, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 shipping_rate_token :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns the shipping rate object with the given ID.
Details
	Method: get
	Path: /v1/shipping_rates/{shipping_rate_token}

 Link to this function

 update(client, shipping_rate_token, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 shipping_rate_token :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:expand) => [binary()],
 optional(:fixed_amount) => fixed_amount(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing shipping rate object.
Details
	Method: post
	Path: /v1/shipping_rates/{shipping_rate_token}

 Stripe.TaxCode - Striped v0.5.0

Stripe.TaxCode

Tax codes classify goods and services for tax purposes.

 Anchor for this section

 Summary

 Types

 t()

 The tax_code type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 A list of all tax codes available to add to Products in order to allow specific tax calculations.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an existing tax code. Supply the unique tax code ID and Stripe will return the corresponding tax code information.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.TaxCode{
 description: binary(),
 id: binary(),
 name: binary(),
 object: binary()
}

The tax_code type.
	description A detailed description of which types of products the tax code represents.
	id Unique identifier for the object.
	name A short name for the tax code.
	object String representing the object's type. Objects of the same type share the same value.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A list of all tax codes available to add to Products in order to allow specific tax calculations.
Details
	Method: get
	Path: /v1/tax_codes

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing tax code. Supply the unique tax code ID and Stripe will return the corresponding tax code information.
Details
	Method: get
	Path: /v1/tax_codes/{id}

 Stripe.TaxId - Striped v0.5.0

Stripe.TaxId

You can add one or multiple tax IDs to a customer.
A customer's tax IDs are displayed on invoices and credit notes issued for the customer.
Related guide: Customer Tax Identification Numbers.

 Anchor for this section

 Summary

 Types

 t()

 The tax_id type.

 Functions

 create(client, customer, params \\ %{}, opts \\ [])

 Creates a new TaxID object for a customer.

 delete(client, customer, id, opts \\ [])

 Deletes an existing TaxID object.

 list(client, customer, params \\ %{}, opts \\ [])

 Returns a list of tax IDs for a customer.

 retrieve(client, customer, id, params \\ %{}, opts \\ [])

 Retrieves the TaxID object with the given identifier.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.TaxId{
 country: binary() | nil,
 created: integer(),
 customer: (binary() | Stripe.Customer.t()) | nil,
 id: binary(),
 livemode: boolean(),
 object: binary(),
 type: binary(),
 value: binary(),
 verification: term() | nil
}

The tax_id type.
	country Two-letter ISO code representing the country of the tax ID.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	customer ID of the customer.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	type Type of the tax ID, one of ae_trn, au_abn, au_arn, bg_uic, br_cnpj, br_cpf, ca_bn, ca_gst_hst, ca_pst_bc, ca_pst_mb, ca_pst_sk, ca_qst, ch_vat, cl_tin, eg_tin, es_cif, eu_oss_vat, eu_vat, gb_vat, ge_vat, hk_br, hu_tin, id_npwp, il_vat, in_gst, is_vat, jp_cn, jp_rn, jp_trn, ke_pin, kr_brn, li_uid, mx_rfc, my_frp, my_itn, my_sst, no_vat, nz_gst, ph_tin, ru_inn, ru_kpp, sa_vat, sg_gst, sg_uen, si_tin, th_vat, tr_tin, tw_vat, ua_vat, us_ein, or za_vat. Note that some legacy tax IDs have type unknown
	value Value of the tax ID.
	verification Tax ID verification information.

 Anchor for this section

Functions

 Link to this function

 create(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:type) =>
 :ae_trn
 | :au_abn
 | :au_arn
 | :bg_uic
 | :br_cnpj
 | :br_cpf
 | :ca_bn
 | :ca_gst_hst
 | :ca_pst_bc
 | :ca_pst_mb
 | :ca_pst_sk
 | :ca_qst
 | :ch_vat
 | :cl_tin
 | :eg_tin
 | :es_cif
 | :eu_oss_vat
 | :eu_vat
 | :gb_vat
 | :ge_vat
 | :hk_br
 | :hu_tin
 | :id_npwp
 | :il_vat
 | :in_gst
 | :is_vat
 | :jp_cn
 | :jp_rn
 | :jp_trn
 | :ke_pin
 | :kr_brn
 | :li_uid
 | :mx_rfc
 | :my_frp
 | :my_itn
 | :my_sst
 | :no_vat
 | :nz_gst
 | :ph_tin
 | :ru_inn
 | :ru_kpp
 | :sa_vat
 | :sg_gst
 | :sg_uen
 | :si_tin
 | :th_vat
 | :tr_tin
 | :tw_vat
 | :ua_vat
 | :us_ein
 | :za_vat,
 optional(:value) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new TaxID object for a customer.
Details
	Method: post
	Path: /v1/customers/{customer}/tax_ids

 Link to this function

 delete(client, customer, id, opts \\ [])

 View Source

 @spec delete(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 opts :: Keyword.t()
) ::
 {:ok, Stripe.DeletedTaxId.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes an existing TaxID object.
Details
	Method: delete
	Path: /v1/customers/{customer}/tax_ids/{id}

 Link to this function

 list(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of tax IDs for a customer.
Details
	Method: get
	Path: /v1/customers/{customer}/tax_ids

 Link to this function

 retrieve(client, customer, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 customer :: binary(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the TaxID object with the given identifier.
Details
	Method: get
	Path: /v1/customers/{customer}/tax_ids/{id}

 Stripe.TaxRate - Striped v0.5.0

Stripe.TaxRate

Tax rates can be applied to invoices, subscriptions and Checkout Sessions to collect tax.
Related guide: Tax Rates.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The tax_rate type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new tax rate.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your tax rates. Tax rates are returned sorted by creation date, with the most recently created tax rates appearing first.

 retrieve(client, tax_rate, params \\ %{}, opts \\ [])

 Retrieves a tax rate with the given I.

 update(client, tax_rate, params \\ %{}, opts \\ [])

 Updates an existing tax rate.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.TaxRate{
 active: boolean(),
 country: binary() | nil,
 created: integer(),
 description: binary() | nil,
 display_name: binary(),
 id: binary(),
 inclusive: boolean(),
 jurisdiction: binary() | nil,
 livemode: boolean(),
 metadata: term() | nil,
 object: binary(),
 percentage: term(),
 state: binary() | nil,
 tax_type: binary() | nil
}

The tax_rate type.
	active Defaults to true. When set to false, this tax rate cannot be used with new applications or Checkout Sessions, but will still work for subscriptions and invoices that already have it set.
	country Two-letter country code (ISO 3166-1 alpha-2).
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	description An arbitrary string attached to the tax rate for your internal use only. It will not be visible to your customers.
	display_name The display name of the tax rates as it will appear to your customer on their receipt email, PDF, and the hosted invoice page.
	id Unique identifier for the object.
	inclusive This specifies if the tax rate is inclusive or exclusive.
	jurisdiction The jurisdiction for the tax rate. You can use this label field for tax reporting purposes. It also appears on your customer’s invoice.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	percentage This represents the tax rate percent out of 100.
	state ISO 3166-2 subdivision code, without country prefix. For example, "NY" for New York, United States.
	tax_type The high-level tax type, such as vat or sales_tax.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:country) => binary(),
 optional(:description) => binary(),
 optional(:display_name) => binary(),
 optional(:expand) => [binary()],
 optional(:inclusive) => boolean(),
 optional(:jurisdiction) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:percentage) => number(),
 optional(:state) => binary(),
 optional(:tax_type) =>
 :gst | :hst | :jct | :pst | :qst | :rst | :sales_tax | :vat
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new tax rate.
Details
	Method: post
	Path: /v1/tax_rates

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:inclusive) => boolean(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your tax rates. Tax rates are returned sorted by creation date, with the most recently created tax rates appearing first.
Details
	Method: get
	Path: /v1/tax_rates

 Link to this function

 retrieve(client, tax_rate, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 tax_rate :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a tax rate with the given I.
Details
	Method: get
	Path: /v1/tax_rates/{tax_rate}

 Link to this function

 update(client, tax_rate, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 tax_rate :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:country) => binary(),
 optional(:description) => binary(),
 optional(:display_name) => binary(),
 optional(:expand) => [binary()],
 optional(:jurisdiction) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:state) => binary(),
 optional(:tax_type) =>
 :gst | :hst | :jct | :pst | :qst | :rst | :sales_tax | :vat
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing tax rate.
Details
	Method: post
	Path: /v1/tax_rates/{tax_rate}

 Stripe.Checkout.Session - Striped v0.5.0

Stripe.Checkout.Session

A Checkout Session represents your customer's session as they pay for
one-time purchases or subscriptions through Checkout
or Payment Links. We recommend creating a
new Session each time your customer attempts to pay.
Once payment is successful, the Checkout Session will contain a reference
to the Customer, and either the successful
PaymentIntent or an active
Subscription.
You can create a Checkout Session on your server and pass its ID to the
client to begin Checkout.
Related guide: Checkout Quickstart.

 Anchor for this section

 Summary

 Types

 acss_debit()

 contains details about the ACSS Debit payment method options.

 address()

 Shipping address.

 adjustable_quantity()

 When set, provides configuration for this item’s quantity to be adjusted by the customer during Checkout.

 affirm()

 contains details about the Affirm payment method options.

 after_expiration()

 Configure actions after a Checkout Session has expired.

 afterpay_clearpay()

 contains details about the Afterpay Clearpay payment method options.

 alipay()

 contains details about the Alipay payment method options.

 au_becs_debit()

 contains details about the AU Becs Debit payment method options.

 automatic_tax()

 Settings for automatic tax lookup for this session and resulting payments, invoices, and subscriptions.

 bacs_debit()

 contains details about the Bacs Debit payment method options.

 bancontact()

 contains details about the Bancontact payment method options.

 bank_transfer()

 Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 boleto()

 contains details about the Boleto payment method options.

 card()

 contains details about the Card payment method options.

 consent_collection()

 Configure fields for the Checkout Session to gather active consent from customers.

 custom_text()

 Display additional text for your customers using custom text.

 customer_balance()

 contains details about the Customer Balance payment method options.

 customer_details()

 customer_update()

 Controls what fields on Customer can be updated by the Checkout Session. Can only be provided when customer is provided.

 delivery_estimate()

 The estimated range for how long shipping will take, meant to be displayable to the customer. This will appear on CheckoutSessions.

 discounts()

 eps()

 contains details about the EPS payment method options.

 eu_bank_transfer()

 Configuration for eu_bank_transfer funding type.

 financial_connections()

 Additional fields for Financial Connections Session creation

 fixed_amount()

 Describes a fixed amount to charge for shipping. Must be present if type is fixed_amount.

 fpx()

 contains details about the FPX payment method options.

 giropay()

 contains details about the Giropay payment method options.

 grabpay()

 contains details about the Grabpay payment method options.

 ideal()

 contains details about the Ideal payment method options.

 installments()

 Installment options for card payments

 klarna()

 contains details about the Klarna payment method options.

 konbini()

 contains details about the Konbini payment method options.

 line_items()

 mandate_options()

 Additional fields for Mandate creation

 maximum()

 The upper bound of the estimated range. If empty, represents no upper bound i.e., infinite.

 minimum()

 The lower bound of the estimated range. If empty, represents no lower bound.

 oxxo()

 contains details about the OXXO payment method options.

 p24()

 contains details about the P24 payment method options.

 payment_intent_data()

 A subset of parameters to be passed to PaymentIntent creation for Checkout Sessions in payment mode.

 payment_method_options()

 Payment-method-specific configuration.

 paynow()

 contains details about the PayNow payment method options.

 phone_number_collection()

 Controls phone number collection settings for the session.

 pix()

 contains details about the Pix payment method options.

 price_data()

 Data used to generate a new Price object inline. One of price or price_data is required.

 product_data()

 Data used to generate a new product object inline. One of product or product_data is required.

 recovery()

 Configure a Checkout Session that can be used to recover an expired session.

 recurring()

 The recurring components of a price such as interval and interval_count.

 sepa_debit()

 contains details about the Sepa Debit payment method options.

 setup_intent_data()

 A subset of parameters to be passed to SetupIntent creation for Checkout Sessions in setup mode.

 shipping()

 Shipping information for this payment.

 shipping_address()

 shipping_address_collection()

 When set, provides configuration for Checkout to collect a shipping address from a customer.

 shipping_options()

 shipping_rate_data()

 Parameters to be passed to Shipping Rate creation for this shipping option

 sofort()

 contains details about the Sofort payment method options.

 submit()

 subscription_data()

 A subset of parameters to be passed to subscription creation for Checkout Sessions in subscription mode.

 t()

 The checkout.session type.

 tax_id_collection()

 Controls tax ID collection settings for the session.

 transfer_data()

 If specified, the funds from the subscription's invoices will be transferred to the destination and the ID of the resulting transfers will be found on the resulting charges.

 us_bank_account()

 contains details about the Us Bank Account payment method options.

 wechat_pay()

 contains details about the WeChat Pay payment method options.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a Session object.

 expire(client, session, params \\ %{}, opts \\ [])

 A Session can be expired when it is in one of these statuses: open.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Checkout Sessions.

 list_line_items(client, session, params \\ %{}, opts \\ [])

 When retrieving a Checkout Session, there is an includable line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.

 retrieve(client, session, params \\ %{}, opts \\ [])

 Retrieves a Session object.

 Anchor for this section

Types

 Link to this type

 acss_debit()

 View Source

 @type acss_debit() :: %{
 optional(:currency) => :cad | :usd,
 optional(:mandate_options) => mandate_options(),
 optional(:setup_future_usage) => :none | :off_session | :on_session,
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

contains details about the ACSS Debit payment method options.

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

Shipping address.

 Link to this type

 adjustable_quantity()

 View Source

 @type adjustable_quantity() :: %{
 optional(:enabled) => boolean(),
 optional(:maximum) => integer(),
 optional(:minimum) => integer()
}

When set, provides configuration for this item’s quantity to be adjusted by the customer during Checkout.

 Link to this type

 affirm()

 View Source

 @type affirm() :: %{optional(:setup_future_usage) => :none}

contains details about the Affirm payment method options.

 Link to this type

 after_expiration()

 View Source

 @type after_expiration() :: %{optional(:recovery) => recovery()}

Configure actions after a Checkout Session has expired.

 Link to this type

 afterpay_clearpay()

 View Source

 @type afterpay_clearpay() :: %{optional(:setup_future_usage) => :none}

contains details about the Afterpay Clearpay payment method options.

 Link to this type

 alipay()

 View Source

 @type alipay() :: %{optional(:setup_future_usage) => :none}

contains details about the Alipay payment method options.

 Link to this type

 au_becs_debit()

 View Source

 @type au_becs_debit() :: %{optional(:setup_future_usage) => :none}

contains details about the AU Becs Debit payment method options.

 Link to this type

 automatic_tax()

 View Source

 @type automatic_tax() :: %{optional(:enabled) => boolean()}

Settings for automatic tax lookup for this session and resulting payments, invoices, and subscriptions.

 Link to this type

 bacs_debit()

 View Source

 @type bacs_debit() :: %{
 optional(:setup_future_usage) => :none | :off_session | :on_session
}

contains details about the Bacs Debit payment method options.

 Link to this type

 bancontact()

 View Source

 @type bancontact() :: %{optional(:setup_future_usage) => :none}

contains details about the Bancontact payment method options.

 Link to this type

 bank_transfer()

 View Source

 @type bank_transfer() :: %{
 optional(:eu_bank_transfer) => eu_bank_transfer(),
 optional(:requested_address_types) => [
 :iban | :sepa | :sort_code | :spei | :zengin
],
 optional(:type) =>
 :eu_bank_transfer
 | :gb_bank_transfer
 | :jp_bank_transfer
 | :mx_bank_transfer
}

Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 Link to this type

 boleto()

 View Source

 @type boleto() :: %{
 optional(:expires_after_days) => integer(),
 optional(:setup_future_usage) => :none | :off_session | :on_session
}

contains details about the Boleto payment method options.

 Link to this type

 card()

 View Source

 @type card() :: %{
 optional(:installments) => installments(),
 optional(:setup_future_usage) => :off_session | :on_session,
 optional(:statement_descriptor_suffix_kana) => binary(),
 optional(:statement_descriptor_suffix_kanji) => binary()
}

contains details about the Card payment method options.

 Link to this type

 consent_collection()

 View Source

 @type consent_collection() :: %{
 optional(:promotions) => :auto | :none,
 optional(:terms_of_service) => :none | :required
}

Configure fields for the Checkout Session to gather active consent from customers.

 Link to this type

 custom_text()

 View Source

 @type custom_text() :: %{
 optional(:shipping_address) => shipping_address() | binary(),
 optional(:submit) => submit() | binary()
}

Display additional text for your customers using custom text.

 Link to this type

 customer_balance()

 View Source

 @type customer_balance() :: %{
 optional(:bank_transfer) => bank_transfer(),
 optional(:funding_type) => :bank_transfer,
 optional(:setup_future_usage) => :none
}

contains details about the Customer Balance payment method options.

 Link to this type

 customer_details()

 View Source

 @type customer_details() :: %{optional(:email) => binary()}

 Link to this type

 customer_update()

 View Source

 @type customer_update() :: %{
 optional(:address) => :auto | :never,
 optional(:name) => :auto | :never,
 optional(:shipping) => :auto | :never
}

Controls what fields on Customer can be updated by the Checkout Session. Can only be provided when customer is provided.

 Link to this type

 delivery_estimate()

 View Source

 @type delivery_estimate() :: %{
 optional(:maximum) => maximum(),
 optional(:minimum) => minimum()
}

The estimated range for how long shipping will take, meant to be displayable to the customer. This will appear on CheckoutSessions.

 Link to this type

 discounts()

 View Source

 @type discounts() :: %{
 optional(:coupon) => binary(),
 optional(:promotion_code) => binary()
}

 Link to this type

 eps()

 View Source

 @type eps() :: %{optional(:setup_future_usage) => :none}

contains details about the EPS payment method options.

 Link to this type

 eu_bank_transfer()

 View Source

 @type eu_bank_transfer() :: %{optional(:country) => binary()}

Configuration for eu_bank_transfer funding type.

 Link to this type

 financial_connections()

 View Source

 @type financial_connections() :: %{
 optional(:permissions) => [
 :balances | :ownership | :payment_method | :transactions
]
}

Additional fields for Financial Connections Session creation

 Link to this type

 fixed_amount()

 View Source

 @type fixed_amount() :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:currency_options) => map()
}

Describes a fixed amount to charge for shipping. Must be present if type is fixed_amount.

 Link to this type

 fpx()

 View Source

 @type fpx() :: %{optional(:setup_future_usage) => :none}

contains details about the FPX payment method options.

 Link to this type

 giropay()

 View Source

 @type giropay() :: %{optional(:setup_future_usage) => :none}

contains details about the Giropay payment method options.

 Link to this type

 grabpay()

 View Source

 @type grabpay() :: %{optional(:setup_future_usage) => :none}

contains details about the Grabpay payment method options.

 Link to this type

 ideal()

 View Source

 @type ideal() :: %{optional(:setup_future_usage) => :none}

contains details about the Ideal payment method options.

 Link to this type

 installments()

 View Source

 @type installments() :: %{optional(:enabled) => boolean()}

Installment options for card payments

 Link to this type

 klarna()

 View Source

 @type klarna() :: %{optional(:setup_future_usage) => :none}

contains details about the Klarna payment method options.

 Link to this type

 konbini()

 View Source

 @type konbini() :: %{
 optional(:expires_after_days) => integer(),
 optional(:setup_future_usage) => :none
}

contains details about the Konbini payment method options.

 Link to this type

 line_items()

 View Source

 @type line_items() :: %{
 optional(:adjustable_quantity) => adjustable_quantity(),
 optional(:dynamic_tax_rates) => [binary()],
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()]
}

 Link to this type

 mandate_options()

 View Source

 @type mandate_options() :: %{
 optional(:custom_mandate_url) => binary() | binary(),
 optional(:default_for) => [:invoice | :subscription],
 optional(:interval_description) => binary(),
 optional(:payment_schedule) => :combined | :interval | :sporadic,
 optional(:transaction_type) => :business | :personal
}

Additional fields for Mandate creation

 Link to this type

 maximum()

 View Source

 @type maximum() :: %{
 optional(:unit) => :business_day | :day | :hour | :month | :week,
 optional(:value) => integer()
}

The upper bound of the estimated range. If empty, represents no upper bound i.e., infinite.

 Link to this type

 minimum()

 View Source

 @type minimum() :: %{
 optional(:unit) => :business_day | :day | :hour | :month | :week,
 optional(:value) => integer()
}

The lower bound of the estimated range. If empty, represents no lower bound.

 Link to this type

 oxxo()

 View Source

 @type oxxo() :: %{
 optional(:expires_after_days) => integer(),
 optional(:setup_future_usage) => :none
}

contains details about the OXXO payment method options.

 Link to this type

 p24()

 View Source

 @type p24() :: %{
 optional(:setup_future_usage) => :none,
 optional(:tos_shown_and_accepted) => boolean()
}

contains details about the P24 payment method options.

 Link to this type

 payment_intent_data()

 View Source

 @type payment_intent_data() :: %{
 optional(:application_fee_amount) => integer(),
 optional(:capture_method) => :automatic | :manual,
 optional(:description) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary(),
 optional(:receipt_email) => binary(),
 optional(:setup_future_usage) => :off_session | :on_session,
 optional(:shipping) => shipping(),
 optional(:statement_descriptor) => binary(),
 optional(:statement_descriptor_suffix) => binary(),
 optional(:transfer_data) => transfer_data(),
 optional(:transfer_group) => binary()
}

A subset of parameters to be passed to PaymentIntent creation for Checkout Sessions in payment mode.

 Link to this type

 payment_method_options()

 View Source

 @type payment_method_options() :: %{
 optional(:acss_debit) => acss_debit(),
 optional(:affirm) => affirm(),
 optional(:afterpay_clearpay) => afterpay_clearpay(),
 optional(:alipay) => alipay(),
 optional(:au_becs_debit) => au_becs_debit(),
 optional(:bacs_debit) => bacs_debit(),
 optional(:bancontact) => bancontact(),
 optional(:boleto) => boleto(),
 optional(:card) => card(),
 optional(:customer_balance) => customer_balance(),
 optional(:eps) => eps(),
 optional(:fpx) => fpx(),
 optional(:giropay) => giropay(),
 optional(:grabpay) => grabpay(),
 optional(:ideal) => ideal(),
 optional(:klarna) => klarna(),
 optional(:konbini) => konbini(),
 optional(:oxxo) => oxxo(),
 optional(:p24) => p24(),
 optional(:paynow) => paynow(),
 optional(:pix) => pix(),
 optional(:sepa_debit) => sepa_debit(),
 optional(:sofort) => sofort(),
 optional(:us_bank_account) => us_bank_account(),
 optional(:wechat_pay) => wechat_pay()
}

Payment-method-specific configuration.

 Link to this type

 paynow()

 View Source

 @type paynow() :: %{optional(:setup_future_usage) => :none}

contains details about the PayNow payment method options.

 Link to this type

 phone_number_collection()

 View Source

 @type phone_number_collection() :: %{optional(:enabled) => boolean()}

Controls phone number collection settings for the session.
We recommend that you review your privacy policy and check with your legal contacts
before using this feature. Learn more about collecting phone numbers with Checkout.

 Link to this type

 pix()

 View Source

 @type pix() :: %{optional(:expires_after_seconds) => integer()}

contains details about the Pix payment method options.

 Link to this type

 price_data()

 View Source

 @type price_data() :: %{
 optional(:currency) => binary(),
 optional(:product) => binary(),
 optional(:product_data) => product_data(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object inline. One of price or price_data is required.

 Link to this type

 product_data()

 View Source

 @type product_data() :: %{
 optional(:description) => binary(),
 optional(:images) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:name) => binary(),
 optional(:tax_code) => binary()
}

Data used to generate a new product object inline. One of product or product_data is required.

 Link to this type

 recovery()

 View Source

 @type recovery() :: %{
 optional(:allow_promotion_codes) => boolean(),
 optional(:enabled) => boolean()
}

Configure a Checkout Session that can be used to recover an expired session.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

The recurring components of a price such as interval and interval_count.

 Link to this type

 sepa_debit()

 View Source

 @type sepa_debit() :: %{
 optional(:setup_future_usage) => :none | :off_session | :on_session
}

contains details about the Sepa Debit payment method options.

 Link to this type

 setup_intent_data()

 View Source

 @type setup_intent_data() :: %{
 optional(:description) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary()
}

A subset of parameters to be passed to SetupIntent creation for Checkout Sessions in setup mode.

 Link to this type

 shipping()

 View Source

 @type shipping() :: %{
 optional(:address) => address(),
 optional(:carrier) => binary(),
 optional(:name) => binary(),
 optional(:phone) => binary(),
 optional(:tracking_number) => binary()
}

Shipping information for this payment.

 Link to this type

 shipping_address()

 View Source

 @type shipping_address() :: %{optional(:message) => binary()}

 Link to this type

 shipping_address_collection()

 View Source

 @type shipping_address_collection() :: %{
 optional(:allowed_countries) => [
 :AC
 | :AD
 | :AE
 | :AF
 | :AG
 | :AI
 | :AL
 | :AM
 | :AO
 | :AQ
 | :AR
 | :AT
 | :AU
 | :AW
 | :AX
 | :AZ
 | :BA
 | :BB
 | :BD
 | :BE
 | :BF
 | :BG
 | :BH
 | :BI
 | :BJ
 | :BL
 | :BM
 | :BN
 | :BO
 | :BQ
 | :BR
 | :BS
 | :BT
 | :BV
 | :BW
 | :BY
 | :BZ
 | :CA
 | :CD
 | :CF
 | :CG
 | :CH
 | :CI
 | :CK
 | :CL
 | :CM
 | :CN
 | :CO
 | :CR
 | :CV
 | :CW
 | :CY
 | :CZ
 | :DE
 | :DJ
 | :DK
 | :DM
 | :DO
 | :DZ
 | :EC
 | :EE
 | :EG
 | :EH
 | :ER
 | :ES
 | :ET
 | :FI
 | :FJ
 | :FK
 | :FO
 | :FR
 | :GA
 | :GB
 | :GD
 | :GE
 | :GF
 | :GG
 | :GH
 | :GI
 | :GL
 | :GM
 | :GN
 | :GP
 | :GQ
 | :GR
 | :GS
 | :GT
 | :GU
 | :GW
 | :GY
 | :HK
 | :HN
 | :HR
 | :HT
 | :HU
 | :ID
 | :IE
 | :IL
 | :IM
 | :IN
 | :IO
 | :IQ
 | :IS
 | :IT
 | :JE
 | :JM
 | :JO
 | :JP
 | :KE
 | :KG
 | :KH
 | :KI
 | :KM
 | :KN
 | :KR
 | :KW
 | :KY
 | :KZ
 | :LA
 | :LB
 | :LC
 | :LI
 | :LK
 | :LR
 | :LS
 | :LT
 | :LU
 | :LV
 | :LY
 | :MA
 | :MC
 | :MD
 | :ME
 | :MF
 | :MG
 | :MK
 | :ML
 | :MM
 | :MN
 | :MO
 | :MQ
 | :MR
 | :MS
 | :MT
 | :MU
 | :MV
 | :MW
 | :MX
 | :MY
 | :MZ
 | :NA
 | :NC
 | :NE
 | :NG
 | :NI
 | :NL
 | :NO
 | :NP
 | :NR
 | :NU
 | :NZ
 | :OM
 | :PA
 | :PE
 | :PF
 | :PG
 | :PH
 | :PK
 | :PL
 | :PM
 | :PN
 | :PR
 | :PS
 | :PT
 | :PY
 | :QA
 | :RE
 | :RO
 | :RS
 | :RU
 | :RW
 | :SA
 | :SB
 | :SC
 | :SE
 | :SG
 | :SH
 | :SI
 | :SJ
 | :SK
 | :SL
 | :SM
 | :SN
 | :SO
 | :SR
 | :SS
 | :ST
 | :SV
 | :SX
 | :SZ
 | :TA
 | :TC
 | :TD
 | :TF
 | :TG
 | :TH
 | :TJ
 | :TK
 | :TL
 | :TM
 | :TN
 | :TO
 | :TR
 | :TT
 | :TV
 | :TW
 | :TZ
 | :UA
 | :UG
 | :US
 | :UY
 | :UZ
 | :VA
 | :VC
 | :VE
 | :VG
 | :VN
 | :VU
 | :WF
 | :WS
 | :XK
 | :YE
 | :YT
 | :ZA
 | :ZM
 | :ZW
 | :ZZ
]
}

When set, provides configuration for Checkout to collect a shipping address from a customer.

 Link to this type

 shipping_options()

 View Source

 @type shipping_options() :: %{
 optional(:shipping_rate) => binary(),
 optional(:shipping_rate_data) => shipping_rate_data()
}

 Link to this type

 shipping_rate_data()

 View Source

 @type shipping_rate_data() :: %{
 optional(:delivery_estimate) => delivery_estimate(),
 optional(:display_name) => binary(),
 optional(:fixed_amount) => fixed_amount(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:tax_code) => binary(),
 optional(:type) => :fixed_amount
}

Parameters to be passed to Shipping Rate creation for this shipping option

 Link to this type

 sofort()

 View Source

 @type sofort() :: %{optional(:setup_future_usage) => :none}

contains details about the Sofort payment method options.

 Link to this type

 submit()

 View Source

 @type submit() :: %{optional(:message) => binary()}

 Link to this type

 subscription_data()

 View Source

 @type subscription_data() :: %{
 optional(:application_fee_percent) => number(),
 optional(:coupon) => binary(),
 optional(:default_tax_rates) => [binary()],
 optional(:description) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary(),
 optional(:transfer_data) => transfer_data(),
 optional(:trial_end) => integer(),
 optional(:trial_from_plan) => boolean(),
 optional(:trial_period_days) => integer()
}

A subset of parameters to be passed to subscription creation for Checkout Sessions in subscription mode.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Checkout.Session{
 after_expiration: term() | nil,
 allow_promotion_codes: boolean() | nil,
 amount_subtotal: integer() | nil,
 amount_total: integer() | nil,
 automatic_tax: term(),
 billing_address_collection: binary() | nil,
 cancel_url: binary(),
 client_reference_id: binary() | nil,
 consent: term() | nil,
 consent_collection: term() | nil,
 created: integer(),
 currency: binary() | nil,
 custom_text: term(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 customer_creation: binary() | nil,
 customer_details: term() | nil,
 customer_email: binary() | nil,
 expires_at: integer(),
 id: binary(),
 line_items: term(),
 livemode: boolean(),
 locale: binary() | nil,
 metadata: term() | nil,
 mode: binary(),
 object: binary(),
 payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
 payment_link: (binary() | Stripe.PaymentLink.t()) | nil,
 payment_method_collection: binary() | nil,
 payment_method_options: term() | nil,
 payment_method_types: term(),
 payment_status: binary(),
 phone_number_collection: term(),
 recovered_from: binary() | nil,
 setup_intent: (binary() | Stripe.SetupIntent.t()) | nil,
 shipping_address_collection: term() | nil,
 shipping_cost: term() | nil,
 shipping_details: term() | nil,
 shipping_options: term(),
 status: binary() | nil,
 submit_type: binary() | nil,
 subscription: (binary() | Stripe.Subscription.t()) | nil,
 success_url: binary(),
 tax_id_collection: term(),
 total_details: term() | nil,
 url: binary() | nil
}

The checkout.session type.
	payment_status The payment status of the Checkout Session, one of paid, unpaid, or no_payment_required.
You can use this value to decide when to fulfill your customer's order.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	payment_method_options Payment-method-specific configuration for the PaymentIntent or SetupIntent of this CheckoutSession.
	line_items The line items purchased by the customer.
	customer_creation Configure whether a Checkout Session creates a Customer when the Checkout Session completes.
	payment_link The ID of the Payment Link that created this Session.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	payment_method_types A list of the types of payment methods (e.g. card) this Checkout
Session is allowed to accept.
	locale The IETF language tag of the locale Checkout is displayed in. If blank or auto, the browser's locale is used.
	shipping_address_collection When set, provides configuration for Checkout to collect a shipping address from a customer.
	consent_collection When set, provides configuration for the Checkout Session to gather active consent from customers.
	payment_intent The ID of the PaymentIntent for Checkout Sessions in payment mode.
	customer_email If provided, this value will be used when the Customer object is created.
If not provided, customers will be asked to enter their email address.
Use this parameter to prefill customer data if you already have an email
on file. To access information about the customer once the payment flow is
complete, use the customer attribute.
	customer_details The customer details including the customer's tax exempt status and the customer's tax IDs. Only the customer's email is present on Sessions in setup mode.
	phone_number_collection
	customer The ID of the customer for this Session.
For Checkout Sessions in payment or subscription mode, Checkout
will create a new customer object based on information provided
during the payment flow unless an existing customer was provided when
the Session was created.
	shipping_cost The details of the customer cost of shipping, including the customer chosen ShippingRate.
	submit_type Describes the type of transaction being performed by Checkout in order to customize
relevant text on the page, such as the submit button. submit_type can only be
specified on Checkout Sessions in payment mode, but not Checkout Sessions
in subscription or setup mode.
	custom_text
	mode The mode of the Checkout Session.
	success_url The URL the customer will be directed to after the payment or
subscription creation is successful.
	recovered_from The ID of the original expired Checkout Session that triggered the recovery flow.
	object String representing the object's type. Objects of the same type share the same value.
	total_details Tax and discount details for the computed total amount.
	expires_at The timestamp at which the Checkout Session will expire.
	automatic_tax
	setup_intent The ID of the SetupIntent for Checkout Sessions in setup mode.
	client_reference_id A unique string to reference the Checkout Session. This can be a
customer ID, a cart ID, or similar, and can be used to reconcile the
Session with your internal systems.
	after_expiration When set, provides configuration for actions to take if this Checkout Session expires.
	tax_id_collection
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	amount_subtotal Total of all items before discounts or taxes are applied.
	amount_total Total of all items after discounts and taxes are applied.
	payment_method_collection Configure whether a Checkout Session should collect a payment method.
	url The URL to the Checkout Session. Redirect customers to this URL to take them to Checkout. If you’re using Custom Domains, the URL will use your subdomain. Otherwise, it’ll use checkout.stripe.com.
This value is only present when the session is active.
	subscription The ID of the subscription for Checkout Sessions in subscription mode.
	allow_promotion_codes Enables user redeemable promotion codes.
	billing_address_collection Describes whether Checkout should collect the customer's billing address.
	cancel_url The URL the customer will be directed to if they decide to cancel payment and return to your website.
	status The status of the Checkout Session, one of open, complete, or expired.
	shipping_details Shipping information for this Checkout Session.
	consent Results of consent_collection for this session.
	id Unique identifier for the object. Used to pass to redirectToCheckout
in Stripe.js.
	shipping_options The shipping rate options applied to this Session.

 Link to this type

 tax_id_collection()

 View Source

 @type tax_id_collection() :: %{optional(:enabled) => boolean()}

Controls tax ID collection settings for the session.

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount_percent) => number(),
 optional(:destination) => binary()
}

If specified, the funds from the subscription's invoices will be transferred to the destination and the ID of the resulting transfers will be found on the resulting charges.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{
 optional(:financial_connections) => financial_connections(),
 optional(:setup_future_usage) => :none | :off_session | :on_session,
 optional(:verification_method) => :automatic | :instant
}

contains details about the Us Bank Account payment method options.

 Link to this type

 wechat_pay()

 View Source

 @type wechat_pay() :: %{
 optional(:app_id) => binary(),
 optional(:client) => :android | :ios | :web,
 optional(:setup_future_usage) => :none
}

contains details about the WeChat Pay payment method options.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:payment_method_options) => payment_method_options(),
 optional(:line_items) => [line_items()],
 optional(:customer_creation) => :always | :if_required,
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:subscription_data) => subscription_data(),
 optional(:payment_method_types) => [
 :acss_debit
 | :affirm
 | :afterpay_clearpay
 | :alipay
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :blik
 | :boleto
 | :card
 | :customer_balance
 | :eps
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :klarna
 | :konbini
 | :oxxo
 | :p24
 | :paynow
 | :pix
 | :promptpay
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay
],
 optional(:locale) =>
 :auto
 | :bg
 | :cs
 | :da
 | :de
 | :el
 | :en
 | :"en-GB"
 | :es
 | :"es-419"
 | :et
 | :fi
 | :fil
 | :fr
 | :"fr-CA"
 | :hr
 | :hu
 | :id
 | :it
 | :ja
 | :ko
 | :lt
 | :lv
 | :ms
 | :mt
 | :nb
 | :nl
 | :pl
 | :pt
 | :"pt-BR"
 | :ro
 | :ru
 | :sk
 | :sl
 | :sv
 | :th
 | :tr
 | :vi
 | :zh
 | :"zh-HK"
 | :"zh-TW",
 optional(:shipping_address_collection) => shipping_address_collection(),
 optional(:consent_collection) => consent_collection(),
 optional(:customer_email) => binary(),
 optional(:phone_number_collection) => phone_number_collection(),
 optional(:customer) => binary(),
 optional(:submit_type) => :auto | :book | :donate | :pay,
 optional(:customer_update) => customer_update(),
 optional(:custom_text) => custom_text(),
 optional(:mode) => :payment | :setup | :subscription,
 optional(:success_url) => binary(),
 optional(:expires_at) => integer(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:client_reference_id) => binary(),
 optional(:after_expiration) => after_expiration(),
 optional(:tax_id_collection) => tax_id_collection(),
 optional(:currency) => binary(),
 optional(:discounts) => [discounts()],
 optional(:payment_method_collection) => :always | :if_required,
 optional(:allow_promotion_codes) => boolean(),
 optional(:billing_address_collection) => :auto | :required,
 optional(:setup_intent_data) => setup_intent_data(),
 optional(:cancel_url) => binary(),
 optional(:payment_intent_data) => payment_intent_data(),
 optional(:shipping_options) => [shipping_options()],
 optional(:shipping_rates) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a Session object.
Details
	Method: post
	Path: /v1/checkout/sessions

 Link to this function

 expire(client, session, params \\ %{}, opts \\ [])

 View Source

 @spec expire(
 client :: Stripe.t(),
 session :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A Session can be expired when it is in one of these statuses: open.
After it expires, a customer can’t complete a Session and customers loading the Session see a message saying the Session is expired.
Details
	Method: post
	Path: /v1/checkout/sessions/{session}/expire

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:customer) => binary(),
 optional(:customer_details) => customer_details(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:payment_intent) => binary(),
 optional(:starting_after) => binary(),
 optional(:subscription) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Checkout Sessions.
Details
	Method: get
	Path: /v1/checkout/sessions

 Link to this function

 list_line_items(client, session, params \\ %{}, opts \\ [])

 View Source

 @spec list_line_items(
 client :: Stripe.t(),
 session :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.Item.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

When retrieving a Checkout Session, there is an includable line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.
Details
	Method: get
	Path: /v1/checkout/sessions/{session}/line_items

 Link to this function

 retrieve(client, session, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 session :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a Session object.
Details
	Method: get
	Path: /v1/checkout/sessions/{session}

 Stripe.PaymentLink - Striped v0.5.0

Stripe.PaymentLink

A payment link is a shareable URL that will take your customers to a hosted payment page. A payment link can be shared and used multiple times.
When a customer opens a payment link it will open a new checkout session to render the payment page. You can use checkout session events to track payments through payment links.
Related guide: Payment Links API

 Anchor for this section

 Summary

 Types

 adjustable_quantity()

 When set, provides configuration for this item’s quantity to be adjusted by the customer during checkout.

 after_completion()

 Behavior after the purchase is complete.

 automatic_tax()

 Configuration for automatic tax collection.

 consent_collection()

 Configure fields to gather active consent from customers.

 custom_text()

 Display additional text for your customers using custom text.

 hosted_confirmation()

 Configuration when type=hosted_confirmation.

 line_items()

 payment_intent_data()

 A subset of parameters to be passed to PaymentIntent creation for Checkout Sessions in payment mode.

 phone_number_collection()

 Controls phone number collection settings during checkout.

 redirect()

 Configuration when type=redirect.

 shipping_address()

 shipping_address_collection()

 Configuration for collecting the customer's shipping address.

 shipping_options()

 submit()

 subscription_data()

 When creating a subscription, the specified configuration data will be used. There must be at least one line item with a recurring price to use subscription_data.

 t()

 The payment_link type.

 tax_id_collection()

 Controls tax ID collection during checkout.

 transfer_data()

 The account (if any) the payments will be attributed to for tax reporting, and where funds from each payment will be transferred to.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a payment link.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your payment links.

 list_line_items(client, payment_link, params \\ %{}, opts \\ [])

 When retrieving a payment link, there is an includable line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.

 retrieve(client, payment_link, params \\ %{}, opts \\ [])

 Retrieve a payment link.

 update(client, payment_link, params \\ %{}, opts \\ [])

 Updates a payment link.

 Anchor for this section

Types

 Link to this type

 adjustable_quantity()

 View Source

 @type adjustable_quantity() :: %{
 optional(:enabled) => boolean(),
 optional(:maximum) => integer(),
 optional(:minimum) => integer()
}

When set, provides configuration for this item’s quantity to be adjusted by the customer during checkout.

 Link to this type

 after_completion()

 View Source

 @type after_completion() :: %{
 optional(:hosted_confirmation) => hosted_confirmation(),
 optional(:redirect) => redirect(),
 optional(:type) => :hosted_confirmation | :redirect
}

Behavior after the purchase is complete.

 Link to this type

 automatic_tax()

 View Source

 @type automatic_tax() :: %{optional(:enabled) => boolean()}

Configuration for automatic tax collection.

 Link to this type

 consent_collection()

 View Source

 @type consent_collection() :: %{
 optional(:promotions) => :auto | :none,
 optional(:terms_of_service) => :none | :required
}

Configure fields to gather active consent from customers.

 Link to this type

 custom_text()

 View Source

 @type custom_text() :: %{
 optional(:shipping_address) => shipping_address() | binary(),
 optional(:submit) => submit() | binary()
}

Display additional text for your customers using custom text.

 Link to this type

 hosted_confirmation()

 View Source

 @type hosted_confirmation() :: %{optional(:custom_message) => binary()}

Configuration when type=hosted_confirmation.

 Link to this type

 line_items()

 View Source

 @type line_items() :: %{
 optional(:adjustable_quantity) => adjustable_quantity(),
 optional(:price) => binary(),
 optional(:quantity) => integer()
}

 Link to this type

 payment_intent_data()

 View Source

 @type payment_intent_data() :: %{
 optional(:capture_method) => :automatic | :manual,
 optional(:setup_future_usage) => :off_session | :on_session
}

A subset of parameters to be passed to PaymentIntent creation for Checkout Sessions in payment mode.

 Link to this type

 phone_number_collection()

 View Source

 @type phone_number_collection() :: %{optional(:enabled) => boolean()}

Controls phone number collection settings during checkout.
We recommend that you review your privacy policy and check with your legal contacts.

 Link to this type

 redirect()

 View Source

 @type redirect() :: %{optional(:url) => binary()}

Configuration when type=redirect.

 Link to this type

 shipping_address()

 View Source

 @type shipping_address() :: %{optional(:message) => binary()}

 Link to this type

 shipping_address_collection()

 View Source

 @type shipping_address_collection() :: %{
 optional(:allowed_countries) => [
 :AC
 | :AD
 | :AE
 | :AF
 | :AG
 | :AI
 | :AL
 | :AM
 | :AO
 | :AQ
 | :AR
 | :AT
 | :AU
 | :AW
 | :AX
 | :AZ
 | :BA
 | :BB
 | :BD
 | :BE
 | :BF
 | :BG
 | :BH
 | :BI
 | :BJ
 | :BL
 | :BM
 | :BN
 | :BO
 | :BQ
 | :BR
 | :BS
 | :BT
 | :BV
 | :BW
 | :BY
 | :BZ
 | :CA
 | :CD
 | :CF
 | :CG
 | :CH
 | :CI
 | :CK
 | :CL
 | :CM
 | :CN
 | :CO
 | :CR
 | :CV
 | :CW
 | :CY
 | :CZ
 | :DE
 | :DJ
 | :DK
 | :DM
 | :DO
 | :DZ
 | :EC
 | :EE
 | :EG
 | :EH
 | :ER
 | :ES
 | :ET
 | :FI
 | :FJ
 | :FK
 | :FO
 | :FR
 | :GA
 | :GB
 | :GD
 | :GE
 | :GF
 | :GG
 | :GH
 | :GI
 | :GL
 | :GM
 | :GN
 | :GP
 | :GQ
 | :GR
 | :GS
 | :GT
 | :GU
 | :GW
 | :GY
 | :HK
 | :HN
 | :HR
 | :HT
 | :HU
 | :ID
 | :IE
 | :IL
 | :IM
 | :IN
 | :IO
 | :IQ
 | :IS
 | :IT
 | :JE
 | :JM
 | :JO
 | :JP
 | :KE
 | :KG
 | :KH
 | :KI
 | :KM
 | :KN
 | :KR
 | :KW
 | :KY
 | :KZ
 | :LA
 | :LB
 | :LC
 | :LI
 | :LK
 | :LR
 | :LS
 | :LT
 | :LU
 | :LV
 | :LY
 | :MA
 | :MC
 | :MD
 | :ME
 | :MF
 | :MG
 | :MK
 | :ML
 | :MM
 | :MN
 | :MO
 | :MQ
 | :MR
 | :MS
 | :MT
 | :MU
 | :MV
 | :MW
 | :MX
 | :MY
 | :MZ
 | :NA
 | :NC
 | :NE
 | :NG
 | :NI
 | :NL
 | :NO
 | :NP
 | :NR
 | :NU
 | :NZ
 | :OM
 | :PA
 | :PE
 | :PF
 | :PG
 | :PH
 | :PK
 | :PL
 | :PM
 | :PN
 | :PR
 | :PS
 | :PT
 | :PY
 | :QA
 | :RE
 | :RO
 | :RS
 | :RU
 | :RW
 | :SA
 | :SB
 | :SC
 | :SE
 | :SG
 | :SH
 | :SI
 | :SJ
 | :SK
 | :SL
 | :SM
 | :SN
 | :SO
 | :SR
 | :SS
 | :ST
 | :SV
 | :SX
 | :SZ
 | :TA
 | :TC
 | :TD
 | :TF
 | :TG
 | :TH
 | :TJ
 | :TK
 | :TL
 | :TM
 | :TN
 | :TO
 | :TR
 | :TT
 | :TV
 | :TW
 | :TZ
 | :UA
 | :UG
 | :US
 | :UY
 | :UZ
 | :VA
 | :VC
 | :VE
 | :VG
 | :VN
 | :VU
 | :WF
 | :WS
 | :XK
 | :YE
 | :YT
 | :ZA
 | :ZM
 | :ZW
 | :ZZ
]
}

Configuration for collecting the customer's shipping address.

 Link to this type

 shipping_options()

 View Source

 @type shipping_options() :: %{optional(:shipping_rate) => binary()}

 Link to this type

 submit()

 View Source

 @type submit() :: %{optional(:message) => binary()}

 Link to this type

 subscription_data()

 View Source

 @type subscription_data() :: %{
 optional(:description) => binary(),
 optional(:trial_period_days) => integer()
}

When creating a subscription, the specified configuration data will be used. There must be at least one line item with a recurring price to use subscription_data.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.PaymentLink{
 active: boolean(),
 after_completion: term(),
 allow_promotion_codes: boolean(),
 application_fee_amount: integer() | nil,
 application_fee_percent: term() | nil,
 automatic_tax: term(),
 billing_address_collection: binary(),
 consent_collection: term() | nil,
 currency: binary(),
 custom_text: term(),
 customer_creation: binary(),
 id: binary(),
 line_items: term(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 payment_intent_data: term() | nil,
 payment_method_collection: binary(),
 payment_method_types: term() | nil,
 phone_number_collection: term(),
 shipping_address_collection: term() | nil,
 shipping_options: term(),
 submit_type: binary(),
 subscription_data: term() | nil,
 tax_id_collection: term(),
 transfer_data: term() | nil,
 url: binary()
}

The payment_link type.
	active Whether the payment link's url is active. If false, customers visiting the URL will be shown a page saying that the link has been deactivated.
	after_completion
	allow_promotion_codes Whether user redeemable promotion codes are enabled.
	application_fee_amount The amount of the application fee (if any) that will be requested to be applied to the payment and transferred to the application owner's Stripe account.
	application_fee_percent This represents the percentage of the subscription invoice subtotal that will be transferred to the application owner's Stripe account.
	automatic_tax
	billing_address_collection Configuration for collecting the customer's billing address.
	consent_collection When set, provides configuration to gather active consent from customers.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	custom_text
	customer_creation Configuration for Customer creation during checkout.
	id Unique identifier for the object.
	line_items The line items representing what is being sold.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	on_behalf_of The account on behalf of which to charge. See the Connect documentation for details.
	payment_intent_data Indicates the parameters to be passed to PaymentIntent creation during checkout.
	payment_method_collection Configuration for collecting a payment method during checkout.
	payment_method_types The list of payment method types that customers can use. When null, Stripe will dynamically show relevant payment methods you've enabled in your payment method settings.
	phone_number_collection
	shipping_address_collection Configuration for collecting the customer's shipping address.
	shipping_options The shipping rate options applied to the session.
	submit_type Indicates the type of transaction being performed which customizes relevant text on the page, such as the submit button.
	subscription_data When creating a subscription, the specified configuration data will be used. There must be at least one line item with a recurring price to use subscription_data.
	tax_id_collection
	transfer_data The account (if any) the payments will be attributed to for tax reporting, and where funds from each payment will be transferred to.
	url The public URL that can be shared with customers.

 Link to this type

 tax_id_collection()

 View Source

 @type tax_id_collection() :: %{optional(:enabled) => boolean()}

Controls tax ID collection during checkout.

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount) => integer(),
 optional(:destination) => binary()
}

The account (if any) the payments will be attributed to for tax reporting, and where funds from each payment will be transferred to.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:after_completion) => after_completion(),
 optional(:allow_promotion_codes) => boolean(),
 optional(:application_fee_amount) => integer(),
 optional(:application_fee_percent) => number(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:billing_address_collection) => :auto | :required,
 optional(:consent_collection) => consent_collection(),
 optional(:currency) => binary(),
 optional(:custom_text) => custom_text(),
 optional(:customer_creation) => :always | :if_required,
 optional(:expand) => [binary()],
 optional(:line_items) => [line_items()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary(),
 optional(:payment_intent_data) => payment_intent_data(),
 optional(:payment_method_collection) => :always | :if_required,
 optional(:payment_method_types) => [
 :affirm
 | :afterpay_clearpay
 | :alipay
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :blik
 | :boleto
 | :card
 | :eps
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :klarna
 | :konbini
 | :oxxo
 | :p24
 | :paynow
 | :pix
 | :promptpay
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay
],
 optional(:phone_number_collection) => phone_number_collection(),
 optional(:shipping_address_collection) => shipping_address_collection(),
 optional(:shipping_options) => [shipping_options()],
 optional(:submit_type) => :auto | :book | :donate | :pay,
 optional(:subscription_data) => subscription_data(),
 optional(:tax_id_collection) => tax_id_collection(),
 optional(:transfer_data) => transfer_data()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a payment link.
Details
	Method: post
	Path: /v1/payment_links

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your payment links.
Details
	Method: get
	Path: /v1/payment_links

 Link to this function

 list_line_items(client, payment_link, params \\ %{}, opts \\ [])

 View Source

 @spec list_line_items(
 client :: Stripe.t(),
 payment_link :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.Item.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

When retrieving a payment link, there is an includable line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.
Details
	Method: get
	Path: /v1/payment_links/{payment_link}/line_items

 Link to this function

 retrieve(client, payment_link, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 payment_link :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieve a payment link.
Details
	Method: get
	Path: /v1/payment_links/{payment_link}

 Link to this function

 update(client, payment_link, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 payment_link :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:after_completion) => after_completion(),
 optional(:allow_promotion_codes) => boolean(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:billing_address_collection) => :auto | :required,
 optional(:custom_text) => custom_text(),
 optional(:customer_creation) => :always | :if_required,
 optional(:expand) => [binary()],
 optional(:line_items) => [line_items()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:payment_method_collection) => :always | :if_required,
 optional(:payment_method_types) =>
 [
 :affirm
 | :afterpay_clearpay
 | :alipay
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :blik
 | :boleto
 | :card
 | :eps
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :klarna
 | :konbini
 | :oxxo
 | :p24
 | :paynow
 | :pix
 | :promptpay
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay
]
 | binary(),
 optional(:shipping_address_collection) =>
 shipping_address_collection() | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates a payment link.
Details
	Method: post
	Path: /v1/payment_links/{payment_link}

 Stripe.BillingPortal.Configuration - Striped v0.5.0

Stripe.BillingPortal.Configuration

A portal configuration describes the functionality and behavior of a portal session.

 Anchor for this section

 Summary

 Types

 business_profile()

 The business information shown to customers in the portal.

 cancellation_reason()

 Whether the cancellation reasons will be collected in the portal and which options are exposed to the customer

 customer_update()

 Information about updating the customer details in the portal.

 features()

 Information about the features available in the portal.

 invoice_history()

 Information about showing the billing history in the portal.

 login_page()

 The hosted login page for this configuration. Learn more about the portal login page in our integration docs.

 payment_method_update()

 Information about updating payment methods in the portal.

 products()

 subscription_cancel()

 Information about canceling subscriptions in the portal.

 subscription_pause()

 Information about pausing subscriptions in the portal.

 subscription_update()

 Information about updating subscriptions in the portal.

 t()

 The billing_portal.configuration type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a configuration that describes the functionality and behavior of a PortalSessio.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of configurations that describe the functionality of the customer portal.

 retrieve(client, configuration, params \\ %{}, opts \\ [])

 Retrieves a configuration that describes the functionality of the customer portal.

 update(client, configuration, params \\ %{}, opts \\ [])

 Updates a configuration that describes the functionality of the customer portal.

 Anchor for this section

Types

 Link to this type

 business_profile()

 View Source

 @type business_profile() :: %{
 optional(:headline) => binary(),
 optional(:privacy_policy_url) => binary(),
 optional(:terms_of_service_url) => binary()
}

The business information shown to customers in the portal.

 Link to this type

 cancellation_reason()

 View Source

 @type cancellation_reason() :: %{
 optional(:enabled) => boolean(),
 optional(:options) =>
 [
 :customer_service
 | :low_quality
 | :missing_features
 | :other
 | :switched_service
 | :too_complex
 | :too_expensive
 | :unused
]
 | binary()
}

Whether the cancellation reasons will be collected in the portal and which options are exposed to the customer

 Link to this type

 customer_update()

 View Source

 @type customer_update() :: %{
 optional(:allowed_updates) =>
 [:address | :email | :phone | :shipping | :tax_id] | binary(),
 optional(:enabled) => boolean()
}

Information about updating the customer details in the portal.

 Link to this type

 features()

 View Source

 @type features() :: %{
 optional(:customer_update) => customer_update(),
 optional(:invoice_history) => invoice_history(),
 optional(:payment_method_update) => payment_method_update(),
 optional(:subscription_cancel) => subscription_cancel(),
 optional(:subscription_pause) => subscription_pause(),
 optional(:subscription_update) => subscription_update()
}

Information about the features available in the portal.

 Link to this type

 invoice_history()

 View Source

 @type invoice_history() :: %{optional(:enabled) => boolean()}

Information about showing the billing history in the portal.

 Link to this type

 login_page()

 View Source

 @type login_page() :: %{optional(:enabled) => boolean()}

The hosted login page for this configuration. Learn more about the portal login page in our integration docs.

 Link to this type

 payment_method_update()

 View Source

 @type payment_method_update() :: %{optional(:enabled) => boolean()}

Information about updating payment methods in the portal.

 Link to this type

 products()

 View Source

 @type products() :: %{optional(:prices) => [binary()], optional(:product) => binary()}

 Link to this type

 subscription_cancel()

 View Source

 @type subscription_cancel() :: %{
 optional(:cancellation_reason) => cancellation_reason(),
 optional(:enabled) => boolean(),
 optional(:mode) => :at_period_end | :immediately,
 optional(:proration_behavior) => :always_invoice | :create_prorations | :none
}

Information about canceling subscriptions in the portal.

 Link to this type

 subscription_pause()

 View Source

 @type subscription_pause() :: %{optional(:enabled) => boolean()}

Information about pausing subscriptions in the portal.

 Link to this type

 subscription_update()

 View Source

 @type subscription_update() :: %{
 optional(:default_allowed_updates) =>
 [:price | :promotion_code | :quantity] | binary(),
 optional(:enabled) => boolean(),
 optional(:products) => [products()] | binary(),
 optional(:proration_behavior) => :always_invoice | :create_prorations | :none
}

Information about updating subscriptions in the portal.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.BillingPortal.Configuration{
 active: boolean(),
 application: (binary() | term() | term()) | nil,
 business_profile: term(),
 created: integer(),
 default_return_url: binary() | nil,
 features: term(),
 id: binary(),
 is_default: boolean(),
 livemode: boolean(),
 login_page: term(),
 metadata: term() | nil,
 object: binary(),
 updated: integer()
}

The billing_portal.configuration type.
	active Whether the configuration is active and can be used to create portal sessions.
	application ID of the Connect Application that created the configuration.
	business_profile
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	default_return_url The default URL to redirect customers to when they click on the portal's link to return to your website. This can be overriden when creating the session.
	features
	id Unique identifier for the object.
	is_default Whether the configuration is the default. If true, this configuration can be managed in the Dashboard and portal sessions will use this configuration unless it is overriden when creating the session.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	login_page
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	updated Time at which the object was last updated. Measured in seconds since the Unix epoch.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:business_profile) => business_profile(),
 optional(:default_return_url) => binary() | binary(),
 optional(:expand) => [binary()],
 optional(:features) => features(),
 optional(:login_page) => login_page(),
 optional(:metadata) => %{optional(binary()) => binary()}
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a configuration that describes the functionality and behavior of a PortalSessio.
Details
	Method: post
	Path: /v1/billing_portal/configurations

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:is_default) => boolean(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of configurations that describe the functionality of the customer portal.
Details
	Method: get
	Path: /v1/billing_portal/configurations

 Link to this function

 retrieve(client, configuration, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 configuration :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a configuration that describes the functionality of the customer portal.
Details
	Method: get
	Path: /v1/billing_portal/configurations/{configuration}

 Link to this function

 update(client, configuration, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 configuration :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:business_profile) => business_profile(),
 optional(:default_return_url) => binary() | binary(),
 optional(:expand) => [binary()],
 optional(:features) => features(),
 optional(:login_page) => login_page(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates a configuration that describes the functionality of the customer portal.
Details
	Method: post
	Path: /v1/billing_portal/configurations/{configuration}

 Stripe.BillingPortal.Session - Striped v0.5.0

Stripe.BillingPortal.Session

The Billing customer portal is a Stripe-hosted UI for subscription and
billing management.
A portal configuration describes the functionality and features that you
want to provide to your customers through the portal.
A portal session describes the instantiation of the customer portal for
a particular customer. By visiting the session's URL, the customer
can manage their subscriptions and billing details. For security reasons,
sessions are short-lived and will expire if the customer does not visit the URL.
Create sessions on-demand when customers intend to manage their subscriptions
and billing details.
Learn more in the integration guide.

 Anchor for this section

 Summary

 Types

 t()

 The billing_portal.session type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a session of the customer portal.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.BillingPortal.Session{
 configuration: binary() | Stripe.BillingPortal.Configuration.t(),
 created: integer(),
 customer: binary(),
 id: binary(),
 livemode: boolean(),
 locale: binary() | nil,
 object: binary(),
 on_behalf_of: binary() | nil,
 return_url: binary() | nil,
 url: binary()
}

The billing_portal.session type.
	configuration The configuration used by this session, describing the features available.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	customer The ID of the customer for this session.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	locale The IETF language tag of the locale Customer Portal is displayed in. If blank or auto, the customer’s preferred_locales or browser’s locale is used.
	object String representing the object's type. Objects of the same type share the same value.
	on_behalf_of The account for which the session was created on behalf of. When specified, only subscriptions and invoices with this on_behalf_of account appear in the portal. For more information, see the docs. Use the Accounts API to modify the on_behalf_of account's branding settings, which the portal displays.
	return_url The URL to redirect customers to when they click on the portal's link to return to your website.
	url The short-lived URL of the session that gives customers access to the customer portal.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:configuration) => binary(),
 optional(:customer) => binary(),
 optional(:expand) => [binary()],
 optional(:locale) =>
 :auto
 | :bg
 | :cs
 | :da
 | :de
 | :el
 | :en
 | :"en-AU"
 | :"en-CA"
 | :"en-GB"
 | :"en-IE"
 | :"en-IN"
 | :"en-NZ"
 | :"en-SG"
 | :es
 | :"es-419"
 | :et
 | :fi
 | :fil
 | :fr
 | :"fr-CA"
 | :hr
 | :hu
 | :id
 | :it
 | :ja
 | :ko
 | :lt
 | :lv
 | :ms
 | :mt
 | :nb
 | :nl
 | :pl
 | :pt
 | :"pt-BR"
 | :ro
 | :ru
 | :sk
 | :sl
 | :sv
 | :th
 | :tr
 | :vi
 | :zh
 | :"zh-HK"
 | :"zh-TW",
 optional(:on_behalf_of) => binary(),
 optional(:return_url) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a session of the customer portal.
Details
	Method: post
	Path: /v1/billing_portal/sessions

 Stripe.CreditNote - Striped v0.5.0

Stripe.CreditNote

Issue a credit note to adjust an invoice's amount after the invoice is finalized.
Related guide: Credit Notes.

 Anchor for this section

 Summary

 Types

 lines()

 t()

 The credit_note type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Issue a credit note to adjust the amount of a finalized invoice. For a status=open invoice, a credit note reducesits amount_due. For a status=paid invoice, a credit note does not affect its amount_due. Instead, it can result
in any combination of the following.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of credit notes.

 preview(client, params \\ %{}, opts \\ [])

 Get a preview of a credit note without creating it.

 preview_lines(client, params \\ %{}, opts \\ [])

 When retrieving a credit note preview, you’ll get a lines property containing the first handful of those items. This URL you can retrieve the full (paginated) list of line items.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the credit note object with the given identifier.

 update(client, id, params \\ %{}, opts \\ [])

 Updates an existing credit note.

 void_credit_note(client, id, params \\ %{}, opts \\ [])

 Marks a credit note as void. Learn more about voiding credit notes.

 Anchor for this section

Types

 Link to this type

 lines()

 View Source

 @type lines() :: %{
 optional(:amount) => integer(),
 optional(:description) => binary(),
 optional(:invoice_line_item) => binary(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary(),
 optional(:type) => :custom_line_item | :invoice_line_item,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.CreditNote{
 amount: integer(),
 created: integer(),
 currency: binary(),
 customer: binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t(),
 customer_balance_transaction:
 (binary() | Stripe.CustomerBalanceTransaction.t()) | nil,
 discount_amount: integer(),
 discount_amounts: term(),
 id: binary(),
 invoice: binary() | Stripe.Invoice.t(),
 lines: term(),
 livemode: boolean(),
 memo: binary() | nil,
 metadata: term() | nil,
 number: binary(),
 object: binary(),
 out_of_band_amount: integer() | nil,
 pdf: binary(),
 reason: binary() | nil,
 refund: (binary() | Stripe.Refund.t()) | nil,
 status: binary(),
 subtotal: integer(),
 subtotal_excluding_tax: integer() | nil,
 tax_amounts: term(),
 total: integer(),
 total_excluding_tax: integer() | nil,
 type: binary(),
 voided_at: integer() | nil
}

The credit_note type.
	amount The integer amount in %s representing the total amount of the credit note, including tax.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	customer ID of the customer.
	customer_balance_transaction Customer balance transaction related to this credit note.
	discount_amount The integer amount in %s representing the total amount of discount that was credited.
	discount_amounts The aggregate amounts calculated per discount for all line items.
	id Unique identifier for the object.
	invoice ID of the invoice.
	lines Line items that make up the credit note
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	memo Customer-facing text that appears on the credit note PDF.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	number A unique number that identifies this particular credit note and appears on the PDF of the credit note and its associated invoice.
	object String representing the object's type. Objects of the same type share the same value.
	out_of_band_amount Amount that was credited outside of Stripe.
	pdf The link to download the PDF of the credit note.
	reason Reason for issuing this credit note, one of duplicate, fraudulent, order_change, or product_unsatisfactory
	refund Refund related to this credit note.
	status Status of this credit note, one of issued or void. Learn more about voiding credit notes.
	subtotal The integer amount in %s representing the amount of the credit note, excluding exclusive tax and invoice level discounts.
	subtotal_excluding_tax The integer amount in %s representing the amount of the credit note, excluding all tax and invoice level discounts.
	tax_amounts The aggregate amounts calculated per tax rate for all line items.
	total The integer amount in %s representing the total amount of the credit note, including tax and all discount.
	total_excluding_tax The integer amount in %s representing the total amount of the credit note, excluding tax, but including discounts.
	type Type of this credit note, one of pre_payment or post_payment. A pre_payment credit note means it was issued when the invoice was open. A post_payment credit note means it was issued when the invoice was paid.
	voided_at The time that the credit note was voided.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:credit_amount) => integer(),
 optional(:expand) => [binary()],
 optional(:invoice) => binary(),
 optional(:lines) => [lines()],
 optional(:memo) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:out_of_band_amount) => integer(),
 optional(:reason) =>
 :duplicate | :fraudulent | :order_change | :product_unsatisfactory,
 optional(:refund) => binary(),
 optional(:refund_amount) => integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Issue a credit note to adjust the amount of a finalized invoice. For a status=open invoice, a credit note reducesits amount_due. For a status=paid invoice, a credit note does not affect its amount_due. Instead, it can result
in any combination of the following.
	Refund: create a new refund (using refund_amount) or link an existing refund (using refund).

	Customer balance credit: credit the customer’s balance (using credit_amount) which will be automatically applied to their next invoice when it’s finalized.

	Outside of Stripe credit: record the amount that is or will be credited outside of Stripe (using out_of_band_amount).

For post-payment credit notes the sum of the refund, credit and outside of Stripe amounts must equal the credit note total.
You may issue multiple credit notes for an invoice. Each credit note will increment the invoice’s pre_payment_credit_notes_amountor post_payment_credit_notes_amount depending on its status at the time of credit note creation.
Details
	Method: post
	Path: /v1/credit_notes

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:invoice) => binary(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of credit notes.
Details
	Method: get
	Path: /v1/credit_notes

 Link to this function

 preview(client, params \\ %{}, opts \\ [])

 View Source

 @spec preview(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:credit_amount) => integer(),
 optional(:expand) => [binary()],
 optional(:invoice) => binary(),
 optional(:lines) => [lines()],
 optional(:memo) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:out_of_band_amount) => integer(),
 optional(:reason) =>
 :duplicate | :fraudulent | :order_change | :product_unsatisfactory,
 optional(:refund) => binary(),
 optional(:refund_amount) => integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Get a preview of a credit note without creating it.
Details
	Method: get
	Path: /v1/credit_notes/preview

 Link to this function

 preview_lines(client, params \\ %{}, opts \\ [])

 View Source

 @spec preview_lines(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:credit_amount) => integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:invoice) => binary(),
 optional(:limit) => integer(),
 optional(:lines) => [lines()],
 optional(:memo) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:out_of_band_amount) => integer(),
 optional(:reason) =>
 :duplicate | :fraudulent | :order_change | :product_unsatisfactory,
 optional(:refund) => binary(),
 optional(:refund_amount) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.CreditNoteLineItem.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

When retrieving a credit note preview, you’ll get a lines property containing the first handful of those items. This URL you can retrieve the full (paginated) list of line items.
Details
	Method: get
	Path: /v1/credit_notes/preview/lines

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the credit note object with the given identifier.
Details
	Method: get
	Path: /v1/credit_notes/{id}

 Link to this function

 update(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:memo) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()}
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing credit note.
Details
	Method: post
	Path: /v1/credit_notes/{id}

 Link to this function

 void_credit_note(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec void_credit_note(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Marks a credit note as void. Learn more about voiding credit notes.
Details
	Method: post
	Path: /v1/credit_notes/{id}/void

 Stripe.CreditNoteLineItem - Striped v0.5.0

Stripe.CreditNoteLineItem

 Anchor for this section

 Summary

 Types

 t()

 The credit_note_line_item type.

 Functions

 list(client, credit_note, params \\ %{}, opts \\ [])

 When retrieving a credit note, you’ll get a lines property containing the the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.CreditNoteLineItem{
 amount: integer(),
 amount_excluding_tax: integer() | nil,
 description: binary() | nil,
 discount_amount: integer(),
 discount_amounts: term(),
 id: binary(),
 invoice_line_item: binary(),
 livemode: boolean(),
 object: binary(),
 quantity: integer() | nil,
 tax_amounts: term(),
 tax_rates: term(),
 type: binary(),
 unit_amount: integer() | nil,
 unit_amount_decimal: binary() | nil,
 unit_amount_excluding_tax: binary() | nil
}

The credit_note_line_item type.
	amount The integer amount in %s representing the gross amount being credited for this line item, excluding (exclusive) tax and discounts.
	amount_excluding_tax The integer amount in %s representing the amount being credited for this line item, excluding all tax and discounts.
	description Description of the item being credited.
	discount_amount The integer amount in %s representing the discount being credited for this line item.
	discount_amounts The amount of discount calculated per discount for this line item
	id Unique identifier for the object.
	invoice_line_item ID of the invoice line item being credited
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	quantity The number of units of product being credited.
	tax_amounts The amount of tax calculated per tax rate for this line item
	tax_rates The tax rates which apply to the line item.
	type The type of the credit note line item, one of invoice_line_item or custom_line_item. When the type is invoice_line_item there is an additional invoice_line_item property on the resource the value of which is the id of the credited line item on the invoice.
	unit_amount The cost of each unit of product being credited.
	unit_amount_decimal Same as unit_amount, but contains a decimal value with at most 12 decimal places.
	unit_amount_excluding_tax The amount in %s representing the unit amount being credited for this line item, excluding all tax and discounts.

 Anchor for this section

Functions

 Link to this function

 list(client, credit_note, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 credit_note :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

When retrieving a credit note, you’ll get a lines property containing the the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.
Details
	Method: get
	Path: /v1/credit_notes/{credit_note}/lines

 Stripe.CustomerBalanceTransaction - Striped v0.5.0

Stripe.CustomerBalanceTransaction

Each customer has a balance value,
which denotes a debit or credit that's automatically applied to their next invoice upon finalization.
You may modify the value directly by using the update customer API,
or by creating a Customer Balance Transaction, which increments or decrements the customer's balance by the specified amount.
Related guide: Customer Balance to learn more.

 Anchor for this section

 Summary

 Types

 t()

 The customer_balance_transaction type.

 Functions

 create(client, customer, params \\ %{}, opts \\ [])

 Creates an immutable transaction that updates the customer’s credit balance.

 list(client, customer, params \\ %{}, opts \\ [])

 Returns a list of transactions that updated the customer’s balances.

 retrieve(client, customer, transaction, params \\ %{}, opts \\ [])

 Retrieves a specific customer balance transaction that updated the customer’s balances.

 update(client, customer, transaction, params \\ %{}, opts \\ [])

 Most credit balance transaction fields are immutable, but you may update its description and metadata.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.CustomerBalanceTransaction{
 amount: integer(),
 created: integer(),
 credit_note: (binary() | Stripe.CreditNote.t()) | nil,
 currency: binary(),
 customer: binary() | Stripe.Customer.t(),
 description: binary() | nil,
 ending_balance: integer(),
 id: binary(),
 invoice: (binary() | Stripe.Invoice.t()) | nil,
 livemode: boolean(),
 metadata: term() | nil,
 object: binary(),
 type: binary()
}

The customer_balance_transaction type.
	amount The amount of the transaction. A negative value is a credit for the customer's balance, and a positive value is a debit to the customer's balance.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	credit_note The ID of the credit note (if any) related to the transaction.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	customer The ID of the customer the transaction belongs to.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	ending_balance The customer's balance after the transaction was applied. A negative value decreases the amount due on the customer's next invoice. A positive value increases the amount due on the customer's next invoice.
	id Unique identifier for the object.
	invoice The ID of the invoice (if any) related to the transaction.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	type Transaction type: adjustment, applied_to_invoice, credit_note, initial, invoice_too_large, invoice_too_small, unspent_receiver_credit, or unapplied_from_invoice. See the Customer Balance page to learn more about transaction types.

 Anchor for this section

Functions

 Link to this function

 create(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an immutable transaction that updates the customer’s credit balance.
Details
	Method: post
	Path: /v1/customers/{customer}/balance_transactions

 Link to this function

 list(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of transactions that updated the customer’s balances.
Details
	Method: get
	Path: /v1/customers/{customer}/balance_transactions

 Link to this function

 retrieve(client, customer, transaction, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 customer :: binary(),
 transaction :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a specific customer balance transaction that updated the customer’s balances.
Details
	Method: get
	Path: /v1/customers/{customer}/balance_transactions/{transaction}

 Link to this function

 update(client, customer, transaction, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 customer :: binary(),
 transaction :: binary(),
 params :: %{
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Most credit balance transaction fields are immutable, but you may update its description and metadata.
Details
	Method: post
	Path: /v1/customers/{customer}/balance_transactions/{transaction}

 Stripe.CustomerCashBalanceTransaction - Striped v0.5.0

Stripe.CustomerCashBalanceTransaction

Customers with certain payments enabled have a cash balance, representing funds that were paid
by the customer to a merchant, but have not yet been allocated to a payment. Cash Balance Transactions
represent when funds are moved into or out of this balance. This includes funding by the customer, allocation
to payments, and refunds to the customer.

 Anchor for this section

 Summary

 Types

 t()

 The customer_cash_balance_transaction type.

 Functions

 list(client, customer, params \\ %{}, opts \\ [])

 Returns a list of transactions that modified the customer’s cash balance.

 retrieve(client, customer, transaction, params \\ %{}, opts \\ [])

 Retrieves a specific cash balance transaction, which updated the customer’s cash balance.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.CustomerCashBalanceTransaction{
 applied_to_payment: term(),
 created: integer(),
 currency: binary(),
 customer: binary() | Stripe.Customer.t(),
 ending_balance: integer(),
 funded: term(),
 id: binary(),
 livemode: boolean(),
 net_amount: integer(),
 object: binary(),
 refunded_from_payment: term(),
 type: binary(),
 unapplied_from_payment: term()
}

The customer_cash_balance_transaction type.
	applied_to_payment
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	customer The customer whose available cash balance changed as a result of this transaction.
	ending_balance The total available cash balance for the specified currency after this transaction was applied. Represented in the smallest currency unit.
	funded
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	net_amount The amount by which the cash balance changed, represented in the smallest currency unit. A positive value represents funds being added to the cash balance, a negative value represents funds being removed from the cash balance.
	object String representing the object's type. Objects of the same type share the same value.
	refunded_from_payment
	type The type of the cash balance transaction. One of applied_to_payment, unapplied_from_payment, refunded_from_payment, funded, return_initiated, or return_canceled. New types may be added in future. See Customer Balance to learn more about these types.
	unapplied_from_payment

 Anchor for this section

Functions

 Link to this function

 list(client, customer, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 customer :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of transactions that modified the customer’s cash balance.
Details
	Method: get
	Path: /v1/customers/{customer}/cash_balance_transactions

 Link to this function

 retrieve(client, customer, transaction, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 customer :: binary(),
 transaction :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a specific cash balance transaction, which updated the customer’s cash balance.
Details
	Method: get
	Path: /v1/customers/{customer}/cash_balance_transactions/{transaction}

 Stripe.Invoice - Striped v0.5.0

Stripe.Invoice

Invoices are statements of amounts owed by a customer, and are either
generated one-off, or generated periodically from a subscription.
They contain invoice items, and proration adjustments
that may be caused by subscription upgrades/downgrades (if necessary).
If your invoice is configured to be billed through automatic charges,
Stripe automatically finalizes your invoice and attempts payment. Note
that finalizing the invoice,
when automatic, does
not happen immediately as the invoice is created. Stripe waits
until one hour after the last webhook was successfully sent (or the last
webhook timed out after failing). If you (and the platforms you may have
connected to) have no webhooks configured, Stripe waits one hour after
creation to finalize the invoice.
If your invoice is configured to be billed by sending an email, then based on your
email settings,
Stripe will email the invoice to your customer and await payment. These
emails can contain a link to a hosted page to pay the invoice.
Stripe applies any customer credit on the account before determining the
amount due for the invoice (i.e., the amount that will be actually
charged). If the amount due for the invoice is less than Stripe's minimum allowed charge
per currency, the
invoice is automatically marked paid, and we add the amount due to the
customer's credit balance which is applied to the next invoice.
More details on the customer's credit balance are
here.
Related guide: Send Invoices to Customers.

 Anchor for this section

 Summary

 Types

 acss_debit()

 address()

 automatic_tax()

 bancontact()

 bank_transfer()

 Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 billing_thresholds()

 card()

 created()

 custom_fields()

 customer_balance()

 customer_details()

 discounts()

 due_date()

 eu_bank_transfer()

 Configuration for eu_bank_transfer funding type.

 financial_connections()

 Additional fields for Financial Connections Session creation

 from_invoice()

 Revise an existing invoice. The new invoice will be created in status=draft. See the revision documentation for more details.

 installments()

 Installment configuration for payments attempted on this invoice (Mexico Only).

 invoice_items()

 mandate_options()

 Additional fields for Mandate creation

 payment_method_options()

 Payment-method-specific configuration to provide to the invoice’s PaymentIntent.

 payment_settings()

 Configuration settings for the PaymentIntent that is generated when the invoice is finalized.

 period()

 The period associated with this invoice item. When set to different values, the period will be rendered on the invoice.

 plan()

 price_data()

 Data used to generate a new Price object inline.

 recurring()

 The recurring components of a price such as interval and interval_count.

 rendering_options()

 shipping()

 subscription_items()

 t()

 The invoice type.

 tax()

 Tax details about the customer.

 tax_ids()

 transfer_data()

 If specified, the funds from the invoice will be transferred to the destination and the ID of the resulting transfer will be found on the invoice's charge.

 us_bank_account()

 Functions

 create(client, params \\ %{}, opts \\ [])

 This endpoint creates a draft invoice for a given customer. The invoice remains a draft until you finalize the invoice, which allows you to pay or send the invoice to your customers.

 delete(client, invoice, opts \\ [])

 Permanently deletes a one-off invoice draft. This cannot be undone. Attempts to delete invoices that are no longer in a draft state will fail; once an invoice has been finalized or if an invoice is for a subscription, it must be voided.

 finalize_invoice(client, invoice, params \\ %{}, opts \\ [])

 Stripe automatically finalizes drafts before sending and attempting payment on invoices. However, if you’d like to finalize a draft invoice manually, you can do so using this method.

 list(client, params \\ %{}, opts \\ [])

 You can list all invoices, or list the invoices for a specific customer. The invoices are returned sorted by creation date, with the most recently created invoices appearing first.

 mark_uncollectible(client, invoice, params \\ %{}, opts \\ [])

 Marking an invoice as uncollectible is useful for keeping track of bad debts that can be written off for accounting purposes.

 pay(client, invoice, params \\ %{}, opts \\ [])

 Stripe automatically creates and then attempts to collect payment on invoices for customers on subscriptions according to your subscriptions settings. However, if you’d like to attempt payment on an invoice out of the normal collection schedule or for some other reason, you can do so.

 retrieve(client, invoice, params \\ %{}, opts \\ [])

 Retrieves the invoice with the given ID.

 search(client, params \\ %{}, opts \\ [])

 Search for invoices you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.

 send_invoice(client, invoice, params \\ %{}, opts \\ [])

 Stripe will automatically send invoices to customers according to your subscriptions settings. However, if you’d like to manually send an invoice to your customer out of the normal schedule, you can do so. When sending invoices that have already been paid, there will be no reference to the payment in the email.

 upcoming(client, params \\ %{}, opts \\ [])

 At any time, you can preview the upcoming invoice for a customer. This will show you all the charges that are pending, including subscription renewal charges, invoice item charges, etc. It will also show you any discounts that are applicable to the invoice.

 upcoming_lines(client, params \\ %{}, opts \\ [])

 When retrieving an upcoming invoice, you’ll get a lines property containing the total count of line items and the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.

 update(client, invoice, params \\ %{}, opts \\ [])

 Draft invoices are fully editable. Once an invoice is finalized,monetary values, as well as collection_method, become uneditable.

 void_invoice(client, invoice, params \\ %{}, opts \\ [])

 Mark a finalized invoice as void. This cannot be undone. Voiding an invoice is similar to deletion, however it only applies to finalized invoices and maintains a papertrail where the invoice can still be found.

 Anchor for this section

Types

 Link to this type

 acss_debit()

 View Source

 @type acss_debit() :: %{
 optional(:mandate_options) => mandate_options(),
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

 Link to this type

 automatic_tax()

 View Source

 @type automatic_tax() :: %{optional(:enabled) => boolean()}

 Link to this type

 bancontact()

 View Source

 @type bancontact() :: %{optional(:preferred_language) => :de | :en | :fr | :nl}

 Link to this type

 bank_transfer()

 View Source

 @type bank_transfer() :: %{
 optional(:eu_bank_transfer) => eu_bank_transfer(),
 optional(:type) => binary()
}

Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 Link to this type

 billing_thresholds()

 View Source

 @type billing_thresholds() :: %{optional(:usage_gte) => integer()}

 Link to this type

 card()

 View Source

 @type card() :: %{
 optional(:installments) => installments(),
 optional(:request_three_d_secure) => :any | :automatic
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 custom_fields()

 View Source

 @type custom_fields() :: %{optional(:name) => binary(), optional(:value) => binary()}

 Link to this type

 customer_balance()

 View Source

 @type customer_balance() :: %{
 optional(:bank_transfer) => bank_transfer(),
 optional(:funding_type) => binary()
}

 Link to this type

 customer_details()

 View Source

 @type customer_details() :: %{
 optional(:address) => address() | binary(),
 optional(:shipping) => shipping() | binary(),
 optional(:tax) => tax(),
 optional(:tax_exempt) => :exempt | :none | :reverse,
 optional(:tax_ids) => [tax_ids()]
}

 Link to this type

 discounts()

 View Source

 @type discounts() :: %{optional(:coupon) => binary(), optional(:discount) => binary()}

 Link to this type

 due_date()

 View Source

 @type due_date() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 eu_bank_transfer()

 View Source

 @type eu_bank_transfer() :: %{optional(:country) => binary()}

Configuration for eu_bank_transfer funding type.

 Link to this type

 financial_connections()

 View Source

 @type financial_connections() :: %{
 optional(:permissions) => [
 :balances | :ownership | :payment_method | :transactions
]
}

Additional fields for Financial Connections Session creation

 Link to this type

 from_invoice()

 View Source

 @type from_invoice() :: %{
 optional(:action) => :revision,
 optional(:invoice) => binary()
}

Revise an existing invoice. The new invoice will be created in status=draft. See the revision documentation for more details.

 Link to this type

 installments()

 View Source

 @type installments() :: %{
 optional(:enabled) => boolean(),
 optional(:plan) => plan() | binary()
}

Installment configuration for payments attempted on this invoice (Mexico Only).
For more information, see the installments integration guide.

 Link to this type

 invoice_items()

 View Source

 @type invoice_items() :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:discountable) => boolean(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:invoiceitem) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:period) => period(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:tax_code) => binary() | binary(),
 optional(:tax_rates) => [binary()] | binary(),
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

 Link to this type

 mandate_options()

 View Source

 @type mandate_options() :: %{optional(:transaction_type) => :business | :personal}

Additional fields for Mandate creation

 Link to this type

 payment_method_options()

 View Source

 @type payment_method_options() :: %{
 optional(:acss_debit) => acss_debit() | binary(),
 optional(:bancontact) => bancontact() | binary(),
 optional(:card) => card() | binary(),
 optional(:customer_balance) => customer_balance() | binary(),
 optional(:konbini) => map() | binary(),
 optional(:us_bank_account) => us_bank_account() | binary()
}

Payment-method-specific configuration to provide to the invoice’s PaymentIntent.

 Link to this type

 payment_settings()

 View Source

 @type payment_settings() :: %{
 optional(:default_mandate) => binary(),
 optional(:payment_method_options) => payment_method_options(),
 optional(:payment_method_types) =>
 [
 :ach_credit_transfer
 | :ach_debit
 | :acss_debit
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :boleto
 | :card
 | :customer_balance
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :konbini
 | :link
 | :paynow
 | :promptpay
 | :sepa_credit_transfer
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay
]
 | binary()
}

Configuration settings for the PaymentIntent that is generated when the invoice is finalized.

 Link to this type

 period()

 View Source

 @type period() :: %{optional(:end) => integer(), optional(:start) => integer()}

The period associated with this invoice item. When set to different values, the period will be rendered on the invoice.

 Link to this type

 plan()

 View Source

 @type plan() :: %{
 optional(:count) => integer(),
 optional(:interval) => :month,
 optional(:type) => :fixed_count
}

 Link to this type

 price_data()

 View Source

 @type price_data() :: %{
 optional(:currency) => binary(),
 optional(:product) => binary(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object inline.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

The recurring components of a price such as interval and interval_count.

 Link to this type

 rendering_options()

 View Source

 @type rendering_options() :: %{
 optional(:amount_tax_display) => :exclude_tax | :include_inclusive_tax
}

 Link to this type

 shipping()

 View Source

 @type shipping() :: %{
 optional(:address) => address(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

 Link to this type

 subscription_items()

 View Source

 @type subscription_items() :: %{
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:clear_usage) => boolean(),
 optional(:deleted) => boolean(),
 optional(:id) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:plan) => binary(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Invoice{
 account_country: binary() | nil,
 account_name: binary() | nil,
 account_tax_ids: term() | nil,
 amount_due: integer(),
 amount_paid: integer(),
 amount_remaining: integer(),
 application: (binary() | term() | term()) | nil,
 application_fee_amount: integer() | nil,
 attempt_count: integer(),
 attempted: boolean(),
 auto_advance: boolean(),
 automatic_tax: term(),
 billing_reason: binary() | nil,
 charge: (binary() | Stripe.Charge.t()) | nil,
 collection_method: binary(),
 created: integer(),
 currency: binary(),
 custom_fields: term() | nil,
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 customer_address: term() | nil,
 customer_email: binary() | nil,
 customer_name: binary() | nil,
 customer_phone: binary() | nil,
 customer_shipping: term() | nil,
 customer_tax_exempt: binary() | nil,
 customer_tax_ids: term() | nil,
 default_payment_method: (binary() | Stripe.PaymentMethod.t()) | nil,
 default_source: (binary() | Stripe.PaymentSource.t()) | nil,
 default_tax_rates: term(),
 description: binary() | nil,
 discount: term() | nil,
 discounts: term() | nil,
 due_date: integer() | nil,
 ending_balance: integer() | nil,
 footer: binary() | nil,
 from_invoice: term() | nil,
 hosted_invoice_url: binary() | nil,
 id: binary(),
 invoice_pdf: binary() | nil,
 last_finalization_error: Stripe.ApiErrors.t() | nil,
 latest_revision: (binary() | t()) | nil,
 lines: term(),
 livemode: boolean(),
 metadata: term() | nil,
 next_payment_attempt: integer() | nil,
 number: binary() | nil,
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 paid: boolean(),
 paid_out_of_band: boolean(),
 payment_intent: (binary() | Stripe.PaymentIntent.t()) | nil,
 payment_settings: term(),
 period_end: integer(),
 period_start: integer(),
 post_payment_credit_notes_amount: integer(),
 pre_payment_credit_notes_amount: integer(),
 quote: (binary() | Stripe.Quote.t()) | nil,
 receipt_number: binary() | nil,
 rendering_options: term() | nil,
 starting_balance: integer(),
 statement_descriptor: binary() | nil,
 status: binary() | nil,
 status_transitions: term(),
 subscription: (binary() | Stripe.Subscription.t()) | nil,
 subscription_proration_date: integer(),
 subtotal: integer(),
 subtotal_excluding_tax: integer() | nil,
 tax: integer() | nil,
 test_clock: (binary() | Stripe.TestHelpers.TestClock.t()) | nil,
 threshold_reason: term(),
 total: integer(),
 total_discount_amounts: term() | nil,
 total_excluding_tax: integer() | nil,
 total_tax_amounts: term(),
 transfer_data: term() | nil,
 webhooks_delivered_at: integer() | nil
}

The invoice type.
	customer_tax_exempt The customer's tax exempt status. Until the invoice is finalized, this field will equal customer.tax_exempt. Once the invoice is finalized, this field will no longer be updated.
	auto_advance Controls whether Stripe will perform automatic collection of the invoice. When false, the invoice's state will not automatically advance without an explicit action.
	customer_phone The customer's phone number. Until the invoice is finalized, this field will equal customer.phone. Once the invoice is finalized, this field will no longer be updated.
	invoice_pdf The link to download the PDF for the invoice. If the invoice has not been finalized yet, this will be null.
	starting_balance Starting customer balance before the invoice is finalized. If the invoice has not been finalized yet, this will be the current customer balance. For revision invoices, this also includes any customer balance that was applied to the original invoice.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	customer_tax_ids The customer's tax IDs. Until the invoice is finalized, this field will contain the same tax IDs as customer.tax_ids. Once the invoice is finalized, this field will no longer be updated.
	collection_method Either charge_automatically, or send_invoice. When charging automatically, Stripe will attempt to pay this invoice using the default source attached to the customer. When sending an invoice, Stripe will email this invoice to the customer with payment instructions.
	default_payment_method ID of the default payment method for the invoice. It must belong to the customer associated with the invoice. If not set, defaults to the subscription's default payment method, if any, or to the default payment method in the customer's invoice settings.
	amount_due Final amount due at this time for this invoice. If the invoice's total is smaller than the minimum charge amount, for example, or if there is account credit that can be applied to the invoice, the amount_due may be 0. If there is a positive starting_balance for the invoice (the customer owes money), the amount_due will also take that into account. The charge that gets generated for the invoice will be for the amount specified in amount_due.
	last_finalization_error The error encountered during the previous attempt to finalize the invoice. This field is cleared when the invoice is successfully finalized.
	attempt_count Number of payment attempts made for this invoice, from the perspective of the payment retry schedule. Any payment attempt counts as the first attempt, and subsequently only automatic retries increment the attempt count. In other words, manual payment attempts after the first attempt do not affect the retry schedule.
	customer_name The customer's name. Until the invoice is finalized, this field will equal customer.name. Once the invoice is finalized, this field will no longer be updated.
	custom_fields Custom fields displayed on the invoice.
	subtotal Total of all subscriptions, invoice items, and prorations on the invoice before any invoice level discount or exclusive tax is applied. Item discounts are already incorporated
	account_country The country of the business associated with this invoice, most often the business creating the invoice.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	description An arbitrary string attached to the object. Often useful for displaying to users. Referenced as 'memo' in the Dashboard.
	paid Whether payment was successfully collected for this invoice. An invoice can be paid (most commonly) with a charge or with credit from the customer's account balance.
	pre_payment_credit_notes_amount Total amount of all pre-payment credit notes issued for this invoice.
	subscription_proration_date Only set for upcoming invoices that preview prorations. The time used to calculate prorations.
	footer Footer displayed on the invoice.
	customer_shipping The customer's shipping information. Until the invoice is finalized, this field will equal customer.shipping. Once the invoice is finalized, this field will no longer be updated.
	total Total after discounts and taxes.
	payment_intent The PaymentIntent associated with this invoice. The PaymentIntent is generated when the invoice is finalized, and can then be used to pay the invoice. Note that voiding an invoice will cancel the PaymentIntent.
	paid_out_of_band Returns true if the invoice was manually marked paid, returns false if the invoice hasn't been paid yet or was paid on Stripe.
	threshold_reason
	discount Describes the current discount applied to this invoice, if there is one. Not populated if there are multiple discounts.
	customer_email The customer's email. Until the invoice is finalized, this field will equal customer.email. Once the invoice is finalized, this field will no longer be updated.
	on_behalf_of The account (if any) for which the funds of the invoice payment are intended. If set, the invoice will be presented with the branding and support information of the specified account. See the Invoices with Connect documentation for details.
	charge ID of the latest charge generated for this invoice, if any.
	account_name The public name of the business associated with this invoice, most often the business creating the invoice.
	customer The ID of the customer who will be billed.
	amount_paid The amount, in %s, that was paid.
	account_tax_ids The account tax IDs associated with the invoice. Only editable when the invoice is a draft.
	hosted_invoice_url The URL for the hosted invoice page, which allows customers to view and pay an invoice. If the invoice has not been finalized yet, this will be null.
	statement_descriptor Extra information about an invoice for the customer's credit card statement.
	payment_settings
	application ID of the Connect Application that created the invoice.
	due_date The date on which payment for this invoice is due. This value will be null for invoices where collection_method=charge_automatically.
	rendering_options Options for invoice PDF rendering.
	default_source ID of the default payment source for the invoice. It must belong to the customer associated with the invoice and be in a chargeable state. If not set, defaults to the subscription's default source, if any, or to the customer's default source.
	receipt_number This is the transaction number that appears on email receipts sent for this invoice.
	billing_reason Indicates the reason why the invoice was created. subscription_cycle indicates an invoice created by a subscription advancing into a new period. subscription_create indicates an invoice created due to creating a subscription. subscription_update indicates an invoice created due to updating a subscription. subscription is set for all old invoices to indicate either a change to a subscription or a period advancement. manual is set for all invoices unrelated to a subscription (for example: created via the invoice editor). The upcoming value is reserved for simulated invoices per the upcoming invoice endpoint. subscription_threshold indicates an invoice created due to a billing threshold being reached.
	object String representing the object's type. Objects of the same type share the same value.
	latest_revision The ID of the most recent non-draft revision of this invoice
	status_transitions
	post_payment_credit_notes_amount Total amount of all post-payment credit notes issued for this invoice.
	test_clock ID of the test clock this invoice belongs to.
	automatic_tax
	total_excluding_tax The integer amount in %s representing the total amount of the invoice including all discounts but excluding all tax.
	subtotal_excluding_tax The integer amount in %s representing the subtotal of the invoice before any invoice level discount or tax is applied. Item discounts are already incorporated
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	total_discount_amounts The aggregate amounts calculated per discount across all line items.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	discounts The discounts applied to the invoice. Line item discounts are applied before invoice discounts. Use expand[]=discounts to expand each discount.
	quote The quote this invoice was generated from.
	amount_remaining The difference between amount_due and amount_paid, in %s.
	period_end End of the usage period during which invoice items were added to this invoice.
	next_payment_attempt The time at which payment will next be attempted. This value will be null for invoices where collection_method=send_invoice.
	subscription The subscription that this invoice was prepared for, if any.
	webhooks_delivered_at Invoices are automatically paid or sent 1 hour after webhooks are delivered, or until all webhook delivery attempts have been exhausted. This field tracks the time when webhooks for this invoice were successfully delivered. If the invoice had no webhooks to deliver, this will be set while the invoice is being created.
	total_tax_amounts The aggregate amounts calculated per tax rate for all line items.
	from_invoice Details of the invoice that was cloned. See the revision documentation for more details.
	status The status of the invoice, one of draft, open, paid, uncollectible, or void. Learn more
	ending_balance Ending customer balance after the invoice is finalized. Invoices are finalized approximately an hour after successful webhook delivery or when payment collection is attempted for the invoice. If the invoice has not been finalized yet, this will be null.
	customer_address The customer's address. Until the invoice is finalized, this field will equal customer.address. Once the invoice is finalized, this field will no longer be updated.
	number A unique, identifying string that appears on emails sent to the customer for this invoice. This starts with the customer's unique invoice_prefix if it is specified.
	application_fee_amount The fee in %s that will be applied to the invoice and transferred to the application owner's Stripe account when the invoice is paid.
	tax The amount of tax on this invoice. This is the sum of all the tax amounts on this invoice.
	period_start Start of the usage period during which invoice items were added to this invoice.
	transfer_data The account (if any) the payment will be attributed to for tax reporting, and where funds from the payment will be transferred to for the invoice.
	attempted Whether an attempt has been made to pay the invoice. An invoice is not attempted until 1 hour after the invoice.created webhook, for example, so you might not want to display that invoice as unpaid to your users.
	id Unique identifier for the object. This property is always present unless the invoice is an upcoming invoice. See Retrieve an upcoming invoice for more details.
	default_tax_rates The tax rates applied to this invoice, if any.
	lines The individual line items that make up the invoice. lines is sorted as follows: invoice items in reverse chronological order, followed by the subscription, if any.

 Link to this type

 tax()

 View Source

 @type tax() :: %{optional(:ip_address) => binary() | binary()}

Tax details about the customer.

 Link to this type

 tax_ids()

 View Source

 @type tax_ids() :: %{
 optional(:type) =>
 :ae_trn
 | :au_abn
 | :au_arn
 | :bg_uic
 | :br_cnpj
 | :br_cpf
 | :ca_bn
 | :ca_gst_hst
 | :ca_pst_bc
 | :ca_pst_mb
 | :ca_pst_sk
 | :ca_qst
 | :ch_vat
 | :cl_tin
 | :eg_tin
 | :es_cif
 | :eu_oss_vat
 | :eu_vat
 | :gb_vat
 | :ge_vat
 | :hk_br
 | :hu_tin
 | :id_npwp
 | :il_vat
 | :in_gst
 | :is_vat
 | :jp_cn
 | :jp_rn
 | :jp_trn
 | :ke_pin
 | :kr_brn
 | :li_uid
 | :mx_rfc
 | :my_frp
 | :my_itn
 | :my_sst
 | :no_vat
 | :nz_gst
 | :ph_tin
 | :ru_inn
 | :ru_kpp
 | :sa_vat
 | :sg_gst
 | :sg_uen
 | :si_tin
 | :th_vat
 | :tr_tin
 | :tw_vat
 | :ua_vat
 | :us_ein
 | :za_vat,
 optional(:value) => binary()
}

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount) => integer(),
 optional(:destination) => binary()
}

If specified, the funds from the invoice will be transferred to the destination and the ID of the resulting transfer will be found on the invoice's charge.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{
 optional(:financial_connections) => financial_connections(),
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:account_tax_ids) => [binary()] | binary(),
 optional(:application_fee_amount) => integer(),
 optional(:auto_advance) => boolean(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:currency) => binary(),
 optional(:custom_fields) => [custom_fields()] | binary(),
 optional(:customer) => binary(),
 optional(:days_until_due) => integer(),
 optional(:default_payment_method) => binary(),
 optional(:default_source) => binary(),
 optional(:default_tax_rates) => [binary()],
 optional(:description) => binary(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:due_date) => integer(),
 optional(:expand) => [binary()],
 optional(:footer) => binary(),
 optional(:from_invoice) => from_invoice(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:on_behalf_of) => binary(),
 optional(:payment_settings) => payment_settings(),
 optional(:pending_invoice_items_behavior) =>
 :exclude | :include | :include_and_require,
 optional(:rendering_options) => rendering_options() | binary(),
 optional(:statement_descriptor) => binary(),
 optional(:subscription) => binary(),
 optional(:transfer_data) => transfer_data()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

This endpoint creates a draft invoice for a given customer. The invoice remains a draft until you finalize the invoice, which allows you to pay or send the invoice to your customers.
Details
	Method: post
	Path: /v1/invoices

 Link to this function

 delete(client, invoice, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), invoice :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedInvoice.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Permanently deletes a one-off invoice draft. This cannot be undone. Attempts to delete invoices that are no longer in a draft state will fail; once an invoice has been finalized or if an invoice is for a subscription, it must be voided.
Details
	Method: delete
	Path: /v1/invoices/{invoice}

 Link to this function

 finalize_invoice(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec finalize_invoice(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{
 optional(:auto_advance) => boolean(),
 optional(:expand) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Stripe automatically finalizes drafts before sending and attempting payment on invoices. However, if you’d like to finalize a draft invoice manually, you can do so using this method.
Details
	Method: post
	Path: /v1/invoices/{invoice}/finalize

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:created) => created() | integer(),
 optional(:customer) => binary(),
 optional(:due_date) => due_date() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :draft | :open | :paid | :uncollectible | :void,
 optional(:subscription) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

You can list all invoices, or list the invoices for a specific customer. The invoices are returned sorted by creation date, with the most recently created invoices appearing first.
Details
	Method: get
	Path: /v1/invoices

 Link to this function

 mark_uncollectible(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec mark_uncollectible(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Marking an invoice as uncollectible is useful for keeping track of bad debts that can be written off for accounting purposes.
Details
	Method: post
	Path: /v1/invoices/{invoice}/mark_uncollectible

 Link to this function

 pay(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec pay(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:forgive) => boolean(),
 optional(:mandate) => binary(),
 optional(:off_session) => boolean(),
 optional(:paid_out_of_band) => boolean(),
 optional(:payment_method) => binary(),
 optional(:source) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Stripe automatically creates and then attempts to collect payment on invoices for customers on subscriptions according to your subscriptions settings. However, if you’d like to attempt payment on an invoice out of the normal collection schedule or for some other reason, you can do so.
Details
	Method: post
	Path: /v1/invoices/{invoice}/pay

 Link to this function

 retrieve(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the invoice with the given ID.
Details
	Method: get
	Path: /v1/invoices/{invoice}

 Link to this function

 search(client, params \\ %{}, opts \\ [])

 View Source

 @spec search(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:page) => binary(),
 optional(:query) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.SearchResult.t(t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Search for invoices you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/invoices/search

 Link to this function

 send_invoice(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec send_invoice(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Stripe will automatically send invoices to customers according to your subscriptions settings. However, if you’d like to manually send an invoice to your customer out of the normal schedule, you can do so. When sending invoices that have already been paid, there will be no reference to the payment in the email.
Requests made in test-mode result in no emails being sent, despite sending an invoice.sent event.
Details
	Method: post
	Path: /v1/invoices/{invoice}/send

 Link to this function

 upcoming(client, params \\ %{}, opts \\ [])

 View Source

 @spec upcoming(
 client :: Stripe.t(),
 params :: %{
 optional(:automatic_tax) => automatic_tax(),
 optional(:coupon) => binary(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:customer_details) => customer_details(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:expand) => [binary()],
 optional(:invoice_items) => [invoice_items()],
 optional(:schedule) => binary(),
 optional(:subscription) => binary(),
 optional(:subscription_billing_cycle_anchor) =>
 (:now | :unchanged) | integer(),
 optional(:subscription_cancel_at) => integer() | binary(),
 optional(:subscription_cancel_at_period_end) => boolean(),
 optional(:subscription_cancel_now) => boolean(),
 optional(:subscription_default_tax_rates) => [binary()] | binary(),
 optional(:subscription_items) => [subscription_items()],
 optional(:subscription_proration_behavior) =>
 :always_invoice | :create_prorations | :none,
 optional(:subscription_proration_date) => integer(),
 optional(:subscription_start_date) => integer(),
 optional(:subscription_trial_end) => :now | integer(),
 optional(:subscription_trial_from_plan) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

At any time, you can preview the upcoming invoice for a customer. This will show you all the charges that are pending, including subscription renewal charges, invoice item charges, etc. It will also show you any discounts that are applicable to the invoice.
Note that when you are viewing an upcoming invoice, you are simply viewing a preview – the invoice has not yet been created. As such, the upcoming invoice will not show up in invoice listing calls, and you cannot use the API to pay or edit the invoice. If you want to change the amount that your customer will be billed, you can add, remove, or update pending invoice items, or update the customer’s discount.
You can preview the effects of updating a subscription, including a preview of what proration will take place. To ensure that the actual proration is calculated exactly the same as the previewed proration, you should pass a proration_date parameter when doing the actual subscription update. The value passed in should be the same as the subscription_proration_date returned on the upcoming invoice resource. The recommended way to get only the prorations being previewed is to consider only proration line items where period[start] is equal to the subscription_proration_date on the upcoming invoice resource.
Details
	Method: get
	Path: /v1/invoices/upcoming

 Link to this function

 upcoming_lines(client, params \\ %{}, opts \\ [])

 View Source

 @spec upcoming_lines(
 client :: Stripe.t(),
 params :: %{
 optional(:automatic_tax) => automatic_tax(),
 optional(:coupon) => binary(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:customer_details) => customer_details(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:invoice_items) => [invoice_items()],
 optional(:limit) => integer(),
 optional(:schedule) => binary(),
 optional(:starting_after) => binary(),
 optional(:subscription) => binary(),
 optional(:subscription_billing_cycle_anchor) =>
 (:now | :unchanged) | integer(),
 optional(:subscription_cancel_at) => integer() | binary(),
 optional(:subscription_cancel_at_period_end) => boolean(),
 optional(:subscription_cancel_now) => boolean(),
 optional(:subscription_default_tax_rates) => [binary()] | binary(),
 optional(:subscription_items) => [subscription_items()],
 optional(:subscription_proration_behavior) =>
 :always_invoice | :create_prorations | :none,
 optional(:subscription_proration_date) => integer(),
 optional(:subscription_start_date) => integer(),
 optional(:subscription_trial_end) => :now | integer(),
 optional(:subscription_trial_from_plan) => boolean()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.LineItem.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

When retrieving an upcoming invoice, you’ll get a lines property containing the total count of line items and the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.
Details
	Method: get
	Path: /v1/invoices/upcoming/lines

 Link to this function

 update(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{
 optional(:account_tax_ids) => [binary()] | binary(),
 optional(:application_fee_amount) => integer(),
 optional(:auto_advance) => boolean(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:custom_fields) => [custom_fields()] | binary(),
 optional(:days_until_due) => integer(),
 optional(:default_payment_method) => binary(),
 optional(:default_source) => binary(),
 optional(:default_tax_rates) => [binary()] | binary(),
 optional(:description) => binary(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:due_date) => integer(),
 optional(:expand) => [binary()],
 optional(:footer) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:on_behalf_of) => binary() | binary(),
 optional(:payment_settings) => payment_settings(),
 optional(:rendering_options) => rendering_options() | binary(),
 optional(:statement_descriptor) => binary(),
 optional(:transfer_data) => transfer_data() | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Draft invoices are fully editable. Once an invoice is finalized,monetary values, as well as collection_method, become uneditable.
If you would like to stop the Stripe Billing engine from automatically finalizing, reattempting payments on,sending reminders for, or automatically reconciling invoices, pass
auto_advance=false.
Details
	Method: post
	Path: /v1/invoices/{invoice}

 Link to this function

 void_invoice(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec void_invoice(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Mark a finalized invoice as void. This cannot be undone. Voiding an invoice is similar to deletion, however it only applies to finalized invoices and maintains a papertrail where the invoice can still be found.
Details
	Method: post
	Path: /v1/invoices/{invoice}/void

 Stripe.Invoiceitem - Striped v0.5.0

Stripe.Invoiceitem

Sometimes you want to add a charge or credit to a customer, but actually
charge or credit the customer's card only at the end of a regular billing
cycle. This is useful for combining several charges (to minimize
per-transaction fees), or for having Stripe tabulate your usage-based billing
totals.
Related guide: Subscription Invoices.

 Anchor for this section

 Summary

 Types

 created()

 discounts()

 period()

 The period associated with this invoice item. When set to different values, the period will be rendered on the invoice.

 price_data()

 Data used to generate a new Price object inline.

 t()

 The invoiceitem type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates an item to be added to a draft invoice (up to 250 items per invoice). If no invoice is specified, the item will be on the next invoice created for the customer specified.

 delete(client, invoiceitem, opts \\ [])

 Deletes an invoice item, removing it from an invoice. Deleting invoice items is only possible when they’re not attached to invoices, or if it’s attached to a draft invoice.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your invoice items. Invoice items are returned sorted by creation date, with the most recently created invoice items appearing first.

 retrieve(client, invoiceitem, params \\ %{}, opts \\ [])

 Retrieves the invoice item with the given ID.

 update(client, invoiceitem, params \\ %{}, opts \\ [])

 Updates the amount or description of an invoice item on an upcoming invoice. Updating an invoice item is only possible before the invoice it’s attached to is closed.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 discounts()

 View Source

 @type discounts() :: %{optional(:coupon) => binary(), optional(:discount) => binary()}

 Link to this type

 period()

 View Source

 @type period() :: %{optional(:end) => integer(), optional(:start) => integer()}

The period associated with this invoice item. When set to different values, the period will be rendered on the invoice.

 Link to this type

 price_data()

 View Source

 @type price_data() :: %{
 optional(:currency) => binary(),
 optional(:product) => binary(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object inline.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Invoiceitem{
 amount: integer(),
 currency: binary(),
 customer: binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t(),
 date: integer(),
 description: binary() | nil,
 discountable: boolean(),
 discounts: term() | nil,
 id: binary(),
 invoice: (binary() | Stripe.Invoice.t()) | nil,
 livemode: boolean(),
 metadata: term() | nil,
 object: binary(),
 period: term(),
 plan: Stripe.Plan.t() | nil,
 price: Stripe.Price.t() | nil,
 proration: boolean(),
 quantity: integer(),
 subscription: (binary() | Stripe.Subscription.t()) | nil,
 subscription_item: binary(),
 tax_rates: term() | nil,
 test_clock: (binary() | Stripe.TestHelpers.TestClock.t()) | nil,
 unit_amount: integer() | nil,
 unit_amount_decimal: binary() | nil
}

The invoiceitem type.
	amount Amount (in the currency specified) of the invoice item. This should always be equal to unit_amount * quantity.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	customer The ID of the customer who will be billed when this invoice item is billed.
	date Time at which the object was created. Measured in seconds since the Unix epoch.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	discountable If true, discounts will apply to this invoice item. Always false for prorations.
	discounts The discounts which apply to the invoice item. Item discounts are applied before invoice discounts. Use expand[]=discounts to expand each discount.
	id Unique identifier for the object.
	invoice The ID of the invoice this invoice item belongs to.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	period
	plan If the invoice item is a proration, the plan of the subscription that the proration was computed for.
	price The price of the invoice item.
	proration Whether the invoice item was created automatically as a proration adjustment when the customer switched plans.
	quantity Quantity of units for the invoice item. If the invoice item is a proration, the quantity of the subscription that the proration was computed for.
	subscription The subscription that this invoice item has been created for, if any.
	subscription_item The subscription item that this invoice item has been created for, if any.
	tax_rates The tax rates which apply to the invoice item. When set, the default_tax_rates on the invoice do not apply to this invoice item.
	test_clock ID of the test clock this invoice item belongs to.
	unit_amount Unit amount (in the currency specified) of the invoice item.
	unit_amount_decimal Same as unit_amount, but contains a decimal value with at most 12 decimal places.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:discountable) => boolean(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:expand) => [binary()],
 optional(:invoice) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:period) => period(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:subscription) => binary(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:tax_code) => binary() | binary(),
 optional(:tax_rates) => [binary()],
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an item to be added to a draft invoice (up to 250 items per invoice). If no invoice is specified, the item will be on the next invoice created for the customer specified.
Details
	Method: post
	Path: /v1/invoiceitems

 Link to this function

 delete(client, invoiceitem, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), invoiceitem :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedInvoiceitem.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes an invoice item, removing it from an invoice. Deleting invoice items is only possible when they’re not attached to invoices, or if it’s attached to a draft invoice.
Details
	Method: delete
	Path: /v1/invoiceitems/{invoiceitem}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:invoice) => binary(),
 optional(:limit) => integer(),
 optional(:pending) => boolean(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your invoice items. Invoice items are returned sorted by creation date, with the most recently created invoice items appearing first.
Details
	Method: get
	Path: /v1/invoiceitems

 Link to this function

 retrieve(client, invoiceitem, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 invoiceitem :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the invoice item with the given ID.
Details
	Method: get
	Path: /v1/invoiceitems/{invoiceitem}

 Link to this function

 update(client, invoiceitem, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 invoiceitem :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:description) => binary(),
 optional(:discountable) => boolean(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:period) => period(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:tax_code) => binary() | binary(),
 optional(:tax_rates) => [binary()] | binary(),
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the amount or description of an invoice item on an upcoming invoice. Updating an invoice item is only possible before the invoice it’s attached to is closed.
Details
	Method: post
	Path: /v1/invoiceitems/{invoiceitem}

 Stripe.LineItem - Striped v0.5.0

Stripe.LineItem

 Anchor for this section

 Summary

 Types

 t()

 The line_item type.

 Functions

 list(client, invoice, params \\ %{}, opts \\ [])

 When retrieving an invoice, you’ll get a lines property containing the total count of line items and the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.LineItem{
 amount: integer(),
 amount_excluding_tax: integer() | nil,
 currency: binary(),
 description: binary() | nil,
 discount_amounts: term() | nil,
 discountable: boolean(),
 discounts: term() | nil,
 id: binary(),
 invoice_item: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 period: term(),
 plan: Stripe.Plan.t() | nil,
 price: Stripe.Price.t() | nil,
 proration: boolean(),
 proration_details: term() | nil,
 quantity: integer() | nil,
 subscription: binary() | nil,
 subscription_item: binary(),
 tax_amounts: term(),
 tax_rates: term(),
 type: binary(),
 unit_amount_excluding_tax: binary() | nil
}

The line_item type.
	amount The amount, in %s.
	amount_excluding_tax The integer amount in %s representing the amount for this line item, excluding all tax and discounts.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	discount_amounts The amount of discount calculated per discount for this line item.
	discountable If true, discounts will apply to this line item. Always false for prorations.
	discounts The discounts applied to the invoice line item. Line item discounts are applied before invoice discounts. Use expand[]=discounts to expand each discount.
	id Unique identifier for the object.
	invoice_item The ID of the invoice item associated with this line item if any.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format. Note that for line items with type=subscription this will reflect the metadata of the subscription that caused the line item to be created.
	object String representing the object's type. Objects of the same type share the same value.
	period
	plan The plan of the subscription, if the line item is a subscription or a proration.
	price The price of the line item.
	proration Whether this is a proration.
	proration_details Additional details for proration line items
	quantity The quantity of the subscription, if the line item is a subscription or a proration.
	subscription The subscription that the invoice item pertains to, if any.
	subscription_item The subscription item that generated this invoice item. Left empty if the line item is not an explicit result of a subscription.
	tax_amounts The amount of tax calculated per tax rate for this line item
	tax_rates The tax rates which apply to the line item.
	type A string identifying the type of the source of this line item, either an invoiceitem or a subscription.
	unit_amount_excluding_tax The amount in %s representing the unit amount for this line item, excluding all tax and discounts.

 Anchor for this section

Functions

 Link to this function

 list(client, invoice, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 invoice :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

When retrieving an invoice, you’ll get a lines property containing the total count of line items and the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.
Details
	Method: get
	Path: /v1/invoices/{invoice}/lines

 Stripe.Plan - Striped v0.5.0

Stripe.Plan

You can now model subscriptions more flexibly using the Prices API. It replaces the Plans API and is backwards compatible to simplify your migration.
Plans define the base price, currency, and billing cycle for recurring purchases of products.
Products help you track inventory or provisioning, and plans help you track pricing. Different physical goods or levels of service should be represented by products, and pricing options should be represented by plans. This approach lets you change prices without having to change your provisioning scheme.
For example, you might have a single "gold" product that has plans for $10/month, $100/year, €9/month, and €90/year.
Related guides: Set up a subscription and more about products and prices.

 Anchor for this section

 Summary

 Types

 created()

 product()

 The product whose pricing the created plan will represent. This can either be the ID of an existing product, or a dictionary containing fields used to create a service product.

 t()

 The plan type.

 tiers()

 transform_usage()

 Apply a transformation to the reported usage or set quantity before computing the billed price. Cannot be combined with tiers.

 Functions

 create(client, params \\ %{}, opts \\ [])

 You can now model subscriptions more flexibly using the Prices API. It replaces the Plans API and is backwards compatible to simplify your migration.

 delete(client, plan, opts \\ [])

 Deleting plans means new subscribers can’t be added. Existing subscribers aren’t affected.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your plans.

 retrieve(client, plan, params \\ %{}, opts \\ [])

 Retrieves the plan with the given ID.

 update(client, plan, params \\ %{}, opts \\ [])

 Updates the specified plan by setting the values of the parameters passed. Any parameters not provided are left unchanged. By design, you cannot change a plan’s ID, amount, currency, or billing cycle.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 product()

 View Source

 @type product() :: %{
 optional(:active) => boolean(),
 optional(:id) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:name) => binary(),
 optional(:statement_descriptor) => binary(),
 optional(:tax_code) => binary(),
 optional(:unit_label) => binary()
}

The product whose pricing the created plan will represent. This can either be the ID of an existing product, or a dictionary containing fields used to create a service product.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Plan{
 active: boolean(),
 aggregate_usage: binary() | nil,
 amount: integer() | nil,
 amount_decimal: binary() | nil,
 billing_scheme: binary(),
 created: integer(),
 currency: binary(),
 id: binary(),
 interval: binary(),
 interval_count: integer(),
 livemode: boolean(),
 metadata: term() | nil,
 nickname: binary() | nil,
 object: binary(),
 product: (binary() | Stripe.Product.t() | Stripe.DeletedProduct.t()) | nil,
 tiers: term(),
 tiers_mode: binary() | nil,
 transform_usage: term() | nil,
 trial_period_days: integer() | nil,
 usage_type: binary()
}

The plan type.
	active Whether the plan can be used for new purchases.
	aggregate_usage Specifies a usage aggregation strategy for plans of usage_type=metered. Allowed values are sum for summing up all usage during a period, last_during_period for using the last usage record reported within a period, last_ever for using the last usage record ever (across period bounds) or max which uses the usage record with the maximum reported usage during a period. Defaults to sum.
	amount The unit amount in %s to be charged, represented as a whole integer if possible. Only set if billing_scheme=per_unit.
	amount_decimal The unit amount in %s to be charged, represented as a decimal string with at most 12 decimal places. Only set if billing_scheme=per_unit.
	billing_scheme Describes how to compute the price per period. Either per_unit or tiered. per_unit indicates that the fixed amount (specified in amount) will be charged per unit in quantity (for plans with usage_type=licensed), or per unit of total usage (for plans with usage_type=metered). tiered indicates that the unit pricing will be computed using a tiering strategy as defined using the tiers and tiers_mode attributes.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	id Unique identifier for the object.
	interval The frequency at which a subscription is billed. One of day, week, month or year.
	interval_count The number of intervals (specified in the interval attribute) between subscription billings. For example, interval=month and interval_count=3 bills every 3 months.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	nickname A brief description of the plan, hidden from customers.
	object String representing the object's type. Objects of the same type share the same value.
	product The product whose pricing this plan determines.
	tiers Each element represents a pricing tier. This parameter requires billing_scheme to be set to tiered. See also the documentation for billing_scheme.
	tiers_mode Defines if the tiering price should be graduated or volume based. In volume-based tiering, the maximum quantity within a period determines the per unit price. In graduated tiering, pricing can change as the quantity grows.
	transform_usage Apply a transformation to the reported usage or set quantity before computing the amount billed. Cannot be combined with tiers.
	trial_period_days Default number of trial days when subscribing a customer to this plan using trial_from_plan=true.
	usage_type Configures how the quantity per period should be determined. Can be either metered or licensed. licensed automatically bills the quantity set when adding it to a subscription. metered aggregates the total usage based on usage records. Defaults to licensed.

 Link to this type

 tiers()

 View Source

 @type tiers() :: %{
 optional(:flat_amount) => integer(),
 optional(:flat_amount_decimal) => binary(),
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary(),
 optional(:up_to) => :inf | integer()
}

 Link to this type

 transform_usage()

 View Source

 @type transform_usage() :: %{
 optional(:divide_by) => integer(),
 optional(:round) => :down | :up
}

Apply a transformation to the reported usage or set quantity before computing the billed price. Cannot be combined with tiers.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:aggregate_usage) =>
 :last_during_period | :last_ever | :max | :sum,
 optional(:amount) => integer(),
 optional(:amount_decimal) => binary(),
 optional(:billing_scheme) => :per_unit | :tiered,
 optional(:currency) => binary(),
 optional(:expand) => [binary()],
 optional(:id) => binary(),
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:nickname) => binary(),
 optional(:product) => product() | binary(),
 optional(:tiers) => [tiers()],
 optional(:tiers_mode) => :graduated | :volume,
 optional(:transform_usage) => transform_usage(),
 optional(:trial_period_days) => integer(),
 optional(:usage_type) => :licensed | :metered
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

You can now model subscriptions more flexibly using the Prices API. It replaces the Plans API and is backwards compatible to simplify your migration.
Details
	Method: post
	Path: /v1/plans

 Link to this function

 delete(client, plan, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), plan :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedPlan.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deleting plans means new subscribers can’t be added. Existing subscribers aren’t affected.
Details
	Method: delete
	Path: /v1/plans/{plan}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:active) => boolean(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:product) => binary(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your plans.
Details
	Method: get
	Path: /v1/plans

 Link to this function

 retrieve(client, plan, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 plan :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the plan with the given ID.
Details
	Method: get
	Path: /v1/plans/{plan}

 Link to this function

 update(client, plan, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 plan :: binary(),
 params :: %{
 optional(:active) => boolean(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:nickname) => binary(),
 optional(:product) => binary(),
 optional(:trial_period_days) => integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified plan by setting the values of the parameters passed. Any parameters not provided are left unchanged. By design, you cannot change a plan’s ID, amount, currency, or billing cycle.
Details
	Method: post
	Path: /v1/plans/{plan}

 Stripe.Quote - Striped v0.5.0

Stripe.Quote

A Quote is a way to model prices that you'd like to provide to a customer.
Once accepted, it will automatically create an invoice, subscription or subscription schedule.

 Anchor for this section

 Summary

 Types

 automatic_tax()

 Settings for automatic tax lookup for this quote and resulting invoices and subscriptions.

 discounts()

 from_quote()

 Clone an existing quote. The new quote will be created in status=draft. When using this parameter, you cannot specify any other parameters except for expires_at.

 invoice_settings()

 All invoices will be billed using the specified settings.

 line_items()

 price_data()

 Data used to generate a new Price object inline. One of price or price_data is required.

 recurring()

 The recurring components of a price such as interval and interval_count.

 subscription_data()

 When creating a subscription or subscription schedule, the specified configuration data will be used. There must be at least one line item with a recurring price for a subscription or subscription schedule to be created. A subscription schedule is created if subscription_data[effective_date] is present and in the future, otherwise a subscription is created.

 t()

 The quote type.

 transfer_data()

 Functions

 accept(client, quote, params \\ %{}, opts \\ [])

 Accepts the specified quote.

 cancel(client, quote, params \\ %{}, opts \\ [])

 Cancels the quote.

 create(client, params \\ %{}, opts \\ [])

 A quote models prices and services for a customer. Default options for header, description, footer, and expires_at can be set in the dashboard via the quote template.

 finalize_quote(client, quote, params \\ %{}, opts \\ [])

 Finalizes the quote.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your quotes.

 list_computed_upfront_line_items(client, quote, params \\ %{}, opts \\ [])

 When retrieving a quote, there is an includable computed.upfront.line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of upfront line items.

 list_line_items(client, quote, params \\ %{}, opts \\ [])

 When retrieving a quote, there is an includable line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.

 pdf(client, quote, params \\ %{}, opts \\ [])

 Download the PDF for a finalized quot.

 retrieve(client, quote, params \\ %{}, opts \\ [])

 Retrieves the quote with the given ID.

 update(client, quote, params \\ %{}, opts \\ [])

 A quote models prices and services for a customer.

 Anchor for this section

Types

 Link to this type

 automatic_tax()

 View Source

 @type automatic_tax() :: %{optional(:enabled) => boolean()}

Settings for automatic tax lookup for this quote and resulting invoices and subscriptions.

 Link to this type

 discounts()

 View Source

 @type discounts() :: %{optional(:coupon) => binary(), optional(:discount) => binary()}

 Link to this type

 from_quote()

 View Source

 @type from_quote() :: %{
 optional(:is_revision) => boolean(),
 optional(:quote) => binary()
}

Clone an existing quote. The new quote will be created in status=draft. When using this parameter, you cannot specify any other parameters except for expires_at.

 Link to this type

 invoice_settings()

 View Source

 @type invoice_settings() :: %{optional(:days_until_due) => integer()}

All invoices will be billed using the specified settings.

 Link to this type

 line_items()

 View Source

 @type line_items() :: %{
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary()
}

 Link to this type

 price_data()

 View Source

 @type price_data() :: %{
 optional(:currency) => binary(),
 optional(:product) => binary(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object inline. One of price or price_data is required.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

The recurring components of a price such as interval and interval_count.

 Link to this type

 subscription_data()

 View Source

 @type subscription_data() :: %{
 optional(:description) => binary(),
 optional(:effective_date) => :current_period_end | integer() | binary(),
 optional(:trial_period_days) => integer() | binary()
}

When creating a subscription or subscription schedule, the specified configuration data will be used. There must be at least one line item with a recurring price for a subscription or subscription schedule to be created. A subscription schedule is created if subscription_data[effective_date] is present and in the future, otherwise a subscription is created.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Quote{
 amount_subtotal: integer(),
 amount_total: integer(),
 application: (binary() | term() | term()) | nil,
 application_fee_amount: integer() | nil,
 application_fee_percent: term() | nil,
 automatic_tax: term(),
 collection_method: binary(),
 computed: term(),
 created: integer(),
 currency: binary() | nil,
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 default_tax_rates: term(),
 description: binary() | nil,
 discounts: term(),
 expires_at: integer(),
 footer: binary() | nil,
 from_quote: term() | nil,
 header: binary() | nil,
 id: binary(),
 invoice: (binary() | Stripe.Invoice.t() | Stripe.DeletedInvoice.t()) | nil,
 invoice_settings: term() | nil,
 line_items: term(),
 livemode: boolean(),
 metadata: term(),
 number: binary() | nil,
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 status: binary(),
 status_transitions: term(),
 subscription: (binary() | Stripe.Subscription.t()) | nil,
 subscription_data: term(),
 subscription_schedule: (binary() | Stripe.SubscriptionSchedule.t()) | nil,
 test_clock: (binary() | Stripe.TestHelpers.TestClock.t()) | nil,
 total_details: term(),
 transfer_data: term() | nil
}

The quote type.
	application_fee_percent A non-negative decimal between 0 and 100, with at most two decimal places. This represents the percentage of the subscription invoice subtotal that will be transferred to the application owner's Stripe account. Only applicable if there are line items with recurring prices on the quote.
	computed
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	collection_method Either charge_automatically, or send_invoice. When charging automatically, Stripe will attempt to pay invoices at the end of the subscription cycle or on finalization using the default payment method attached to the subscription or customer. When sending an invoice, Stripe will email your customer an invoice with payment instructions and mark the subscription as active. Defaults to charge_automatically.
	line_items A list of items the customer is being quoted for.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	subscription_data
	description A description that will be displayed on the quote PDF.
	footer A footer that will be displayed on the quote PDF.
	header A header that will be displayed on the quote PDF.
	subscription_schedule The subscription schedule that was created or updated from this quote.
	on_behalf_of The account on behalf of which to charge. See the Connect documentation for details.
	customer The customer which this quote belongs to. A customer is required before finalizing the quote. Once specified, it cannot be changed.
	invoice The invoice that was created from this quote.
	application ID of the Connect Application that created the quote.
	object String representing the object's type. Objects of the same type share the same value.
	invoice_settings All invoices will be billed using the specified settings.
	total_details
	expires_at The date on which the quote will be canceled if in open or draft status. Measured in seconds since the Unix epoch.
	status_transitions
	test_clock ID of the test clock this quote belongs to.
	automatic_tax
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	discounts The discounts applied to this quote.
	amount_subtotal Total before any discounts or taxes are applied.
	amount_total Total after discounts and taxes are applied.
	subscription The subscription that was created or updated from this quote.
	status The status of the quote.
	from_quote Details of the quote that was cloned. See the cloning documentation for more details.
	number A unique number that identifies this particular quote. This number is assigned once the quote is finalized.
	application_fee_amount The amount of the application fee (if any) that will be requested to be applied to the payment and transferred to the application owner's Stripe account. Only applicable if there are no line items with recurring prices on the quote.
	transfer_data The account (if any) the payments will be attributed to for tax reporting, and where funds from each payment will be transferred to for each of the invoices.
	id Unique identifier for the object.
	default_tax_rates The tax rates applied to this quote.

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount) => integer(),
 optional(:amount_percent) => number(),
 optional(:destination) => binary()
}

 Anchor for this section

Functions

 Link to this function

 accept(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec accept(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Accepts the specified quote.
Details
	Method: post
	Path: /v1/quotes/{quote}/accept

 Link to this function

 cancel(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancels the quote.
Details
	Method: post
	Path: /v1/quotes/{quote}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:application_fee_amount) => integer() | binary(),
 optional(:application_fee_percent) => number() | binary(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:customer) => binary(),
 optional(:default_tax_rates) => [binary()] | binary(),
 optional(:description) => binary(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:expand) => [binary()],
 optional(:expires_at) => integer(),
 optional(:footer) => binary(),
 optional(:from_quote) => from_quote(),
 optional(:header) => binary(),
 optional(:invoice_settings) => invoice_settings(),
 optional(:line_items) => [line_items()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary() | binary(),
 optional(:subscription_data) => subscription_data(),
 optional(:test_clock) => binary(),
 optional(:transfer_data) => transfer_data() | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A quote models prices and services for a customer. Default options for header, description, footer, and expires_at can be set in the dashboard via the quote template.
Details
	Method: post
	Path: /v1/quotes

 Link to this function

 finalize_quote(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec finalize_quote(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:expires_at) => integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Finalizes the quote.
Details
	Method: post
	Path: /v1/quotes/{quote}/finalize

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :accepted | :canceled | :draft | :open,
 optional(:test_clock) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your quotes.
Details
	Method: get
	Path: /v1/quotes

 Link to this function

 list_computed_upfront_line_items(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec list_computed_upfront_line_items(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.Item.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

When retrieving a quote, there is an includable computed.upfront.line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of upfront line items.
Details
	Method: get
	Path: /v1/quotes/{quote}/computed_upfront_line_items

 Link to this function

 list_line_items(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec list_line_items(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.Item.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

When retrieving a quote, there is an includable line_items property containing the first handful of those items. There is also a URL where you can retrieve the full (paginated) list of line items.
Details
	Method: get
	Path: /v1/quotes/{quote}/line_items

 Link to this function

 pdf(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec pdf(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, []} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Download the PDF for a finalized quot.
Details
	Method: get
	Path: /v1/quotes/{quote}/pdf

 Link to this function

 retrieve(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the quote with the given ID.
Details
	Method: get
	Path: /v1/quotes/{quote}

 Link to this function

 update(client, quote, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 quote :: binary(),
 params :: %{
 optional(:application_fee_amount) => integer() | binary(),
 optional(:application_fee_percent) => number() | binary(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:customer) => binary(),
 optional(:default_tax_rates) => [binary()] | binary(),
 optional(:description) => binary(),
 optional(:discounts) => [discounts()] | binary(),
 optional(:expand) => [binary()],
 optional(:expires_at) => integer(),
 optional(:footer) => binary(),
 optional(:header) => binary(),
 optional(:invoice_settings) => invoice_settings(),
 optional(:line_items) => [line_items()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary() | binary(),
 optional(:subscription_data) => subscription_data(),
 optional(:transfer_data) => transfer_data() | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A quote models prices and services for a customer.
Details
	Method: post
	Path: /v1/quotes/{quote}

 Stripe.Subscription - Striped v0.5.0

Stripe.Subscription

Subscriptions allow you to charge a customer on a recurring basis.
Related guide: Creating Subscriptions.

 Anchor for this section

 Summary

 Types

 acss_debit()

 add_invoice_items()

 automatic_tax()

 Automatic tax settings for this subscription. We recommend you only include this parameter when the existing value is being changed.

 bancontact()

 bank_transfer()

 Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 billing_thresholds()

 card()

 created()

 current_period_end()

 current_period_start()

 customer_balance()

 eu_bank_transfer()

 Configuration for eu_bank_transfer funding type.

 financial_connections()

 Additional fields for Financial Connections Session creation

 items()

 mandate_options()

 Additional fields for Mandate creation

 pause_collection()

 payment_method_options()

 Payment-method-specific configuration to provide to invoices created by the subscription.

 payment_settings()

 Payment settings to pass to invoices created by the subscription.

 pending_invoice_item_interval()

 price_data()

 Data used to generate a new Price object inline.

 recurring()

 The recurring components of a price such as interval and interval_count.

 t()

 The subscription type.

 transfer_data()

 If specified, the funds from the subscription's invoices will be transferred to the destination and the ID of the resulting transfers will be found on the resulting charges.

 us_bank_account()

 Functions

 cancel(client, subscription_exposed_id, params \\ %{}, opts \\ [])

 Cancels a customer’s subscription immediately. The customer will not be charged again for the subscription.

 create(client, params \\ %{}, opts \\ [])

 Creates a new subscription on an existing customer. Each customer can have up to 500 active or scheduled subscriptions.

 delete_discount(client, subscription_exposed_id, opts \\ [])

 Removes the currently applied discount on a subscription.

 list(client, params \\ %{}, opts \\ [])

 By default, returns a list of subscriptions that have not been canceled. In order to list canceled subscriptions, specify status=canceled.

 retrieve(client, subscription_exposed_id, params \\ %{}, opts \\ [])

 Retrieves the subscription with the given ID.

 search(client, params \\ %{}, opts \\ [])

 Search for subscriptions you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.

 update(client, subscription_exposed_id, params \\ %{}, opts \\ [])

 Updates an existing subscription on a customer to match the specified parameters. When changing plans or quantities, we will optionally prorate the price we charge next month to make up for any price changes. To preview how the proration will be calculated, use the upcoming invoice endpoint.

 Anchor for this section

Types

 Link to this type

 acss_debit()

 View Source

 @type acss_debit() :: %{
 optional(:mandate_options) => mandate_options(),
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

 Link to this type

 add_invoice_items()

 View Source

 @type add_invoice_items() :: %{
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary()
}

 Link to this type

 automatic_tax()

 View Source

 @type automatic_tax() :: %{optional(:enabled) => boolean()}

Automatic tax settings for this subscription. We recommend you only include this parameter when the existing value is being changed.

 Link to this type

 bancontact()

 View Source

 @type bancontact() :: %{optional(:preferred_language) => :de | :en | :fr | :nl}

 Link to this type

 bank_transfer()

 View Source

 @type bank_transfer() :: %{
 optional(:eu_bank_transfer) => eu_bank_transfer(),
 optional(:type) => binary()
}

Configuration for the bank transfer funding type, if the funding_type is set to bank_transfer.

 Link to this type

 billing_thresholds()

 View Source

 @type billing_thresholds() :: %{
 optional(:amount_gte) => integer(),
 optional(:reset_billing_cycle_anchor) => boolean()
}

 Link to this type

 card()

 View Source

 @type card() :: %{
 optional(:mandate_options) => mandate_options(),
 optional(:network) =>
 :amex
 | :cartes_bancaires
 | :diners
 | :discover
 | :interac
 | :jcb
 | :mastercard
 | :unionpay
 | :unknown
 | :visa,
 optional(:request_three_d_secure) => :any | :automatic
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 current_period_end()

 View Source

 @type current_period_end() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 current_period_start()

 View Source

 @type current_period_start() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 customer_balance()

 View Source

 @type customer_balance() :: %{
 optional(:bank_transfer) => bank_transfer(),
 optional(:funding_type) => binary()
}

 Link to this type

 eu_bank_transfer()

 View Source

 @type eu_bank_transfer() :: %{optional(:country) => binary()}

Configuration for eu_bank_transfer funding type.

 Link to this type

 financial_connections()

 View Source

 @type financial_connections() :: %{
 optional(:permissions) => [
 :balances | :ownership | :payment_method | :transactions
]
}

Additional fields for Financial Connections Session creation

 Link to this type

 items()

 View Source

 @type items() :: %{
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:plan) => binary(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary()
}

 Link to this type

 mandate_options()

 View Source

 @type mandate_options() :: %{optional(:transaction_type) => :business | :personal}

Additional fields for Mandate creation

 Link to this type

 pause_collection()

 View Source

 @type pause_collection() :: %{
 optional(:behavior) => :keep_as_draft | :mark_uncollectible | :void,
 optional(:resumes_at) => integer()
}

 Link to this type

 payment_method_options()

 View Source

 @type payment_method_options() :: %{
 optional(:acss_debit) => acss_debit() | binary(),
 optional(:bancontact) => bancontact() | binary(),
 optional(:card) => card() | binary(),
 optional(:customer_balance) => customer_balance() | binary(),
 optional(:konbini) => map() | binary(),
 optional(:us_bank_account) => us_bank_account() | binary()
}

Payment-method-specific configuration to provide to invoices created by the subscription.

 Link to this type

 payment_settings()

 View Source

 @type payment_settings() :: %{
 optional(:payment_method_options) => payment_method_options(),
 optional(:payment_method_types) =>
 [
 :ach_credit_transfer
 | :ach_debit
 | :acss_debit
 | :au_becs_debit
 | :bacs_debit
 | :bancontact
 | :boleto
 | :card
 | :customer_balance
 | :fpx
 | :giropay
 | :grabpay
 | :ideal
 | :konbini
 | :link
 | :paynow
 | :promptpay
 | :sepa_credit_transfer
 | :sepa_debit
 | :sofort
 | :us_bank_account
 | :wechat_pay
]
 | binary(),
 optional(:save_default_payment_method) => :off | :on_subscription
}

Payment settings to pass to invoices created by the subscription.

 Link to this type

 pending_invoice_item_interval()

 View Source

 @type pending_invoice_item_interval() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

 Link to this type

 price_data()

 View Source

 @type price_data() :: %{
 optional(:currency) => binary(),
 optional(:product) => binary(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object inline.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

The recurring components of a price such as interval and interval_count.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Subscription{
 application: (binary() | term() | term()) | nil,
 application_fee_percent: term() | nil,
 automatic_tax: term(),
 billing_cycle_anchor: integer(),
 billing_thresholds: term() | nil,
 cancel_at: integer() | nil,
 cancel_at_period_end: boolean(),
 canceled_at: integer() | nil,
 collection_method: binary(),
 created: integer(),
 currency: binary(),
 current_period_end: integer(),
 current_period_start: integer(),
 customer: binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t(),
 days_until_due: integer() | nil,
 default_payment_method: (binary() | Stripe.PaymentMethod.t()) | nil,
 default_source: (binary() | Stripe.PaymentSource.t()) | nil,
 default_tax_rates: term() | nil,
 description: binary() | nil,
 discount: term() | nil,
 ended_at: integer() | nil,
 id: binary(),
 items: term(),
 latest_invoice: (binary() | Stripe.Invoice.t()) | nil,
 livemode: boolean(),
 metadata: term(),
 next_pending_invoice_item_invoice: integer() | nil,
 object: binary(),
 on_behalf_of: (binary() | Stripe.Account.t()) | nil,
 pause_collection: term() | nil,
 payment_settings: term() | nil,
 pending_invoice_item_interval: term() | nil,
 pending_setup_intent: (binary() | Stripe.SetupIntent.t()) | nil,
 pending_update: term() | nil,
 schedule: (binary() | Stripe.SubscriptionSchedule.t()) | nil,
 start_date: integer(),
 status: binary(),
 test_clock: (binary() | Stripe.TestHelpers.TestClock.t()) | nil,
 transfer_data: term() | nil,
 trial_end: integer() | nil,
 trial_start: integer() | nil
}

The subscription type.
	application_fee_percent A non-negative decimal between 0 and 100, with at most two decimal places. This represents the percentage of the subscription invoice subtotal that will be transferred to the application owner's Stripe account.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	collection_method Either charge_automatically, or send_invoice. When charging automatically, Stripe will attempt to pay this subscription at the end of the cycle using the default source attached to the customer. When sending an invoice, Stripe will email your customer an invoice with payment instructions and mark the subscription as active.
	default_payment_method ID of the default payment method for the subscription. It must belong to the customer associated with the subscription. This takes precedence over default_source. If neither are set, invoices will use the customer's invoice_settings.default_payment_method or default_source.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	description The subscription's description, meant to be displayable to the customer. Use this field to optionally store an explanation of the subscription for rendering in Stripe surfaces.
	pending_setup_intent You can use this SetupIntent to collect user authentication when creating a subscription without immediate payment or updating a subscription's payment method, allowing you to optimize for off-session payments. Learn more in the SCA Migration Guide.
	discount Describes the current discount applied to this subscription, if there is one. When billing, a discount applied to a subscription overrides a discount applied on a customer-wide basis.
	start_date Date when the subscription was first created. The date might differ from the created date due to backdating.
	on_behalf_of The account (if any) the charge was made on behalf of for charges associated with this subscription. See the Connect documentation for details.
	pause_collection If specified, payment collection for this subscription will be paused.
	customer ID of the customer who owns the subscription.
	ended_at If the subscription has ended, the date the subscription ended.
	days_until_due Number of days a customer has to pay invoices generated by this subscription. This value will be null for subscriptions where collection_method=charge_automatically.
	payment_settings Payment settings passed on to invoices created by the subscription.
	application ID of the Connect Application that created the subscription.
	pending_invoice_item_interval Specifies an interval for how often to bill for any pending invoice items. It is analogous to calling Create an invoice for the given subscription at the specified interval.
	billing_thresholds Define thresholds at which an invoice will be sent, and the subscription advanced to a new billing period
	next_pending_invoice_item_invoice Specifies the approximate timestamp on which any pending invoice items will be billed according to the schedule provided at pending_invoice_item_interval.
	default_source ID of the default payment source for the subscription. It must belong to the customer associated with the subscription and be in a chargeable state. If default_payment_method is also set, default_payment_method will take precedence. If neither are set, invoices will use the customer's invoice_settings.default_payment_method or default_source.
	cancel_at_period_end If the subscription has been canceled with the at_period_end flag set to true, cancel_at_period_end on the subscription will be true. You can use this attribute to determine whether a subscription that has a status of active is scheduled to be canceled at the end of the current period.
	object String representing the object's type. Objects of the same type share the same value.
	billing_cycle_anchor Determines the date of the first full invoice, and, for plans with month or year intervals, the day of the month for subsequent invoices. The timestamp is in UTC format.
	test_clock ID of the test clock this subscription belongs to.
	automatic_tax
	schedule The schedule attached to the subscription
	canceled_at If the subscription has been canceled, the date of that cancellation. If the subscription was canceled with cancel_at_period_end, canceled_at will reflect the time of the most recent update request, not the end of the subscription period when the subscription is automatically moved to a canceled state.
	current_period_end End of the current period that the subscription has been invoiced for. At the end of this period, a new invoice will be created.
	latest_invoice The most recent invoice this subscription has generated.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	trial_end If the subscription has a trial, the end of that trial.
	cancel_at A date in the future at which the subscription will automatically get canceled
	trial_start If the subscription has a trial, the beginning of that trial.
	current_period_start Start of the current period that the subscription has been invoiced for.
	status Possible values are incomplete, incomplete_expired, trialing, active, past_due, canceled, or unpaid.

For collection_method=charge_automatically a subscription moves into incomplete if the initial payment attempt fails. A subscription in this state can only have metadata and default_source updated. Once the first invoice is paid, the subscription moves into an active state. If the first invoice is not paid within 23 hours, the subscription transitions to incomplete_expired. This is a terminal state, the open invoice will be voided and no further invoices will be generated.
A subscription that is currently in a trial period is trialing and moves to active when the trial period is over.
If subscription collection_method=charge_automatically it becomes past_due when payment to renew it fails and canceled or unpaid (depending on your subscriptions settings) when Stripe has exhausted all payment retry attempts.
If subscription collection_method=send_invoice it becomes past_due when its invoice is not paid by the due date, and canceled or unpaid if it is still not paid by an additional deadline after that. Note that when a subscription has a status of unpaid, no subsequent invoices will be attempted (invoices will be created, but then immediately automatically closed). After receiving updated payment information from a customer, you may choose to reopen and pay their closed invoices.
	items List of subscription items, each with an attached price.
	transfer_data The account (if any) the subscription's payments will be attributed to for tax reporting, and where funds from each payment will be transferred to for each of the subscription's invoices.
	id Unique identifier for the object.
	pending_update If specified, pending updates that will be applied to the subscription once the latest_invoice has been paid.
	default_tax_rates The tax rates that will apply to any subscription item that does not have tax_rates set. Invoices created will have their default_tax_rates populated from the subscription.

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount_percent) => number(),
 optional(:destination) => binary()
}

If specified, the funds from the subscription's invoices will be transferred to the destination and the ID of the resulting transfers will be found on the resulting charges.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{
 optional(:financial_connections) => financial_connections(),
 optional(:verification_method) => :automatic | :instant | :microdeposits
}

 Anchor for this section

Functions

 Link to this function

 cancel(client, subscription_exposed_id, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 subscription_exposed_id :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:invoice_now) => boolean(),
 optional(:prorate) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancels a customer’s subscription immediately. The customer will not be charged again for the subscription.
Note, however, that any pending invoice items that you’ve created will still be charged for at the end of the period, unless manually deleted. If you’ve set the subscription to cancel at the end of the period, any pending prorations will also be left in place and collected at the end of the period. But if the subscription is set to cancel immediately, pending prorations will be removed.
By default, upon subscription cancellation, Stripe will stop automatic collection of all finalized invoices for the customer. This is intended to prevent unexpected payment attempts after the customer has canceled a subscription. However, you can resume automatic collection of the invoices manually after subscription cancellation to have us proceed. Or, you could check for unpaid invoices before allowing the customer to cancel the subscription at all.
Details
	Method: delete
	Path: /v1/subscriptions/{subscription_exposed_id}

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:add_invoice_items) => [add_invoice_items()],
 optional(:application_fee_percent) => number(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:backdate_start_date) => integer(),
 optional(:billing_cycle_anchor) => integer(),
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:cancel_at) => integer(),
 optional(:cancel_at_period_end) => boolean(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:coupon) => binary(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:days_until_due) => integer(),
 optional(:default_payment_method) => binary(),
 optional(:default_source) => binary(),
 optional(:default_tax_rates) => [binary()] | binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:items) => [items()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:off_session) => boolean(),
 optional(:on_behalf_of) => binary() | binary(),
 optional(:payment_behavior) =>
 :allow_incomplete
 | :default_incomplete
 | :error_if_incomplete
 | :pending_if_incomplete,
 optional(:payment_settings) => payment_settings(),
 optional(:pending_invoice_item_interval) =>
 pending_invoice_item_interval() | binary(),
 optional(:promotion_code) => binary(),
 optional(:proration_behavior) =>
 :always_invoice | :create_prorations | :none,
 optional(:transfer_data) => transfer_data(),
 optional(:trial_end) => :now | integer(),
 optional(:trial_from_plan) => boolean(),
 optional(:trial_period_days) => integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new subscription on an existing customer. Each customer can have up to 500 active or scheduled subscriptions.
When you create a subscription with collection_method=charge_automatically, the first invoice is finalized as part of the request.The payment_behavior parameter determines the exact behavior of the initial payment.
To start subscriptions where the first invoice always begins in a draft status, use subscription schedules instead.Schedules provide the flexibility to model more complex billing configurations that change over time.
Details
	Method: post
	Path: /v1/subscriptions

 Link to this function

 delete_discount(client, subscription_exposed_id, opts \\ [])

 View Source

 @spec delete_discount(
 client :: Stripe.t(),
 subscription_exposed_id :: binary(),
 opts :: Keyword.t()
) ::
 {:ok, Stripe.DeletedDiscount.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Removes the currently applied discount on a subscription.
Details
	Method: delete
	Path: /v1/subscriptions/{subscription_exposed_id}/discount

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:created) => created() | integer(),
 optional(:current_period_end) => current_period_end() | integer(),
 optional(:current_period_start) => current_period_start() | integer(),
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:plan) => binary(),
 optional(:price) => binary(),
 optional(:starting_after) => binary(),
 optional(:status) =>
 :active
 | :all
 | :canceled
 | :ended
 | :incomplete
 | :incomplete_expired
 | :past_due
 | :trialing
 | :unpaid,
 optional(:test_clock) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

By default, returns a list of subscriptions that have not been canceled. In order to list canceled subscriptions, specify status=canceled.
Details
	Method: get
	Path: /v1/subscriptions

 Link to this function

 retrieve(client, subscription_exposed_id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 subscription_exposed_id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the subscription with the given ID.
Details
	Method: get
	Path: /v1/subscriptions/{subscription_exposed_id}

 Link to this function

 search(client, params \\ %{}, opts \\ [])

 View Source

 @spec search(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:page) => binary(),
 optional(:query) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.SearchResult.t(t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Search for subscriptions you’ve previously created using Stripe’s Search Query Language.Don’t use search in read-after-write flows where strict consistency is necessary. Under normal operating
conditions, data is searchable in less than a minute. Occasionally, propagation of new or updated data can be up
to an hour behind during outages. Search functionality is not available to merchants in India.
Details
	Method: get
	Path: /v1/subscriptions/search

 Link to this function

 update(client, subscription_exposed_id, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 subscription_exposed_id :: binary(),
 params :: %{
 optional(:add_invoice_items) => [add_invoice_items()],
 optional(:application_fee_percent) => number(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:billing_cycle_anchor) => :now | :unchanged,
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:cancel_at) => integer() | binary(),
 optional(:cancel_at_period_end) => boolean(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:coupon) => binary(),
 optional(:days_until_due) => integer(),
 optional(:default_payment_method) => binary(),
 optional(:default_source) => binary(),
 optional(:default_tax_rates) => [binary()] | binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:items) => [items()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:off_session) => boolean(),
 optional(:on_behalf_of) => binary() | binary(),
 optional(:pause_collection) => pause_collection() | binary(),
 optional(:payment_behavior) =>
 :allow_incomplete
 | :default_incomplete
 | :error_if_incomplete
 | :pending_if_incomplete,
 optional(:payment_settings) => payment_settings(),
 optional(:pending_invoice_item_interval) =>
 pending_invoice_item_interval() | binary(),
 optional(:promotion_code) => binary(),
 optional(:proration_behavior) =>
 :always_invoice | :create_prorations | :none,
 optional(:proration_date) => integer(),
 optional(:transfer_data) => transfer_data() | binary(),
 optional(:trial_end) => :now | integer(),
 optional(:trial_from_plan) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing subscription on a customer to match the specified parameters. When changing plans or quantities, we will optionally prorate the price we charge next month to make up for any price changes. To preview how the proration will be calculated, use the upcoming invoice endpoint.
Details
	Method: post
	Path: /v1/subscriptions/{subscription_exposed_id}

 Stripe.SubscriptionItem - Striped v0.5.0

Stripe.SubscriptionItem

Subscription items allow you to create customer subscriptions with more than
one plan, making it easy to represent complex billing relationships.

 Anchor for this section

 Summary

 Types

 billing_thresholds()

 price_data()

 Data used to generate a new Price object inline.

 recurring()

 The recurring components of a price such as interval and interval_count.

 t()

 The subscription_item type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Adds a new item to an existing subscription. No existing items will be changed or replaced.

 delete(client, item, params \\ %{}, opts \\ [])

 Deletes an item from the subscription. Removing a subscription item from a subscription will not cancel the subscription.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your subscription items for a given subscription.

 retrieve(client, item, params \\ %{}, opts \\ [])

 Retrieves the subscription item with the given ID.

 update(client, item, params \\ %{}, opts \\ [])

 Updates the plan or quantity of an item on a current subscription.

 usage_record_summaries(client, subscription_item, params \\ %{}, opts \\ [])

 For the specified subscription item, returns a list of summary objects. Each object in the list provides usage information that’s been summarized from multiple usage records and over a subscription billing period (e.g., 15 usage records in the month of September).

 Anchor for this section

Types

 Link to this type

 billing_thresholds()

 View Source

 @type billing_thresholds() :: %{optional(:usage_gte) => integer()}

 Link to this type

 price_data()

 View Source

 @type price_data() :: %{
 optional(:currency) => binary(),
 optional(:product) => binary(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object inline.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

The recurring components of a price such as interval and interval_count.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.SubscriptionItem{
 billing_thresholds: term() | nil,
 created: integer(),
 id: binary(),
 metadata: term(),
 object: binary(),
 plan: Stripe.Plan.t(),
 price: Stripe.Price.t(),
 quantity: integer(),
 subscription: binary(),
 tax_rates: term() | nil
}

The subscription_item type.
	billing_thresholds Define thresholds at which an invoice will be sent, and the related subscription advanced to a new billing period
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	id Unique identifier for the object.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	plan
	price
	quantity The quantity of the plan to which the customer should be subscribed.
	subscription The subscription this subscription_item belongs to.
	tax_rates The tax rates which apply to this subscription_item. When set, the default_tax_rates on the subscription do not apply to this subscription_item.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:payment_behavior) =>
 :allow_incomplete
 | :default_incomplete
 | :error_if_incomplete
 | :pending_if_incomplete,
 optional(:plan) => binary(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:proration_behavior) =>
 :always_invoice | :create_prorations | :none,
 optional(:proration_date) => integer(),
 optional(:quantity) => integer(),
 optional(:subscription) => binary(),
 optional(:tax_rates) => [binary()] | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Adds a new item to an existing subscription. No existing items will be changed or replaced.
Details
	Method: post
	Path: /v1/subscription_items

 Link to this function

 delete(client, item, params \\ %{}, opts \\ [])

 View Source

 @spec delete(
 client :: Stripe.t(),
 item :: binary(),
 params :: %{
 optional(:clear_usage) => boolean(),
 optional(:proration_behavior) =>
 :always_invoice | :create_prorations | :none,
 optional(:proration_date) => integer()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.DeletedSubscriptionItem.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes an item from the subscription. Removing a subscription item from a subscription will not cancel the subscription.
Details
	Method: delete
	Path: /v1/subscription_items/{item}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:subscription) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your subscription items for a given subscription.
Details
	Method: get
	Path: /v1/subscription_items

 Link to this function

 retrieve(client, item, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 item :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the subscription item with the given ID.
Details
	Method: get
	Path: /v1/subscription_items/{item}

 Link to this function

 update(client, item, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 item :: binary(),
 params :: %{
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:off_session) => boolean(),
 optional(:payment_behavior) =>
 :allow_incomplete
 | :default_incomplete
 | :error_if_incomplete
 | :pending_if_incomplete,
 optional(:plan) => binary(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:proration_behavior) =>
 :always_invoice | :create_prorations | :none,
 optional(:proration_date) => integer(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the plan or quantity of an item on a current subscription.
Details
	Method: post
	Path: /v1/subscription_items/{item}

 Link to this function

 usage_record_summaries(client, subscription_item, params \\ %{}, opts \\ [])

 View Source

 @spec usage_record_summaries(
 client :: Stripe.t(),
 subscription_item :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.UsageRecordSummary.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

For the specified subscription item, returns a list of summary objects. Each object in the list provides usage information that’s been summarized from multiple usage records and over a subscription billing period (e.g., 15 usage records in the month of September).
The list is sorted in reverse-chronological order (newest first). The first list item represents the most current usage period that hasn’t ended yet. Since new usage records can still be added, the returned summary information for the subscription item’s ID should be seen as unstable until the subscription billing period ends.
Details
	Method: get
	Path: /v1/subscription_items/{subscription_item}/usage_record_summaries

 Stripe.SubscriptionSchedule - Striped v0.5.0

Stripe.SubscriptionSchedule

A subscription schedule allows you to create and manage the lifecycle of a subscription by predefining expected changes.
Related guide: Subscription Schedules.

 Anchor for this section

 Summary

 Types

 add_invoice_items()

 automatic_tax()

 Automatic tax settings for this phase.

 billing_thresholds()

 canceled_at()

 completed_at()

 created()

 default_settings()

 Object representing the subscription schedule's default settings.

 invoice_settings()

 All invoices will be billed using the specified settings.

 items()

 phases()

 price_data()

 Data used to generate a new Price object inline.

 recurring()

 The recurring components of a price such as interval and interval_count.

 released_at()

 t()

 The subscription_schedule type.

 transfer_data()

 Functions

 cancel(client, schedule, params \\ %{}, opts \\ [])

 Cancels a subscription schedule and its associated subscription immediately (if the subscription schedule has an active subscription). A subscription schedule can only be canceled if its status is not_started or active.

 create(client, params \\ %{}, opts \\ [])

 Creates a new subscription schedule object. Each customer can have up to 500 active or scheduled subscriptions.

 list(client, params \\ %{}, opts \\ [])

 Retrieves the list of your subscription schedules.

 release(client, schedule, params \\ %{}, opts \\ [])

 Releases the subscription schedule immediately, which will stop scheduling of its phases, but leave any existing subscription in place. A schedule can only be released if its status is not_started or active. If the subscription schedule is currently associated with a subscription, releasing it will remove its subscription property and set the subscription’s ID to the released_subscription property.

 retrieve(client, schedule, params \\ %{}, opts \\ [])

 Retrieves the details of an existing subscription schedule. You only need to supply the unique subscription schedule identifier that was returned upon subscription schedule creation.

 update(client, schedule, params \\ %{}, opts \\ [])

 Updates an existing subscription schedule.

 Anchor for this section

Types

 Link to this type

 add_invoice_items()

 View Source

 @type add_invoice_items() :: %{
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary()
}

 Link to this type

 automatic_tax()

 View Source

 @type automatic_tax() :: %{optional(:enabled) => boolean()}

Automatic tax settings for this phase.

 Link to this type

 billing_thresholds()

 View Source

 @type billing_thresholds() :: %{
 optional(:amount_gte) => integer(),
 optional(:reset_billing_cycle_anchor) => boolean()
}

 Link to this type

 canceled_at()

 View Source

 @type canceled_at() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 completed_at()

 View Source

 @type completed_at() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 default_settings()

 View Source

 @type default_settings() :: %{
 optional(:application_fee_percent) => number(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:billing_cycle_anchor) => :automatic | :phase_start,
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:default_payment_method) => binary(),
 optional(:description) => binary(),
 optional(:invoice_settings) => invoice_settings(),
 optional(:on_behalf_of) => binary() | binary(),
 optional(:transfer_data) => transfer_data() | binary()
}

Object representing the subscription schedule's default settings.

 Link to this type

 invoice_settings()

 View Source

 @type invoice_settings() :: %{optional(:days_until_due) => integer()}

All invoices will be billed using the specified settings.

 Link to this type

 items()

 View Source

 @type items() :: %{
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:plan) => binary(),
 optional(:price) => binary(),
 optional(:price_data) => price_data(),
 optional(:quantity) => integer(),
 optional(:tax_rates) => [binary()] | binary()
}

 Link to this type

 phases()

 View Source

 @type phases() :: %{
 optional(:add_invoice_items) => [add_invoice_items()],
 optional(:application_fee_percent) => number(),
 optional(:automatic_tax) => automatic_tax(),
 optional(:billing_cycle_anchor) => :automatic | :phase_start,
 optional(:billing_thresholds) => billing_thresholds() | binary(),
 optional(:collection_method) => :charge_automatically | :send_invoice,
 optional(:coupon) => binary(),
 optional(:currency) => binary(),
 optional(:default_payment_method) => binary(),
 optional(:default_tax_rates) => [binary()] | binary(),
 optional(:description) => binary(),
 optional(:end_date) => integer(),
 optional(:invoice_settings) => invoice_settings(),
 optional(:items) => [items()],
 optional(:iterations) => integer(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:on_behalf_of) => binary(),
 optional(:proration_behavior) => :always_invoice | :create_prorations | :none,
 optional(:transfer_data) => transfer_data(),
 optional(:trial) => boolean(),
 optional(:trial_end) => integer()
}

 Link to this type

 price_data()

 View Source

 @type price_data() :: %{
 optional(:currency) => binary(),
 optional(:product) => binary(),
 optional(:recurring) => recurring(),
 optional(:tax_behavior) => :exclusive | :inclusive | :unspecified,
 optional(:unit_amount) => integer(),
 optional(:unit_amount_decimal) => binary()
}

Data used to generate a new Price object inline.

 Link to this type

 recurring()

 View Source

 @type recurring() :: %{
 optional(:interval) => :day | :month | :week | :year,
 optional(:interval_count) => integer()
}

The recurring components of a price such as interval and interval_count.

 Link to this type

 released_at()

 View Source

 @type released_at() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.SubscriptionSchedule{
 application: (binary() | term() | term()) | nil,
 canceled_at: integer() | nil,
 completed_at: integer() | nil,
 created: integer(),
 current_phase: term() | nil,
 customer: binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t(),
 default_settings: term(),
 end_behavior: binary(),
 id: binary(),
 livemode: boolean(),
 metadata: term() | nil,
 object: binary(),
 phases: term(),
 released_at: integer() | nil,
 released_subscription: binary() | nil,
 status: binary(),
 subscription: (binary() | Stripe.Subscription.t()) | nil,
 test_clock: (binary() | Stripe.TestHelpers.TestClock.t()) | nil
}

The subscription_schedule type.
	application ID of the Connect Application that created the schedule.
	canceled_at Time at which the subscription schedule was canceled. Measured in seconds since the Unix epoch.
	completed_at Time at which the subscription schedule was completed. Measured in seconds since the Unix epoch.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	current_phase Object representing the start and end dates for the current phase of the subscription schedule, if it is active.
	customer ID of the customer who owns the subscription schedule.
	default_settings
	end_behavior Behavior of the subscription schedule and underlying subscription when it ends. Possible values are release and cancel.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	phases Configuration for the subscription schedule's phases.
	released_at Time at which the subscription schedule was released. Measured in seconds since the Unix epoch.
	released_subscription ID of the subscription once managed by the subscription schedule (if it is released).
	status The present status of the subscription schedule. Possible values are not_started, active, completed, released, and canceled. You can read more about the different states in our behavior guide.
	subscription ID of the subscription managed by the subscription schedule.
	test_clock ID of the test clock this subscription schedule belongs to.

 Link to this type

 transfer_data()

 View Source

 @type transfer_data() :: %{
 optional(:amount_percent) => number(),
 optional(:destination) => binary()
}

 Anchor for this section

Functions

 Link to this function

 cancel(client, schedule, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 schedule :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:invoice_now) => boolean(),
 optional(:prorate) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancels a subscription schedule and its associated subscription immediately (if the subscription schedule has an active subscription). A subscription schedule can only be canceled if its status is not_started or active.
Details
	Method: post
	Path: /v1/subscription_schedules/{schedule}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:customer) => binary(),
 optional(:default_settings) => default_settings(),
 optional(:end_behavior) => :cancel | :none | :release | :renew,
 optional(:expand) => [binary()],
 optional(:from_subscription) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:phases) => [phases()],
 optional(:start_date) => integer() | :now
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new subscription schedule object. Each customer can have up to 500 active or scheduled subscriptions.
Details
	Method: post
	Path: /v1/subscription_schedules

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:canceled_at) => canceled_at() | integer(),
 optional(:completed_at) => completed_at() | integer(),
 optional(:created) => created() | integer(),
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:released_at) => released_at() | integer(),
 optional(:scheduled) => boolean(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the list of your subscription schedules.
Details
	Method: get
	Path: /v1/subscription_schedules

 Link to this function

 release(client, schedule, params \\ %{}, opts \\ [])

 View Source

 @spec release(
 client :: Stripe.t(),
 schedule :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:preserve_cancel_date) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Releases the subscription schedule immediately, which will stop scheduling of its phases, but leave any existing subscription in place. A schedule can only be released if its status is not_started or active. If the subscription schedule is currently associated with a subscription, releasing it will remove its subscription property and set the subscription’s ID to the released_subscription property.
Details
	Method: post
	Path: /v1/subscription_schedules/{schedule}/release

 Link to this function

 retrieve(client, schedule, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 schedule :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing subscription schedule. You only need to supply the unique subscription schedule identifier that was returned upon subscription schedule creation.
Details
	Method: get
	Path: /v1/subscription_schedules/{schedule}

 Link to this function

 update(client, schedule, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 schedule :: binary(),
 params :: %{
 optional(:default_settings) => default_settings(),
 optional(:end_behavior) => :cancel | :none | :release | :renew,
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:phases) => [phases()],
 optional(:proration_behavior) =>
 :always_invoice | :create_prorations | :none
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing subscription schedule.
Details
	Method: post
	Path: /v1/subscription_schedules/{schedule}

 Stripe.TestHelpers.TestClock - Striped v0.5.0

Stripe.TestHelpers.TestClock

A test clock enables deterministic control over objects in testmode. With a test clock, you can create
objects at a frozen time in the past or future, and advance to a specific future time to observe webhooks and state changes. After the clock advances,
you can either validate the current state of your scenario (and test your assumptions), change the current state of your scenario (and test more complex scenarios), or keep advancing forward in time.

 Anchor for this section

 Summary

 Types

 t()

 The test_helpers.test_clock type.

 Functions

 advance(client, test_clock, params \\ %{}, opts \\ [])

 Starts advancing a test clock to a specified time in the future. Advancement is done when status changes to Ready.

 create(client, params \\ %{}, opts \\ [])

 Creates a new test clock that can be attached to new customers and quotes.

 delete(client, test_clock, opts \\ [])

 Deletes a test clock.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your test clocks.

 retrieve(client, test_clock, params \\ %{}, opts \\ [])

 Retrieves a test clock.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.TestHelpers.TestClock{
 created: integer(),
 deletes_after: integer(),
 frozen_time: integer(),
 id: binary(),
 livemode: boolean(),
 name: binary() | nil,
 object: binary(),
 status: binary()
}

The test_helpers.test_clock type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	deletes_after Time at which this clock is scheduled to auto delete.
	frozen_time Time at which all objects belonging to this clock are frozen.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	name The custom name supplied at creation.
	object String representing the object's type. Objects of the same type share the same value.
	status The status of the Test Clock.

 Anchor for this section

Functions

 Link to this function

 advance(client, test_clock, params \\ %{}, opts \\ [])

 View Source

 @spec advance(
 client :: Stripe.t(),
 test_clock :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:frozen_time) => integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Starts advancing a test clock to a specified time in the future. Advancement is done when status changes to Ready.
Details
	Method: post
	Path: /v1/test_helpers/test_clocks/{test_clock}/advance

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:frozen_time) => integer(),
 optional(:name) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new test clock that can be attached to new customers and quotes.
Details
	Method: post
	Path: /v1/test_helpers/test_clocks

 Link to this function

 delete(client, test_clock, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), test_clock :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedTestHelpers.TestClock.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes a test clock.
Details
	Method: delete
	Path: /v1/test_helpers/test_clocks/{test_clock}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your test clocks.
Details
	Method: get
	Path: /v1/test_helpers/test_clocks

 Link to this function

 retrieve(client, test_clock, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 test_clock :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a test clock.
Details
	Method: get
	Path: /v1/test_helpers/test_clocks/{test_clock}

 Stripe.UsageRecord - Striped v0.5.0

Stripe.UsageRecord

Usage records allow you to report customer usage and metrics to Stripe for
metered billing of subscription prices.
Related guide: Metered Billing.

 Anchor for this section

 Summary

 Types

 t()

 The usage_record type.

 Functions

 create(client, subscription_item, params \\ %{}, opts \\ [])

 Creates a usage record for a specified subscription item and date, and fills it with a quantity.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.UsageRecord{
 id: binary(),
 livemode: boolean(),
 object: binary(),
 quantity: integer(),
 subscription_item: binary(),
 timestamp: integer()
}

The usage_record type.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	quantity The usage quantity for the specified date.
	subscription_item The ID of the subscription item this usage record contains data for.
	timestamp The timestamp when this usage occurred.

 Anchor for this section

Functions

 Link to this function

 create(client, subscription_item, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 subscription_item :: binary(),
 params :: %{
 optional(:action) => :increment | :set,
 optional(:expand) => [binary()],
 optional(:quantity) => integer(),
 optional(:timestamp) => :now | integer()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a usage record for a specified subscription item and date, and fills it with a quantity.
Usage records provide quantity information that Stripe uses to track how much a customer is using your service. With usage information and the pricing model set up by the metered billing plan, Stripe helps you send accurate invoices to your customers.
The default calculation for usage is to add up all the quantity values of the usage records within a billing period. You can change this default behavior with the billing plan’s aggregate_usage parameter. When there is more than one usage record with the same timestamp, Stripe adds the quantity values together. In most cases, this is the desired resolution, however, you can change this behavior with the action parameter.
The default pricing model for metered billing is per-unit pricing. For finer granularity, you can configure metered billing to have a tiered pricing model.
Details
	Method: post
	Path: /v1/subscription_items/{subscription_item}/usage_records

 Stripe.UsageRecordSummary - Striped v0.5.0

Stripe.UsageRecordSummary

 Anchor for this section

 Summary

 Types

 t()

 The usage_record_summary type.

 Functions

 list(client, subscription_item, params \\ %{}, opts \\ [])

 For the specified subscription item, returns a list of summary objects. Each object in the list provides usage information that’s been summarized from multiple usage records and over a subscription billing period (e.g., 15 usage records in the month of September).

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.UsageRecordSummary{
 id: binary(),
 invoice: binary() | nil,
 livemode: boolean(),
 object: binary(),
 period: term(),
 subscription_item: binary(),
 total_usage: integer()
}

The usage_record_summary type.
	id Unique identifier for the object.
	invoice The invoice in which this usage period has been billed for.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	period
	subscription_item The ID of the subscription item this summary is describing.
	total_usage The total usage within this usage period.

 Anchor for this section

Functions

 Link to this function

 list(client, subscription_item, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 subscription_item :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

For the specified subscription item, returns a list of summary objects. Each object in the list provides usage information that’s been summarized from multiple usage records and over a subscription billing period (e.g., 15 usage records in the month of September).
The list is sorted in reverse-chronological order (newest first). The first list item represents the most current usage period that hasn’t ended yet. Since new usage records can still be added, the returned summary information for the subscription item’s ID should be seen as unstable until the subscription billing period ends.
Details
	Method: get
	Path: /v1/subscription_items/{subscription_item}/usage_record_summaries

 Stripe.Account - Striped v0.5.0

Stripe.Account

This is an object representing a Stripe account. You can retrieve it to see
properties on the account like its current e-mail address or if the account is
enabled yet to make live charges.
Some properties, marked below, are available only to platforms that want to
create and manage Express or Custom accounts.

 Anchor for this section

 Summary

 Types

 acss_debit_payments()

 The acss_debit_payments capability.

 additional_document()

 A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.

 address()

 The company's primary address.

 address_kana()

 The Kana variation of the company's primary address (Japan only).

 address_kanji()

 The Kanji variation of the the individual's primary address (Japan only).

 affirm_payments()

 The affirm_payments capability.

 afterpay_clearpay_payments()

 The afterpay_clearpay_payments capability.

 au_becs_debit_payments()

 The au_becs_debit_payments capability.

 bacs_debit_payments()

 The bacs_debit_payments capability.

 bancontact_payments()

 The bancontact_payments capability.

 bank_account_ownership_verification()

 One or more documents that support the Bank account ownership verification requirement. Must be a document associated with the account’s primary active bank account that displays the last 4 digits of the account number, either a statement or a voided check.

 bank_transfer_payments()

 The bank_transfer_payments capability.

 blik_payments()

 The blik_payments capability.

 boleto_payments()

 The boleto_payments capability.

 branding()

 Settings used to apply the account's branding to email receipts, invoices, Checkout, and other products.

 business_profile()

 Business information about the account.

 capabilities()

 Each key of the dictionary represents a capability, and each capability maps to its settings (e.g. whether it has been requested or not). Each capability will be inactive until you have provided its specific requirements and Stripe has verified them. An account may have some of its requested capabilities be active and some be inactive.

 card_issuing()

 Settings specific to the account's use of the Card Issuing product.

 card_payments()

 Settings specific to card charging on the account.

 cartes_bancaires_payments()

 The cartes_bancaires_payments capability.

 company()

 Information about the company or business. This field is available for any business_type.

 company_license()

 One or more documents that demonstrate proof of a company's license to operate.

 company_memorandum_of_association()

 One or more documents showing the company's Memorandum of Association.

 company_ministerial_decree()

 (Certain countries only) One or more documents showing the ministerial decree legalizing the company's establishment.

 company_registration_verification()

 One or more documents that demonstrate proof of a company's registration with the appropriate local authorities.

 company_tax_id_verification()

 One or more documents that demonstrate proof of a company's tax ID.

 created()

 decline_on()

 Automatically declines certain charge types regardless of whether the card issuer accepted or declined the charge.

 dob()

 document()

 An identifying document, either a passport or local ID card.

 documents()

 Documents that may be submitted to satisfy various informational requests.

 eps_payments()

 The eps_payments capability.

 fpx_payments()

 The fpx_payments capability.

 giropay_payments()

 The giropay_payments capability.

 grabpay_payments()

 The grabpay_payments capability.

 ideal_payments()

 The ideal_payments capability.

 individual()

 Information about the person represented by the account. This field is null unless business_type is set to individual.

 jcb_payments()

 The jcb_payments capability.

 klarna_payments()

 The klarna_payments capability.

 konbini_payments()

 The konbini_payments capability.

 legacy_payments()

 The legacy_payments capability.

 link_payments()

 The link_payments capability.

 ownership_declaration()

 This hash is used to attest that the beneficial owner information provided to Stripe is both current and correct.

 oxxo_payments()

 The oxxo_payments capability.

 p24_payments()

 The p24_payments capability.

 payments()

 Settings that apply across payment methods for charging on the account.

 paynow_payments()

 The paynow_payments capability.

 payouts()

 Settings specific to the account's payouts.

 promptpay_payments()

 The promptpay_payments capability.

 proof_of_registration()

 One or more documents showing the company’s proof of registration with the national business registry.

 registered_address()

 The individual's registered address.

 relationship()

 schedule()

 Details on when funds from charges are available, and when they are paid out to an external account. For details, see our Setting Bank and Debit Card Payouts documentation.

 sepa_debit_payments()

 The sepa_debit_payments capability.

 settings()

 Options for customizing how the account functions within Stripe.

 sofort_payments()

 The sofort_payments capability.

 support_address()

 A publicly available mailing address for sending support issues to.

 t()

 The account type.

 tax_reporting_us_1099_k()

 The tax_reporting_us_1099_k capability.

 tax_reporting_us_1099_misc()

 The tax_reporting_us_1099_misc capability.

 tos_acceptance()

 Details on the account's acceptance of the Stripe Issuing Terms and Disclosures.

 transfers()

 The transfers capability.

 treasury()

 Settings specific to the account's Treasury FinancialAccounts.

 us_bank_account_ach_payments()

 The us_bank_account_ach_payments capability.

 verification()

 Information on the verification state of the company.

 Functions

 capabilities(client, account, params \\ %{}, opts \\ [])

 Returns a list of capabilities associated with the account. The capabilities are returned sorted by creation date, with the most recent capability appearing first.

 create(client, params \\ %{}, opts \\ [])

 With Connect, you can create Stripe accounts for your users.To do this, you’ll first need to register your platform.

 delete(client, account, opts \\ [])

 With Connect, you can delete accounts you manage.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of accounts connected to your platform via Connect. If you’re not a platform, the list is empty.

 persons(client, account, params \\ %{}, opts \\ [])

 Returns a list of people associated with the account’s legal entity. The people are returned sorted by creation date, with the most recent people appearing first.

 reject(client, account, params \\ %{}, opts \\ [])

 With Connect, you may flag accounts as suspicious.

 retrieve(client, params \\ %{}, opts \\ [])

 Retrieves the details of an account.

 update(client, account, params \\ %{}, opts \\ [])

 Updates a connected account by setting the values of the parameters passed. Any parameters not provided are left unchanged. Most parameters can be changed only for Custom accounts. (These are marked Custom Only below.) Parameters marked Custom and Express are not supported for Standard accounts.

 Anchor for this section

Types

 Link to this type

 acss_debit_payments()

 View Source

 @type acss_debit_payments() :: %{optional(:requested) => boolean()}

The acss_debit_payments capability.

 Link to this type

 additional_document()

 View Source

 @type additional_document() :: %{
 optional(:back) => binary(),
 optional(:front) => binary()
}

A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The company's primary address.

 Link to this type

 address_kana()

 View Source

 @type address_kana() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary(),
 optional(:town) => binary()
}

The Kana variation of the company's primary address (Japan only).

 Link to this type

 address_kanji()

 View Source

 @type address_kanji() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary(),
 optional(:town) => binary()
}

The Kanji variation of the the individual's primary address (Japan only).

 Link to this type

 affirm_payments()

 View Source

 @type affirm_payments() :: %{optional(:requested) => boolean()}

The affirm_payments capability.

 Link to this type

 afterpay_clearpay_payments()

 View Source

 @type afterpay_clearpay_payments() :: %{optional(:requested) => boolean()}

The afterpay_clearpay_payments capability.

 Link to this type

 au_becs_debit_payments()

 View Source

 @type au_becs_debit_payments() :: %{optional(:requested) => boolean()}

The au_becs_debit_payments capability.

 Link to this type

 bacs_debit_payments()

 View Source

 @type bacs_debit_payments() :: %{optional(:requested) => boolean()}

The bacs_debit_payments capability.

 Link to this type

 bancontact_payments()

 View Source

 @type bancontact_payments() :: %{optional(:requested) => boolean()}

The bancontact_payments capability.

 Link to this type

 bank_account_ownership_verification()

 View Source

 @type bank_account_ownership_verification() :: %{optional(:files) => [binary()]}

One or more documents that support the Bank account ownership verification requirement. Must be a document associated with the account’s primary active bank account that displays the last 4 digits of the account number, either a statement or a voided check.

 Link to this type

 bank_transfer_payments()

 View Source

 @type bank_transfer_payments() :: %{optional(:requested) => boolean()}

The bank_transfer_payments capability.

 Link to this type

 blik_payments()

 View Source

 @type blik_payments() :: %{optional(:requested) => boolean()}

The blik_payments capability.

 Link to this type

 boleto_payments()

 View Source

 @type boleto_payments() :: %{optional(:requested) => boolean()}

The boleto_payments capability.

 Link to this type

 branding()

 View Source

 @type branding() :: %{
 optional(:icon) => binary(),
 optional(:logo) => binary(),
 optional(:primary_color) => binary(),
 optional(:secondary_color) => binary()
}

Settings used to apply the account's branding to email receipts, invoices, Checkout, and other products.

 Link to this type

 business_profile()

 View Source

 @type business_profile() :: %{
 optional(:mcc) => binary(),
 optional(:name) => binary(),
 optional(:product_description) => binary(),
 optional(:support_address) => support_address(),
 optional(:support_email) => binary(),
 optional(:support_phone) => binary(),
 optional(:support_url) => binary() | binary(),
 optional(:url) => binary()
}

Business information about the account.

 Link to this type

 capabilities()

 View Source

 @type capabilities() :: %{
 optional(:link_payments) => link_payments(),
 optional(:card_issuing) => card_issuing(),
 optional(:treasury) => treasury(),
 optional(:oxxo_payments) => oxxo_payments(),
 optional(:affirm_payments) => affirm_payments(),
 optional(:promptpay_payments) => promptpay_payments(),
 optional(:bank_transfer_payments) => bank_transfer_payments(),
 optional(:sofort_payments) => sofort_payments(),
 optional(:acss_debit_payments) => acss_debit_payments(),
 optional(:cartes_bancaires_payments) => cartes_bancaires_payments(),
 optional(:bacs_debit_payments) => bacs_debit_payments(),
 optional(:tax_reporting_us_1099_misc) => tax_reporting_us_1099_misc(),
 optional(:paynow_payments) => paynow_payments(),
 optional(:klarna_payments) => klarna_payments(),
 optional(:us_bank_account_ach_payments) => us_bank_account_ach_payments(),
 optional(:card_payments) => card_payments(),
 optional(:p24_payments) => p24_payments(),
 optional(:boleto_payments) => boleto_payments(),
 optional(:fpx_payments) => fpx_payments(),
 optional(:au_becs_debit_payments) => au_becs_debit_payments(),
 optional(:konbini_payments) => konbini_payments(),
 optional(:ideal_payments) => ideal_payments(),
 optional(:afterpay_clearpay_payments) => afterpay_clearpay_payments(),
 optional(:blik_payments) => blik_payments(),
 optional(:bancontact_payments) => bancontact_payments(),
 optional(:giropay_payments) => giropay_payments(),
 optional(:legacy_payments) => legacy_payments(),
 optional(:sepa_debit_payments) => sepa_debit_payments(),
 optional(:transfers) => transfers(),
 optional(:eps_payments) => eps_payments(),
 optional(:grabpay_payments) => grabpay_payments(),
 optional(:tax_reporting_us_1099_k) => tax_reporting_us_1099_k(),
 optional(:jcb_payments) => jcb_payments()
}

Each key of the dictionary represents a capability, and each capability maps to its settings (e.g. whether it has been requested or not). Each capability will be inactive until you have provided its specific requirements and Stripe has verified them. An account may have some of its requested capabilities be active and some be inactive.

 Link to this type

 card_issuing()

 View Source

 @type card_issuing() :: %{optional(:tos_acceptance) => tos_acceptance()}

Settings specific to the account's use of the Card Issuing product.

 Link to this type

 card_payments()

 View Source

 @type card_payments() :: %{
 optional(:decline_on) => decline_on(),
 optional(:statement_descriptor_prefix) => binary(),
 optional(:statement_descriptor_prefix_kana) => binary() | binary(),
 optional(:statement_descriptor_prefix_kanji) => binary() | binary()
}

Settings specific to card charging on the account.

 Link to this type

 cartes_bancaires_payments()

 View Source

 @type cartes_bancaires_payments() :: %{optional(:requested) => boolean()}

The cartes_bancaires_payments capability.

 Link to this type

 company()

 View Source

 @type company() :: %{
 optional(:address) => address(),
 optional(:address_kana) => address_kana(),
 optional(:address_kanji) => address_kanji(),
 optional(:directors_provided) => boolean(),
 optional(:executives_provided) => boolean(),
 optional(:name) => binary(),
 optional(:name_kana) => binary(),
 optional(:name_kanji) => binary(),
 optional(:owners_provided) => boolean(),
 optional(:ownership_declaration) => ownership_declaration(),
 optional(:phone) => binary(),
 optional(:registration_number) => binary(),
 optional(:structure) =>
 :free_zone_establishment
 | :free_zone_llc
 | :government_instrumentality
 | :governmental_unit
 | :incorporated_non_profit
 | :limited_liability_partnership
 | :llc
 | :multi_member_llc
 | :private_company
 | :private_corporation
 | :private_partnership
 | :public_company
 | :public_corporation
 | :public_partnership
 | :single_member_llc
 | :sole_establishment
 | :sole_proprietorship
 | :tax_exempt_government_instrumentality
 | :unincorporated_association
 | :unincorporated_non_profit,
 optional(:tax_id) => binary(),
 optional(:tax_id_registrar) => binary(),
 optional(:vat_id) => binary(),
 optional(:verification) => verification()
}

Information about the company or business. This field is available for any business_type.

 Link to this type

 company_license()

 View Source

 @type company_license() :: %{optional(:files) => [binary()]}

One or more documents that demonstrate proof of a company's license to operate.

 Link to this type

 company_memorandum_of_association()

 View Source

 @type company_memorandum_of_association() :: %{optional(:files) => [binary()]}

One or more documents showing the company's Memorandum of Association.

 Link to this type

 company_ministerial_decree()

 View Source

 @type company_ministerial_decree() :: %{optional(:files) => [binary()]}

(Certain countries only) One or more documents showing the ministerial decree legalizing the company's establishment.

 Link to this type

 company_registration_verification()

 View Source

 @type company_registration_verification() :: %{optional(:files) => [binary()]}

One or more documents that demonstrate proof of a company's registration with the appropriate local authorities.

 Link to this type

 company_tax_id_verification()

 View Source

 @type company_tax_id_verification() :: %{optional(:files) => [binary()]}

One or more documents that demonstrate proof of a company's tax ID.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 decline_on()

 View Source

 @type decline_on() :: %{
 optional(:avs_failure) => boolean(),
 optional(:cvc_failure) => boolean()
}

Automatically declines certain charge types regardless of whether the card issuer accepted or declined the charge.

 Link to this type

 dob()

 View Source

 @type dob() :: %{
 optional(:day) => integer(),
 optional(:month) => integer(),
 optional(:year) => integer()
}

 Link to this type

 document()

 View Source

 @type document() :: %{optional(:back) => binary(), optional(:front) => binary()}

An identifying document, either a passport or local ID card.

 Link to this type

 documents()

 View Source

 @type documents() :: %{
 optional(:bank_account_ownership_verification) =>
 bank_account_ownership_verification(),
 optional(:company_license) => company_license(),
 optional(:company_memorandum_of_association) =>
 company_memorandum_of_association(),
 optional(:company_ministerial_decree) => company_ministerial_decree(),
 optional(:company_registration_verification) =>
 company_registration_verification(),
 optional(:company_tax_id_verification) => company_tax_id_verification(),
 optional(:proof_of_registration) => proof_of_registration()
}

Documents that may be submitted to satisfy various informational requests.

 Link to this type

 eps_payments()

 View Source

 @type eps_payments() :: %{optional(:requested) => boolean()}

The eps_payments capability.

 Link to this type

 fpx_payments()

 View Source

 @type fpx_payments() :: %{optional(:requested) => boolean()}

The fpx_payments capability.

 Link to this type

 giropay_payments()

 View Source

 @type giropay_payments() :: %{optional(:requested) => boolean()}

The giropay_payments capability.

 Link to this type

 grabpay_payments()

 View Source

 @type grabpay_payments() :: %{optional(:requested) => boolean()}

The grabpay_payments capability.

 Link to this type

 ideal_payments()

 View Source

 @type ideal_payments() :: %{optional(:requested) => boolean()}

The ideal_payments capability.

 Link to this type

 individual()

 View Source

 @type individual() :: %{
 optional(:address) => address(),
 optional(:address_kana) => address_kana(),
 optional(:address_kanji) => address_kanji(),
 optional(:dob) => dob() | binary(),
 optional(:email) => binary(),
 optional(:first_name) => binary(),
 optional(:first_name_kana) => binary(),
 optional(:first_name_kanji) => binary(),
 optional(:full_name_aliases) => [binary()] | binary(),
 optional(:gender) => binary(),
 optional(:id_number) => binary(),
 optional(:id_number_secondary) => binary(),
 optional(:last_name) => binary(),
 optional(:last_name_kana) => binary(),
 optional(:last_name_kanji) => binary(),
 optional(:maiden_name) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:phone) => binary(),
 optional(:political_exposure) => :existing | :none,
 optional(:registered_address) => registered_address(),
 optional(:ssn_last_4) => binary(),
 optional(:verification) => verification()
}

Information about the person represented by the account. This field is null unless business_type is set to individual.

 Link to this type

 jcb_payments()

 View Source

 @type jcb_payments() :: %{optional(:requested) => boolean()}

The jcb_payments capability.

 Link to this type

 klarna_payments()

 View Source

 @type klarna_payments() :: %{optional(:requested) => boolean()}

The klarna_payments capability.

 Link to this type

 konbini_payments()

 View Source

 @type konbini_payments() :: %{optional(:requested) => boolean()}

The konbini_payments capability.

 Link to this type

 legacy_payments()

 View Source

 @type legacy_payments() :: %{optional(:requested) => boolean()}

The legacy_payments capability.

 Link to this type

 link_payments()

 View Source

 @type link_payments() :: %{optional(:requested) => boolean()}

The link_payments capability.

 Link to this type

 ownership_declaration()

 View Source

 @type ownership_declaration() :: %{
 optional(:date) => integer(),
 optional(:ip) => binary(),
 optional(:user_agent) => binary()
}

This hash is used to attest that the beneficial owner information provided to Stripe is both current and correct.

 Link to this type

 oxxo_payments()

 View Source

 @type oxxo_payments() :: %{optional(:requested) => boolean()}

The oxxo_payments capability.

 Link to this type

 p24_payments()

 View Source

 @type p24_payments() :: %{optional(:requested) => boolean()}

The p24_payments capability.

 Link to this type

 payments()

 View Source

 @type payments() :: %{
 optional(:statement_descriptor) => binary(),
 optional(:statement_descriptor_kana) => binary(),
 optional(:statement_descriptor_kanji) => binary()
}

Settings that apply across payment methods for charging on the account.

 Link to this type

 paynow_payments()

 View Source

 @type paynow_payments() :: %{optional(:requested) => boolean()}

The paynow_payments capability.

 Link to this type

 payouts()

 View Source

 @type payouts() :: %{
 optional(:debit_negative_balances) => boolean(),
 optional(:schedule) => schedule(),
 optional(:statement_descriptor) => binary()
}

Settings specific to the account's payouts.

 Link to this type

 promptpay_payments()

 View Source

 @type promptpay_payments() :: %{optional(:requested) => boolean()}

The promptpay_payments capability.

 Link to this type

 proof_of_registration()

 View Source

 @type proof_of_registration() :: %{optional(:files) => [binary()]}

One or more documents showing the company’s proof of registration with the national business registry.

 Link to this type

 registered_address()

 View Source

 @type registered_address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The individual's registered address.

 Link to this type

 relationship()

 View Source

 @type relationship() :: %{
 optional(:director) => boolean(),
 optional(:executive) => boolean(),
 optional(:owner) => boolean(),
 optional(:representative) => boolean()
}

 Link to this type

 schedule()

 View Source

 @type schedule() :: %{
 optional(:delay_days) => :minimum | integer(),
 optional(:interval) => :daily | :manual | :monthly | :weekly,
 optional(:monthly_anchor) => integer(),
 optional(:weekly_anchor) =>
 :friday | :monday | :saturday | :sunday | :thursday | :tuesday | :wednesday
}

Details on when funds from charges are available, and when they are paid out to an external account. For details, see our Setting Bank and Debit Card Payouts documentation.

 Link to this type

 sepa_debit_payments()

 View Source

 @type sepa_debit_payments() :: %{optional(:requested) => boolean()}

The sepa_debit_payments capability.

 Link to this type

 settings()

 View Source

 @type settings() :: %{
 optional(:branding) => branding(),
 optional(:card_issuing) => card_issuing(),
 optional(:card_payments) => card_payments(),
 optional(:payments) => payments(),
 optional(:payouts) => payouts(),
 optional(:treasury) => treasury()
}

Options for customizing how the account functions within Stripe.

 Link to this type

 sofort_payments()

 View Source

 @type sofort_payments() :: %{optional(:requested) => boolean()}

The sofort_payments capability.

 Link to this type

 support_address()

 View Source

 @type support_address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

A publicly available mailing address for sending support issues to.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Account{
 business_profile: term() | nil,
 business_type: binary() | nil,
 capabilities: term(),
 charges_enabled: boolean(),
 company: term(),
 controller: term(),
 country: binary(),
 created: integer(),
 default_currency: binary(),
 details_submitted: boolean(),
 email: binary() | nil,
 external_accounts: term(),
 future_requirements: term(),
 id: binary(),
 individual: Stripe.Person.t(),
 metadata: term(),
 object: binary(),
 payouts_enabled: boolean(),
 requirements: term(),
 settings: term() | nil,
 tos_acceptance: term(),
 type: binary()
}

The account type.
	business_profile Business information about the account.
	business_type The business type.
	capabilities
	charges_enabled Whether the account can create live charges.
	company
	controller
	country The account's country.
	created Time at which the account was connected. Measured in seconds since the Unix epoch.
	default_currency Three-letter ISO currency code representing the default currency for the account. This must be a currency that Stripe supports in the account's country.
	details_submitted Whether account details have been submitted. Standard accounts cannot receive payouts before this is true.
	email An email address associated with the account. You can treat this as metadata: it is not used for authentication or messaging account holders.
	external_accounts External accounts (bank accounts and debit cards) currently attached to this account
	future_requirements
	id Unique identifier for the object.
	individual
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	payouts_enabled Whether Stripe can send payouts to this account.
	requirements
	settings Options for customizing how the account functions within Stripe.
	tos_acceptance
	type The Stripe account type. Can be standard, express, or custom.

 Link to this type

 tax_reporting_us_1099_k()

 View Source

 @type tax_reporting_us_1099_k() :: %{optional(:requested) => boolean()}

The tax_reporting_us_1099_k capability.

 Link to this type

 tax_reporting_us_1099_misc()

 View Source

 @type tax_reporting_us_1099_misc() :: %{optional(:requested) => boolean()}

The tax_reporting_us_1099_misc capability.

 Link to this type

 tos_acceptance()

 View Source

 @type tos_acceptance() :: %{
 optional(:date) => integer(),
 optional(:ip) => binary(),
 optional(:user_agent) => binary()
}

Details on the account's acceptance of the Stripe Issuing Terms and Disclosures.

 Link to this type

 transfers()

 View Source

 @type transfers() :: %{optional(:requested) => boolean()}

The transfers capability.

 Link to this type

 treasury()

 View Source

 @type treasury() :: %{optional(:tos_acceptance) => tos_acceptance()}

Settings specific to the account's Treasury FinancialAccounts.

 Link to this type

 us_bank_account_ach_payments()

 View Source

 @type us_bank_account_ach_payments() :: %{optional(:requested) => boolean()}

The us_bank_account_ach_payments capability.

 Link to this type

 verification()

 View Source

 @type verification() :: %{optional(:document) => document()}

Information on the verification state of the company.

 Anchor for this section

Functions

 Link to this function

 capabilities(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec capabilities(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.Capability.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Returns a list of capabilities associated with the account. The capabilities are returned sorted by creation date, with the most recent capability appearing first.
Details
	Method: get
	Path: /v1/accounts/{account}/capabilities

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:account_token) => binary(),
 optional(:business_profile) => business_profile(),
 optional(:business_type) =>
 :company | :government_entity | :individual | :non_profit,
 optional(:capabilities) => capabilities(),
 optional(:company) => company(),
 optional(:country) => binary(),
 optional(:default_currency) => binary(),
 optional(:documents) => documents(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:external_account) => binary(),
 optional(:individual) => individual(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:settings) => settings(),
 optional(:tos_acceptance) => tos_acceptance(),
 optional(:type) => :custom | :express | :standard
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

With Connect, you can create Stripe accounts for your users.To do this, you’ll first need to register your platform.
Details
	Method: post
	Path: /v1/accounts

 Link to this function

 delete(client, account, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), account :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedAccount.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

With Connect, you can delete accounts you manage.
Accounts created using test-mode keys can be deleted at any time. Standard accounts created using live-mode keys cannot be deleted. Custom or Express accounts created using live-mode keys can only be deleted once all balances are zero.
If you want to delete your own account, use the account information tab in your account settings instead.
Details
	Method: delete
	Path: /v1/accounts/{account}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of accounts connected to your platform via Connect. If you’re not a platform, the list is empty.
Details
	Method: get
	Path: /v1/accounts

 Link to this function

 persons(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec persons(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:relationship) => relationship(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(Stripe.Person.t())}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Returns a list of people associated with the account’s legal entity. The people are returned sorted by creation date, with the most recent people appearing first.
Details
	Method: get
	Path: /v1/accounts/{account}/persons

 Link to this function

 reject(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec reject(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{optional(:expand) => [binary()], optional(:reason) => binary()},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

With Connect, you may flag accounts as suspicious.
Test-mode Custom and Express accounts can be rejected at any time. Accounts created using live-mode keys may only be rejected once all balances are zero.
Details
	Method: post
	Path: /v1/accounts/{account}/reject

 Link to this function

 retrieve(client, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an account.
Details
	Method: get
	Path: /v1/account

 Link to this function

 update(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{
 optional(:account_token) => binary(),
 optional(:business_profile) => business_profile(),
 optional(:business_type) =>
 :company | :government_entity | :individual | :non_profit,
 optional(:capabilities) => capabilities(),
 optional(:company) => company(),
 optional(:default_currency) => binary(),
 optional(:documents) => documents(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:external_account) => binary(),
 optional(:individual) => individual(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:settings) => settings(),
 optional(:tos_acceptance) => tos_acceptance()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates a connected account by setting the values of the parameters passed. Any parameters not provided are left unchanged. Most parameters can be changed only for Custom accounts. (These are marked Custom Only below.) Parameters marked Custom and Express are not supported for Standard accounts.
To update your own account, use the Dashboard. Refer to our Connect documentation to learn more about updating accounts.
Details
	Method: post
	Path: /v1/accounts/{account}

 Stripe.AccountLink - Striped v0.5.0

Stripe.AccountLink

Account Links are the means by which a Connect platform grants a connected account permission to access
Stripe-hosted applications, such as Connect Onboarding.
Related guide: Connect Onboarding.

 Anchor for this section

 Summary

 Types

 t()

 The account_link type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates an AccountLink object that includes a single-use Stripe URL that the platform can redirect their user to in order to take them through the Connect Onboarding flow.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.AccountLink{
 created: integer(),
 expires_at: integer(),
 object: binary(),
 url: binary()
}

The account_link type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	expires_at The timestamp at which this account link will expire.
	object String representing the object's type. Objects of the same type share the same value.
	url The URL for the account link.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:account) => binary(),
 optional(:collect) => :currently_due | :eventually_due,
 optional(:expand) => [binary()],
 optional(:refresh_url) => binary(),
 optional(:return_url) => binary(),
 optional(:type) =>
 :account_onboarding
 | :account_update
 | :custom_account_update
 | :custom_account_verification
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an AccountLink object that includes a single-use Stripe URL that the platform can redirect their user to in order to take them through the Connect Onboarding flow.
Details
	Method: post
	Path: /v1/account_links

 Stripe.ApplicationFee - Striped v0.5.0

Stripe.ApplicationFee

 Anchor for this section

 Summary

 Types

 created()

 t()

 The application_fee type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a list of application fees you’ve previously collected. The application fees are returned in sorted order, with the most recent fees appearing first.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an application fee that your account has collected. The same information is returned when refunding the application fee.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.ApplicationFee{
 account: binary() | Stripe.Account.t(),
 amount: integer(),
 amount_refunded: integer(),
 application: binary() | term(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 charge: binary() | Stripe.Charge.t(),
 created: integer(),
 currency: binary(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 originating_transaction: (binary() | Stripe.Charge.t()) | nil,
 refunded: boolean(),
 refunds: term()
}

The application_fee type.
	account ID of the Stripe account this fee was taken from.
	amount Amount earned, in %s.
	amount_refunded Amount in %s refunded (can be less than the amount attribute on the fee if a partial refund was issued)
	application ID of the Connect application that earned the fee.
	balance_transaction Balance transaction that describes the impact of this collected application fee on your account balance (not including refunds).
	charge ID of the charge that the application fee was taken from.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	originating_transaction ID of the corresponding charge on the platform account, if this fee was the result of a charge using the destination parameter.
	refunded Whether the fee has been fully refunded. If the fee is only partially refunded, this attribute will still be false.
	refunds A list of refunds that have been applied to the fee.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:charge) => binary(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of application fees you’ve previously collected. The application fees are returned in sorted order, with the most recent fees appearing first.
Details
	Method: get
	Path: /v1/application_fees

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an application fee that your account has collected. The same information is returned when refunding the application fee.
Details
	Method: get
	Path: /v1/application_fees/{id}

 Stripe.Apps.Secret - Striped v0.5.0

Stripe.Apps.Secret

Secret Store is an API that allows Stripe Apps developers to securely persist secrets for use by UI Extensions and app backends.
The primary resource in Secret Store is a secret. Other apps can't view secrets created by an app. Additionally, secrets are scoped to provide further permission control.
All Dashboard users and the app backend share account scoped secrets. Use the account scope for secrets that don't change per-user, like a third-party API key.
A user scoped secret is accessible by the app backend and one specific Dashboard user. Use the user scope for per-user secrets like per-user OAuth tokens, where different users might have different permissions.
Related guide: Store data between page reloads.

 Anchor for this section

 Summary

 Types

 scope()

 t()

 The apps.secret type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Create or replace a secret in the secret store.

 delete_where(client, params \\ %{}, opts \\ [])

 Deletes a secret from the secret store by name and scope.

 find(client, params \\ %{}, opts \\ [])

 Finds a secret in the secret store by name and scope.

 list(client, params \\ %{}, opts \\ [])

 List all secrets stored on the given scope.

 Anchor for this section

Types

 Link to this type

 scope()

 View Source

 @type scope() :: %{optional(:type) => :account | :user, optional(:user) => binary()}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Apps.Secret{
 created: integer(),
 deleted: boolean(),
 expires_at: integer() | nil,
 id: binary(),
 livemode: boolean(),
 name: binary(),
 object: binary(),
 payload: binary() | nil,
 scope: term()
}

The apps.secret type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	deleted If true, indicates that this secret has been deleted
	expires_at The Unix timestamp for the expiry time of the secret, after which the secret deletes.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	name A name for the secret that's unique within the scope.
	object String representing the object's type. Objects of the same type share the same value.
	payload The plaintext secret value to be stored.
	scope

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:expires_at) => integer(),
 optional(:name) => binary(),
 optional(:payload) => binary(),
 optional(:scope) => scope()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Create or replace a secret in the secret store.
Details
	Method: post
	Path: /v1/apps/secrets

 Link to this function

 delete_where(client, params \\ %{}, opts \\ [])

 View Source

 @spec delete_where(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:name) => binary(),
 optional(:scope) => scope()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Deletes a secret from the secret store by name and scope.
Details
	Method: post
	Path: /v1/apps/secrets/delete

 Link to this function

 find(client, params \\ %{}, opts \\ [])

 View Source

 @spec find(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:name) => binary(),
 optional(:scope) => scope()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Finds a secret in the secret store by name and scope.
Details
	Method: get
	Path: /v1/apps/secrets/find

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:scope) => scope(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

List all secrets stored on the given scope.
Details
	Method: get
	Path: /v1/apps/secrets

 Stripe.Capability - Striped v0.5.0

Stripe.Capability

This is an object representing a capability for a Stripe account.
Related guide: Account capabilities.

 Anchor for this section

 Summary

 Types

 t()

 The capability type.

 Functions

 list(client, account, params \\ %{}, opts \\ [])

 Returns a list of capabilities associated with the account. The capabilities are returned sorted by creation date, with the most recent capability appearing first.

 retrieve(client, account, capability, params \\ %{}, opts \\ [])

 Retrieves information about the specified Account Capability.

 update(client, account, capability, params \\ %{}, opts \\ [])

 Updates an existing Account Capability.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Capability{
 account: binary() | Stripe.Account.t(),
 future_requirements: term(),
 id: binary(),
 object: binary(),
 requested: boolean(),
 requested_at: integer() | nil,
 requirements: term(),
 status: binary()
}

The capability type.
	account The account for which the capability enables functionality.
	future_requirements
	id The identifier for the capability.
	object String representing the object's type. Objects of the same type share the same value.
	requested Whether the capability has been requested.
	requested_at Time at which the capability was requested. Measured in seconds since the Unix epoch.
	requirements
	status The status of the capability. Can be active, inactive, pending, or unrequested.

 Anchor for this section

Functions

 Link to this function

 list(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of capabilities associated with the account. The capabilities are returned sorted by creation date, with the most recent capability appearing first.
Details
	Method: get
	Path: /v1/accounts/{account}/capabilities

 Link to this function

 retrieve(client, account, capability, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 account :: binary(),
 capability :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves information about the specified Account Capability.
Details
	Method: get
	Path: /v1/accounts/{account}/capabilities/{capability}

 Link to this function

 update(client, account, capability, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 account :: binary(),
 capability :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:requested) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing Account Capability.
Details
	Method: post
	Path: /v1/accounts/{account}/capabilities/{capability}

 Stripe.CountrySpec - Striped v0.5.0

Stripe.CountrySpec

Stripe needs to collect certain pieces of information about each account
created. These requirements can differ depending on the account's country. The
Country Specs API makes these rules available to your integration.
You can also view the information from this API call as an online
guide.

 Anchor for this section

 Summary

 Types

 t()

 The country_spec type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Lists all Country Spec objects available in the API.

 retrieve(client, country, params \\ %{}, opts \\ [])

 Returns a Country Spec for a given Country code.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.CountrySpec{
 default_currency: binary(),
 id: binary(),
 object: binary(),
 supported_bank_account_currencies: term(),
 supported_payment_currencies: term(),
 supported_payment_methods: term(),
 supported_transfer_countries: term(),
 verification_fields: term()
}

The country_spec type.
	default_currency The default currency for this country. This applies to both payment methods and bank accounts.
	id Unique identifier for the object. Represented as the ISO country code for this country.
	object String representing the object's type. Objects of the same type share the same value.
	supported_bank_account_currencies Currencies that can be accepted in the specific country (for transfers).
	supported_payment_currencies Currencies that can be accepted in the specified country (for payments).
	supported_payment_methods Payment methods available in the specified country. You may need to enable some payment methods (e.g., ACH) on your account before they appear in this list. The stripe payment method refers to charging through your platform.
	supported_transfer_countries Countries that can accept transfers from the specified country.
	verification_fields

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Lists all Country Spec objects available in the API.
Details
	Method: get
	Path: /v1/country_specs

 Link to this function

 retrieve(client, country, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 country :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a Country Spec for a given Country code.
Details
	Method: get
	Path: /v1/country_specs/{country}

 Stripe.ExternalAccount - Striped v0.5.0

Stripe.ExternalAccount

 Anchor for this section

 Summary

 Types

 t()

 The external_account type.

 Functions

 create(client, account, params \\ %{}, opts \\ [])

 Create an external account for a given account.

 delete(client, account, id, opts \\ [])

 Delete a specified external account for a given account.

 list(client, account, params \\ %{}, opts \\ [])

 List external accounts for an account.

 retrieve(client, account, id, params \\ %{}, opts \\ [])

 Retrieve a specified external account for a given account.

 update(client, account, id, params \\ %{}, opts \\ [])

 Updates the metadata, account holder name, account holder type of a bank account belonging to a Custom account, and optionally sets it as the default for its currency. Other bank account details are not editable by design.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.ExternalAccount{}

The external_account type.

 Anchor for this section

Functions

 Link to this function

 create(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{
 optional(:default_for_currency) => boolean(),
 optional(:expand) => [binary()],
 optional(:external_account) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()}
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Create an external account for a given account.
Details
	Method: post
	Path: /v1/accounts/{account}/external_accounts

 Link to this function

 delete(client, account, id, opts \\ [])

 View Source

 @spec delete(
 client :: Stripe.t(),
 account :: binary(),
 id :: binary(),
 opts :: Keyword.t()
) ::
 {:ok, Stripe.DeletedExternalAccount.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Delete a specified external account for a given account.
Details
	Method: delete
	Path: /v1/accounts/{account}/external_accounts/{id}

 Link to this function

 list(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

List external accounts for an account.
Details
	Method: get
	Path: /v1/accounts/{account}/external_accounts

 Link to this function

 retrieve(client, account, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 account :: binary(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieve a specified external account for a given account.
Details
	Method: get
	Path: /v1/accounts/{account}/external_accounts/{id}

 Link to this function

 update(client, account, id, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 account :: binary(),
 id :: binary(),
 params :: %{
 optional(:account_holder_name) => binary(),
 optional(:account_holder_type) => :company | :individual,
 optional(:account_type) => :checking | :futsu | :savings | :toza,
 optional(:address_city) => binary(),
 optional(:address_country) => binary(),
 optional(:address_line1) => binary(),
 optional(:address_line2) => binary(),
 optional(:address_state) => binary(),
 optional(:address_zip) => binary(),
 optional(:default_for_currency) => boolean(),
 optional(:exp_month) => binary(),
 optional(:exp_year) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:name) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the metadata, account holder name, account holder type of a bank account belonging to a Custom account, and optionally sets it as the default for its currency. Other bank account details are not editable by design.
You can re-enable a disabled bank account by performing an update call without providing any arguments or changes.
Details
	Method: post
	Path: /v1/accounts/{account}/external_accounts/{id}

 Stripe.FeeRefund - Striped v0.5.0

Stripe.FeeRefund

Application Fee Refund objects allow you to refund an application fee that
has previously been created but not yet refunded. Funds will be refunded to
the Stripe account from which the fee was originally collected.
Related guide: Refunding Application Fees.

 Anchor for this section

 Summary

 Types

 t()

 The fee_refund type.

 Functions

 create(client, id, params \\ %{}, opts \\ [])

 Refunds an application fee that has previously been collected but not yet refunded.Funds will be refunded to the Stripe account from which the fee was originally collected.

 list(client, id, params \\ %{}, opts \\ [])

 You can see a list of the refunds belonging to a specific application fee. Note that the 10 most recent refunds are always available by default on the application fee object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional refunds.

 retrieve(client, fee, id, params \\ %{}, opts \\ [])

 By default, you can see the 10 most recent refunds stored directly on the application fee object, but you can also retrieve details about a specific refund stored on the application fee.

 update(client, fee, id, params \\ %{}, opts \\ [])

 Updates the specified application fee refund by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.FeeRefund{
 amount: integer(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 created: integer(),
 currency: binary(),
 fee: binary() | Stripe.ApplicationFee.t(),
 id: binary(),
 metadata: term() | nil,
 object: binary()
}

The fee_refund type.
	amount Amount, in %s.
	balance_transaction Balance transaction that describes the impact on your account balance.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	fee ID of the application fee that was refunded.
	id Unique identifier for the object.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.

 Anchor for this section

Functions

 Link to this function

 create(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()}
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Refunds an application fee that has previously been collected but not yet refunded.Funds will be refunded to the Stripe account from which the fee was originally collected.
You can optionally refund only part of an application fee.You can do so multiple times, until the entire fee has been refunded.
Once entirely refunded, an application fee can’t be refunded again.This method will raise an error when called on an already-refunded application fee,
or when trying to refund more money than is left on an application fee.
Details
	Method: post
	Path: /v1/application_fees/{id}/refunds

 Link to this function

 list(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

You can see a list of the refunds belonging to a specific application fee. Note that the 10 most recent refunds are always available by default on the application fee object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional refunds.
Details
	Method: get
	Path: /v1/application_fees/{id}/refunds

 Link to this function

 retrieve(client, fee, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 fee :: binary(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

By default, you can see the 10 most recent refunds stored directly on the application fee object, but you can also retrieve details about a specific refund stored on the application fee.
Details
	Method: get
	Path: /v1/application_fees/{fee}/refunds/{id}

 Link to this function

 update(client, fee, id, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 fee :: binary(),
 id :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified application fee refund by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
This request only accepts metadata as an argument.
Details
	Method: post
	Path: /v1/application_fees/{fee}/refunds/{id}

 Stripe.LoginLink - Striped v0.5.0

Stripe.LoginLink

 Anchor for this section

 Summary

 Types

 t()

 The login_link type.

 Functions

 create(client, account, params \\ %{}, opts \\ [])

 Creates a single-use login link for an Express account to access their Stripe dashboard.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.LoginLink{created: integer(), object: binary(), url: binary()}

The login_link type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	object String representing the object's type. Objects of the same type share the same value.
	url The URL for the login link.

 Anchor for this section

Functions

 Link to this function

 create(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a single-use login link for an Express account to access their Stripe dashboard.
You may only create login links for Express accounts connected to your platform.
Details
	Method: post
	Path: /v1/accounts/{account}/login_links

 Stripe.Person - Striped v0.5.0

Stripe.Person

This is an object representing a person associated with a Stripe account.
A platform cannot access a Standard or Express account's persons after the account starts onboarding, such as after generating an account link for the account.
See the Standard onboarding or Express onboarding documentation for information about platform pre-filling and account onboarding steps.
Related guide: Handling Identity Verification with the API.

 Anchor for this section

 Summary

 Types

 additional_document()

 A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.

 address()

 The person's address.

 address_kana()

 The Kana variation of the person's address (Japan only).

 address_kanji()

 The Kanji variation of the person's address (Japan only).

 company_authorization()

 One or more documents that demonstrate proof that this person is authorized to represent the company.

 dob()

 document()

 An identifying document, either a passport or local ID card.

 documents()

 Documents that may be submitted to satisfy various informational requests.

 passport()

 One or more documents showing the person's passport page with photo and personal data.

 registered_address()

 The person's registered address.

 relationship()

 t()

 The person type.

 verification()

 The person's verification status.

 visa()

 One or more documents showing the person's visa required for living in the country where they are residing.

 Functions

 create(client, account, params \\ %{}, opts \\ [])

 Creates a new person.

 delete(client, account, person, opts \\ [])

 Deletes an existing person’s relationship to the account’s legal entity. Any person with a relationship for an account can be deleted through the API, except if the person is the account_opener. If your integration is using the executive parameter, you cannot delete the only verified executive on file.

 list(client, account, params \\ %{}, opts \\ [])

 Returns a list of people associated with the account’s legal entity. The people are returned sorted by creation date, with the most recent people appearing first.

 retrieve(client, account, person, params \\ %{}, opts \\ [])

 Retrieves an existing person.

 update(client, account, person, params \\ %{}, opts \\ [])

 Updates an existing person.

 Anchor for this section

Types

 Link to this type

 additional_document()

 View Source

 @type additional_document() :: %{
 optional(:back) => binary(),
 optional(:front) => binary()
}

A document showing address, either a passport, local ID card, or utility bill from a well-known utility company.

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The person's address.

 Link to this type

 address_kana()

 View Source

 @type address_kana() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary(),
 optional(:town) => binary()
}

The Kana variation of the person's address (Japan only).

 Link to this type

 address_kanji()

 View Source

 @type address_kanji() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary(),
 optional(:town) => binary()
}

The Kanji variation of the person's address (Japan only).

 Link to this type

 company_authorization()

 View Source

 @type company_authorization() :: %{optional(:files) => [binary()]}

One or more documents that demonstrate proof that this person is authorized to represent the company.

 Link to this type

 dob()

 View Source

 @type dob() :: %{
 optional(:day) => integer(),
 optional(:month) => integer(),
 optional(:year) => integer()
}

 Link to this type

 document()

 View Source

 @type document() :: %{optional(:back) => binary(), optional(:front) => binary()}

An identifying document, either a passport or local ID card.

 Link to this type

 documents()

 View Source

 @type documents() :: %{
 optional(:company_authorization) => company_authorization(),
 optional(:passport) => passport(),
 optional(:visa) => visa()
}

Documents that may be submitted to satisfy various informational requests.

 Link to this type

 passport()

 View Source

 @type passport() :: %{optional(:files) => [binary()]}

One or more documents showing the person's passport page with photo and personal data.

 Link to this type

 registered_address()

 View Source

 @type registered_address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The person's registered address.

 Link to this type

 relationship()

 View Source

 @type relationship() :: %{
 optional(:director) => boolean(),
 optional(:executive) => boolean(),
 optional(:owner) => boolean(),
 optional(:representative) => boolean()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Person{
 account: binary(),
 address: term(),
 address_kana: term() | nil,
 address_kanji: term() | nil,
 created: integer(),
 dob: term(),
 email: binary() | nil,
 first_name: binary() | nil,
 first_name_kana: binary() | nil,
 first_name_kanji: binary() | nil,
 full_name_aliases: term(),
 future_requirements: term() | nil,
 gender: binary() | nil,
 id: binary(),
 id_number_provided: boolean(),
 id_number_secondary_provided: boolean(),
 last_name: binary() | nil,
 last_name_kana: binary() | nil,
 last_name_kanji: binary() | nil,
 maiden_name: binary() | nil,
 metadata: term(),
 nationality: binary() | nil,
 object: binary(),
 phone: binary() | nil,
 political_exposure: binary(),
 registered_address: term(),
 relationship: term(),
 requirements: term() | nil,
 ssn_last_4_provided: boolean(),
 verification: term()
}

The person type.
	account The account the person is associated with.
	address
	address_kana The Kana variation of the person's address (Japan only).
	address_kanji The Kanji variation of the person's address (Japan only).
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	dob
	email The person's email address.
	first_name The person's first name.
	first_name_kana The Kana variation of the person's first name (Japan only).
	first_name_kanji The Kanji variation of the person's first name (Japan only).
	full_name_aliases A list of alternate names or aliases that the person is known by.
	future_requirements Information about the upcoming new requirements for this person, including what information needs to be collected, and by when.
	gender The person's gender (International regulations require either "male" or "female").
	id Unique identifier for the object.
	id_number_provided Whether the person's id_number was provided.
	id_number_secondary_provided Whether the person's id_number_secondary was provided.
	last_name The person's last name.
	last_name_kana The Kana variation of the person's last name (Japan only).
	last_name_kanji The Kanji variation of the person's last name (Japan only).
	maiden_name The person's maiden name.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	nationality The country where the person is a national.
	object String representing the object's type. Objects of the same type share the same value.
	phone The person's phone number.
	political_exposure Indicates if the person or any of their representatives, family members, or other closely related persons, declares that they hold or have held an important public job or function, in any jurisdiction.
	registered_address
	relationship
	requirements Information about the requirements for this person, including what information needs to be collected, and by when.
	ssn_last_4_provided Whether the last four digits of the person's Social Security number have been provided (U.S. only).
	verification

 Link to this type

 verification()

 View Source

 @type verification() :: %{
 optional(:additional_document) => additional_document(),
 optional(:document) => document()
}

The person's verification status.

 Link to this type

 visa()

 View Source

 @type visa() :: %{optional(:files) => [binary()]}

One or more documents showing the person's visa required for living in the country where they are residing.

 Anchor for this section

Functions

 Link to this function

 create(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{
 optional(:address) => address(),
 optional(:address_kana) => address_kana(),
 optional(:address_kanji) => address_kanji(),
 optional(:dob) => dob() | binary(),
 optional(:documents) => documents(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:first_name) => binary(),
 optional(:first_name_kana) => binary(),
 optional(:first_name_kanji) => binary(),
 optional(:full_name_aliases) => [binary()] | binary(),
 optional(:gender) => binary(),
 optional(:id_number) => binary(),
 optional(:id_number_secondary) => binary(),
 optional(:last_name) => binary(),
 optional(:last_name_kana) => binary(),
 optional(:last_name_kanji) => binary(),
 optional(:maiden_name) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:nationality) => binary(),
 optional(:person_token) => binary(),
 optional(:phone) => binary(),
 optional(:political_exposure) => binary(),
 optional(:registered_address) => registered_address(),
 optional(:relationship) => relationship(),
 optional(:ssn_last_4) => binary(),
 optional(:verification) => verification()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new person.
Details
	Method: post
	Path: /v1/accounts/{account}/persons

 Link to this function

 delete(client, account, person, opts \\ [])

 View Source

 @spec delete(
 client :: Stripe.t(),
 account :: binary(),
 person :: binary(),
 opts :: Keyword.t()
) ::
 {:ok, Stripe.DeletedPerson.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes an existing person’s relationship to the account’s legal entity. Any person with a relationship for an account can be deleted through the API, except if the person is the account_opener. If your integration is using the executive parameter, you cannot delete the only verified executive on file.
Details
	Method: delete
	Path: /v1/accounts/{account}/persons/{person}

 Link to this function

 list(client, account, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 account :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:relationship) => relationship(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of people associated with the account’s legal entity. The people are returned sorted by creation date, with the most recent people appearing first.
Details
	Method: get
	Path: /v1/accounts/{account}/persons

 Link to this function

 retrieve(client, account, person, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 account :: binary(),
 person :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an existing person.
Details
	Method: get
	Path: /v1/accounts/{account}/persons/{person}

 Link to this function

 update(client, account, person, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 account :: binary(),
 person :: binary(),
 params :: %{
 optional(:address) => address(),
 optional(:address_kana) => address_kana(),
 optional(:address_kanji) => address_kanji(),
 optional(:dob) => dob() | binary(),
 optional(:documents) => documents(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:first_name) => binary(),
 optional(:first_name_kana) => binary(),
 optional(:first_name_kanji) => binary(),
 optional(:full_name_aliases) => [binary()] | binary(),
 optional(:gender) => binary(),
 optional(:id_number) => binary(),
 optional(:id_number_secondary) => binary(),
 optional(:last_name) => binary(),
 optional(:last_name_kana) => binary(),
 optional(:last_name_kanji) => binary(),
 optional(:maiden_name) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:nationality) => binary(),
 optional(:person_token) => binary(),
 optional(:phone) => binary(),
 optional(:political_exposure) => binary(),
 optional(:registered_address) => registered_address(),
 optional(:relationship) => relationship(),
 optional(:ssn_last_4) => binary(),
 optional(:verification) => verification()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates an existing person.
Details
	Method: post
	Path: /v1/accounts/{account}/persons/{person}

 Stripe.Topup - Striped v0.5.0

Stripe.Topup

To top up your Stripe balance, you create a top-up object. You can retrieve
individual top-ups, as well as list all top-ups. Top-ups are identified by a
unique, random ID.
Related guide: Topping Up your Platform Account.

 Anchor for this section

 Summary

 Types

 amount()

 created()

 t()

 The topup type.

 Functions

 cancel(client, topup, params \\ %{}, opts \\ [])

 Cancels a top-up. Only pending top-ups can be canceled.

 create(client, params \\ %{}, opts \\ [])

 Top up the balance of an accoun.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of top-ups.

 retrieve(client, topup, params \\ %{}, opts \\ [])

 Retrieves the details of a top-up that has previously been created. Supply the unique top-up ID that was returned from your previous request, and Stripe will return the corresponding top-up information.

 update(client, topup, params \\ %{}, opts \\ [])

 Updates the metadata of a top-up. Other top-up details are not editable by design.

 Anchor for this section

Types

 Link to this type

 amount()

 View Source

 @type amount() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Topup{
 amount: integer(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 created: integer(),
 currency: binary(),
 description: binary() | nil,
 expected_availability_date: integer() | nil,
 failure_code: binary() | nil,
 failure_message: binary() | nil,
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 source: Stripe.Source.t() | nil,
 statement_descriptor: binary() | nil,
 status: binary(),
 transfer_group: binary() | nil
}

The topup type.
	amount Amount transferred.
	balance_transaction ID of the balance transaction that describes the impact of this top-up on your account balance. May not be specified depending on status of top-up.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	expected_availability_date Date the funds are expected to arrive in your Stripe account for payouts. This factors in delays like weekends or bank holidays. May not be specified depending on status of top-up.
	failure_code Error code explaining reason for top-up failure if available (see the errors section for a list of codes).
	failure_message Message to user further explaining reason for top-up failure if available.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	source For most Stripe users, the source of every top-up is a bank account. This hash is then the source object describing that bank account.
	statement_descriptor Extra information about a top-up. This will appear on your source's bank statement. It must contain at least one letter.
	status The status of the top-up is either canceled, failed, pending, reversed, or succeeded.
	transfer_group A string that identifies this top-up as part of a group.

 Anchor for this section

Functions

 Link to this function

 cancel(client, topup, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 topup :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancels a top-up. Only pending top-ups can be canceled.
Details
	Method: post
	Path: /v1/topups/{topup}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:source) => binary(),
 optional(:statement_descriptor) => binary(),
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Top up the balance of an accoun.
Details
	Method: post
	Path: /v1/topups

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => amount() | integer(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :canceled | :failed | :pending | :succeeded
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of top-ups.
Details
	Method: get
	Path: /v1/topups

 Link to this function

 retrieve(client, topup, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 topup :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of a top-up that has previously been created. Supply the unique top-up ID that was returned from your previous request, and Stripe will return the corresponding top-up information.
Details
	Method: get
	Path: /v1/topups/{topup}

 Link to this function

 update(client, topup, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 topup :: binary(),
 params :: %{
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the metadata of a top-up. Other top-up details are not editable by design.
Details
	Method: post
	Path: /v1/topups/{topup}

 Stripe.Transfer - Striped v0.5.0

Stripe.Transfer

A Transfer object is created when you move funds between Stripe accounts as
part of Connect.
Before April 6, 2017, transfers also represented movement of funds from a
Stripe account to a card or bank account. This behavior has since been split
out into a Payout object, with corresponding payout endpoints. For more
information, read about the
transfer/payout split.
Related guide: Creating Separate Charges and Transfers.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The transfer type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 To send funds from your Stripe account to a connected account, you create a new transfer object. Your Stripe balance must be able to cover the transfer amount, or you’ll receive an “Insufficient Funds” error.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of existing transfers sent to connected accounts. The transfers are returned in sorted order, with the most recently created transfers appearing first.

 retrieve(client, transfer, params \\ %{}, opts \\ [])

 Retrieves the details of an existing transfer. Supply the unique transfer ID from either a transfer creation request or the transfer list, and Stripe will return the corresponding transfer information.

 update(client, transfer, params \\ %{}, opts \\ [])

 Updates the specified transfer by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Transfer{
 amount: integer(),
 amount_reversed: integer(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 created: integer(),
 currency: binary(),
 description: binary() | nil,
 destination: (binary() | Stripe.Account.t()) | nil,
 destination_payment: binary() | Stripe.Charge.t(),
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 reversals: term(),
 reversed: boolean(),
 source_transaction: (binary() | Stripe.Charge.t()) | nil,
 source_type: binary(),
 transfer_group: binary() | nil
}

The transfer type.
	amount Amount in %s to be transferred.
	amount_reversed Amount in %s reversed (can be less than the amount attribute on the transfer if a partial reversal was issued).
	balance_transaction Balance transaction that describes the impact of this transfer on your account balance.
	created Time that this record of the transfer was first created.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	destination ID of the Stripe account the transfer was sent to.
	destination_payment If the destination is a Stripe account, this will be the ID of the payment that the destination account received for the transfer.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	reversals A list of reversals that have been applied to the transfer.
	reversed Whether the transfer has been fully reversed. If the transfer is only partially reversed, this attribute will still be false.
	source_transaction ID of the charge or payment that was used to fund the transfer. If null, the transfer was funded from the available balance.
	source_type The source balance this transfer came from. One of card, fpx, or bank_account.
	transfer_group A string that identifies this transaction as part of a group. See the Connect documentation for details.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:destination) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:source_transaction) => binary(),
 optional(:source_type) => :bank_account | :card | :fpx,
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

To send funds from your Stripe account to a connected account, you create a new transfer object. Your Stripe balance must be able to cover the transfer amount, or you’ll receive an “Insufficient Funds” error.
Details
	Method: post
	Path: /v1/transfers

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:destination) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:transfer_group) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of existing transfers sent to connected accounts. The transfers are returned in sorted order, with the most recently created transfers appearing first.
Details
	Method: get
	Path: /v1/transfers

 Link to this function

 retrieve(client, transfer, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 transfer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing transfer. Supply the unique transfer ID from either a transfer creation request or the transfer list, and Stripe will return the corresponding transfer information.
Details
	Method: get
	Path: /v1/transfers/{transfer}

 Link to this function

 update(client, transfer, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 transfer :: binary(),
 params :: %{
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified transfer by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
This request accepts only metadata as an argument.
Details
	Method: post
	Path: /v1/transfers/{transfer}

 Stripe.TransferReversal - Striped v0.5.0

Stripe.TransferReversal

Stripe Connect platforms can reverse transfers made to a
connected account, either entirely or partially, and can also specify whether
to refund any related application fees. Transfer reversals add to the
platform's balance and subtract from the destination account's balance.
Reversing a transfer that was made for a destination
charge is allowed only up to the amount of
the charge. It is possible to reverse a
transfer_group
transfer only if the destination account has enough balance to cover the
reversal.
Related guide: Reversing Transfers.

 Anchor for this section

 Summary

 Types

 t()

 The transfer_reversal type.

 Functions

 create(client, id, params \\ %{}, opts \\ [])

 When you create a new reversal, you must specify a transfer to create it on.

 list(client, id, params \\ %{}, opts \\ [])

 You can see a list of the reversals belonging to a specific transfer. Note that the 10 most recent reversals are always available by default on the transfer object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional reversals.

 retrieve(client, id, transfer, params \\ %{}, opts \\ [])

 By default, you can see the 10 most recent reversals stored directly on the transfer object, but you can also retrieve details about a specific reversal stored on the transfer.

 update(client, id, transfer, params \\ %{}, opts \\ [])

 Updates the specified reversal by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.TransferReversal{
 amount: integer(),
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 created: integer(),
 currency: binary(),
 destination_payment_refund: (binary() | Stripe.Refund.t()) | nil,
 id: binary(),
 metadata: term() | nil,
 object: binary(),
 source_refund: (binary() | Stripe.Refund.t()) | nil,
 transfer: binary() | Stripe.Transfer.t()
}

The transfer_reversal type.
	amount Amount, in %s.
	balance_transaction Balance transaction that describes the impact on your account balance.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	destination_payment_refund Linked payment refund for the transfer reversal.
	id Unique identifier for the object.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	source_refund ID of the refund responsible for the transfer reversal.
	transfer ID of the transfer that was reversed.

 Anchor for this section

Functions

 Link to this function

 create(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:refund_application_fee) => boolean()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

When you create a new reversal, you must specify a transfer to create it on.
When reversing transfers, you can optionally reverse part of the transfer. You can do so as many times as you wish until the entire transfer has been reversed.
Once entirely reversed, a transfer can’t be reversed again. This method will return an error when called on an already-reversed transfer, or when trying to reverse more money than is left on a transfer.
Details
	Method: post
	Path: /v1/transfers/{id}/reversals

 Link to this function

 list(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

You can see a list of the reversals belonging to a specific transfer. Note that the 10 most recent reversals are always available by default on the transfer object. If you need more than those 10, you can use this API method and the limit and starting_after parameters to page through additional reversals.
Details
	Method: get
	Path: /v1/transfers/{id}/reversals

 Link to this function

 retrieve(client, id, transfer, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 transfer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

By default, you can see the 10 most recent reversals stored directly on the transfer object, but you can also retrieve details about a specific reversal stored on the transfer.
Details
	Method: get
	Path: /v1/transfers/{transfer}/reversals/{id}

 Link to this function

 update(client, id, transfer, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 id :: binary(),
 transfer :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified reversal by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
This request only accepts metadata and description as arguments.
Details
	Method: post
	Path: /v1/transfers/{transfer}/reversals/{id}

 Stripe.Radar.EarlyFraudWarning - Striped v0.5.0

Stripe.Radar.EarlyFraudWarning

An early fraud warning indicates that the card issuer has notified us that a
charge may be fraudulent.
Related guide: Early Fraud Warnings.

 Anchor for this section

 Summary

 Types

 t()

 The radar.early_fraud_warning type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a list of early fraud warnings.

 retrieve(client, early_fraud_warning, params \\ %{}, opts \\ [])

 Retrieves the details of an early fraud warning that has previously been created..

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Radar.EarlyFraudWarning{
 actionable: boolean(),
 charge: binary() | Stripe.Charge.t(),
 created: integer(),
 fraud_type: binary(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 payment_intent: binary() | Stripe.PaymentIntent.t()
}

The radar.early_fraud_warning type.
	actionable An EFW is actionable if it has not received a dispute and has not been fully refunded. You may wish to proactively refund a charge that receives an EFW, in order to avoid receiving a dispute later.
	charge ID of the charge this early fraud warning is for, optionally expanded.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	fraud_type The type of fraud labelled by the issuer. One of card_never_received, fraudulent_card_application, made_with_counterfeit_card, made_with_lost_card, made_with_stolen_card, misc, unauthorized_use_of_card.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	payment_intent ID of the Payment Intent this early fraud warning is for, optionally expanded.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:charge) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:payment_intent) => binary(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of early fraud warnings.
Details
	Method: get
	Path: /v1/radar/early_fraud_warnings

 Link to this function

 retrieve(client, early_fraud_warning, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 early_fraud_warning :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an early fraud warning that has previously been created..
Please refer to the early fraud warning object reference for more details.
Details
	Method: get
	Path: /v1/radar/early_fraud_warnings/{early_fraud_warning}

 Stripe.Radar.ValueList - Striped v0.5.0

Stripe.Radar.ValueList

Value lists allow you to group values together which can then be referenced in rules.
Related guide: Default Stripe Lists.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The radar.value_list type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new ValueList object, which can then be referenced in rules.

 delete(client, value_list, opts \\ [])

 Deletes a ValueList object, also deleting any items contained within the value list. To be deleted, a value list must not be referenced in any rules.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of ValueList objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, value_list, params \\ %{}, opts \\ [])

 Retrieves a ValueList object.

 update(client, value_list, params \\ %{}, opts \\ [])

 Updates a ValueList object by setting the values of the parameters passed. Any parameters not provided will be left unchanged. Note that item_type is immutable.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Radar.ValueList{
 alias: binary(),
 created: integer(),
 created_by: binary(),
 id: binary(),
 item_type: binary(),
 list_items: term(),
 livemode: boolean(),
 metadata: term(),
 name: binary(),
 object: binary()
}

The radar.value_list type.
	alias The name of the value list for use in rules.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	created_by The name or email address of the user who created this value list.
	id Unique identifier for the object.
	item_type The type of items in the value list. One of card_fingerprint, card_bin, email, ip_address, country, string, case_sensitive_string, or customer_id.
	list_items List of items contained within this value list.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name The name of the value list.
	object String representing the object's type. Objects of the same type share the same value.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:alias) => binary(),
 optional(:expand) => [binary()],
 optional(:item_type) =>
 :card_bin
 | :card_fingerprint
 | :case_sensitive_string
 | :country
 | :customer_id
 | :email
 | :ip_address
 | binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:name) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new ValueList object, which can then be referenced in rules.
Details
	Method: post
	Path: /v1/radar/value_lists

 Link to this function

 delete(client, value_list, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), value_list :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedRadar.ValueList.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes a ValueList object, also deleting any items contained within the value list. To be deleted, a value list must not be referenced in any rules.
Details
	Method: delete
	Path: /v1/radar/value_lists/{value_list}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:alias) => binary(),
 optional(:contains) => binary(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of ValueList objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/radar/value_lists

 Link to this function

 retrieve(client, value_list, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 value_list :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a ValueList object.
Details
	Method: get
	Path: /v1/radar/value_lists/{value_list}

 Link to this function

 update(client, value_list, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 value_list :: binary(),
 params :: %{
 optional(:alias) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:name) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates a ValueList object by setting the values of the parameters passed. Any parameters not provided will be left unchanged. Note that item_type is immutable.
Details
	Method: post
	Path: /v1/radar/value_lists/{value_list}

 Stripe.Radar.ValueListItem - Striped v0.5.0

Stripe.Radar.ValueListItem

Value list items allow you to add specific values to a given Radar value list, which can then be used in rules.
Related guide: Managing List Items.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The radar.value_list_item type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new ValueListItem object, which is added to the specified parent value list.

 delete(client, item, opts \\ [])

 Deletes a ValueListItem object, removing it from its parent value list.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of ValueListItem objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, item, params \\ %{}, opts \\ [])

 Retrieves a ValueListItem object.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Radar.ValueListItem{
 created: integer(),
 created_by: binary(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 value: binary(),
 value_list: binary()
}

The radar.value_list_item type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	created_by The name or email address of the user who added this item to the value list.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	value The value of the item.
	value_list The identifier of the value list this item belongs to.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:value) => binary(),
 optional(:value_list) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new ValueListItem object, which is added to the specified parent value list.
Details
	Method: post
	Path: /v1/radar/value_list_items

 Link to this function

 delete(client, item, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), item :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedRadar.ValueListItem.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes a ValueListItem object, removing it from its parent value list.
Details
	Method: delete
	Path: /v1/radar/value_list_items/{item}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:value) => binary(),
 optional(:value_list) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of ValueListItem objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/radar/value_list_items

 Link to this function

 retrieve(client, item, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 item :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a ValueListItem object.
Details
	Method: get
	Path: /v1/radar/value_list_items/{item}

 Stripe.Review - Striped v0.5.0

Stripe.Review

Reviews can be used to supplement automated fraud detection with human expertise.
Learn more about Radar and reviewing payments
here.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The review type.

 Functions

 approve(client, review, params \\ %{}, opts \\ [])

 Approves a Review object, closing it and removing it from the list of reviews.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Review objects that have open set to true. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, review, params \\ %{}, opts \\ [])

 Retrieves a Review object.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Review{
 billing_zip: binary() | nil,
 charge: (binary() | Stripe.Charge.t()) | nil,
 closed_reason: binary() | nil,
 created: integer(),
 id: binary(),
 ip_address: binary() | nil,
 ip_address_location: term() | nil,
 livemode: boolean(),
 object: binary(),
 open: boolean(),
 opened_reason: binary(),
 payment_intent: binary() | Stripe.PaymentIntent.t(),
 reason: binary(),
 session: term() | nil
}

The review type.
	billing_zip The ZIP or postal code of the card used, if applicable.
	charge The charge associated with this review.
	closed_reason The reason the review was closed, or null if it has not yet been closed. One of approved, refunded, refunded_as_fraud, disputed, or redacted.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	id Unique identifier for the object.
	ip_address The IP address where the payment originated.
	ip_address_location Information related to the location of the payment. Note that this information is an approximation and attempts to locate the nearest population center - it should not be used to determine a specific address.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	open If true, the review needs action.
	opened_reason The reason the review was opened. One of rule or manual.
	payment_intent The PaymentIntent ID associated with this review, if one exists.
	reason The reason the review is currently open or closed. One of rule, manual, approved, refunded, refunded_as_fraud, disputed, or redacted.
	session Information related to the browsing session of the user who initiated the payment.

 Anchor for this section

Functions

 Link to this function

 approve(client, review, params \\ %{}, opts \\ [])

 View Source

 @spec approve(
 client :: Stripe.t(),
 review :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Approves a Review object, closing it and removing it from the list of reviews.
Details
	Method: post
	Path: /v1/reviews/{review}/approve

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Review objects that have open set to true. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/reviews

 Link to this function

 retrieve(client, review, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 review :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a Review object.
Details
	Method: get
	Path: /v1/reviews/{review}

 Stripe.EphemeralKey - Striped v0.5.0

Stripe.EphemeralKey

 Anchor for this section

 Summary

 Types

 t()

 The ephemeral_key type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a short-lived API key for a given resource.

 delete(client, key, params \\ %{}, opts \\ [])

 Invalidates a short-lived API key for a given resource.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.EphemeralKey{
 created: integer(),
 expires: integer(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 secret: binary()
}

The ephemeral_key type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	expires Time at which the key will expire. Measured in seconds since the Unix epoch.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	secret The key's secret. You can use this value to make authorized requests to the Stripe API.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:customer) => binary(),
 optional(:expand) => [binary()],
 optional(:issuing_card) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a short-lived API key for a given resource.
Details
	Method: post
	Path: /v1/ephemeral_keys

 Link to this function

 delete(client, key, params \\ %{}, opts \\ [])

 View Source

 @spec delete(
 client :: Stripe.t(),
 key :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Invalidates a short-lived API key for a given resource.
Details
	Method: delete
	Path: /v1/ephemeral_keys/{key}

 Stripe.FundingInstructions - Striped v0.5.0

Stripe.FundingInstructions

Each customer has a balance that is
automatically applied to future invoices and payments using the customer_balance payment method.
Customers can fund this balance by initiating a bank transfer to any account in the
financial_addresses field.
Related guide: Customer Balance - Funding Instructions to learn more

 Anchor for this section

 Summary

 Types

 t()

 The funding_instructions type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.FundingInstructions{
 bank_transfer: term(),
 currency: binary(),
 funding_type: binary(),
 livemode: boolean(),
 object: binary()
}

The funding_instructions type.
	bank_transfer
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	funding_type The funding_type of the returned instructions
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.Issuing.Authorization - Striped v0.5.0

Stripe.Issuing.Authorization

When an issued card is used to make a purchase, an Issuing Authorization
object is created. Authorizations must be approved for the
purchase to be completed successfully.
Related guide: Issued Card Authorizations.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The issuing.authorization type.

 Functions

 approve(client, authorization, params \\ %{}, opts \\ [])

 Approves a pending Issuing Authorization object. This request should be made within the timeout window of the real-time authorization flow. You can also respond directly to the webhook request to approve an authorization (preferred). More details can be found here.

 decline(client, authorization, params \\ %{}, opts \\ [])

 Declines a pending Issuing Authorization object. This request should be made within the timeout window of the real time authorization flow.You can also respond directly to the webhook request to decline an authorization (preferred). More details can be found here.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Issuing Authorization objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, authorization, params \\ %{}, opts \\ [])

 Retrieves an Issuing Authorization object.

 update(client, authorization, params \\ %{}, opts \\ [])

 Updates the specified Issuing Authorization object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Issuing.Authorization{
 amount: integer(),
 amount_details: term() | nil,
 approved: boolean(),
 authorization_method: binary(),
 balance_transactions: term(),
 card: Stripe.Issuing.Card.t(),
 cardholder: (binary() | Stripe.Issuing.Cardholder.t()) | nil,
 created: integer(),
 currency: binary(),
 id: binary(),
 livemode: boolean(),
 merchant_amount: integer(),
 merchant_currency: binary(),
 merchant_data: term(),
 metadata: term(),
 network_data: term() | nil,
 object: binary(),
 pending_request: term() | nil,
 request_history: term(),
 status: binary(),
 transactions: term(),
 treasury: term() | nil,
 verification_data: term(),
 wallet: binary() | nil
}

The issuing.authorization type.
	amount The total amount that was authorized or rejected. This amount is in the card's currency and in the smallest currency unit.
	amount_details Detailed breakdown of amount components. These amounts are denominated in currency and in the smallest currency unit.
	approved Whether the authorization has been approved.
	authorization_method How the card details were provided.
	balance_transactions List of balance transactions associated with this authorization.
	card
	cardholder The cardholder to whom this authorization belongs.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	merchant_amount The total amount that was authorized or rejected. This amount is in the merchant_currency and in the smallest currency unit.
	merchant_currency The currency that was presented to the cardholder for the authorization. Three-letter ISO currency code, in lowercase. Must be a supported currency.
	merchant_data
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	network_data Details about the authorization, such as identifiers, set by the card network.
	object String representing the object's type. Objects of the same type share the same value.
	pending_request The pending authorization request. This field will only be non-null during an issuing_authorization.request webhook.
	request_history History of every time pending_request was approved/denied, either by you directly or by Stripe (e.g. based on your spending_controls). If the merchant changes the authorization by performing an incremental authorization, you can look at this field to see the previous requests for the authorization.
	status The current status of the authorization in its lifecycle.
	transactions List of transactions associated with this authorization.
	treasury Treasury details related to this authorization if it was created on a FinancialAccount.
	verification_data
	wallet The digital wallet used for this authorization. One of apple_pay, google_pay, or samsung_pay.

 Anchor for this section

Functions

 Link to this function

 approve(client, authorization, params \\ %{}, opts \\ [])

 View Source

 @spec approve(
 client :: Stripe.t(),
 authorization :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Approves a pending Issuing Authorization object. This request should be made within the timeout window of the real-time authorization flow. You can also respond directly to the webhook request to approve an authorization (preferred). More details can be found here.
Details
	Method: post
	Path: /v1/issuing/authorizations/{authorization}/approve

 Link to this function

 decline(client, authorization, params \\ %{}, opts \\ [])

 View Source

 @spec decline(
 client :: Stripe.t(),
 authorization :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Declines a pending Issuing Authorization object. This request should be made within the timeout window of the real time authorization flow.You can also respond directly to the webhook request to decline an authorization (preferred). More details can be found here.
Details
	Method: post
	Path: /v1/issuing/authorizations/{authorization}/decline

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:card) => binary(),
 optional(:cardholder) => binary(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :closed | :pending | :reversed
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Issuing Authorization objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/issuing/authorizations

 Link to this function

 retrieve(client, authorization, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 authorization :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an Issuing Authorization object.
Details
	Method: get
	Path: /v1/issuing/authorizations/{authorization}

 Link to this function

 update(client, authorization, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 authorization :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified Issuing Authorization object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/issuing/authorizations/{authorization}

 Stripe.Issuing.Card - Striped v0.5.0

Stripe.Issuing.Card

You can create physical or virtual cards that are issued to cardholders.

 Anchor for this section

 Summary

 Types

 address()

 The address that the card is shipped to.

 created()

 customs()

 Customs information for the shipment.

 pin()

 The desired new PIN for this card.

 shipping()

 The address where the card will be shipped.

 spending_controls()

 Rules that control spending for this card. Refer to our documentation for more details.

 spending_limits()

 t()

 The issuing.card type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates an Issuing Card object.

 deliver_card(client, card, params \\ %{}, opts \\ [])

 Updates the shipping status of the specified Issuing Card object to delivered.

 fail_card(client, card, params \\ %{}, opts \\ [])

 Updates the shipping status of the specified Issuing Card object to failure.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Issuing Card objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, card, params \\ %{}, opts \\ [])

 Retrieves an Issuing Card object.

 return_card(client, card, params \\ %{}, opts \\ [])

 Updates the shipping status of the specified Issuing Card object to returned.

 ship_card(client, card, params \\ %{}, opts \\ [])

 Updates the shipping status of the specified Issuing Card object to shipped.

 update(client, card, params \\ %{}, opts \\ [])

 Updates the specified Issuing Card object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The address that the card is shipped to.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 customs()

 View Source

 @type customs() :: %{optional(:eori_number) => binary()}

Customs information for the shipment.

 Link to this type

 pin()

 View Source

 @type pin() :: %{optional(:encrypted_number) => binary()}

The desired new PIN for this card.

 Link to this type

 shipping()

 View Source

 @type shipping() :: %{
 optional(:address) => address(),
 optional(:customs) => customs(),
 optional(:name) => binary(),
 optional(:phone_number) => binary(),
 optional(:require_signature) => boolean(),
 optional(:service) => :express | :priority | :standard,
 optional(:type) => :bulk | :individual
}

The address where the card will be shipped.

 Link to this type

 spending_controls()

 View Source

 @type spending_controls() :: %{
 optional(:allowed_categories) => [
 :ac_refrigeration_repair
 | :accounting_bookkeeping_services
 | :advertising_services
 | :agricultural_cooperative
 | :airlines_air_carriers
 | :airports_flying_fields
 | :ambulance_services
 | :amusement_parks_carnivals
 | :antique_reproductions
 | :antique_shops
 | :aquariums
 | :architectural_surveying_services
 | :art_dealers_and_galleries
 | :artists_supply_and_craft_shops
 | :auto_and_home_supply_stores
 | :auto_body_repair_shops
 | :auto_paint_shops
 | :auto_service_shops
 | :automated_cash_disburse
 | :automated_fuel_dispensers
 | :automobile_associations
 | :automotive_parts_and_accessories_stores
 | :automotive_tire_stores
 | :bail_and_bond_payments
 | :bakeries
 | :bands_orchestras
 | :barber_and_beauty_shops
 | :betting_casino_gambling
 | :bicycle_shops
 | :billiard_pool_establishments
 | :boat_dealers
 | :boat_rentals_and_leases
 | :book_stores
 | :books_periodicals_and_newspapers
 | :bowling_alleys
 | :bus_lines
 | :business_secretarial_schools
 | :buying_shopping_services
 | :cable_satellite_and_other_pay_television_and_radio
 | :camera_and_photographic_supply_stores
 | :candy_nut_and_confectionery_stores
 | :car_and_truck_dealers_new_used
 | :car_and_truck_dealers_used_only
 | :car_rental_agencies
 | :car_washes
 | :carpentry_services
 | :carpet_upholstery_cleaning
 | :caterers
 | :charitable_and_social_service_organizations_fundraising
 | :chemicals_and_allied_products
 | :child_care_services
 | :childrens_and_infants_wear_stores
 | :chiropodists_podiatrists
 | :chiropractors
 | :cigar_stores_and_stands
 | :civic_social_fraternal_associations
 | :cleaning_and_maintenance
 | :clothing_rental
 | :colleges_universities
 | :commercial_equipment
 | :commercial_footwear
 | :commercial_photography_art_and_graphics
 | :commuter_transport_and_ferries
 | :computer_network_services
 | :computer_programming
 | :computer_repair
 | :computer_software_stores
 | :computers_peripherals_and_software
 | :concrete_work_services
 | :construction_materials
 | :consulting_public_relations
 | :correspondence_schools
 | :cosmetic_stores
 | :counseling_services
 | :country_clubs
 | :courier_services
 | :court_costs
 | :credit_reporting_agencies
 | :cruise_lines
 | :dairy_products_stores
 | :dance_hall_studios_schools
 | :dating_escort_services
 | :dentists_orthodontists
 | :department_stores
 | :detective_agencies
 | :digital_goods_applications
 | :digital_goods_games
 | :digital_goods_large_volume
 | :digital_goods_media
 | :direct_marketing_catalog_merchant
 | :direct_marketing_combination_catalog_and_retail_merchant
 | :direct_marketing_inbound_telemarketing
 | :direct_marketing_insurance_services
 | :direct_marketing_other
 | :direct_marketing_outbound_telemarketing
 | :direct_marketing_subscription
 | :direct_marketing_travel
 | :discount_stores
 | :doctors
 | :door_to_door_sales
 | :drapery_window_covering_and_upholstery_stores
 | :drinking_places
 | :drug_stores_and_pharmacies
 | :drugs_drug_proprietaries_and_druggist_sundries
 | :dry_cleaners
 | :durable_goods
 | :duty_free_stores
 | :eating_places_restaurants
 | :educational_services
 | :electric_razor_stores
 | :electrical_parts_and_equipment
 | :electrical_services
 | :electronics_repair_shops
 | :electronics_stores
 | :elementary_secondary_schools
 | :employment_temp_agencies
 | :equipment_rental
 | :exterminating_services
 | :family_clothing_stores
 | :fast_food_restaurants
 | :financial_institutions
 | :fines_government_administrative_entities
 | :fireplace_fireplace_screens_and_accessories_stores
 | :floor_covering_stores
 | :florists
 | :florists_supplies_nursery_stock_and_flowers
 | :freezer_and_locker_meat_provisioners
 | :fuel_dealers_non_automotive
 | :funeral_services_crematories
 | :furniture_home_furnishings_and_equipment_stores_except_appliances
 | :furniture_repair_refinishing
 | :furriers_and_fur_shops
 | :general_services
 | :gift_card_novelty_and_souvenir_shops
 | :glass_paint_and_wallpaper_stores
 | :glassware_crystal_stores
 | :golf_courses_public
 | :government_services
 | :grocery_stores_supermarkets
 | :hardware_equipment_and_supplies
 | :hardware_stores
 | :health_and_beauty_spas
 | :hearing_aids_sales_and_supplies
 | :heating_plumbing_a_c
 | :hobby_toy_and_game_shops
 | :home_supply_warehouse_stores
 | :hospitals
 | :hotels_motels_and_resorts
 | :household_appliance_stores
 | :industrial_supplies
 | :information_retrieval_services
 | :insurance_default
 | :insurance_underwriting_premiums
 | :intra_company_purchases
 | :jewelry_stores_watches_clocks_and_silverware_stores
 | :landscaping_services
 | :laundries
 | :laundry_cleaning_services
 | :legal_services_attorneys
 | :luggage_and_leather_goods_stores
 | :lumber_building_materials_stores
 | :manual_cash_disburse
 | :marinas_service_and_supplies
 | :masonry_stonework_and_plaster
 | :massage_parlors
 | :medical_and_dental_labs
 | :medical_dental_ophthalmic_and_hospital_equipment_and_supplies
 | :medical_services
 | :membership_organizations
 | :mens_and_boys_clothing_and_accessories_stores
 | :mens_womens_clothing_stores
 | :metal_service_centers
 | :miscellaneous
 | :miscellaneous_apparel_and_accessory_shops
 | :miscellaneous_auto_dealers
 | :miscellaneous_business_services
 | :miscellaneous_food_stores
 | :miscellaneous_general_merchandise
 | :miscellaneous_general_services
 | :miscellaneous_home_furnishing_specialty_stores
 | :miscellaneous_publishing_and_printing
 | :miscellaneous_recreation_services
 | :miscellaneous_repair_shops
 | :miscellaneous_specialty_retail
 | :mobile_home_dealers
 | :motion_picture_theaters
 | :motor_freight_carriers_and_trucking
 | :motor_homes_dealers
 | :motor_vehicle_supplies_and_new_parts
 | :motorcycle_shops_and_dealers
 | :motorcycle_shops_dealers
 | :music_stores_musical_instruments_pianos_and_sheet_music
 | :news_dealers_and_newsstands
 | :non_fi_money_orders
 | :non_fi_stored_value_card_purchase_load
 | :nondurable_goods
 | :nurseries_lawn_and_garden_supply_stores
 | :nursing_personal_care
 | :office_and_commercial_furniture
 | :opticians_eyeglasses
 | :optometrists_ophthalmologist
 | :orthopedic_goods_prosthetic_devices
 | :osteopaths
 | :package_stores_beer_wine_and_liquor
 | :paints_varnishes_and_supplies
 | :parking_lots_garages
 | :passenger_railways
 | :pawn_shops
 | :pet_shops_pet_food_and_supplies
 | :petroleum_and_petroleum_products
 | :photo_developing
 | :photographic_photocopy_microfilm_equipment_and_supplies
 | :photographic_studios
 | :picture_video_production
 | :piece_goods_notions_and_other_dry_goods
 | :plumbing_heating_equipment_and_supplies
 | :political_organizations
 | :postal_services_government_only
 | :precious_stones_and_metals_watches_and_jewelry
 | :professional_services
 | :public_warehousing_and_storage
 | :quick_copy_repro_and_blueprint
 | :railroads
 | :real_estate_agents_and_managers_rentals
 | :record_stores
 | :recreational_vehicle_rentals
 | :religious_goods_stores
 | :religious_organizations
 | :roofing_siding_sheet_metal
 | :secretarial_support_services
 | :security_brokers_dealers
 | :service_stations
 | :sewing_needlework_fabric_and_piece_goods_stores
 | :shoe_repair_hat_cleaning
 | :shoe_stores
 | :small_appliance_repair
 | :snowmobile_dealers
 | :special_trade_services
 | :specialty_cleaning
 | :sporting_goods_stores
 | :sporting_recreation_camps
 | :sports_and_riding_apparel_stores
 | :sports_clubs_fields
 | :stamp_and_coin_stores
 | :stationary_office_supplies_printing_and_writing_paper
 | :stationery_stores_office_and_school_supply_stores
 | :swimming_pools_sales
 | :t_ui_travel_germany
 | :tailors_alterations
 | :tax_payments_government_agencies
 | :tax_preparation_services
 | :taxicabs_limousines
 | :telecommunication_equipment_and_telephone_sales
 | :telecommunication_services
 | :telegraph_services
 | :tent_and_awning_shops
 | :testing_laboratories
 | :theatrical_ticket_agencies
 | :timeshares
 | :tire_retreading_and_repair
 | :tolls_bridge_fees
 | :tourist_attractions_and_exhibits
 | :towing_services
 | :trailer_parks_campgrounds
 | :transportation_services
 | :travel_agencies_tour_operators
 | :truck_stop_iteration
 | :truck_utility_trailer_rentals
 | :typesetting_plate_making_and_related_services
 | :typewriter_stores
 | :u_s_federal_government_agencies_or_departments
 | :uniforms_commercial_clothing
 | :used_merchandise_and_secondhand_stores
 | :utilities
 | :variety_stores
 | :veterinary_services
 | :video_amusement_game_supplies
 | :video_game_arcades
 | :video_tape_rental_stores
 | :vocational_trade_schools
 | :watch_jewelry_repair
 | :welding_repair
 | :wholesale_clubs
 | :wig_and_toupee_stores
 | :wires_money_orders
 | :womens_accessory_and_specialty_shops
 | :womens_ready_to_wear_stores
 | :wrecking_and_salvage_yards
],
 optional(:blocked_categories) => [
 :ac_refrigeration_repair
 | :accounting_bookkeeping_services
 | :advertising_services
 | :agricultural_cooperative
 | :airlines_air_carriers
 | :airports_flying_fields
 | :ambulance_services
 | :amusement_parks_carnivals
 | :antique_reproductions
 | :antique_shops
 | :aquariums
 | :architectural_surveying_services
 | :art_dealers_and_galleries
 | :artists_supply_and_craft_shops
 | :auto_and_home_supply_stores
 | :auto_body_repair_shops
 | :auto_paint_shops
 | :auto_service_shops
 | :automated_cash_disburse
 | :automated_fuel_dispensers
 | :automobile_associations
 | :automotive_parts_and_accessories_stores
 | :automotive_tire_stores
 | :bail_and_bond_payments
 | :bakeries
 | :bands_orchestras
 | :barber_and_beauty_shops
 | :betting_casino_gambling
 | :bicycle_shops
 | :billiard_pool_establishments
 | :boat_dealers
 | :boat_rentals_and_leases
 | :book_stores
 | :books_periodicals_and_newspapers
 | :bowling_alleys
 | :bus_lines
 | :business_secretarial_schools
 | :buying_shopping_services
 | :cable_satellite_and_other_pay_television_and_radio
 | :camera_and_photographic_supply_stores
 | :candy_nut_and_confectionery_stores
 | :car_and_truck_dealers_new_used
 | :car_and_truck_dealers_used_only
 | :car_rental_agencies
 | :car_washes
 | :carpentry_services
 | :carpet_upholstery_cleaning
 | :caterers
 | :charitable_and_social_service_organizations_fundraising
 | :chemicals_and_allied_products
 | :child_care_services
 | :childrens_and_infants_wear_stores
 | :chiropodists_podiatrists
 | :chiropractors
 | :cigar_stores_and_stands
 | :civic_social_fraternal_associations
 | :cleaning_and_maintenance
 | :clothing_rental
 | :colleges_universities
 | :commercial_equipment
 | :commercial_footwear
 | :commercial_photography_art_and_graphics
 | :commuter_transport_and_ferries
 | :computer_network_services
 | :computer_programming
 | :computer_repair
 | :computer_software_stores
 | :computers_peripherals_and_software
 | :concrete_work_services
 | :construction_materials
 | :consulting_public_relations
 | :correspondence_schools
 | :cosmetic_stores
 | :counseling_services
 | :country_clubs
 | :courier_services
 | :court_costs
 | :credit_reporting_agencies
 | :cruise_lines
 | :dairy_products_stores
 | :dance_hall_studios_schools
 | :dating_escort_services
 | :dentists_orthodontists
 | :department_stores
 | :detective_agencies
 | :digital_goods_applications
 | :digital_goods_games
 | :digital_goods_large_volume
 | :digital_goods_media
 | :direct_marketing_catalog_merchant
 | :direct_marketing_combination_catalog_and_retail_merchant
 | :direct_marketing_inbound_telemarketing
 | :direct_marketing_insurance_services
 | :direct_marketing_other
 | :direct_marketing_outbound_telemarketing
 | :direct_marketing_subscription
 | :direct_marketing_travel
 | :discount_stores
 | :doctors
 | :door_to_door_sales
 | :drapery_window_covering_and_upholstery_stores
 | :drinking_places
 | :drug_stores_and_pharmacies
 | :drugs_drug_proprietaries_and_druggist_sundries
 | :dry_cleaners
 | :durable_goods
 | :duty_free_stores
 | :eating_places_restaurants
 | :educational_services
 | :electric_razor_stores
 | :electrical_parts_and_equipment
 | :electrical_services
 | :electronics_repair_shops
 | :electronics_stores
 | :elementary_secondary_schools
 | :employment_temp_agencies
 | :equipment_rental
 | :exterminating_services
 | :family_clothing_stores
 | :fast_food_restaurants
 | :financial_institutions
 | :fines_government_administrative_entities
 | :fireplace_fireplace_screens_and_accessories_stores
 | :floor_covering_stores
 | :florists
 | :florists_supplies_nursery_stock_and_flowers
 | :freezer_and_locker_meat_provisioners
 | :fuel_dealers_non_automotive
 | :funeral_services_crematories
 | :furniture_home_furnishings_and_equipment_stores_except_appliances
 | :furniture_repair_refinishing
 | :furriers_and_fur_shops
 | :general_services
 | :gift_card_novelty_and_souvenir_shops
 | :glass_paint_and_wallpaper_stores
 | :glassware_crystal_stores
 | :golf_courses_public
 | :government_services
 | :grocery_stores_supermarkets
 | :hardware_equipment_and_supplies
 | :hardware_stores
 | :health_and_beauty_spas
 | :hearing_aids_sales_and_supplies
 | :heating_plumbing_a_c
 | :hobby_toy_and_game_shops
 | :home_supply_warehouse_stores
 | :hospitals
 | :hotels_motels_and_resorts
 | :household_appliance_stores
 | :industrial_supplies
 | :information_retrieval_services
 | :insurance_default
 | :insurance_underwriting_premiums
 | :intra_company_purchases
 | :jewelry_stores_watches_clocks_and_silverware_stores
 | :landscaping_services
 | :laundries
 | :laundry_cleaning_services
 | :legal_services_attorneys
 | :luggage_and_leather_goods_stores
 | :lumber_building_materials_stores
 | :manual_cash_disburse
 | :marinas_service_and_supplies
 | :masonry_stonework_and_plaster
 | :massage_parlors
 | :medical_and_dental_labs
 | :medical_dental_ophthalmic_and_hospital_equipment_and_supplies
 | :medical_services
 | :membership_organizations
 | :mens_and_boys_clothing_and_accessories_stores
 | :mens_womens_clothing_stores
 | :metal_service_centers
 | :miscellaneous
 | :miscellaneous_apparel_and_accessory_shops
 | :miscellaneous_auto_dealers
 | :miscellaneous_business_services
 | :miscellaneous_food_stores
 | :miscellaneous_general_merchandise
 | :miscellaneous_general_services
 | :miscellaneous_home_furnishing_specialty_stores
 | :miscellaneous_publishing_and_printing
 | :miscellaneous_recreation_services
 | :miscellaneous_repair_shops
 | :miscellaneous_specialty_retail
 | :mobile_home_dealers
 | :motion_picture_theaters
 | :motor_freight_carriers_and_trucking
 | :motor_homes_dealers
 | :motor_vehicle_supplies_and_new_parts
 | :motorcycle_shops_and_dealers
 | :motorcycle_shops_dealers
 | :music_stores_musical_instruments_pianos_and_sheet_music
 | :news_dealers_and_newsstands
 | :non_fi_money_orders
 | :non_fi_stored_value_card_purchase_load
 | :nondurable_goods
 | :nurseries_lawn_and_garden_supply_stores
 | :nursing_personal_care
 | :office_and_commercial_furniture
 | :opticians_eyeglasses
 | :optometrists_ophthalmologist
 | :orthopedic_goods_prosthetic_devices
 | :osteopaths
 | :package_stores_beer_wine_and_liquor
 | :paints_varnishes_and_supplies
 | :parking_lots_garages
 | :passenger_railways
 | :pawn_shops
 | :pet_shops_pet_food_and_supplies
 | :petroleum_and_petroleum_products
 | :photo_developing
 | :photographic_photocopy_microfilm_equipment_and_supplies
 | :photographic_studios
 | :picture_video_production
 | :piece_goods_notions_and_other_dry_goods
 | :plumbing_heating_equipment_and_supplies
 | :political_organizations
 | :postal_services_government_only
 | :precious_stones_and_metals_watches_and_jewelry
 | :professional_services
 | :public_warehousing_and_storage
 | :quick_copy_repro_and_blueprint
 | :railroads
 | :real_estate_agents_and_managers_rentals
 | :record_stores
 | :recreational_vehicle_rentals
 | :religious_goods_stores
 | :religious_organizations
 | :roofing_siding_sheet_metal
 | :secretarial_support_services
 | :security_brokers_dealers
 | :service_stations
 | :sewing_needlework_fabric_and_piece_goods_stores
 | :shoe_repair_hat_cleaning
 | :shoe_stores
 | :small_appliance_repair
 | :snowmobile_dealers
 | :special_trade_services
 | :specialty_cleaning
 | :sporting_goods_stores
 | :sporting_recreation_camps
 | :sports_and_riding_apparel_stores
 | :sports_clubs_fields
 | :stamp_and_coin_stores
 | :stationary_office_supplies_printing_and_writing_paper
 | :stationery_stores_office_and_school_supply_stores
 | :swimming_pools_sales
 | :t_ui_travel_germany
 | :tailors_alterations
 | :tax_payments_government_agencies
 | :tax_preparation_services
 | :taxicabs_limousines
 | :telecommunication_equipment_and_telephone_sales
 | :telecommunication_services
 | :telegraph_services
 | :tent_and_awning_shops
 | :testing_laboratories
 | :theatrical_ticket_agencies
 | :timeshares
 | :tire_retreading_and_repair
 | :tolls_bridge_fees
 | :tourist_attractions_and_exhibits
 | :towing_services
 | :trailer_parks_campgrounds
 | :transportation_services
 | :travel_agencies_tour_operators
 | :truck_stop_iteration
 | :truck_utility_trailer_rentals
 | :typesetting_plate_making_and_related_services
 | :typewriter_stores
 | :u_s_federal_government_agencies_or_departments
 | :uniforms_commercial_clothing
 | :used_merchandise_and_secondhand_stores
 | :utilities
 | :variety_stores
 | :veterinary_services
 | :video_amusement_game_supplies
 | :video_game_arcades
 | :video_tape_rental_stores
 | :vocational_trade_schools
 | :watch_jewelry_repair
 | :welding_repair
 | :wholesale_clubs
 | :wig_and_toupee_stores
 | :wires_money_orders
 | :womens_accessory_and_specialty_shops
 | :womens_ready_to_wear_stores
 | :wrecking_and_salvage_yards
],
 optional(:spending_limits) => [spending_limits()]
}

Rules that control spending for this card. Refer to our documentation for more details.

 Link to this type

 spending_limits()

 View Source

 @type spending_limits() :: %{
 optional(:amount) => integer(),
 optional(:categories) => [
 :ac_refrigeration_repair
 | :accounting_bookkeeping_services
 | :advertising_services
 | :agricultural_cooperative
 | :airlines_air_carriers
 | :airports_flying_fields
 | :ambulance_services
 | :amusement_parks_carnivals
 | :antique_reproductions
 | :antique_shops
 | :aquariums
 | :architectural_surveying_services
 | :art_dealers_and_galleries
 | :artists_supply_and_craft_shops
 | :auto_and_home_supply_stores
 | :auto_body_repair_shops
 | :auto_paint_shops
 | :auto_service_shops
 | :automated_cash_disburse
 | :automated_fuel_dispensers
 | :automobile_associations
 | :automotive_parts_and_accessories_stores
 | :automotive_tire_stores
 | :bail_and_bond_payments
 | :bakeries
 | :bands_orchestras
 | :barber_and_beauty_shops
 | :betting_casino_gambling
 | :bicycle_shops
 | :billiard_pool_establishments
 | :boat_dealers
 | :boat_rentals_and_leases
 | :book_stores
 | :books_periodicals_and_newspapers
 | :bowling_alleys
 | :bus_lines
 | :business_secretarial_schools
 | :buying_shopping_services
 | :cable_satellite_and_other_pay_television_and_radio
 | :camera_and_photographic_supply_stores
 | :candy_nut_and_confectionery_stores
 | :car_and_truck_dealers_new_used
 | :car_and_truck_dealers_used_only
 | :car_rental_agencies
 | :car_washes
 | :carpentry_services
 | :carpet_upholstery_cleaning
 | :caterers
 | :charitable_and_social_service_organizations_fundraising
 | :chemicals_and_allied_products
 | :child_care_services
 | :childrens_and_infants_wear_stores
 | :chiropodists_podiatrists
 | :chiropractors
 | :cigar_stores_and_stands
 | :civic_social_fraternal_associations
 | :cleaning_and_maintenance
 | :clothing_rental
 | :colleges_universities
 | :commercial_equipment
 | :commercial_footwear
 | :commercial_photography_art_and_graphics
 | :commuter_transport_and_ferries
 | :computer_network_services
 | :computer_programming
 | :computer_repair
 | :computer_software_stores
 | :computers_peripherals_and_software
 | :concrete_work_services
 | :construction_materials
 | :consulting_public_relations
 | :correspondence_schools
 | :cosmetic_stores
 | :counseling_services
 | :country_clubs
 | :courier_services
 | :court_costs
 | :credit_reporting_agencies
 | :cruise_lines
 | :dairy_products_stores
 | :dance_hall_studios_schools
 | :dating_escort_services
 | :dentists_orthodontists
 | :department_stores
 | :detective_agencies
 | :digital_goods_applications
 | :digital_goods_games
 | :digital_goods_large_volume
 | :digital_goods_media
 | :direct_marketing_catalog_merchant
 | :direct_marketing_combination_catalog_and_retail_merchant
 | :direct_marketing_inbound_telemarketing
 | :direct_marketing_insurance_services
 | :direct_marketing_other
 | :direct_marketing_outbound_telemarketing
 | :direct_marketing_subscription
 | :direct_marketing_travel
 | :discount_stores
 | :doctors
 | :door_to_door_sales
 | :drapery_window_covering_and_upholstery_stores
 | :drinking_places
 | :drug_stores_and_pharmacies
 | :drugs_drug_proprietaries_and_druggist_sundries
 | :dry_cleaners
 | :durable_goods
 | :duty_free_stores
 | :eating_places_restaurants
 | :educational_services
 | :electric_razor_stores
 | :electrical_parts_and_equipment
 | :electrical_services
 | :electronics_repair_shops
 | :electronics_stores
 | :elementary_secondary_schools
 | :employment_temp_agencies
 | :equipment_rental
 | :exterminating_services
 | :family_clothing_stores
 | :fast_food_restaurants
 | :financial_institutions
 | :fines_government_administrative_entities
 | :fireplace_fireplace_screens_and_accessories_stores
 | :floor_covering_stores
 | :florists
 | :florists_supplies_nursery_stock_and_flowers
 | :freezer_and_locker_meat_provisioners
 | :fuel_dealers_non_automotive
 | :funeral_services_crematories
 | :furniture_home_furnishings_and_equipment_stores_except_appliances
 | :furniture_repair_refinishing
 | :furriers_and_fur_shops
 | :general_services
 | :gift_card_novelty_and_souvenir_shops
 | :glass_paint_and_wallpaper_stores
 | :glassware_crystal_stores
 | :golf_courses_public
 | :government_services
 | :grocery_stores_supermarkets
 | :hardware_equipment_and_supplies
 | :hardware_stores
 | :health_and_beauty_spas
 | :hearing_aids_sales_and_supplies
 | :heating_plumbing_a_c
 | :hobby_toy_and_game_shops
 | :home_supply_warehouse_stores
 | :hospitals
 | :hotels_motels_and_resorts
 | :household_appliance_stores
 | :industrial_supplies
 | :information_retrieval_services
 | :insurance_default
 | :insurance_underwriting_premiums
 | :intra_company_purchases
 | :jewelry_stores_watches_clocks_and_silverware_stores
 | :landscaping_services
 | :laundries
 | :laundry_cleaning_services
 | :legal_services_attorneys
 | :luggage_and_leather_goods_stores
 | :lumber_building_materials_stores
 | :manual_cash_disburse
 | :marinas_service_and_supplies
 | :masonry_stonework_and_plaster
 | :massage_parlors
 | :medical_and_dental_labs
 | :medical_dental_ophthalmic_and_hospital_equipment_and_supplies
 | :medical_services
 | :membership_organizations
 | :mens_and_boys_clothing_and_accessories_stores
 | :mens_womens_clothing_stores
 | :metal_service_centers
 | :miscellaneous
 | :miscellaneous_apparel_and_accessory_shops
 | :miscellaneous_auto_dealers
 | :miscellaneous_business_services
 | :miscellaneous_food_stores
 | :miscellaneous_general_merchandise
 | :miscellaneous_general_services
 | :miscellaneous_home_furnishing_specialty_stores
 | :miscellaneous_publishing_and_printing
 | :miscellaneous_recreation_services
 | :miscellaneous_repair_shops
 | :miscellaneous_specialty_retail
 | :mobile_home_dealers
 | :motion_picture_theaters
 | :motor_freight_carriers_and_trucking
 | :motor_homes_dealers
 | :motor_vehicle_supplies_and_new_parts
 | :motorcycle_shops_and_dealers
 | :motorcycle_shops_dealers
 | :music_stores_musical_instruments_pianos_and_sheet_music
 | :news_dealers_and_newsstands
 | :non_fi_money_orders
 | :non_fi_stored_value_card_purchase_load
 | :nondurable_goods
 | :nurseries_lawn_and_garden_supply_stores
 | :nursing_personal_care
 | :office_and_commercial_furniture
 | :opticians_eyeglasses
 | :optometrists_ophthalmologist
 | :orthopedic_goods_prosthetic_devices
 | :osteopaths
 | :package_stores_beer_wine_and_liquor
 | :paints_varnishes_and_supplies
 | :parking_lots_garages
 | :passenger_railways
 | :pawn_shops
 | :pet_shops_pet_food_and_supplies
 | :petroleum_and_petroleum_products
 | :photo_developing
 | :photographic_photocopy_microfilm_equipment_and_supplies
 | :photographic_studios
 | :picture_video_production
 | :piece_goods_notions_and_other_dry_goods
 | :plumbing_heating_equipment_and_supplies
 | :political_organizations
 | :postal_services_government_only
 | :precious_stones_and_metals_watches_and_jewelry
 | :professional_services
 | :public_warehousing_and_storage
 | :quick_copy_repro_and_blueprint
 | :railroads
 | :real_estate_agents_and_managers_rentals
 | :record_stores
 | :recreational_vehicle_rentals
 | :religious_goods_stores
 | :religious_organizations
 | :roofing_siding_sheet_metal
 | :secretarial_support_services
 | :security_brokers_dealers
 | :service_stations
 | :sewing_needlework_fabric_and_piece_goods_stores
 | :shoe_repair_hat_cleaning
 | :shoe_stores
 | :small_appliance_repair
 | :snowmobile_dealers
 | :special_trade_services
 | :specialty_cleaning
 | :sporting_goods_stores
 | :sporting_recreation_camps
 | :sports_and_riding_apparel_stores
 | :sports_clubs_fields
 | :stamp_and_coin_stores
 | :stationary_office_supplies_printing_and_writing_paper
 | :stationery_stores_office_and_school_supply_stores
 | :swimming_pools_sales
 | :t_ui_travel_germany
 | :tailors_alterations
 | :tax_payments_government_agencies
 | :tax_preparation_services
 | :taxicabs_limousines
 | :telecommunication_equipment_and_telephone_sales
 | :telecommunication_services
 | :telegraph_services
 | :tent_and_awning_shops
 | :testing_laboratories
 | :theatrical_ticket_agencies
 | :timeshares
 | :tire_retreading_and_repair
 | :tolls_bridge_fees
 | :tourist_attractions_and_exhibits
 | :towing_services
 | :trailer_parks_campgrounds
 | :transportation_services
 | :travel_agencies_tour_operators
 | :truck_stop_iteration
 | :truck_utility_trailer_rentals
 | :typesetting_plate_making_and_related_services
 | :typewriter_stores
 | :u_s_federal_government_agencies_or_departments
 | :uniforms_commercial_clothing
 | :used_merchandise_and_secondhand_stores
 | :utilities
 | :variety_stores
 | :veterinary_services
 | :video_amusement_game_supplies
 | :video_game_arcades
 | :video_tape_rental_stores
 | :vocational_trade_schools
 | :watch_jewelry_repair
 | :welding_repair
 | :wholesale_clubs
 | :wig_and_toupee_stores
 | :wires_money_orders
 | :womens_accessory_and_specialty_shops
 | :womens_ready_to_wear_stores
 | :wrecking_and_salvage_yards
],
 optional(:interval) =>
 :all_time | :daily | :monthly | :per_authorization | :weekly | :yearly
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Issuing.Card{
 brand: binary(),
 cancellation_reason: binary() | nil,
 cardholder: Stripe.Issuing.Cardholder.t(),
 created: integer(),
 currency: binary(),
 cvc: binary(),
 exp_month: integer(),
 exp_year: integer(),
 financial_account: binary() | nil,
 id: binary(),
 last4: binary(),
 livemode: boolean(),
 metadata: term(),
 number: binary(),
 object: binary(),
 replaced_by: (binary() | t()) | nil,
 replacement_for: (binary() | t()) | nil,
 replacement_reason: binary() | nil,
 shipping: term() | nil,
 spending_controls: term(),
 status: binary(),
 type: binary(),
 wallets: term() | nil
}

The issuing.card type.
	brand The brand of the card.
	cancellation_reason The reason why the card was canceled.
	cardholder
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Supported currencies are usd in the US, eur in the EU, and gbp in the UK.
	cvc The card's CVC. For security reasons, this is only available for virtual cards, and will be omitted unless you explicitly request it with the expand parameter. Additionally, it's only available via the "Retrieve a card" endpoint, not via "List all cards" or any other endpoint.
	exp_month The expiration month of the card.
	exp_year The expiration year of the card.
	financial_account The financial account this card is attached to.
	id Unique identifier for the object.
	last4 The last 4 digits of the card number.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	number The full unredacted card number. For security reasons, this is only available for virtual cards, and will be omitted unless you explicitly request it with the expand parameter. Additionally, it's only available via the "Retrieve a card" endpoint, not via "List all cards" or any other endpoint.
	object String representing the object's type. Objects of the same type share the same value.
	replaced_by The latest card that replaces this card, if any.
	replacement_for The card this card replaces, if any.
	replacement_reason The reason why the previous card needed to be replaced.
	shipping Where and how the card will be shipped.
	spending_controls
	status Whether authorizations can be approved on this card.
	type The type of the card.
	wallets Information relating to digital wallets (like Apple Pay and Google Pay).

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:cardholder) => binary(),
 optional(:currency) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:replacement_for) => binary(),
 optional(:replacement_reason) => :damaged | :expired | :lost | :stolen,
 optional(:shipping) => shipping(),
 optional(:spending_controls) => spending_controls(),
 optional(:status) => :active | :inactive,
 optional(:type) => :physical | :virtual
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an Issuing Card object.
Details
	Method: post
	Path: /v1/issuing/cards

 Link to this function

 deliver_card(client, card, params \\ %{}, opts \\ [])

 View Source

 @spec deliver_card(
 client :: Stripe.t(),
 card :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the shipping status of the specified Issuing Card object to delivered.
Details
	Method: post
	Path: /v1/test_helpers/issuing/cards/{card}/shipping/deliver

 Link to this function

 fail_card(client, card, params \\ %{}, opts \\ [])

 View Source

 @spec fail_card(
 client :: Stripe.t(),
 card :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the shipping status of the specified Issuing Card object to failure.
Details
	Method: post
	Path: /v1/test_helpers/issuing/cards/{card}/shipping/fail

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:cardholder) => binary(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:exp_month) => integer(),
 optional(:exp_year) => integer(),
 optional(:expand) => [binary()],
 optional(:last4) => binary(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :active | :canceled | :inactive,
 optional(:type) => :physical | :virtual
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Issuing Card objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/issuing/cards

 Link to this function

 retrieve(client, card, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 card :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an Issuing Card object.
Details
	Method: get
	Path: /v1/issuing/cards/{card}

 Link to this function

 return_card(client, card, params \\ %{}, opts \\ [])

 View Source

 @spec return_card(
 client :: Stripe.t(),
 card :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the shipping status of the specified Issuing Card object to returned.
Details
	Method: post
	Path: /v1/test_helpers/issuing/cards/{card}/shipping/return

 Link to this function

 ship_card(client, card, params \\ %{}, opts \\ [])

 View Source

 @spec ship_card(
 client :: Stripe.t(),
 card :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the shipping status of the specified Issuing Card object to shipped.
Details
	Method: post
	Path: /v1/test_helpers/issuing/cards/{card}/shipping/ship

 Link to this function

 update(client, card, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 card :: binary(),
 params :: %{
 optional(:cancellation_reason) => :lost | :stolen,
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:pin) => pin(),
 optional(:spending_controls) => spending_controls(),
 optional(:status) => :active | :canceled | :inactive
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified Issuing Card object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/issuing/cards/{card}

 Stripe.Issuing.Cardholder - Striped v0.5.0

Stripe.Issuing.Cardholder

An Issuing Cardholder object represents an individual or business entity who is issued cards.
Related guide: How to create a Cardholder

 Anchor for this section

 Summary

 Types

 address()

 The cardholder’s billing address.

 billing()

 The cardholder's billing address.

 company()

 Additional information about a company cardholder.

 created()

 dob()

 The date of birth of this cardholder.

 document()

 An identifying document, either a passport or local ID card.

 individual()

 Additional information about an individual cardholder.

 spending_controls()

 Rules that control spending across this cardholder's cards. Refer to our documentation for more details.

 spending_limits()

 t()

 The issuing.cardholder type.

 verification()

 Government-issued ID document for this cardholder.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new Issuing Cardholder object that can be issued cards.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Issuing Cardholder objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, cardholder, params \\ %{}, opts \\ [])

 Retrieves an Issuing Cardholder object.

 update(client, cardholder, params \\ %{}, opts \\ [])

 Updates the specified Issuing Cardholder object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The cardholder’s billing address.

 Link to this type

 billing()

 View Source

 @type billing() :: %{optional(:address) => address()}

The cardholder's billing address.

 Link to this type

 company()

 View Source

 @type company() :: %{optional(:tax_id) => binary()}

Additional information about a company cardholder.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 dob()

 View Source

 @type dob() :: %{
 optional(:day) => integer(),
 optional(:month) => integer(),
 optional(:year) => integer()
}

The date of birth of this cardholder.

 Link to this type

 document()

 View Source

 @type document() :: %{optional(:back) => binary(), optional(:front) => binary()}

An identifying document, either a passport or local ID card.

 Link to this type

 individual()

 View Source

 @type individual() :: %{
 optional(:dob) => dob(),
 optional(:first_name) => binary(),
 optional(:last_name) => binary(),
 optional(:verification) => verification()
}

Additional information about an individual cardholder.

 Link to this type

 spending_controls()

 View Source

 @type spending_controls() :: %{
 optional(:allowed_categories) => [
 :ac_refrigeration_repair
 | :accounting_bookkeeping_services
 | :advertising_services
 | :agricultural_cooperative
 | :airlines_air_carriers
 | :airports_flying_fields
 | :ambulance_services
 | :amusement_parks_carnivals
 | :antique_reproductions
 | :antique_shops
 | :aquariums
 | :architectural_surveying_services
 | :art_dealers_and_galleries
 | :artists_supply_and_craft_shops
 | :auto_and_home_supply_stores
 | :auto_body_repair_shops
 | :auto_paint_shops
 | :auto_service_shops
 | :automated_cash_disburse
 | :automated_fuel_dispensers
 | :automobile_associations
 | :automotive_parts_and_accessories_stores
 | :automotive_tire_stores
 | :bail_and_bond_payments
 | :bakeries
 | :bands_orchestras
 | :barber_and_beauty_shops
 | :betting_casino_gambling
 | :bicycle_shops
 | :billiard_pool_establishments
 | :boat_dealers
 | :boat_rentals_and_leases
 | :book_stores
 | :books_periodicals_and_newspapers
 | :bowling_alleys
 | :bus_lines
 | :business_secretarial_schools
 | :buying_shopping_services
 | :cable_satellite_and_other_pay_television_and_radio
 | :camera_and_photographic_supply_stores
 | :candy_nut_and_confectionery_stores
 | :car_and_truck_dealers_new_used
 | :car_and_truck_dealers_used_only
 | :car_rental_agencies
 | :car_washes
 | :carpentry_services
 | :carpet_upholstery_cleaning
 | :caterers
 | :charitable_and_social_service_organizations_fundraising
 | :chemicals_and_allied_products
 | :child_care_services
 | :childrens_and_infants_wear_stores
 | :chiropodists_podiatrists
 | :chiropractors
 | :cigar_stores_and_stands
 | :civic_social_fraternal_associations
 | :cleaning_and_maintenance
 | :clothing_rental
 | :colleges_universities
 | :commercial_equipment
 | :commercial_footwear
 | :commercial_photography_art_and_graphics
 | :commuter_transport_and_ferries
 | :computer_network_services
 | :computer_programming
 | :computer_repair
 | :computer_software_stores
 | :computers_peripherals_and_software
 | :concrete_work_services
 | :construction_materials
 | :consulting_public_relations
 | :correspondence_schools
 | :cosmetic_stores
 | :counseling_services
 | :country_clubs
 | :courier_services
 | :court_costs
 | :credit_reporting_agencies
 | :cruise_lines
 | :dairy_products_stores
 | :dance_hall_studios_schools
 | :dating_escort_services
 | :dentists_orthodontists
 | :department_stores
 | :detective_agencies
 | :digital_goods_applications
 | :digital_goods_games
 | :digital_goods_large_volume
 | :digital_goods_media
 | :direct_marketing_catalog_merchant
 | :direct_marketing_combination_catalog_and_retail_merchant
 | :direct_marketing_inbound_telemarketing
 | :direct_marketing_insurance_services
 | :direct_marketing_other
 | :direct_marketing_outbound_telemarketing
 | :direct_marketing_subscription
 | :direct_marketing_travel
 | :discount_stores
 | :doctors
 | :door_to_door_sales
 | :drapery_window_covering_and_upholstery_stores
 | :drinking_places
 | :drug_stores_and_pharmacies
 | :drugs_drug_proprietaries_and_druggist_sundries
 | :dry_cleaners
 | :durable_goods
 | :duty_free_stores
 | :eating_places_restaurants
 | :educational_services
 | :electric_razor_stores
 | :electrical_parts_and_equipment
 | :electrical_services
 | :electronics_repair_shops
 | :electronics_stores
 | :elementary_secondary_schools
 | :employment_temp_agencies
 | :equipment_rental
 | :exterminating_services
 | :family_clothing_stores
 | :fast_food_restaurants
 | :financial_institutions
 | :fines_government_administrative_entities
 | :fireplace_fireplace_screens_and_accessories_stores
 | :floor_covering_stores
 | :florists
 | :florists_supplies_nursery_stock_and_flowers
 | :freezer_and_locker_meat_provisioners
 | :fuel_dealers_non_automotive
 | :funeral_services_crematories
 | :furniture_home_furnishings_and_equipment_stores_except_appliances
 | :furniture_repair_refinishing
 | :furriers_and_fur_shops
 | :general_services
 | :gift_card_novelty_and_souvenir_shops
 | :glass_paint_and_wallpaper_stores
 | :glassware_crystal_stores
 | :golf_courses_public
 | :government_services
 | :grocery_stores_supermarkets
 | :hardware_equipment_and_supplies
 | :hardware_stores
 | :health_and_beauty_spas
 | :hearing_aids_sales_and_supplies
 | :heating_plumbing_a_c
 | :hobby_toy_and_game_shops
 | :home_supply_warehouse_stores
 | :hospitals
 | :hotels_motels_and_resorts
 | :household_appliance_stores
 | :industrial_supplies
 | :information_retrieval_services
 | :insurance_default
 | :insurance_underwriting_premiums
 | :intra_company_purchases
 | :jewelry_stores_watches_clocks_and_silverware_stores
 | :landscaping_services
 | :laundries
 | :laundry_cleaning_services
 | :legal_services_attorneys
 | :luggage_and_leather_goods_stores
 | :lumber_building_materials_stores
 | :manual_cash_disburse
 | :marinas_service_and_supplies
 | :masonry_stonework_and_plaster
 | :massage_parlors
 | :medical_and_dental_labs
 | :medical_dental_ophthalmic_and_hospital_equipment_and_supplies
 | :medical_services
 | :membership_organizations
 | :mens_and_boys_clothing_and_accessories_stores
 | :mens_womens_clothing_stores
 | :metal_service_centers
 | :miscellaneous
 | :miscellaneous_apparel_and_accessory_shops
 | :miscellaneous_auto_dealers
 | :miscellaneous_business_services
 | :miscellaneous_food_stores
 | :miscellaneous_general_merchandise
 | :miscellaneous_general_services
 | :miscellaneous_home_furnishing_specialty_stores
 | :miscellaneous_publishing_and_printing
 | :miscellaneous_recreation_services
 | :miscellaneous_repair_shops
 | :miscellaneous_specialty_retail
 | :mobile_home_dealers
 | :motion_picture_theaters
 | :motor_freight_carriers_and_trucking
 | :motor_homes_dealers
 | :motor_vehicle_supplies_and_new_parts
 | :motorcycle_shops_and_dealers
 | :motorcycle_shops_dealers
 | :music_stores_musical_instruments_pianos_and_sheet_music
 | :news_dealers_and_newsstands
 | :non_fi_money_orders
 | :non_fi_stored_value_card_purchase_load
 | :nondurable_goods
 | :nurseries_lawn_and_garden_supply_stores
 | :nursing_personal_care
 | :office_and_commercial_furniture
 | :opticians_eyeglasses
 | :optometrists_ophthalmologist
 | :orthopedic_goods_prosthetic_devices
 | :osteopaths
 | :package_stores_beer_wine_and_liquor
 | :paints_varnishes_and_supplies
 | :parking_lots_garages
 | :passenger_railways
 | :pawn_shops
 | :pet_shops_pet_food_and_supplies
 | :petroleum_and_petroleum_products
 | :photo_developing
 | :photographic_photocopy_microfilm_equipment_and_supplies
 | :photographic_studios
 | :picture_video_production
 | :piece_goods_notions_and_other_dry_goods
 | :plumbing_heating_equipment_and_supplies
 | :political_organizations
 | :postal_services_government_only
 | :precious_stones_and_metals_watches_and_jewelry
 | :professional_services
 | :public_warehousing_and_storage
 | :quick_copy_repro_and_blueprint
 | :railroads
 | :real_estate_agents_and_managers_rentals
 | :record_stores
 | :recreational_vehicle_rentals
 | :religious_goods_stores
 | :religious_organizations
 | :roofing_siding_sheet_metal
 | :secretarial_support_services
 | :security_brokers_dealers
 | :service_stations
 | :sewing_needlework_fabric_and_piece_goods_stores
 | :shoe_repair_hat_cleaning
 | :shoe_stores
 | :small_appliance_repair
 | :snowmobile_dealers
 | :special_trade_services
 | :specialty_cleaning
 | :sporting_goods_stores
 | :sporting_recreation_camps
 | :sports_and_riding_apparel_stores
 | :sports_clubs_fields
 | :stamp_and_coin_stores
 | :stationary_office_supplies_printing_and_writing_paper
 | :stationery_stores_office_and_school_supply_stores
 | :swimming_pools_sales
 | :t_ui_travel_germany
 | :tailors_alterations
 | :tax_payments_government_agencies
 | :tax_preparation_services
 | :taxicabs_limousines
 | :telecommunication_equipment_and_telephone_sales
 | :telecommunication_services
 | :telegraph_services
 | :tent_and_awning_shops
 | :testing_laboratories
 | :theatrical_ticket_agencies
 | :timeshares
 | :tire_retreading_and_repair
 | :tolls_bridge_fees
 | :tourist_attractions_and_exhibits
 | :towing_services
 | :trailer_parks_campgrounds
 | :transportation_services
 | :travel_agencies_tour_operators
 | :truck_stop_iteration
 | :truck_utility_trailer_rentals
 | :typesetting_plate_making_and_related_services
 | :typewriter_stores
 | :u_s_federal_government_agencies_or_departments
 | :uniforms_commercial_clothing
 | :used_merchandise_and_secondhand_stores
 | :utilities
 | :variety_stores
 | :veterinary_services
 | :video_amusement_game_supplies
 | :video_game_arcades
 | :video_tape_rental_stores
 | :vocational_trade_schools
 | :watch_jewelry_repair
 | :welding_repair
 | :wholesale_clubs
 | :wig_and_toupee_stores
 | :wires_money_orders
 | :womens_accessory_and_specialty_shops
 | :womens_ready_to_wear_stores
 | :wrecking_and_salvage_yards
],
 optional(:blocked_categories) => [
 :ac_refrigeration_repair
 | :accounting_bookkeeping_services
 | :advertising_services
 | :agricultural_cooperative
 | :airlines_air_carriers
 | :airports_flying_fields
 | :ambulance_services
 | :amusement_parks_carnivals
 | :antique_reproductions
 | :antique_shops
 | :aquariums
 | :architectural_surveying_services
 | :art_dealers_and_galleries
 | :artists_supply_and_craft_shops
 | :auto_and_home_supply_stores
 | :auto_body_repair_shops
 | :auto_paint_shops
 | :auto_service_shops
 | :automated_cash_disburse
 | :automated_fuel_dispensers
 | :automobile_associations
 | :automotive_parts_and_accessories_stores
 | :automotive_tire_stores
 | :bail_and_bond_payments
 | :bakeries
 | :bands_orchestras
 | :barber_and_beauty_shops
 | :betting_casino_gambling
 | :bicycle_shops
 | :billiard_pool_establishments
 | :boat_dealers
 | :boat_rentals_and_leases
 | :book_stores
 | :books_periodicals_and_newspapers
 | :bowling_alleys
 | :bus_lines
 | :business_secretarial_schools
 | :buying_shopping_services
 | :cable_satellite_and_other_pay_television_and_radio
 | :camera_and_photographic_supply_stores
 | :candy_nut_and_confectionery_stores
 | :car_and_truck_dealers_new_used
 | :car_and_truck_dealers_used_only
 | :car_rental_agencies
 | :car_washes
 | :carpentry_services
 | :carpet_upholstery_cleaning
 | :caterers
 | :charitable_and_social_service_organizations_fundraising
 | :chemicals_and_allied_products
 | :child_care_services
 | :childrens_and_infants_wear_stores
 | :chiropodists_podiatrists
 | :chiropractors
 | :cigar_stores_and_stands
 | :civic_social_fraternal_associations
 | :cleaning_and_maintenance
 | :clothing_rental
 | :colleges_universities
 | :commercial_equipment
 | :commercial_footwear
 | :commercial_photography_art_and_graphics
 | :commuter_transport_and_ferries
 | :computer_network_services
 | :computer_programming
 | :computer_repair
 | :computer_software_stores
 | :computers_peripherals_and_software
 | :concrete_work_services
 | :construction_materials
 | :consulting_public_relations
 | :correspondence_schools
 | :cosmetic_stores
 | :counseling_services
 | :country_clubs
 | :courier_services
 | :court_costs
 | :credit_reporting_agencies
 | :cruise_lines
 | :dairy_products_stores
 | :dance_hall_studios_schools
 | :dating_escort_services
 | :dentists_orthodontists
 | :department_stores
 | :detective_agencies
 | :digital_goods_applications
 | :digital_goods_games
 | :digital_goods_large_volume
 | :digital_goods_media
 | :direct_marketing_catalog_merchant
 | :direct_marketing_combination_catalog_and_retail_merchant
 | :direct_marketing_inbound_telemarketing
 | :direct_marketing_insurance_services
 | :direct_marketing_other
 | :direct_marketing_outbound_telemarketing
 | :direct_marketing_subscription
 | :direct_marketing_travel
 | :discount_stores
 | :doctors
 | :door_to_door_sales
 | :drapery_window_covering_and_upholstery_stores
 | :drinking_places
 | :drug_stores_and_pharmacies
 | :drugs_drug_proprietaries_and_druggist_sundries
 | :dry_cleaners
 | :durable_goods
 | :duty_free_stores
 | :eating_places_restaurants
 | :educational_services
 | :electric_razor_stores
 | :electrical_parts_and_equipment
 | :electrical_services
 | :electronics_repair_shops
 | :electronics_stores
 | :elementary_secondary_schools
 | :employment_temp_agencies
 | :equipment_rental
 | :exterminating_services
 | :family_clothing_stores
 | :fast_food_restaurants
 | :financial_institutions
 | :fines_government_administrative_entities
 | :fireplace_fireplace_screens_and_accessories_stores
 | :floor_covering_stores
 | :florists
 | :florists_supplies_nursery_stock_and_flowers
 | :freezer_and_locker_meat_provisioners
 | :fuel_dealers_non_automotive
 | :funeral_services_crematories
 | :furniture_home_furnishings_and_equipment_stores_except_appliances
 | :furniture_repair_refinishing
 | :furriers_and_fur_shops
 | :general_services
 | :gift_card_novelty_and_souvenir_shops
 | :glass_paint_and_wallpaper_stores
 | :glassware_crystal_stores
 | :golf_courses_public
 | :government_services
 | :grocery_stores_supermarkets
 | :hardware_equipment_and_supplies
 | :hardware_stores
 | :health_and_beauty_spas
 | :hearing_aids_sales_and_supplies
 | :heating_plumbing_a_c
 | :hobby_toy_and_game_shops
 | :home_supply_warehouse_stores
 | :hospitals
 | :hotels_motels_and_resorts
 | :household_appliance_stores
 | :industrial_supplies
 | :information_retrieval_services
 | :insurance_default
 | :insurance_underwriting_premiums
 | :intra_company_purchases
 | :jewelry_stores_watches_clocks_and_silverware_stores
 | :landscaping_services
 | :laundries
 | :laundry_cleaning_services
 | :legal_services_attorneys
 | :luggage_and_leather_goods_stores
 | :lumber_building_materials_stores
 | :manual_cash_disburse
 | :marinas_service_and_supplies
 | :masonry_stonework_and_plaster
 | :massage_parlors
 | :medical_and_dental_labs
 | :medical_dental_ophthalmic_and_hospital_equipment_and_supplies
 | :medical_services
 | :membership_organizations
 | :mens_and_boys_clothing_and_accessories_stores
 | :mens_womens_clothing_stores
 | :metal_service_centers
 | :miscellaneous
 | :miscellaneous_apparel_and_accessory_shops
 | :miscellaneous_auto_dealers
 | :miscellaneous_business_services
 | :miscellaneous_food_stores
 | :miscellaneous_general_merchandise
 | :miscellaneous_general_services
 | :miscellaneous_home_furnishing_specialty_stores
 | :miscellaneous_publishing_and_printing
 | :miscellaneous_recreation_services
 | :miscellaneous_repair_shops
 | :miscellaneous_specialty_retail
 | :mobile_home_dealers
 | :motion_picture_theaters
 | :motor_freight_carriers_and_trucking
 | :motor_homes_dealers
 | :motor_vehicle_supplies_and_new_parts
 | :motorcycle_shops_and_dealers
 | :motorcycle_shops_dealers
 | :music_stores_musical_instruments_pianos_and_sheet_music
 | :news_dealers_and_newsstands
 | :non_fi_money_orders
 | :non_fi_stored_value_card_purchase_load
 | :nondurable_goods
 | :nurseries_lawn_and_garden_supply_stores
 | :nursing_personal_care
 | :office_and_commercial_furniture
 | :opticians_eyeglasses
 | :optometrists_ophthalmologist
 | :orthopedic_goods_prosthetic_devices
 | :osteopaths
 | :package_stores_beer_wine_and_liquor
 | :paints_varnishes_and_supplies
 | :parking_lots_garages
 | :passenger_railways
 | :pawn_shops
 | :pet_shops_pet_food_and_supplies
 | :petroleum_and_petroleum_products
 | :photo_developing
 | :photographic_photocopy_microfilm_equipment_and_supplies
 | :photographic_studios
 | :picture_video_production
 | :piece_goods_notions_and_other_dry_goods
 | :plumbing_heating_equipment_and_supplies
 | :political_organizations
 | :postal_services_government_only
 | :precious_stones_and_metals_watches_and_jewelry
 | :professional_services
 | :public_warehousing_and_storage
 | :quick_copy_repro_and_blueprint
 | :railroads
 | :real_estate_agents_and_managers_rentals
 | :record_stores
 | :recreational_vehicle_rentals
 | :religious_goods_stores
 | :religious_organizations
 | :roofing_siding_sheet_metal
 | :secretarial_support_services
 | :security_brokers_dealers
 | :service_stations
 | :sewing_needlework_fabric_and_piece_goods_stores
 | :shoe_repair_hat_cleaning
 | :shoe_stores
 | :small_appliance_repair
 | :snowmobile_dealers
 | :special_trade_services
 | :specialty_cleaning
 | :sporting_goods_stores
 | :sporting_recreation_camps
 | :sports_and_riding_apparel_stores
 | :sports_clubs_fields
 | :stamp_and_coin_stores
 | :stationary_office_supplies_printing_and_writing_paper
 | :stationery_stores_office_and_school_supply_stores
 | :swimming_pools_sales
 | :t_ui_travel_germany
 | :tailors_alterations
 | :tax_payments_government_agencies
 | :tax_preparation_services
 | :taxicabs_limousines
 | :telecommunication_equipment_and_telephone_sales
 | :telecommunication_services
 | :telegraph_services
 | :tent_and_awning_shops
 | :testing_laboratories
 | :theatrical_ticket_agencies
 | :timeshares
 | :tire_retreading_and_repair
 | :tolls_bridge_fees
 | :tourist_attractions_and_exhibits
 | :towing_services
 | :trailer_parks_campgrounds
 | :transportation_services
 | :travel_agencies_tour_operators
 | :truck_stop_iteration
 | :truck_utility_trailer_rentals
 | :typesetting_plate_making_and_related_services
 | :typewriter_stores
 | :u_s_federal_government_agencies_or_departments
 | :uniforms_commercial_clothing
 | :used_merchandise_and_secondhand_stores
 | :utilities
 | :variety_stores
 | :veterinary_services
 | :video_amusement_game_supplies
 | :video_game_arcades
 | :video_tape_rental_stores
 | :vocational_trade_schools
 | :watch_jewelry_repair
 | :welding_repair
 | :wholesale_clubs
 | :wig_and_toupee_stores
 | :wires_money_orders
 | :womens_accessory_and_specialty_shops
 | :womens_ready_to_wear_stores
 | :wrecking_and_salvage_yards
],
 optional(:spending_limits) => [spending_limits()],
 optional(:spending_limits_currency) => binary()
}

Rules that control spending across this cardholder's cards. Refer to our documentation for more details.

 Link to this type

 spending_limits()

 View Source

 @type spending_limits() :: %{
 optional(:amount) => integer(),
 optional(:categories) => [
 :ac_refrigeration_repair
 | :accounting_bookkeeping_services
 | :advertising_services
 | :agricultural_cooperative
 | :airlines_air_carriers
 | :airports_flying_fields
 | :ambulance_services
 | :amusement_parks_carnivals
 | :antique_reproductions
 | :antique_shops
 | :aquariums
 | :architectural_surveying_services
 | :art_dealers_and_galleries
 | :artists_supply_and_craft_shops
 | :auto_and_home_supply_stores
 | :auto_body_repair_shops
 | :auto_paint_shops
 | :auto_service_shops
 | :automated_cash_disburse
 | :automated_fuel_dispensers
 | :automobile_associations
 | :automotive_parts_and_accessories_stores
 | :automotive_tire_stores
 | :bail_and_bond_payments
 | :bakeries
 | :bands_orchestras
 | :barber_and_beauty_shops
 | :betting_casino_gambling
 | :bicycle_shops
 | :billiard_pool_establishments
 | :boat_dealers
 | :boat_rentals_and_leases
 | :book_stores
 | :books_periodicals_and_newspapers
 | :bowling_alleys
 | :bus_lines
 | :business_secretarial_schools
 | :buying_shopping_services
 | :cable_satellite_and_other_pay_television_and_radio
 | :camera_and_photographic_supply_stores
 | :candy_nut_and_confectionery_stores
 | :car_and_truck_dealers_new_used
 | :car_and_truck_dealers_used_only
 | :car_rental_agencies
 | :car_washes
 | :carpentry_services
 | :carpet_upholstery_cleaning
 | :caterers
 | :charitable_and_social_service_organizations_fundraising
 | :chemicals_and_allied_products
 | :child_care_services
 | :childrens_and_infants_wear_stores
 | :chiropodists_podiatrists
 | :chiropractors
 | :cigar_stores_and_stands
 | :civic_social_fraternal_associations
 | :cleaning_and_maintenance
 | :clothing_rental
 | :colleges_universities
 | :commercial_equipment
 | :commercial_footwear
 | :commercial_photography_art_and_graphics
 | :commuter_transport_and_ferries
 | :computer_network_services
 | :computer_programming
 | :computer_repair
 | :computer_software_stores
 | :computers_peripherals_and_software
 | :concrete_work_services
 | :construction_materials
 | :consulting_public_relations
 | :correspondence_schools
 | :cosmetic_stores
 | :counseling_services
 | :country_clubs
 | :courier_services
 | :court_costs
 | :credit_reporting_agencies
 | :cruise_lines
 | :dairy_products_stores
 | :dance_hall_studios_schools
 | :dating_escort_services
 | :dentists_orthodontists
 | :department_stores
 | :detective_agencies
 | :digital_goods_applications
 | :digital_goods_games
 | :digital_goods_large_volume
 | :digital_goods_media
 | :direct_marketing_catalog_merchant
 | :direct_marketing_combination_catalog_and_retail_merchant
 | :direct_marketing_inbound_telemarketing
 | :direct_marketing_insurance_services
 | :direct_marketing_other
 | :direct_marketing_outbound_telemarketing
 | :direct_marketing_subscription
 | :direct_marketing_travel
 | :discount_stores
 | :doctors
 | :door_to_door_sales
 | :drapery_window_covering_and_upholstery_stores
 | :drinking_places
 | :drug_stores_and_pharmacies
 | :drugs_drug_proprietaries_and_druggist_sundries
 | :dry_cleaners
 | :durable_goods
 | :duty_free_stores
 | :eating_places_restaurants
 | :educational_services
 | :electric_razor_stores
 | :electrical_parts_and_equipment
 | :electrical_services
 | :electronics_repair_shops
 | :electronics_stores
 | :elementary_secondary_schools
 | :employment_temp_agencies
 | :equipment_rental
 | :exterminating_services
 | :family_clothing_stores
 | :fast_food_restaurants
 | :financial_institutions
 | :fines_government_administrative_entities
 | :fireplace_fireplace_screens_and_accessories_stores
 | :floor_covering_stores
 | :florists
 | :florists_supplies_nursery_stock_and_flowers
 | :freezer_and_locker_meat_provisioners
 | :fuel_dealers_non_automotive
 | :funeral_services_crematories
 | :furniture_home_furnishings_and_equipment_stores_except_appliances
 | :furniture_repair_refinishing
 | :furriers_and_fur_shops
 | :general_services
 | :gift_card_novelty_and_souvenir_shops
 | :glass_paint_and_wallpaper_stores
 | :glassware_crystal_stores
 | :golf_courses_public
 | :government_services
 | :grocery_stores_supermarkets
 | :hardware_equipment_and_supplies
 | :hardware_stores
 | :health_and_beauty_spas
 | :hearing_aids_sales_and_supplies
 | :heating_plumbing_a_c
 | :hobby_toy_and_game_shops
 | :home_supply_warehouse_stores
 | :hospitals
 | :hotels_motels_and_resorts
 | :household_appliance_stores
 | :industrial_supplies
 | :information_retrieval_services
 | :insurance_default
 | :insurance_underwriting_premiums
 | :intra_company_purchases
 | :jewelry_stores_watches_clocks_and_silverware_stores
 | :landscaping_services
 | :laundries
 | :laundry_cleaning_services
 | :legal_services_attorneys
 | :luggage_and_leather_goods_stores
 | :lumber_building_materials_stores
 | :manual_cash_disburse
 | :marinas_service_and_supplies
 | :masonry_stonework_and_plaster
 | :massage_parlors
 | :medical_and_dental_labs
 | :medical_dental_ophthalmic_and_hospital_equipment_and_supplies
 | :medical_services
 | :membership_organizations
 | :mens_and_boys_clothing_and_accessories_stores
 | :mens_womens_clothing_stores
 | :metal_service_centers
 | :miscellaneous
 | :miscellaneous_apparel_and_accessory_shops
 | :miscellaneous_auto_dealers
 | :miscellaneous_business_services
 | :miscellaneous_food_stores
 | :miscellaneous_general_merchandise
 | :miscellaneous_general_services
 | :miscellaneous_home_furnishing_specialty_stores
 | :miscellaneous_publishing_and_printing
 | :miscellaneous_recreation_services
 | :miscellaneous_repair_shops
 | :miscellaneous_specialty_retail
 | :mobile_home_dealers
 | :motion_picture_theaters
 | :motor_freight_carriers_and_trucking
 | :motor_homes_dealers
 | :motor_vehicle_supplies_and_new_parts
 | :motorcycle_shops_and_dealers
 | :motorcycle_shops_dealers
 | :music_stores_musical_instruments_pianos_and_sheet_music
 | :news_dealers_and_newsstands
 | :non_fi_money_orders
 | :non_fi_stored_value_card_purchase_load
 | :nondurable_goods
 | :nurseries_lawn_and_garden_supply_stores
 | :nursing_personal_care
 | :office_and_commercial_furniture
 | :opticians_eyeglasses
 | :optometrists_ophthalmologist
 | :orthopedic_goods_prosthetic_devices
 | :osteopaths
 | :package_stores_beer_wine_and_liquor
 | :paints_varnishes_and_supplies
 | :parking_lots_garages
 | :passenger_railways
 | :pawn_shops
 | :pet_shops_pet_food_and_supplies
 | :petroleum_and_petroleum_products
 | :photo_developing
 | :photographic_photocopy_microfilm_equipment_and_supplies
 | :photographic_studios
 | :picture_video_production
 | :piece_goods_notions_and_other_dry_goods
 | :plumbing_heating_equipment_and_supplies
 | :political_organizations
 | :postal_services_government_only
 | :precious_stones_and_metals_watches_and_jewelry
 | :professional_services
 | :public_warehousing_and_storage
 | :quick_copy_repro_and_blueprint
 | :railroads
 | :real_estate_agents_and_managers_rentals
 | :record_stores
 | :recreational_vehicle_rentals
 | :religious_goods_stores
 | :religious_organizations
 | :roofing_siding_sheet_metal
 | :secretarial_support_services
 | :security_brokers_dealers
 | :service_stations
 | :sewing_needlework_fabric_and_piece_goods_stores
 | :shoe_repair_hat_cleaning
 | :shoe_stores
 | :small_appliance_repair
 | :snowmobile_dealers
 | :special_trade_services
 | :specialty_cleaning
 | :sporting_goods_stores
 | :sporting_recreation_camps
 | :sports_and_riding_apparel_stores
 | :sports_clubs_fields
 | :stamp_and_coin_stores
 | :stationary_office_supplies_printing_and_writing_paper
 | :stationery_stores_office_and_school_supply_stores
 | :swimming_pools_sales
 | :t_ui_travel_germany
 | :tailors_alterations
 | :tax_payments_government_agencies
 | :tax_preparation_services
 | :taxicabs_limousines
 | :telecommunication_equipment_and_telephone_sales
 | :telecommunication_services
 | :telegraph_services
 | :tent_and_awning_shops
 | :testing_laboratories
 | :theatrical_ticket_agencies
 | :timeshares
 | :tire_retreading_and_repair
 | :tolls_bridge_fees
 | :tourist_attractions_and_exhibits
 | :towing_services
 | :trailer_parks_campgrounds
 | :transportation_services
 | :travel_agencies_tour_operators
 | :truck_stop_iteration
 | :truck_utility_trailer_rentals
 | :typesetting_plate_making_and_related_services
 | :typewriter_stores
 | :u_s_federal_government_agencies_or_departments
 | :uniforms_commercial_clothing
 | :used_merchandise_and_secondhand_stores
 | :utilities
 | :variety_stores
 | :veterinary_services
 | :video_amusement_game_supplies
 | :video_game_arcades
 | :video_tape_rental_stores
 | :vocational_trade_schools
 | :watch_jewelry_repair
 | :welding_repair
 | :wholesale_clubs
 | :wig_and_toupee_stores
 | :wires_money_orders
 | :womens_accessory_and_specialty_shops
 | :womens_ready_to_wear_stores
 | :wrecking_and_salvage_yards
],
 optional(:interval) =>
 :all_time | :daily | :monthly | :per_authorization | :weekly | :yearly
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Issuing.Cardholder{
 billing: term(),
 company: term() | nil,
 created: integer(),
 email: binary() | nil,
 id: binary(),
 individual: term() | nil,
 livemode: boolean(),
 metadata: term(),
 name: binary(),
 object: binary(),
 phone_number: binary() | nil,
 requirements: term(),
 spending_controls: term() | nil,
 status: binary(),
 type: binary()
}

The issuing.cardholder type.
	billing
	company Additional information about a company cardholder.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	email The cardholder's email address.
	id Unique identifier for the object.
	individual Additional information about an individual cardholder.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	name The cardholder's name. This will be printed on cards issued to them.
	object String representing the object's type. Objects of the same type share the same value.
	phone_number The cardholder's phone number. This is required for all cardholders who will be creating EU cards. See the 3D Secure documentation for more details.
	requirements
	spending_controls Rules that control spending across this cardholder's cards. Refer to our documentation for more details.
	status Specifies whether to permit authorizations on this cardholder's cards.
	type One of individual or company.

 Link to this type

 verification()

 View Source

 @type verification() :: %{optional(:document) => document()}

Government-issued ID document for this cardholder.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:billing) => billing(),
 optional(:company) => company(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:individual) => individual(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:name) => binary(),
 optional(:phone_number) => binary(),
 optional(:spending_controls) => spending_controls(),
 optional(:status) => :active | :inactive,
 optional(:type) => :company | :individual
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new Issuing Cardholder object that can be issued cards.
Details
	Method: post
	Path: /v1/issuing/cardholders

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:email) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:phone_number) => binary(),
 optional(:starting_after) => binary(),
 optional(:status) => :active | :blocked | :inactive,
 optional(:type) => :company | :individual
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Issuing Cardholder objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/issuing/cardholders

 Link to this function

 retrieve(client, cardholder, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 cardholder :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an Issuing Cardholder object.
Details
	Method: get
	Path: /v1/issuing/cardholders/{cardholder}

 Link to this function

 update(client, cardholder, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 cardholder :: binary(),
 params :: %{
 optional(:billing) => billing(),
 optional(:company) => company(),
 optional(:email) => binary(),
 optional(:expand) => [binary()],
 optional(:individual) => individual(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:phone_number) => binary(),
 optional(:spending_controls) => spending_controls(),
 optional(:status) => :active | :inactive
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified Issuing Cardholder object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/issuing/cardholders/{cardholder}

 Stripe.Issuing.Dispute - Striped v0.5.0

Stripe.Issuing.Dispute

As a card issuer, you can dispute transactions that the cardholder does not recognize, suspects to be fraudulent, or has other issues with.
Related guide: Disputing Transactions

 Anchor for this section

 Summary

 Types

 canceled()

 created()

 duplicate()

 evidence()

 Evidence provided for the dispute.

 fraudulent()

 merchandise_not_as_described()

 not_received()

 other()

 service_not_as_described()

 t()

 The issuing.dispute type.

 treasury()

 Params for disputes related to Treasury FinancialAccounts

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates an Issuing Dispute object. Individual pieces of evidence within the evidence object are optional at this point. Stripe only validates that required evidence is present during submission. Refer to Dispute reasons and evidence for more details about evidence requirements.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Issuing Dispute objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, dispute, params \\ %{}, opts \\ [])

 Retrieves an Issuing Dispute object.

 submit(client, dispute, params \\ %{}, opts \\ [])

 Submits an Issuing Dispute to the card network. Stripe validates that all evidence fields required for the dispute’s reason are present. For more details, see Dispute reasons and evidence.

 update(client, dispute, params \\ %{}, opts \\ [])

 Updates the specified Issuing Dispute object by setting the values of the parameters passed. Any parameters not provided will be left unchanged. Properties on the evidence object can be unset by passing in an empty string.

 Anchor for this section

Types

 Link to this type

 canceled()

 View Source

 @type canceled() :: %{
 optional(:additional_documentation) => binary() | binary(),
 optional(:canceled_at) => integer() | binary(),
 optional(:cancellation_policy_provided) => boolean() | binary(),
 optional(:cancellation_reason) => binary(),
 optional(:expected_at) => integer() | binary(),
 optional(:explanation) => binary(),
 optional(:product_description) => binary(),
 optional(:product_type) => :merchandise | :service,
 optional(:return_status) => :merchant_rejected | :successful,
 optional(:returned_at) => integer() | binary()
}

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 duplicate()

 View Source

 @type duplicate() :: %{
 optional(:additional_documentation) => binary() | binary(),
 optional(:card_statement) => binary() | binary(),
 optional(:cash_receipt) => binary() | binary(),
 optional(:check_image) => binary() | binary(),
 optional(:explanation) => binary(),
 optional(:original_transaction) => binary()
}

 Link to this type

 evidence()

 View Source

 @type evidence() :: %{
 optional(:canceled) => canceled() | binary(),
 optional(:duplicate) => duplicate() | binary(),
 optional(:fraudulent) => fraudulent() | binary(),
 optional(:merchandise_not_as_described) =>
 merchandise_not_as_described() | binary(),
 optional(:not_received) => not_received() | binary(),
 optional(:other) => other() | binary(),
 optional(:reason) =>
 :canceled
 | :duplicate
 | :fraudulent
 | :merchandise_not_as_described
 | :not_received
 | :other
 | :service_not_as_described,
 optional(:service_not_as_described) => service_not_as_described() | binary()
}

Evidence provided for the dispute.

 Link to this type

 fraudulent()

 View Source

 @type fraudulent() :: %{
 optional(:additional_documentation) => binary() | binary(),
 optional(:explanation) => binary()
}

 Link to this type

 merchandise_not_as_described()

 View Source

 @type merchandise_not_as_described() :: %{
 optional(:additional_documentation) => binary() | binary(),
 optional(:explanation) => binary(),
 optional(:received_at) => integer() | binary(),
 optional(:return_description) => binary(),
 optional(:return_status) => :merchant_rejected | :successful,
 optional(:returned_at) => integer() | binary()
}

 Link to this type

 not_received()

 View Source

 @type not_received() :: %{
 optional(:additional_documentation) => binary() | binary(),
 optional(:expected_at) => integer() | binary(),
 optional(:explanation) => binary(),
 optional(:product_description) => binary(),
 optional(:product_type) => :merchandise | :service
}

 Link to this type

 other()

 View Source

 @type other() :: %{
 optional(:additional_documentation) => binary() | binary(),
 optional(:explanation) => binary(),
 optional(:product_description) => binary(),
 optional(:product_type) => :merchandise | :service
}

 Link to this type

 service_not_as_described()

 View Source

 @type service_not_as_described() :: %{
 optional(:additional_documentation) => binary() | binary(),
 optional(:canceled_at) => integer() | binary(),
 optional(:cancellation_reason) => binary(),
 optional(:explanation) => binary(),
 optional(:received_at) => integer() | binary()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Issuing.Dispute{
 amount: integer(),
 balance_transactions: term() | nil,
 created: integer(),
 currency: binary(),
 evidence: term(),
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 status: binary(),
 transaction: binary() | Stripe.Issuing.Transaction.t(),
 treasury: term() | nil
}

The issuing.dispute type.
	amount Disputed amount in the card's currency and in the smallest currency unit. Usually the amount of the transaction, but can differ (usually because of currency fluctuation).
	balance_transactions List of balance transactions associated with the dispute.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency The currency the transaction was made in.
	evidence
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	status Current status of the dispute.
	transaction The transaction being disputed.
	treasury Treasury details related to this dispute if it was created on a [FinancialAccount](/docs/api/treasury/financial_accounts

 Link to this type

 treasury()

 View Source

 @type treasury() :: %{optional(:received_debit) => binary()}

Params for disputes related to Treasury FinancialAccounts

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:evidence) => evidence(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:transaction) => binary(),
 optional(:treasury) => treasury()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an Issuing Dispute object. Individual pieces of evidence within the evidence object are optional at this point. Stripe only validates that required evidence is present during submission. Refer to Dispute reasons and evidence for more details about evidence requirements.
Details
	Method: post
	Path: /v1/issuing/disputes

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :expired | :lost | :submitted | :unsubmitted | :won,
 optional(:transaction) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Issuing Dispute objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/issuing/disputes

 Link to this function

 retrieve(client, dispute, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 dispute :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an Issuing Dispute object.
Details
	Method: get
	Path: /v1/issuing/disputes/{dispute}

 Link to this function

 submit(client, dispute, params \\ %{}, opts \\ [])

 View Source

 @spec submit(
 client :: Stripe.t(),
 dispute :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Submits an Issuing Dispute to the card network. Stripe validates that all evidence fields required for the dispute’s reason are present. For more details, see Dispute reasons and evidence.
Details
	Method: post
	Path: /v1/issuing/disputes/{dispute}/submit

 Link to this function

 update(client, dispute, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 dispute :: binary(),
 params :: %{
 optional(:amount) => integer(),
 optional(:evidence) => evidence(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified Issuing Dispute object by setting the values of the parameters passed. Any parameters not provided will be left unchanged. Properties on the evidence object can be unset by passing in an empty string.
Details
	Method: post
	Path: /v1/issuing/disputes/{dispute}

 Stripe.Issuing.Transaction - Striped v0.5.0

Stripe.Issuing.Transaction

Any use of an issued card that results in funds entering or leaving
your Stripe account, such as a completed purchase or refund, is represented by an Issuing
Transaction object.
Related guide: Issued Card Transactions.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The issuing.transaction type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Issuing Transaction objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.

 retrieve(client, transaction, params \\ %{}, opts \\ [])

 Retrieves an Issuing Transaction object.

 update(client, transaction, params \\ %{}, opts \\ [])

 Updates the specified Issuing Transaction object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Issuing.Transaction{
 amount: integer(),
 amount_details: term() | nil,
 authorization: (binary() | Stripe.Issuing.Authorization.t()) | nil,
 balance_transaction: (binary() | Stripe.BalanceTransaction.t()) | nil,
 card: binary() | Stripe.Issuing.Card.t(),
 cardholder: (binary() | Stripe.Issuing.Cardholder.t()) | nil,
 created: integer(),
 currency: binary(),
 dispute: (binary() | Stripe.Issuing.Dispute.t()) | nil,
 id: binary(),
 livemode: boolean(),
 merchant_amount: integer(),
 merchant_currency: binary(),
 merchant_data: term(),
 metadata: term(),
 object: binary(),
 purchase_details: term() | nil,
 treasury: term() | nil,
 type: binary(),
 wallet: binary() | nil
}

The issuing.transaction type.
	amount The transaction amount, which will be reflected in your balance. This amount is in your currency and in the smallest currency unit.
	amount_details Detailed breakdown of amount components. These amounts are denominated in currency and in the smallest currency unit.
	authorization The Authorization object that led to this transaction.
	balance_transaction ID of the balance transaction associated with this transaction.
	card The card used to make this transaction.
	cardholder The cardholder to whom this transaction belongs.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	dispute If you've disputed the transaction, the ID of the dispute.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	merchant_amount The amount that the merchant will receive, denominated in merchant_currency and in the smallest currency unit. It will be different from amount if the merchant is taking payment in a different currency.
	merchant_currency The currency with which the merchant is taking payment.
	merchant_data
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	purchase_details Additional purchase information that is optionally provided by the merchant.
	treasury Treasury details related to this transaction if it was created on a [FinancialAccount](/docs/api/treasury/financial_accounts
	type The nature of the transaction.
	wallet The digital wallet used for this transaction. One of apple_pay, google_pay, or samsung_pay.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:card) => binary(),
 optional(:cardholder) => binary(),
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:type) => :capture | :refund
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Issuing Transaction objects. The objects are sorted in descending order by creation date, with the most recently created object appearing first.
Details
	Method: get
	Path: /v1/issuing/transactions

 Link to this function

 retrieve(client, transaction, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 transaction :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an Issuing Transaction object.
Details
	Method: get
	Path: /v1/issuing/transactions/{transaction}

 Link to this function

 update(client, transaction, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 transaction :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the specified Issuing Transaction object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/issuing/transactions/{transaction}

 Stripe.Terminal.Configuration - Striped v0.5.0

Stripe.Terminal.Configuration

A Configurations object represents how features should be configured for terminal readers.

 Anchor for this section

 Summary

 Types

 aud()

 Tipping configuration for AUD

 bbpos_wisepos_e()

 An object containing device type specific settings for BBPOS WisePOS E readers

 cad()

 Tipping configuration for CAD

 chf()

 Tipping configuration for CHF

 czk()

 Tipping configuration for CZK

 dkk()

 Tipping configuration for DKK

 eur()

 Tipping configuration for EUR

 gbp()

 Tipping configuration for GBP

 hkd()

 Tipping configuration for HKD

 myr()

 Tipping configuration for MYR

 nok()

 Tipping configuration for NOK

 nzd()

 Tipping configuration for NZD

 sek()

 Tipping configuration for SEK

 sgd()

 Tipping configuration for SGD

 t()

 The terminal.configuration type.

 tipping()

 usd()

 Tipping configuration for USD

 verifone_p400()

 An object containing device type specific settings for Verifone P400 readers

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new Configuration object.

 delete(client, configuration, opts \\ [])

 Deletes a Configuration object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Configuration objects.

 retrieve(client, configuration, params \\ %{}, opts \\ [])

 Retrieves a Configuration object.

 update(client, configuration, params \\ %{}, opts \\ [])

 Updates a new Configuration object.

 Anchor for this section

Types

 Link to this type

 aud()

 View Source

 @type aud() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for AUD

 Link to this type

 bbpos_wisepos_e()

 View Source

 @type bbpos_wisepos_e() :: %{optional(:splashscreen) => binary() | binary()}

An object containing device type specific settings for BBPOS WisePOS E readers

 Link to this type

 cad()

 View Source

 @type cad() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for CAD

 Link to this type

 chf()

 View Source

 @type chf() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for CHF

 Link to this type

 czk()

 View Source

 @type czk() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for CZK

 Link to this type

 dkk()

 View Source

 @type dkk() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for DKK

 Link to this type

 eur()

 View Source

 @type eur() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for EUR

 Link to this type

 gbp()

 View Source

 @type gbp() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for GBP

 Link to this type

 hkd()

 View Source

 @type hkd() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for HKD

 Link to this type

 myr()

 View Source

 @type myr() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for MYR

 Link to this type

 nok()

 View Source

 @type nok() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for NOK

 Link to this type

 nzd()

 View Source

 @type nzd() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for NZD

 Link to this type

 sek()

 View Source

 @type sek() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for SEK

 Link to this type

 sgd()

 View Source

 @type sgd() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for SGD

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Terminal.Configuration{
 bbpos_wisepos_e: term(),
 id: binary(),
 is_account_default: boolean() | nil,
 livemode: boolean(),
 object: binary(),
 tipping: term(),
 verifone_p400: term()
}

The terminal.configuration type.
	bbpos_wisepos_e
	id Unique identifier for the object.
	is_account_default Whether this Configuration is the default for your account
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	tipping
	verifone_p400

 Link to this type

 tipping()

 View Source

 @type tipping() :: %{
 optional(:aud) => aud(),
 optional(:cad) => cad(),
 optional(:chf) => chf(),
 optional(:czk) => czk(),
 optional(:dkk) => dkk(),
 optional(:eur) => eur(),
 optional(:gbp) => gbp(),
 optional(:hkd) => hkd(),
 optional(:myr) => myr(),
 optional(:nok) => nok(),
 optional(:nzd) => nzd(),
 optional(:sek) => sek(),
 optional(:sgd) => sgd(),
 optional(:usd) => usd()
}

 Link to this type

 usd()

 View Source

 @type usd() :: %{
 optional(:fixed_amounts) => [integer()],
 optional(:percentages) => [integer()],
 optional(:smart_tip_threshold) => integer()
}

Tipping configuration for USD

 Link to this type

 verifone_p400()

 View Source

 @type verifone_p400() :: %{optional(:splashscreen) => binary() | binary()}

An object containing device type specific settings for Verifone P400 readers

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:bbpos_wisepos_e) => bbpos_wisepos_e(),
 optional(:expand) => [binary()],
 optional(:tipping) => tipping() | binary(),
 optional(:verifone_p400) => verifone_p400()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new Configuration object.
Details
	Method: post
	Path: /v1/terminal/configurations

 Link to this function

 delete(client, configuration, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), configuration :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedTerminal.Configuration.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes a Configuration object.
Details
	Method: delete
	Path: /v1/terminal/configurations/{configuration}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:is_account_default) => boolean(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Configuration objects.
Details
	Method: get
	Path: /v1/terminal/configurations

 Link to this function

 retrieve(client, configuration, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 configuration :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.DeletedTerminal.Configuration.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Retrieves a Configuration object.
Details
	Method: get
	Path: /v1/terminal/configurations/{configuration}

 Link to this function

 update(client, configuration, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 configuration :: binary(),
 params :: %{
 optional(:bbpos_wisepos_e) => bbpos_wisepos_e() | binary(),
 optional(:expand) => [binary()],
 optional(:tipping) => tipping() | binary(),
 optional(:verifone_p400) => verifone_p400() | binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.DeletedTerminal.Configuration.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Updates a new Configuration object.
Details
	Method: post
	Path: /v1/terminal/configurations/{configuration}

 Stripe.Terminal.ConnectionToken - Striped v0.5.0

Stripe.Terminal.ConnectionToken

A Connection Token is used by the Stripe Terminal SDK to connect to a reader.
Related guide: Fleet Management.

 Anchor for this section

 Summary

 Types

 t()

 The terminal.connection_token type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 To connect to a reader the Stripe Terminal SDK needs to retrieve a short-lived connection token from Stripe, proxied through your server. On your backend, add an endpoint that creates and returns a connection token.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Terminal.ConnectionToken{
 location: binary(),
 object: binary(),
 secret: binary()
}

The terminal.connection_token type.
	location The id of the location that this connection token is scoped to. Note that location scoping only applies to internet-connected readers. For more details, see the docs on scoping connection tokens.
	object String representing the object's type. Objects of the same type share the same value.
	secret Your application should pass this token to the Stripe Terminal SDK.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{optional(:expand) => [binary()], optional(:location) => binary()},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

To connect to a reader the Stripe Terminal SDK needs to retrieve a short-lived connection token from Stripe, proxied through your server. On your backend, add an endpoint that creates and returns a connection token.
Details
	Method: post
	Path: /v1/terminal/connection_tokens

 Stripe.Terminal.Location - Striped v0.5.0

Stripe.Terminal.Location

A Location represents a grouping of readers.
Related guide: Fleet Management.

 Anchor for this section

 Summary

 Types

 address()

 The full address of the location.

 t()

 The terminal.location type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new Location object.For further details, including which address fields are required in each country, see the Manage locations guide.

 delete(client, location, opts \\ [])

 Deletes a Location object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Location objects.

 retrieve(client, location, params \\ %{}, opts \\ [])

 Retrieves a Location object.

 update(client, location, params \\ %{}, opts \\ [])

 Updates a Location object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

The full address of the location.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Terminal.Location{
 address: term(),
 configuration_overrides: binary(),
 display_name: binary(),
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary()
}

The terminal.location type.
	address
	configuration_overrides The ID of a configuration that will be used to customize all readers in this location.
	display_name The display name of the location.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:address) => address(),
 optional(:configuration_overrides) => binary(),
 optional(:display_name) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new Location object.For further details, including which address fields are required in each country, see the Manage locations guide.
Details
	Method: post
	Path: /v1/terminal/locations

 Link to this function

 delete(client, location, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), location :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedTerminal.Location.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes a Location object.
Details
	Method: delete
	Path: /v1/terminal/locations/{location}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Location objects.
Details
	Method: get
	Path: /v1/terminal/locations

 Link to this function

 retrieve(client, location, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 location :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.DeletedTerminal.Location.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Retrieves a Location object.
Details
	Method: get
	Path: /v1/terminal/locations/{location}

 Link to this function

 update(client, location, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 location :: binary(),
 params :: %{
 optional(:address) => address(),
 optional(:configuration_overrides) => binary(),
 optional(:display_name) => binary(),
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.DeletedTerminal.Location.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Updates a Location object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/terminal/locations/{location}

 Stripe.Terminal.Reader - Striped v0.5.0

Stripe.Terminal.Reader

A Reader represents a physical device for accepting payment details.
Related guide: Connecting to a Reader.

 Anchor for this section

 Summary

 Types

 card_present()

 Simulated data for the card_present payment method

 cart()

 Cart

 line_items()

 process_config()

 Configuration overrides

 t()

 The terminal.reader type.

 tipping()

 Tipping configuration for this transaction.

 Functions

 cancel_action(client, reader, params \\ %{}, opts \\ [])

 Cancels the current reader action.

 create(client, params \\ %{}, opts \\ [])

 Creates a new Reader object.

 delete(client, reader, opts \\ [])

 Deletes a Reader object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Reader objects.

 present_payment_method(client, reader, params \\ %{}, opts \\ [])

 Presents a payment method on a simulated reader. Can be used to simulate accepting a payment, saving a card or refunding a transaction.

 process_payment_intent(client, reader, params \\ %{}, opts \\ [])

 Initiates a payment flow on a Reader.

 process_setup_intent(client, reader, params \\ %{}, opts \\ [])

 Initiates a setup intent flow on a Reader.

 retrieve(client, reader, params \\ %{}, opts \\ [])

 Retrieves a Reader object.

 set_reader_display(client, reader, params \\ %{}, opts \\ [])

 Sets reader display to show cart details.

 update(client, reader, params \\ %{}, opts \\ [])

 Updates a Reader object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.

 Anchor for this section

Types

 Link to this type

 card_present()

 View Source

 @type card_present() :: %{optional(:number) => binary()}

Simulated data for the card_present payment method

 Link to this type

 cart()

 View Source

 @type cart() :: %{
 optional(:currency) => binary(),
 optional(:line_items) => [line_items()],
 optional(:tax) => integer(),
 optional(:total) => integer()
}

Cart

 Link to this type

 line_items()

 View Source

 @type line_items() :: %{
 optional(:amount) => integer(),
 optional(:description) => binary(),
 optional(:quantity) => integer()
}

 Link to this type

 process_config()

 View Source

 @type process_config() :: %{
 optional(:skip_tipping) => boolean(),
 optional(:tipping) => tipping()
}

Configuration overrides

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Terminal.Reader{
 action: term() | nil,
 device_sw_version: binary() | nil,
 device_type: binary(),
 id: binary(),
 ip_address: binary() | nil,
 label: binary(),
 livemode: boolean(),
 location: (binary() | Stripe.Terminal.Location.t()) | nil,
 metadata: term(),
 object: binary(),
 serial_number: binary(),
 status: binary() | nil
}

The terminal.reader type.
	action The most recent action performed by the reader.
	device_sw_version The current software version of the reader.
	device_type Type of reader, one of bbpos_wisepad3, stripe_m2, bbpos_chipper2x, bbpos_wisepos_e, verifone_P400, or simulated_wisepos_e.
	id Unique identifier for the object.
	ip_address The local IP address of the reader.
	label Custom label given to the reader for easier identification.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	location The location identifier of the reader.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	serial_number Serial number of the reader.
	status The networking status of the reader.

 Link to this type

 tipping()

 View Source

 @type tipping() :: %{optional(:amount_eligible) => integer()}

Tipping configuration for this transaction.

 Anchor for this section

Functions

 Link to this function

 cancel_action(client, reader, params \\ %{}, opts \\ [])

 View Source

 @spec cancel_action(
 client :: Stripe.t(),
 reader :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancels the current reader action.
Details
	Method: post
	Path: /v1/terminal/readers/{reader}/cancel_action

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:label) => binary(),
 optional(:location) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:registration_code) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new Reader object.
Details
	Method: post
	Path: /v1/terminal/readers

 Link to this function

 delete(client, reader, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), reader :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedTerminal.Reader.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Deletes a Reader object.
Details
	Method: delete
	Path: /v1/terminal/readers/{reader}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:device_type) =>
 :bbpos_chipper2x
 | :bbpos_wisepad3
 | :bbpos_wisepos_e
 | :simulated_wisepos_e
 | :stripe_m2
 | :verifone_P400,
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:location) => binary(),
 optional(:starting_after) => binary(),
 optional(:status) => :offline | :online
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Reader objects.
Details
	Method: get
	Path: /v1/terminal/readers

 Link to this function

 present_payment_method(client, reader, params \\ %{}, opts \\ [])

 View Source

 @spec present_payment_method(
 client :: Stripe.t(),
 reader :: binary(),
 params :: %{
 optional(:card_present) => card_present(),
 optional(:expand) => [binary()],
 optional(:type) => :card_present
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Presents a payment method on a simulated reader. Can be used to simulate accepting a payment, saving a card or refunding a transaction.
Details
	Method: post
	Path: /v1/test_helpers/terminal/readers/{reader}/present_payment_method

 Link to this function

 process_payment_intent(client, reader, params \\ %{}, opts \\ [])

 View Source

 @spec process_payment_intent(
 client :: Stripe.t(),
 reader :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:payment_intent) => binary(),
 optional(:process_config) => process_config()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Initiates a payment flow on a Reader.
Details
	Method: post
	Path: /v1/terminal/readers/{reader}/process_payment_intent

 Link to this function

 process_setup_intent(client, reader, params \\ %{}, opts \\ [])

 View Source

 @spec process_setup_intent(
 client :: Stripe.t(),
 reader :: binary(),
 params :: %{
 optional(:customer_consent_collected) => boolean(),
 optional(:expand) => [binary()],
 optional(:setup_intent) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Initiates a setup intent flow on a Reader.
Details
	Method: post
	Path: /v1/terminal/readers/{reader}/process_setup_intent

 Link to this function

 retrieve(client, reader, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 reader :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.DeletedTerminal.Reader.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Retrieves a Reader object.
Details
	Method: get
	Path: /v1/terminal/readers/{reader}

 Link to this function

 set_reader_display(client, reader, params \\ %{}, opts \\ [])

 View Source

 @spec set_reader_display(
 client :: Stripe.t(),
 reader :: binary(),
 params :: %{
 optional(:cart) => cart(),
 optional(:expand) => [binary()],
 optional(:type) => :cart
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Sets reader display to show cart details.
Details
	Method: post
	Path: /v1/terminal/readers/{reader}/set_reader_display

 Link to this function

 update(client, reader, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 reader :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:label) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()} | binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, t() | Stripe.DeletedTerminal.Reader.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Updates a Reader object by setting the values of the parameters passed. Any parameters not provided will be left unchanged.
Details
	Method: post
	Path: /v1/terminal/readers/{reader}

 Stripe.Treasury.CreditReversal - Striped v0.5.0

Stripe.Treasury.CreditReversal

You can reverse some ReceivedCredits depending on their network and source flow. Reversing a ReceivedCredit leads to the creation of a new object known as a CreditReversal.

 Anchor for this section

 Summary

 Types

 t()

 The treasury.credit_reversal type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Reverses a ReceivedCredit and creates a CreditReversal object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of CreditReversals.

 retrieve(client, credit_reversal, params \\ %{}, opts \\ [])

 Retrieves the details of an existing CreditReversal by passing the unique CreditReversal ID from either the CreditReversal creation request or CreditReversal lis.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.CreditReversal{
 amount: integer(),
 created: integer(),
 currency: binary(),
 financial_account: binary(),
 hosted_regulatory_receipt_url: binary() | nil,
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 network: binary(),
 object: binary(),
 received_credit: binary(),
 status: binary(),
 status_transitions: term(),
 transaction: (binary() | Stripe.Treasury.Transaction.t()) | nil
}

The treasury.credit_reversal type.
	amount Amount (in cents) transferred.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	financial_account The FinancialAccount to reverse funds from.
	hosted_regulatory_receipt_url A hosted transaction receipt URL that is provided when money movement is considered regulated under Stripe's money transmission licenses.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	network The rails used to reverse the funds.
	object String representing the object's type. Objects of the same type share the same value.
	received_credit The ReceivedCredit being reversed.
	status Status of the CreditReversal
	status_transitions
	transaction The Transaction associated with this object.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:received_credit) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Reverses a ReceivedCredit and creates a CreditReversal object.
Details
	Method: post
	Path: /v1/treasury/credit_reversals

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:received_credit) => binary(),
 optional(:starting_after) => binary(),
 optional(:status) => :canceled | :posted | :processing
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of CreditReversals.
Details
	Method: get
	Path: /v1/treasury/credit_reversals

 Link to this function

 retrieve(client, credit_reversal, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 credit_reversal :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing CreditReversal by passing the unique CreditReversal ID from either the CreditReversal creation request or CreditReversal lis.
Details
	Method: get
	Path: /v1/treasury/credit_reversals/{credit_reversal}

 Stripe.Treasury.DebitReversal - Striped v0.5.0

Stripe.Treasury.DebitReversal

You can reverse some ReceivedDebits depending on their network and source flow. Reversing a ReceivedDebit leads to the creation of a new object known as a DebitReversal.

 Anchor for this section

 Summary

 Types

 t()

 The treasury.debit_reversal type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Reverses a ReceivedDebit and creates a DebitReversal object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of DebitReversals.

 retrieve(client, debit_reversal, params \\ %{}, opts \\ [])

 Retrieves a DebitReversal object.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.DebitReversal{
 amount: integer(),
 created: integer(),
 currency: binary(),
 financial_account: binary() | nil,
 hosted_regulatory_receipt_url: binary() | nil,
 id: binary(),
 linked_flows: term() | nil,
 livemode: boolean(),
 metadata: term(),
 network: binary(),
 object: binary(),
 received_debit: binary(),
 status: binary(),
 status_transitions: term(),
 transaction: (binary() | Stripe.Treasury.Transaction.t()) | nil
}

The treasury.debit_reversal type.
	amount Amount (in cents) transferred.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	financial_account The FinancialAccount to reverse funds from.
	hosted_regulatory_receipt_url A hosted transaction receipt URL that is provided when money movement is considered regulated under Stripe's money transmission licenses.
	id Unique identifier for the object.
	linked_flows Other flows linked to a DebitReversal.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	network The rails used to reverse the funds.
	object String representing the object's type. Objects of the same type share the same value.
	received_debit The ReceivedDebit being reversed.
	status Status of the DebitReversal
	status_transitions
	transaction The Transaction associated with this object.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:received_debit) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Reverses a ReceivedDebit and creates a DebitReversal object.
Details
	Method: post
	Path: /v1/treasury/debit_reversals

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:received_debit) => binary(),
 optional(:resolution) => :lost | :won,
 optional(:starting_after) => binary(),
 optional(:status) => :canceled | :completed | :processing
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of DebitReversals.
Details
	Method: get
	Path: /v1/treasury/debit_reversals

 Link to this function

 retrieve(client, debit_reversal, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 debit_reversal :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a DebitReversal object.
Details
	Method: get
	Path: /v1/treasury/debit_reversals/{debit_reversal}

 Stripe.Treasury.FinancialAccount - Striped v0.5.0

Stripe.Treasury.FinancialAccount

Stripe Treasury provides users with a container for money called a FinancialAccount that is separate from their Payments balance.
FinancialAccounts serve as the source and destination of Treasury’s money movement APIs.

 Anchor for this section

 Summary

 Types

 aba()

 Adds an ABA FinancialAddress to the FinancialAccount.

 ach()

 Enables ACH Debits via the InboundTransfers API.

 card_issuing()

 Encodes the FinancialAccount's ability to be used with the Issuing product, including attaching cards to and drawing funds from the FinancialAccount.

 created()

 deposit_insurance()

 Represents whether this FinancialAccount is eligible for deposit insurance. Various factors determine the insurance amount.

 features()

 Encodes whether a FinancialAccount has access to a particular feature. Stripe or the platform can control features via the requested field.

 financial_addresses()

 Contains Features that add FinancialAddresses to the FinancialAccount.

 inbound_transfers()

 Contains settings related to adding funds to a FinancialAccount from another Account with the same owner.

 intra_stripe_flows()

 Represents the ability for the FinancialAccount to send money to, or receive money from other FinancialAccounts (for example, via OutboundPayment).

 outbound_payments()

 Includes Features related to initiating money movement out of the FinancialAccount to someone else's bucket of money.

 outbound_transfers()

 Contains a Feature and settings related to moving money out of the FinancialAccount into another Account with the same owner.

 platform_restrictions()

 The set of functionalities that the platform can restrict on the FinancialAccount.

 t()

 The treasury.financial_account type.

 us_domestic_wire()

 Enables US domestic wire tranfers via the OutboundPayments API.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new FinancialAccount. For now, each connected account can only have one FinancialAccount.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of FinancialAccounts.

 retrieve(client, financial_account, params \\ %{}, opts \\ [])

 Retrieves the details of a FinancialAccount.

 retrieve_features(client, financial_account, params \\ %{}, opts \\ [])

 Retrieves Features information associated with the FinancialAccount.

 update(client, financial_account, params \\ %{}, opts \\ [])

 Updates the details of a FinancialAccount.

 update_features(client, financial_account, params \\ %{}, opts \\ [])

 Updates the Features associated with a FinancialAccount.

 Anchor for this section

Types

 Link to this type

 aba()

 View Source

 @type aba() :: %{optional(:requested) => boolean()}

Adds an ABA FinancialAddress to the FinancialAccount.

 Link to this type

 ach()

 View Source

 @type ach() :: %{optional(:requested) => boolean()}

Enables ACH Debits via the InboundTransfers API.

 Link to this type

 card_issuing()

 View Source

 @type card_issuing() :: %{optional(:requested) => boolean()}

Encodes the FinancialAccount's ability to be used with the Issuing product, including attaching cards to and drawing funds from the FinancialAccount.

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 deposit_insurance()

 View Source

 @type deposit_insurance() :: %{optional(:requested) => boolean()}

Represents whether this FinancialAccount is eligible for deposit insurance. Various factors determine the insurance amount.

 Link to this type

 features()

 View Source

 @type features() :: %{
 optional(:card_issuing) => card_issuing(),
 optional(:deposit_insurance) => deposit_insurance(),
 optional(:financial_addresses) => financial_addresses(),
 optional(:inbound_transfers) => inbound_transfers(),
 optional(:intra_stripe_flows) => intra_stripe_flows(),
 optional(:outbound_payments) => outbound_payments(),
 optional(:outbound_transfers) => outbound_transfers()
}

Encodes whether a FinancialAccount has access to a particular feature. Stripe or the platform can control features via the requested field.

 Link to this type

 financial_addresses()

 View Source

 @type financial_addresses() :: %{optional(:aba) => aba()}

Contains Features that add FinancialAddresses to the FinancialAccount.

 Link to this type

 inbound_transfers()

 View Source

 @type inbound_transfers() :: %{optional(:ach) => ach()}

Contains settings related to adding funds to a FinancialAccount from another Account with the same owner.

 Link to this type

 intra_stripe_flows()

 View Source

 @type intra_stripe_flows() :: %{optional(:requested) => boolean()}

Represents the ability for the FinancialAccount to send money to, or receive money from other FinancialAccounts (for example, via OutboundPayment).

 Link to this type

 outbound_payments()

 View Source

 @type outbound_payments() :: %{
 optional(:ach) => ach(),
 optional(:us_domestic_wire) => us_domestic_wire()
}

Includes Features related to initiating money movement out of the FinancialAccount to someone else's bucket of money.

 Link to this type

 outbound_transfers()

 View Source

 @type outbound_transfers() :: %{
 optional(:ach) => ach(),
 optional(:us_domestic_wire) => us_domestic_wire()
}

Contains a Feature and settings related to moving money out of the FinancialAccount into another Account with the same owner.

 Link to this type

 platform_restrictions()

 View Source

 @type platform_restrictions() :: %{
 optional(:inbound_flows) => :restricted | :unrestricted,
 optional(:outbound_flows) => :restricted | :unrestricted
}

The set of functionalities that the platform can restrict on the FinancialAccount.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.FinancialAccount{
 active_features: term(),
 balance: term(),
 country: binary(),
 created: integer(),
 features: Stripe.Treasury.FinancialAccountFeatures.t(),
 financial_addresses: term(),
 id: binary(),
 livemode: boolean(),
 metadata: term() | nil,
 object: binary(),
 pending_features: term(),
 platform_restrictions: term() | nil,
 restricted_features: term(),
 status: binary(),
 status_details: term(),
 supported_currencies: term()
}

The treasury.financial_account type.
	active_features The array of paths to active Features in the Features hash.
	balance
	country Two-letter country code (ISO 3166-1 alpha-2).
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	features
	financial_addresses The set of credentials that resolve to a FinancialAccount.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	pending_features The array of paths to pending Features in the Features hash.
	platform_restrictions The set of functionalities that the platform can restrict on the FinancialAccount.
	restricted_features The array of paths to restricted Features in the Features hash.
	status The enum specifying what state the account is in.
	status_details
	supported_currencies The currencies the FinancialAccount can hold a balance in. Three-letter ISO currency code, in lowercase.

 Link to this type

 us_domestic_wire()

 View Source

 @type us_domestic_wire() :: %{optional(:requested) => boolean()}

Enables US domestic wire tranfers via the OutboundPayments API.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:features) => features(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:platform_restrictions) => platform_restrictions(),
 optional(:supported_currencies) => [binary()]
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new FinancialAccount. For now, each connected account can only have one FinancialAccount.
Details
	Method: post
	Path: /v1/treasury/financial_accounts

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of FinancialAccounts.
Details
	Method: get
	Path: /v1/treasury/financial_accounts

 Link to this function

 retrieve(client, financial_account, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 financial_account :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of a FinancialAccount.
Details
	Method: get
	Path: /v1/treasury/financial_accounts/{financial_account}

 Link to this function

 retrieve_features(client, financial_account, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve_features(
 client :: Stripe.t(),
 financial_account :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.Treasury.FinancialAccountFeatures.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Retrieves Features information associated with the FinancialAccount.
Details
	Method: get
	Path: /v1/treasury/financial_accounts/{financial_account}/features

 Link to this function

 update(client, financial_account, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 financial_account :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:features) => features(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:platform_restrictions) => platform_restrictions()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the details of a FinancialAccount.
Details
	Method: post
	Path: /v1/treasury/financial_accounts/{financial_account}

 Link to this function

 update_features(client, financial_account, params \\ %{}, opts \\ [])

 View Source

 @spec update_features(
 client :: Stripe.t(),
 financial_account :: binary(),
 params :: %{
 optional(:card_issuing) => card_issuing(),
 optional(:deposit_insurance) => deposit_insurance(),
 optional(:expand) => [binary()],
 optional(:financial_addresses) => financial_addresses(),
 optional(:inbound_transfers) => inbound_transfers(),
 optional(:intra_stripe_flows) => intra_stripe_flows(),
 optional(:outbound_payments) => outbound_payments(),
 optional(:outbound_transfers) => outbound_transfers()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.Treasury.FinancialAccountFeatures.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

Updates the Features associated with a FinancialAccount.
Details
	Method: post
	Path: /v1/treasury/financial_accounts/{financial_account}/features

 Stripe.Treasury.FinancialAccountFeatures - Striped v0.5.0

Stripe.Treasury.FinancialAccountFeatures

Encodes whether a FinancialAccount has access to a particular Feature, with a status enum and associated status_details.
Stripe or the platform can control Features via the requested field.

 Anchor for this section

 Summary

 Types

 t()

 The treasury.financial_account_features type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.FinancialAccountFeatures{
 card_issuing: term(),
 deposit_insurance: term(),
 financial_addresses: term(),
 inbound_transfers: term(),
 intra_stripe_flows: term(),
 object: binary(),
 outbound_payments: term(),
 outbound_transfers: term()
}

The treasury.financial_account_features type.
	card_issuing
	deposit_insurance
	financial_addresses
	inbound_transfers
	intra_stripe_flows
	object String representing the object's type. Objects of the same type share the same value.
	outbound_payments
	outbound_transfers

 Stripe.Treasury.InboundTransfer - Striped v0.5.0

Stripe.Treasury.InboundTransfer

Use InboundTransfers to add funds to your FinancialAccount via a PaymentMethod that is owned by you. The funds will be transferred via an ACH debit.

 Anchor for this section

 Summary

 Types

 failure_details()

 Details about a failed InboundTransfer.

 t()

 The treasury.inbound_transfer type.

 Functions

 cancel(client, inbound_transfer, params \\ %{}, opts \\ [])

 Cancels an InboundTransfer.

 create(client, params \\ %{}, opts \\ [])

 Creates an InboundTransfer.

 fail(client, id, params \\ %{}, opts \\ [])

 Transitions a test mode created InboundTransfer to the failed status. The InboundTransfer must already be in the processing state.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of InboundTransfers sent from the specified FinancialAccount.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an existing InboundTransfer.

 return_inbound_transfer(client, id, params \\ %{}, opts \\ [])

 Marks the test mode InboundTransfer object as returned and links the InboundTransfer to a ReceivedDebit. The InboundTransfer must already be in the succeeded state.

 succeed(client, id, params \\ %{}, opts \\ [])

 Transitions a test mode created InboundTransfer to the succeeded status. The InboundTransfer must already be in the processing state.

 Anchor for this section

Types

 Link to this type

 failure_details()

 View Source

 @type failure_details() :: %{
 optional(:code) =>
 :account_closed
 | :account_frozen
 | :bank_account_restricted
 | :bank_ownership_changed
 | :debit_not_authorized
 | :incorrect_account_holder_address
 | :incorrect_account_holder_name
 | :incorrect_account_holder_tax_id
 | :insufficient_funds
 | :invalid_account_number
 | :invalid_currency
 | :no_account
 | :other
}

Details about a failed InboundTransfer.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.InboundTransfer{
 amount: integer(),
 cancelable: boolean(),
 created: integer(),
 currency: binary(),
 description: binary() | nil,
 failure_details: term() | nil,
 financial_account: binary(),
 hosted_regulatory_receipt_url: binary() | nil,
 id: binary(),
 linked_flows: term(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 origin_payment_method: binary(),
 origin_payment_method_details: term() | nil,
 returned: boolean() | nil,
 statement_descriptor: binary(),
 status: binary(),
 status_transitions: term(),
 transaction: (binary() | Stripe.Treasury.Transaction.t()) | nil
}

The treasury.inbound_transfer type.
	amount Amount (in cents) transferred.
	cancelable Returns true if the InboundTransfer is able to be canceled.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	failure_details Details about this InboundTransfer's failure. Only set when status is failed.
	financial_account The FinancialAccount that received the funds.
	hosted_regulatory_receipt_url A hosted transaction receipt URL that is provided when money movement is considered regulated under Stripe's money transmission licenses.
	id Unique identifier for the object.
	linked_flows
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	origin_payment_method The origin payment method to be debited for an InboundTransfer.
	origin_payment_method_details Details about the PaymentMethod for an InboundTransfer.
	returned Returns true if the funds for an InboundTransfer were returned after the InboundTransfer went to the succeeded state.
	statement_descriptor Statement descriptor shown when funds are debited from the source. Not all payment networks support statement_descriptor.
	status Status of the InboundTransfer: processing, succeeded, failed, and canceled. An InboundTransfer is processing if it is created and pending. The status changes to succeeded once the funds have been "confirmed" and a transaction is created and posted. The status changes to failed if the transfer fails.
	status_transitions
	transaction The Transaction associated with this object.

 Anchor for this section

Functions

 Link to this function

 cancel(client, inbound_transfer, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 inbound_transfer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancels an InboundTransfer.
Details
	Method: post
	Path: /v1/treasury/inbound_transfers/{inbound_transfer}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:origin_payment_method) => binary(),
 optional(:statement_descriptor) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an InboundTransfer.
Details
	Method: post
	Path: /v1/treasury/inbound_transfers

 Link to this function

 fail(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec fail(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:failure_details) => failure_details()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created InboundTransfer to the failed status. The InboundTransfer must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/inbound_transfers/{id}/fail

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :canceled | :failed | :processing | :succeeded
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of InboundTransfers sent from the specified FinancialAccount.
Details
	Method: get
	Path: /v1/treasury/inbound_transfers

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing InboundTransfer.
Details
	Method: get
	Path: /v1/treasury/inbound_transfers/{id}

 Link to this function

 return_inbound_transfer(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec return_inbound_transfer(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Marks the test mode InboundTransfer object as returned and links the InboundTransfer to a ReceivedDebit. The InboundTransfer must already be in the succeeded state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/inbound_transfers/{id}/return

 Link to this function

 succeed(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec succeed(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created InboundTransfer to the succeeded status. The InboundTransfer must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/inbound_transfers/{id}/succeed

 Stripe.Treasury.OutboundPayment - Striped v0.5.0

Stripe.Treasury.OutboundPayment

Use OutboundPayments to send funds to another party's external bank account or FinancialAccount. To send money to an account belonging to the same user, use an OutboundTransfer.
Simulate OutboundPayment state changes with the /v1/test_helpers/treasury/outbound_payments endpoints. These methods can only be called on test mode objects.

 Anchor for this section

 Summary

 Types

 address()

 billing_details()

 Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

 destination_payment_method_data()

 Hash used to generate the PaymentMethod to be used for this OutboundPayment. Exclusive with destination_payment_method.

 destination_payment_method_options()

 Payment method-specific configuration for this OutboundPayment.

 end_user_details()

 End user details.

 returned_details()

 Optional hash to set the the return code.

 t()

 The treasury.outbound_payment type.

 us_bank_account()

 Functions

 cancel(client, id, params \\ %{}, opts \\ [])

 Cancel an OutboundPayment.

 create(client, params \\ %{}, opts \\ [])

 Creates an OutboundPayment.

 fail(client, id, params \\ %{}, opts \\ [])

 Transitions a test mode created OutboundPayment to the failed status. The OutboundPayment must already be in the processing state.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of OutboundPayments sent from the specified FinancialAccount.

 post(client, id, params \\ %{}, opts \\ [])

 Transitions a test mode created OutboundPayment to the posted status. The OutboundPayment must already be in the processing state.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an existing OutboundPayment by passing the unique OutboundPayment ID from either the OutboundPayment creation request or OutboundPayment list.

 return_outbound_payment(client, id, params \\ %{}, opts \\ [])

 Transitions a test mode created OutboundPayment to the returned status. The OutboundPayment must already be in the processing state.

 Anchor for this section

Types

 Link to this type

 address()

 View Source

 @type address() :: %{
 optional(:city) => binary(),
 optional(:country) => binary(),
 optional(:line1) => binary(),
 optional(:line2) => binary(),
 optional(:postal_code) => binary(),
 optional(:state) => binary()
}

 Link to this type

 billing_details()

 View Source

 @type billing_details() :: %{
 optional(:address) => address() | binary(),
 optional(:email) => binary() | binary(),
 optional(:name) => binary(),
 optional(:phone) => binary()
}

Billing information associated with the PaymentMethod that may be used or required by particular types of payment methods.

 Link to this type

 destination_payment_method_data()

 View Source

 @type destination_payment_method_data() :: %{
 optional(:billing_details) => billing_details(),
 optional(:financial_account) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:type) => :financial_account | :us_bank_account,
 optional(:us_bank_account) => us_bank_account()
}

Hash used to generate the PaymentMethod to be used for this OutboundPayment. Exclusive with destination_payment_method.

 Link to this type

 destination_payment_method_options()

 View Source

 @type destination_payment_method_options() :: %{
 optional(:us_bank_account) => us_bank_account() | binary()
}

Payment method-specific configuration for this OutboundPayment.

 Link to this type

 end_user_details()

 View Source

 @type end_user_details() :: %{
 optional(:ip_address) => binary(),
 optional(:present) => boolean()
}

End user details.

 Link to this type

 returned_details()

 View Source

 @type returned_details() :: %{
 optional(:code) =>
 :account_closed
 | :account_frozen
 | :bank_account_restricted
 | :bank_ownership_changed
 | :declined
 | :incorrect_account_holder_name
 | :invalid_account_number
 | :invalid_currency
 | :no_account
 | :other
}

Optional hash to set the the return code.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.OutboundPayment{
 amount: integer(),
 cancelable: boolean(),
 created: integer(),
 currency: binary(),
 customer: binary() | nil,
 description: binary() | nil,
 destination_payment_method: binary() | nil,
 destination_payment_method_details: term() | nil,
 end_user_details: term() | nil,
 expected_arrival_date: integer(),
 financial_account: binary(),
 hosted_regulatory_receipt_url: binary() | nil,
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 returned_details: term() | nil,
 statement_descriptor: binary(),
 status: binary(),
 status_transitions: term(),
 transaction: binary() | Stripe.Treasury.Transaction.t()
}

The treasury.outbound_payment type.
	amount Amount (in cents) transferred.
	cancelable Returns true if the object can be canceled, and false otherwise.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	customer ID of the customer to whom an OutboundPayment is sent.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	destination_payment_method The PaymentMethod via which an OutboundPayment is sent. This field can be empty if the OutboundPayment was created using destination_payment_method_data.
	destination_payment_method_details Details about the PaymentMethod for an OutboundPayment.
	end_user_details Details about the end user.
	expected_arrival_date The date when funds are expected to arrive in the destination account.
	financial_account The FinancialAccount that funds were pulled from.
	hosted_regulatory_receipt_url A hosted transaction receipt URL that is provided when money movement is considered regulated under Stripe's money transmission licenses.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	returned_details Details about a returned OutboundPayment. Only set when the status is returned.
	statement_descriptor The description that appears on the receiving end for an OutboundPayment (for example, bank statement for external bank transfer).
	status Current status of the OutboundPayment: processing, failed, posted, returned, canceled. An OutboundPayment is processing if it has been created and is pending. The status changes to posted once the OutboundPayment has been "confirmed" and funds have left the account, or to failed or canceled. If an OutboundPayment fails to arrive at its destination, its status will change to returned.
	status_transitions
	transaction The Transaction associated with this object.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{optional(:network) => :ach | :us_domestic_wire}

 Anchor for this section

Functions

 Link to this function

 cancel(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Cancel an OutboundPayment.
Details
	Method: post
	Path: /v1/treasury/outbound_payments/{id}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:customer) => binary(),
 optional(:description) => binary(),
 optional(:destination_payment_method) => binary(),
 optional(:destination_payment_method_data) =>
 destination_payment_method_data(),
 optional(:destination_payment_method_options) =>
 destination_payment_method_options(),
 optional(:end_user_details) => end_user_details(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:statement_descriptor) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an OutboundPayment.
Details
	Method: post
	Path: /v1/treasury/outbound_payments

 Link to this function

 fail(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec fail(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created OutboundPayment to the failed status. The OutboundPayment must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/outbound_payments/{id}/fail

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:customer) => binary(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :canceled | :failed | :posted | :processing | :returned
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of OutboundPayments sent from the specified FinancialAccount.
Details
	Method: get
	Path: /v1/treasury/outbound_payments

 Link to this function

 post(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec post(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created OutboundPayment to the posted status. The OutboundPayment must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/outbound_payments/{id}/post

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing OutboundPayment by passing the unique OutboundPayment ID from either the OutboundPayment creation request or OutboundPayment list.
Details
	Method: get
	Path: /v1/treasury/outbound_payments/{id}

 Link to this function

 return_outbound_payment(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec return_outbound_payment(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:returned_details) => returned_details()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created OutboundPayment to the returned status. The OutboundPayment must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/outbound_payments/{id}/return

 Stripe.Treasury.OutboundTransfer - Striped v0.5.0

Stripe.Treasury.OutboundTransfer

Use OutboundTransfers to transfer funds from a FinancialAccount to a PaymentMethod belonging to the same entity. To send funds to a different party, use OutboundPayments instead. You can send funds over ACH rails or through a domestic wire transfer to a user's own external bank account.
Simulate OutboundTransfer state changes with the /v1/test_helpers/treasury/outbound_transfers endpoints. These methods can only be called on test mode objects.

 Anchor for this section

 Summary

 Types

 destination_payment_method_options()

 Hash describing payment method configuration details.

 returned_details()

 Details about a returned OutboundTransfer.

 t()

 The treasury.outbound_transfer type.

 us_bank_account()

 Functions

 cancel(client, outbound_transfer, params \\ %{}, opts \\ [])

 An OutboundTransfer can be canceled if the funds have not yet been paid out.

 create(client, params \\ %{}, opts \\ [])

 Creates an OutboundTransfer.

 fail(client, outbound_transfer, params \\ %{}, opts \\ [])

 Transitions a test mode created OutboundTransfer to the failed status. The OutboundTransfer must already be in the processing state.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of OutboundTransfers sent from the specified FinancialAccount.

 post(client, outbound_transfer, params \\ %{}, opts \\ [])

 Transitions a test mode created OutboundTransfer to the posted status. The OutboundTransfer must already be in the processing state.

 retrieve(client, outbound_transfer, params \\ %{}, opts \\ [])

 Retrieves the details of an existing OutboundTransfer by passing the unique OutboundTransfer ID from either the OutboundTransfer creation request or OutboundTransfer list.

 return_outbound_transfer(client, outbound_transfer, params \\ %{}, opts \\ [])

 Transitions a test mode created OutboundTransfer to the returned status. The OutboundTransfer must already be in the processing state.

 Anchor for this section

Types

 Link to this type

 destination_payment_method_options()

 View Source

 @type destination_payment_method_options() :: %{
 optional(:us_bank_account) => us_bank_account() | binary()
}

Hash describing payment method configuration details.

 Link to this type

 returned_details()

 View Source

 @type returned_details() :: %{
 optional(:code) =>
 :account_closed
 | :account_frozen
 | :bank_account_restricted
 | :bank_ownership_changed
 | :declined
 | :incorrect_account_holder_name
 | :invalid_account_number
 | :invalid_currency
 | :no_account
 | :other
}

Details about a returned OutboundTransfer.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.OutboundTransfer{
 amount: integer(),
 cancelable: boolean(),
 created: integer(),
 currency: binary(),
 description: binary() | nil,
 destination_payment_method: binary() | nil,
 destination_payment_method_details: term(),
 expected_arrival_date: integer(),
 financial_account: binary(),
 hosted_regulatory_receipt_url: binary() | nil,
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 returned_details: term() | nil,
 statement_descriptor: binary(),
 status: binary(),
 status_transitions: term(),
 transaction: binary() | Stripe.Treasury.Transaction.t()
}

The treasury.outbound_transfer type.
	amount Amount (in cents) transferred.
	cancelable Returns true if the object can be canceled, and false otherwise.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	destination_payment_method The PaymentMethod used as the payment instrument for an OutboundTransfer.
	destination_payment_method_details
	expected_arrival_date The date when funds are expected to arrive in the destination account.
	financial_account The FinancialAccount that funds were pulled from.
	hosted_regulatory_receipt_url A hosted transaction receipt URL that is provided when money movement is considered regulated under Stripe's money transmission licenses.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	returned_details Details about a returned OutboundTransfer. Only set when the status is returned.
	statement_descriptor Information about the OutboundTransfer to be sent to the recipient account.
	status Current status of the OutboundTransfer: processing, failed, canceled, posted, returned. An OutboundTransfer is processing if it has been created and is pending. The status changes to posted once the OutboundTransfer has been "confirmed" and funds have left the account, or to failed or canceled. If an OutboundTransfer fails to arrive at its destination, its status will change to returned.
	status_transitions
	transaction The Transaction associated with this object.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{optional(:network) => :ach | :us_domestic_wire}

 Anchor for this section

Functions

 Link to this function

 cancel(client, outbound_transfer, params \\ %{}, opts \\ [])

 View Source

 @spec cancel(
 client :: Stripe.t(),
 outbound_transfer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

An OutboundTransfer can be canceled if the funds have not yet been paid out.
Details
	Method: post
	Path: /v1/treasury/outbound_transfers/{outbound_transfer}/cancel

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:destination_payment_method) => binary(),
 optional(:destination_payment_method_options) =>
 destination_payment_method_options(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:metadata) => %{optional(binary()) => binary()},
 optional(:statement_descriptor) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates an OutboundTransfer.
Details
	Method: post
	Path: /v1/treasury/outbound_transfers

 Link to this function

 fail(client, outbound_transfer, params \\ %{}, opts \\ [])

 View Source

 @spec fail(
 client :: Stripe.t(),
 outbound_transfer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created OutboundTransfer to the failed status. The OutboundTransfer must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/outbound_transfers/{outbound_transfer}/fail

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :canceled | :failed | :posted | :processing | :returned
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of OutboundTransfers sent from the specified FinancialAccount.
Details
	Method: get
	Path: /v1/treasury/outbound_transfers

 Link to this function

 post(client, outbound_transfer, params \\ %{}, opts \\ [])

 View Source

 @spec post(
 client :: Stripe.t(),
 outbound_transfer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created OutboundTransfer to the posted status. The OutboundTransfer must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/outbound_transfers/{outbound_transfer}/post

 Link to this function

 retrieve(client, outbound_transfer, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 outbound_transfer :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing OutboundTransfer by passing the unique OutboundTransfer ID from either the OutboundTransfer creation request or OutboundTransfer list.
Details
	Method: get
	Path: /v1/treasury/outbound_transfers/{outbound_transfer}

 Link to this function

 return_outbound_transfer(client, outbound_transfer, params \\ %{}, opts \\ [])

 View Source

 @spec return_outbound_transfer(
 client :: Stripe.t(),
 outbound_transfer :: binary(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:returned_details) => returned_details()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Transitions a test mode created OutboundTransfer to the returned status. The OutboundTransfer must already be in the processing state.
Details
	Method: post
	Path: /v1/test_helpers/treasury/outbound_transfers/{outbound_transfer}/return

 Stripe.Treasury.ReceivedCredit - Striped v0.5.0

Stripe.Treasury.ReceivedCredit

ReceivedCredits represent funds sent to a FinancialAccount (for example, via ACH or wire). These money movements are not initiated from the FinancialAccount.

 Anchor for this section

 Summary

 Types

 initiating_payment_method_details()

 Initiating payment method details for the object.

 linked_flows()

 t()

 The treasury.received_credit type.

 us_bank_account()

 Optional fields for us_bank_account.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Use this endpoint to simulate a test mode ReceivedCredit initiated by a third party. In live mode, you can’t directly create ReceivedCredits initiated by third parties.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of ReceivedCredits.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an existing ReceivedCredit by passing the unique ReceivedCredit ID from the ReceivedCredit list.

 Anchor for this section

Types

 Link to this type

 initiating_payment_method_details()

 View Source

 @type initiating_payment_method_details() :: %{
 optional(:type) => :us_bank_account,
 optional(:us_bank_account) => us_bank_account()
}

Initiating payment method details for the object.

 Link to this type

 linked_flows()

 View Source

 @type linked_flows() :: %{
 optional(:source_flow_type) =>
 :credit_reversal | :other | :outbound_payment | :payout
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.ReceivedCredit{
 amount: integer(),
 created: integer(),
 currency: binary(),
 description: binary(),
 failure_code: binary() | nil,
 financial_account: binary() | nil,
 hosted_regulatory_receipt_url: binary() | nil,
 id: binary(),
 initiating_payment_method_details: term(),
 linked_flows: term(),
 livemode: boolean(),
 network: binary(),
 object: binary(),
 reversal_details: term() | nil,
 status: binary(),
 transaction: (binary() | Stripe.Treasury.Transaction.t()) | nil
}

The treasury.received_credit type.
	amount Amount (in cents) transferred.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	failure_code Reason for the failure. A ReceivedCredit might fail because the receiving FinancialAccount is closed or frozen.
	financial_account The FinancialAccount that received the funds.
	hosted_regulatory_receipt_url A hosted transaction receipt URL that is provided when money movement is considered regulated under Stripe's money transmission licenses.
	id Unique identifier for the object.
	initiating_payment_method_details
	linked_flows
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	network The rails used to send the funds.
	object String representing the object's type. Objects of the same type share the same value.
	reversal_details Details describing when a ReceivedCredit may be reversed.
	status Status of the ReceivedCredit. ReceivedCredits are created either succeeded (approved) or failed (declined). If a ReceivedCredit is declined, the failure reason can be found in the failure_code field.
	transaction The Transaction associated with this object.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{
 optional(:account_holder_name) => binary(),
 optional(:account_number) => binary(),
 optional(:routing_number) => binary()
}

Optional fields for us_bank_account.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:initiating_payment_method_details) =>
 initiating_payment_method_details(),
 optional(:network) => :ach | :us_domestic_wire
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Use this endpoint to simulate a test mode ReceivedCredit initiated by a third party. In live mode, you can’t directly create ReceivedCredits initiated by third parties.
Details
	Method: post
	Path: /v1/test_helpers/treasury/received_credits

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:linked_flows) => linked_flows(),
 optional(:starting_after) => binary(),
 optional(:status) => :failed | :succeeded
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of ReceivedCredits.
Details
	Method: get
	Path: /v1/treasury/received_credits

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing ReceivedCredit by passing the unique ReceivedCredit ID from the ReceivedCredit list.
Details
	Method: get
	Path: /v1/treasury/received_credits/{id}

 Stripe.Treasury.ReceivedDebit - Striped v0.5.0

Stripe.Treasury.ReceivedDebit

ReceivedDebits represent funds pulled from a FinancialAccount. These are not initiated from the FinancialAccount.

 Anchor for this section

 Summary

 Types

 initiating_payment_method_details()

 Initiating payment method details for the object.

 t()

 The treasury.received_debit type.

 us_bank_account()

 Optional fields for us_bank_account.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Use this endpoint to simulate a test mode ReceivedDebit initiated by a third party. In live mode, you can’t directly create ReceivedDebits initiated by third parties.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of ReceivedDebits.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an existing ReceivedDebit by passing the unique ReceivedDebit ID from the ReceivedDebit lis.

 Anchor for this section

Types

 Link to this type

 initiating_payment_method_details()

 View Source

 @type initiating_payment_method_details() :: %{
 optional(:type) => :us_bank_account,
 optional(:us_bank_account) => us_bank_account()
}

Initiating payment method details for the object.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.ReceivedDebit{
 amount: integer(),
 created: integer(),
 currency: binary(),
 description: binary(),
 failure_code: binary() | nil,
 financial_account: binary() | nil,
 hosted_regulatory_receipt_url: binary() | nil,
 id: binary(),
 initiating_payment_method_details: term(),
 linked_flows: term(),
 livemode: boolean(),
 network: binary(),
 object: binary(),
 reversal_details: term() | nil,
 status: binary(),
 transaction: (binary() | Stripe.Treasury.Transaction.t()) | nil
}

The treasury.received_debit type.
	amount Amount (in cents) transferred.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	failure_code Reason for the failure. A ReceivedDebit might fail because the FinancialAccount doesn't have sufficient funds, is closed, or is frozen.
	financial_account The FinancialAccount that funds were pulled from.
	hosted_regulatory_receipt_url A hosted transaction receipt URL that is provided when money movement is considered regulated under Stripe's money transmission licenses.
	id Unique identifier for the object.
	initiating_payment_method_details
	linked_flows
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	network The network used for the ReceivedDebit.
	object String representing the object's type. Objects of the same type share the same value.
	reversal_details Details describing when a ReceivedDebit might be reversed.
	status Status of the ReceivedDebit. ReceivedDebits are created with a status of either succeeded (approved) or failed (declined). The failure reason can be found under the failure_code.
	transaction The Transaction associated with this object.

 Link to this type

 us_bank_account()

 View Source

 @type us_bank_account() :: %{
 optional(:account_holder_name) => binary(),
 optional(:account_number) => binary(),
 optional(:routing_number) => binary()
}

Optional fields for us_bank_account.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:amount) => integer(),
 optional(:currency) => binary(),
 optional(:description) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:initiating_payment_method_details) =>
 initiating_payment_method_details(),
 optional(:network) => :ach
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Use this endpoint to simulate a test mode ReceivedDebit initiated by a third party. In live mode, you can’t directly create ReceivedDebits initiated by third parties.
Details
	Method: post
	Path: /v1/test_helpers/treasury/received_debits

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:status) => :failed | :succeeded
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of ReceivedDebits.
Details
	Method: get
	Path: /v1/treasury/received_debits

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing ReceivedDebit by passing the unique ReceivedDebit ID from the ReceivedDebit lis.
Details
	Method: get
	Path: /v1/treasury/received_debits/{id}

 Stripe.Treasury.Transaction - Striped v0.5.0

Stripe.Treasury.Transaction

Transactions represent changes to a FinancialAccount's balance.

 Anchor for this section

 Summary

 Types

 created()

 posted_at()

 status_transitions()

 t()

 The treasury.transaction type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Retrieves a list of Transaction objects.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves the details of an existing Transaction.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 posted_at()

 View Source

 @type posted_at() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 status_transitions()

 View Source

 @type status_transitions() :: %{optional(:posted_at) => posted_at() | integer()}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.Transaction{
 amount: integer(),
 balance_impact: term(),
 created: integer(),
 currency: binary(),
 description: binary(),
 entries: term() | nil,
 financial_account: binary(),
 flow: binary() | nil,
 flow_details: term() | nil,
 flow_type: binary(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 status: binary(),
 status_transitions: term()
}

The treasury.transaction type.
	amount Amount (in cents) transferred.
	balance_impact
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	description An arbitrary string attached to the object. Often useful for displaying to users.
	entries A list of TransactionEntries that are part of this Transaction. This cannot be expanded in any list endpoints.
	financial_account The FinancialAccount associated with this object.
	flow ID of the flow that created the Transaction.
	flow_details Details of the flow that created the Transaction.
	flow_type Type of the flow that created the Transaction.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	status Status of the Transaction.
	status_transitions

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:order_by) => :created | :posted_at,
 optional(:starting_after) => binary(),
 optional(:status) => :open | :posted | :void,
 optional(:status_transitions) => status_transitions()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a list of Transaction objects.
Details
	Method: get
	Path: /v1/treasury/transactions

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing Transaction.
Details
	Method: get
	Path: /v1/treasury/transactions/{id}

 Stripe.Treasury.TransactionEntry - Striped v0.5.0

Stripe.Treasury.TransactionEntry

TransactionEntries represent individual units of money movements within a single Transaction.

 Anchor for this section

 Summary

 Types

 created()

 effective_at()

 t()

 The treasury.transaction_entry type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Retrieves a list of TransactionEntry objects.

 retrieve(client, id, params \\ %{}, opts \\ [])

 Retrieves a TransactionEntry object.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 effective_at()

 View Source

 @type effective_at() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Treasury.TransactionEntry{
 balance_impact: term(),
 created: integer(),
 currency: binary(),
 effective_at: integer(),
 financial_account: binary(),
 flow: binary() | nil,
 flow_details: term() | nil,
 flow_type: binary(),
 id: binary(),
 livemode: boolean(),
 object: binary(),
 transaction: binary() | Stripe.Treasury.Transaction.t(),
 type: binary()
}

The treasury.transaction_entry type.
	balance_impact
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	currency Three-letter ISO currency code, in lowercase. Must be a supported currency.
	effective_at When the TransactionEntry will impact the FinancialAccount's balance.
	financial_account The FinancialAccount associated with this object.
	flow Token of the flow associated with the TransactionEntry.
	flow_details Details of the flow associated with the TransactionEntry.
	flow_type Type of the flow associated with the TransactionEntry.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	transaction The Transaction associated with this object.
	type The specific money movement that generated the TransactionEntry.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:effective_at) => effective_at() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:financial_account) => binary(),
 optional(:limit) => integer(),
 optional(:order_by) => :created | :effective_at,
 optional(:starting_after) => binary(),
 optional(:transaction) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a list of TransactionEntry objects.
Details
	Method: get
	Path: /v1/treasury/transaction_entries

 Link to this function

 retrieve(client, id, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 id :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves a TransactionEntry object.
Details
	Method: get
	Path: /v1/treasury/transaction_entries/{id}

 Stripe.ScheduledQueryRun - Striped v0.5.0

Stripe.ScheduledQueryRun

If you have scheduled a Sigma query, you'll
receive a sigma.scheduled_query_run.created webhook each time the query
runs. The webhook contains a ScheduledQueryRun object, which you can use to
retrieve the query results.

 Anchor for this section

 Summary

 Types

 t()

 The scheduled_query_run type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a list of scheduled query runs.

 retrieve(client, scheduled_query_run, params \\ %{}, opts \\ [])

 Retrieves the details of an scheduled query run.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.ScheduledQueryRun{
 created: integer(),
 data_load_time: integer(),
 error: term(),
 file: Stripe.File.t() | nil,
 id: binary(),
 livemode: boolean(),
 object: binary(),
 result_available_until: integer(),
 sql: binary(),
 status: binary(),
 title: binary()
}

The scheduled_query_run type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	data_load_time When the query was run, Sigma contained a snapshot of your Stripe data at this time.
	error
	file The file object representing the results of the query.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	result_available_until Time at which the result expires and is no longer available for download.
	sql SQL for the query.
	status The query's execution status, which will be completed for successful runs, and canceled, failed, or timed_out otherwise.
	title Title of the query.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of scheduled query runs.
Details
	Method: get
	Path: /v1/sigma/scheduled_query_runs

 Link to this function

 retrieve(client, scheduled_query_run, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 scheduled_query_run :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an scheduled query run.
Details
	Method: get
	Path: /v1/sigma/scheduled_query_runs/{scheduled_query_run}

 Stripe.Reporting.ReportRun - Striped v0.5.0

Stripe.Reporting.ReportRun

The Report Run object represents an instance of a report type generated with
specific run parameters. Once the object is created, Stripe begins processing the report.
When the report has finished running, it will give you a reference to a file
where you can retrieve your results. For an overview, see
API Access to Reports.
Note that certain report types can only be run based on your live-mode data (not test-mode
data), and will error when queried without a live-mode API key.

 Anchor for this section

 Summary

 Types

 created()

 parameters()

 Parameters specifying how the report should be run. Different Report Types have different required and optional parameters, listed in the API Access to Reports documentation.

 t()

 The reporting.report_run type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 Creates a new object and begin running the report. (Certain report types require a live-mode API key..

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Report Runs, with the most recent appearing first.

 retrieve(client, report_run, params \\ %{}, opts \\ [])

 Retrieves the details of an existing Report Run.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 parameters()

 View Source

 @type parameters() :: %{
 optional(:columns) => [binary()],
 optional(:connected_account) => binary(),
 optional(:currency) => binary(),
 optional(:interval_end) => integer(),
 optional(:interval_start) => integer(),
 optional(:payout) => binary(),
 optional(:reporting_category) =>
 :advance
 | :advance_funding
 | :anticipation_repayment
 | :charge
 | :charge_failure
 | :connect_collection_transfer
 | :connect_reserved_funds
 | :contribution
 | :dispute
 | :dispute_reversal
 | :fee
 | :financing_paydown
 | :financing_paydown_reversal
 | :financing_payout
 | :financing_payout_reversal
 | :issuing_authorization_hold
 | :issuing_authorization_release
 | :issuing_dispute
 | :issuing_transaction
 | :network_cost
 | :other_adjustment
 | :partial_capture_reversal
 | :payout
 | :payout_reversal
 | :platform_earning
 | :platform_earning_refund
 | :refund
 | :refund_failure
 | :risk_reserved_funds
 | :tax
 | :topup
 | :topup_reversal
 | :transfer
 | :transfer_reversal,
 optional(:timezone) =>
 :"Africa/Abidjan"
 | :"Africa/Accra"
 | :"Africa/Addis_Ababa"
 | :"Africa/Algiers"
 | :"Africa/Asmara"
 | :"Africa/Asmera"
 | :"Africa/Bamako"
 | :"Africa/Bangui"
 | :"Africa/Banjul"
 | :"Africa/Bissau"
 | :"Africa/Blantyre"
 | :"Africa/Brazzaville"
 | :"Africa/Bujumbura"
 | :"Africa/Cairo"
 | :"Africa/Casablanca"
 | :"Africa/Ceuta"
 | :"Africa/Conakry"
 | :"Africa/Dakar"
 | :"Africa/Dar_es_Salaam"
 | :"Africa/Djibouti"
 | :"Africa/Douala"
 | :"Africa/El_Aaiun"
 | :"Africa/Freetown"
 | :"Africa/Gaborone"
 | :"Africa/Harare"
 | :"Africa/Johannesburg"
 | :"Africa/Juba"
 | :"Africa/Kampala"
 | :"Africa/Khartoum"
 | :"Africa/Kigali"
 | :"Africa/Kinshasa"
 | :"Africa/Lagos"
 | :"Africa/Libreville"
 | :"Africa/Lome"
 | :"Africa/Luanda"
 | :"Africa/Lubumbashi"
 | :"Africa/Lusaka"
 | :"Africa/Malabo"
 | :"Africa/Maputo"
 | :"Africa/Maseru"
 | :"Africa/Mbabane"
 | :"Africa/Mogadishu"
 | :"Africa/Monrovia"
 | :"Africa/Nairobi"
 | :"Africa/Ndjamena"
 | :"Africa/Niamey"
 | :"Africa/Nouakchott"
 | :"Africa/Ouagadougou"
 | :"Africa/Porto-Novo"
 | :"Africa/Sao_Tome"
 | :"Africa/Timbuktu"
 | :"Africa/Tripoli"
 | :"Africa/Tunis"
 | :"Africa/Windhoek"
 | :"America/Adak"
 | :"America/Anchorage"
 | :"America/Anguilla"
 | :"America/Antigua"
 | :"America/Araguaina"
 | :"America/Argentina/Buenos_Aires"
 | :"America/Argentina/Catamarca"
 | :"America/Argentina/ComodRivadavia"
 | :"America/Argentina/Cordoba"
 | :"America/Argentina/Jujuy"
 | :"America/Argentina/La_Rioja"
 | :"America/Argentina/Mendoza"
 | :"America/Argentina/Rio_Gallegos"
 | :"America/Argentina/Salta"
 | :"America/Argentina/San_Juan"
 | :"America/Argentina/San_Luis"
 | :"America/Argentina/Tucuman"
 | :"America/Argentina/Ushuaia"
 | :"America/Aruba"
 | :"America/Asuncion"
 | :"America/Atikokan"
 | :"America/Atka"
 | :"America/Bahia"
 | :"America/Bahia_Banderas"
 | :"America/Barbados"
 | :"America/Belem"
 | :"America/Belize"
 | :"America/Blanc-Sablon"
 | :"America/Boa_Vista"
 | :"America/Bogota"
 | :"America/Boise"
 | :"America/Buenos_Aires"
 | :"America/Cambridge_Bay"
 | :"America/Campo_Grande"
 | :"America/Cancun"
 | :"America/Caracas"
 | :"America/Catamarca"
 | :"America/Cayenne"
 | :"America/Cayman"
 | :"America/Chicago"
 | :"America/Chihuahua"
 | :"America/Coral_Harbour"
 | :"America/Cordoba"
 | :"America/Costa_Rica"
 | :"America/Creston"
 | :"America/Cuiaba"
 | :"America/Curacao"
 | :"America/Danmarkshavn"
 | :"America/Dawson"
 | :"America/Dawson_Creek"
 | :"America/Denver"
 | :"America/Detroit"
 | :"America/Dominica"
 | :"America/Edmonton"
 | :"America/Eirunepe"
 | :"America/El_Salvador"
 | :"America/Ensenada"
 | :"America/Fort_Nelson"
 | :"America/Fort_Wayne"
 | :"America/Fortaleza"
 | :"America/Glace_Bay"
 | :"America/Godthab"
 | :"America/Goose_Bay"
 | :"America/Grand_Turk"
 | :"America/Grenada"
 | :"America/Guadeloupe"
 | :"America/Guatemala"
 | :"America/Guayaquil"
 | :"America/Guyana"
 | :"America/Halifax"
 | :"America/Havana"
 | :"America/Hermosillo"
 | :"America/Indiana/Indianapolis"
 | :"America/Indiana/Knox"
 | :"America/Indiana/Marengo"
 | :"America/Indiana/Petersburg"
 | :"America/Indiana/Tell_City"
 | :"America/Indiana/Vevay"
 | :"America/Indiana/Vincennes"
 | :"America/Indiana/Winamac"
 | :"America/Indianapolis"
 | :"America/Inuvik"
 | :"America/Iqaluit"
 | :"America/Jamaica"
 | :"America/Jujuy"
 | :"America/Juneau"
 | :"America/Kentucky/Louisville"
 | :"America/Kentucky/Monticello"
 | :"America/Knox_IN"
 | :"America/Kralendijk"
 | :"America/La_Paz"
 | :"America/Lima"
 | :"America/Los_Angeles"
 | :"America/Louisville"
 | :"America/Lower_Princes"
 | :"America/Maceio"
 | :"America/Managua"
 | :"America/Manaus"
 | :"America/Marigot"
 | :"America/Martinique"
 | :"America/Matamoros"
 | :"America/Mazatlan"
 | :"America/Mendoza"
 | :"America/Menominee"
 | :"America/Merida"
 | :"America/Metlakatla"
 | :"America/Mexico_City"
 | :"America/Miquelon"
 | :"America/Moncton"
 | :"America/Monterrey"
 | :"America/Montevideo"
 | :"America/Montreal"
 | :"America/Montserrat"
 | :"America/Nassau"
 | :"America/New_York"
 | :"America/Nipigon"
 | :"America/Nome"
 | :"America/Noronha"
 | :"America/North_Dakota/Beulah"
 | :"America/North_Dakota/Center"
 | :"America/North_Dakota/New_Salem"
 | :"America/Nuuk"
 | :"America/Ojinaga"
 | :"America/Panama"
 | :"America/Pangnirtung"
 | :"America/Paramaribo"
 | :"America/Phoenix"
 | :"America/Port-au-Prince"
 | :"America/Port_of_Spain"
 | :"America/Porto_Acre"
 | :"America/Porto_Velho"
 | :"America/Puerto_Rico"
 | :"America/Punta_Arenas"
 | :"America/Rainy_River"
 | :"America/Rankin_Inlet"
 | :"America/Recife"
 | :"America/Regina"
 | :"America/Resolute"
 | :"America/Rio_Branco"
 | :"America/Rosario"
 | :"America/Santa_Isabel"
 | :"America/Santarem"
 | :"America/Santiago"
 | :"America/Santo_Domingo"
 | :"America/Sao_Paulo"
 | :"America/Scoresbysund"
 | :"America/Shiprock"
 | :"America/Sitka"
 | :"America/St_Barthelemy"
 | :"America/St_Johns"
 | :"America/St_Kitts"
 | :"America/St_Lucia"
 | :"America/St_Thomas"
 | :"America/St_Vincent"
 | :"America/Swift_Current"
 | :"America/Tegucigalpa"
 | :"America/Thule"
 | :"America/Thunder_Bay"
 | :"America/Tijuana"
 | :"America/Toronto"
 | :"America/Tortola"
 | :"America/Vancouver"
 | :"America/Virgin"
 | :"America/Whitehorse"
 | :"America/Winnipeg"
 | :"America/Yakutat"
 | :"America/Yellowknife"
 | :"Antarctica/Casey"
 | :"Antarctica/Davis"
 | :"Antarctica/DumontDUrville"
 | :"Antarctica/Macquarie"
 | :"Antarctica/Mawson"
 | :"Antarctica/McMurdo"
 | :"Antarctica/Palmer"
 | :"Antarctica/Rothera"
 | :"Antarctica/South_Pole"
 | :"Antarctica/Syowa"
 | :"Antarctica/Troll"
 | :"Antarctica/Vostok"
 | :"Arctic/Longyearbyen"
 | :"Asia/Aden"
 | :"Asia/Almaty"
 | :"Asia/Amman"
 | :"Asia/Anadyr"
 | :"Asia/Aqtau"
 | :"Asia/Aqtobe"
 | :"Asia/Ashgabat"
 | :"Asia/Ashkhabad"
 | :"Asia/Atyrau"
 | :"Asia/Baghdad"
 | :"Asia/Bahrain"
 | :"Asia/Baku"
 | :"Asia/Bangkok"
 | :"Asia/Barnaul"
 | :"Asia/Beirut"
 | :"Asia/Bishkek"
 | :"Asia/Brunei"
 | :"Asia/Calcutta"
 | :"Asia/Chita"
 | :"Asia/Choibalsan"
 | :"Asia/Chongqing"
 | :"Asia/Chungking"
 | :"Asia/Colombo"
 | :"Asia/Dacca"
 | :"Asia/Damascus"
 | :"Asia/Dhaka"
 | :"Asia/Dili"
 | :"Asia/Dubai"
 | :"Asia/Dushanbe"
 | :"Asia/Famagusta"
 | :"Asia/Gaza"
 | :"Asia/Harbin"
 | :"Asia/Hebron"
 | :"Asia/Ho_Chi_Minh"
 | :"Asia/Hong_Kong"
 | :"Asia/Hovd"
 | :"Asia/Irkutsk"
 | :"Asia/Istanbul"
 | :"Asia/Jakarta"
 | :"Asia/Jayapura"
 | :"Asia/Jerusalem"
 | :"Asia/Kabul"
 | :"Asia/Kamchatka"
 | :"Asia/Karachi"
 | :"Asia/Kashgar"
 | :"Asia/Kathmandu"
 | :"Asia/Katmandu"
 | :"Asia/Khandyga"
 | :"Asia/Kolkata"
 | :"Asia/Krasnoyarsk"
 | :"Asia/Kuala_Lumpur"
 | :"Asia/Kuching"
 | :"Asia/Kuwait"
 | :"Asia/Macao"
 | :"Asia/Macau"
 | :"Asia/Magadan"
 | :"Asia/Makassar"
 | :"Asia/Manila"
 | :"Asia/Muscat"
 | :"Asia/Nicosia"
 | :"Asia/Novokuznetsk"
 | :"Asia/Novosibirsk"
 | :"Asia/Omsk"
 | :"Asia/Oral"
 | :"Asia/Phnom_Penh"
 | :"Asia/Pontianak"
 | :"Asia/Pyongyang"
 | :"Asia/Qatar"
 | :"Asia/Qostanay"
 | :"Asia/Qyzylorda"
 | :"Asia/Rangoon"
 | :"Asia/Riyadh"
 | :"Asia/Saigon"
 | :"Asia/Sakhalin"
 | :"Asia/Samarkand"
 | :"Asia/Seoul"
 | :"Asia/Shanghai"
 | :"Asia/Singapore"
 | :"Asia/Srednekolymsk"
 | :"Asia/Taipei"
 | :"Asia/Tashkent"
 | :"Asia/Tbilisi"
 | :"Asia/Tehran"
 | :"Asia/Tel_Aviv"
 | :"Asia/Thimbu"
 | :"Asia/Thimphu"
 | :"Asia/Tokyo"
 | :"Asia/Tomsk"
 | :"Asia/Ujung_Pandang"
 | :"Asia/Ulaanbaatar"
 | :"Asia/Ulan_Bator"
 | :"Asia/Urumqi"
 | :"Asia/Ust-Nera"
 | :"Asia/Vientiane"
 | :"Asia/Vladivostok"
 | :"Asia/Yakutsk"
 | :"Asia/Yangon"
 | :"Asia/Yekaterinburg"
 | :"Asia/Yerevan"
 | :"Atlantic/Azores"
 | :"Atlantic/Bermuda"
 | :"Atlantic/Canary"
 | :"Atlantic/Cape_Verde"
 | :"Atlantic/Faeroe"
 | :"Atlantic/Faroe"
 | :"Atlantic/Jan_Mayen"
 | :"Atlantic/Madeira"
 | :"Atlantic/Reykjavik"
 | :"Atlantic/South_Georgia"
 | :"Atlantic/St_Helena"
 | :"Atlantic/Stanley"
 | :"Australia/ACT"
 | :"Australia/Adelaide"
 | :"Australia/Brisbane"
 | :"Australia/Broken_Hill"
 | :"Australia/Canberra"
 | :"Australia/Currie"
 | :"Australia/Darwin"
 | :"Australia/Eucla"
 | :"Australia/Hobart"
 | :"Australia/LHI"
 | :"Australia/Lindeman"
 | :"Australia/Lord_Howe"
 | :"Australia/Melbourne"
 | :"Australia/NSW"
 | :"Australia/North"
 | :"Australia/Perth"
 | :"Australia/Queensland"
 | :"Australia/South"
 | :"Australia/Sydney"
 | :"Australia/Tasmania"
 | :"Australia/Victoria"
 | :"Australia/West"
 | :"Australia/Yancowinna"
 | :"Brazil/Acre"
 | :"Brazil/DeNoronha"
 | :"Brazil/East"
 | :"Brazil/West"
 | :CET
 | :CST6CDT
 | :"Canada/Atlantic"
 | :"Canada/Central"
 | :"Canada/Eastern"
 | :"Canada/Mountain"
 | :"Canada/Newfoundland"
 | :"Canada/Pacific"
 | :"Canada/Saskatchewan"
 | :"Canada/Yukon"
 | :"Chile/Continental"
 | :"Chile/EasterIsland"
 | :Cuba
 | :EET
 | :EST
 | :EST5EDT
 | :Egypt
 | :Eire
 | :"Etc/GMT"
 | :"Etc/GMT+0"
 | :"Etc/GMT+1"
 | :"Etc/GMT+10"
 | :"Etc/GMT+11"
 | :"Etc/GMT+12"
 | :"Etc/GMT+2"
 | :"Etc/GMT+3"
 | :"Etc/GMT+4"
 | :"Etc/GMT+5"
 | :"Etc/GMT+6"
 | :"Etc/GMT+7"
 | :"Etc/GMT+8"
 | :"Etc/GMT+9"
 | :"Etc/GMT-0"
 | :"Etc/GMT-1"
 | :"Etc/GMT-10"
 | :"Etc/GMT-11"
 | :"Etc/GMT-12"
 | :"Etc/GMT-13"
 | :"Etc/GMT-14"
 | :"Etc/GMT-2"
 | :"Etc/GMT-3"
 | :"Etc/GMT-4"
 | :"Etc/GMT-5"
 | :"Etc/GMT-6"
 | :"Etc/GMT-7"
 | :"Etc/GMT-8"
 | :"Etc/GMT-9"
 | :"Etc/GMT0"
 | :"Etc/Greenwich"
 | :"Etc/UCT"
 | :"Etc/UTC"
 | :"Etc/Universal"
 | :"Etc/Zulu"
 | :"Europe/Amsterdam"
 | :"Europe/Andorra"
 | :"Europe/Astrakhan"
 | :"Europe/Athens"
 | :"Europe/Belfast"
 | :"Europe/Belgrade"
 | :"Europe/Berlin"
 | :"Europe/Bratislava"
 | :"Europe/Brussels"
 | :"Europe/Bucharest"
 | :"Europe/Budapest"
 | :"Europe/Busingen"
 | :"Europe/Chisinau"
 | :"Europe/Copenhagen"
 | :"Europe/Dublin"
 | :"Europe/Gibraltar"
 | :"Europe/Guernsey"
 | :"Europe/Helsinki"
 | :"Europe/Isle_of_Man"
 | :"Europe/Istanbul"
 | :"Europe/Jersey"
 | :"Europe/Kaliningrad"
 | :"Europe/Kiev"
 | :"Europe/Kirov"
 | :"Europe/Kyiv"
 | :"Europe/Lisbon"
 | :"Europe/Ljubljana"
 | :"Europe/London"
 | :"Europe/Luxembourg"
 | :"Europe/Madrid"
 | :"Europe/Malta"
 | :"Europe/Mariehamn"
 | :"Europe/Minsk"
 | :"Europe/Monaco"
 | :"Europe/Moscow"
 | :"Europe/Nicosia"
 | :"Europe/Oslo"
 | :"Europe/Paris"
 | :"Europe/Podgorica"
 | :"Europe/Prague"
 | :"Europe/Riga"
 | :"Europe/Rome"
 | :"Europe/Samara"
 | :"Europe/San_Marino"
 | :"Europe/Sarajevo"
 | :"Europe/Saratov"
 | :"Europe/Simferopol"
 | :"Europe/Skopje"
 | :"Europe/Sofia"
 | :"Europe/Stockholm"
 | :"Europe/Tallinn"
 | :"Europe/Tirane"
 | :"Europe/Tiraspol"
 | :"Europe/Ulyanovsk"
 | :"Europe/Uzhgorod"
 | :"Europe/Vaduz"
 | :"Europe/Vatican"
 | :"Europe/Vienna"
 | :"Europe/Vilnius"
 | :"Europe/Volgograd"
 | :"Europe/Warsaw"
 | :"Europe/Zagreb"
 | :"Europe/Zaporozhye"
 | :"Europe/Zurich"
 | :Factory
 | :GB
 | :"GB-Eire"
 | :GMT
 | :"GMT+0"
 | :"GMT-0"
 | :GMT0
 | :Greenwich
 | :HST
 | :Hongkong
 | :Iceland
 | :"Indian/Antananarivo"
 | :"Indian/Chagos"
 | :"Indian/Christmas"
 | :"Indian/Cocos"
 | :"Indian/Comoro"
 | :"Indian/Kerguelen"
 | :"Indian/Mahe"
 | :"Indian/Maldives"
 | :"Indian/Mauritius"
 | :"Indian/Mayotte"
 | :"Indian/Reunion"
 | :Iran
 | :Israel
 | :Jamaica
 | :Japan
 | :Kwajalein
 | :Libya
 | :MET
 | :MST
 | :MST7MDT
 | :"Mexico/BajaNorte"
 | :"Mexico/BajaSur"
 | :"Mexico/General"
 | :NZ
 | :"NZ-CHAT"
 | :Navajo
 | :PRC
 | :PST8PDT
 | :"Pacific/Apia"
 | :"Pacific/Auckland"
 | :"Pacific/Bougainville"
 | :"Pacific/Chatham"
 | :"Pacific/Chuuk"
 | :"Pacific/Easter"
 | :"Pacific/Efate"
 | :"Pacific/Enderbury"
 | :"Pacific/Fakaofo"
 | :"Pacific/Fiji"
 | :"Pacific/Funafuti"
 | :"Pacific/Galapagos"
 | :"Pacific/Gambier"
 | :"Pacific/Guadalcanal"
 | :"Pacific/Guam"
 | :"Pacific/Honolulu"
 | :"Pacific/Johnston"
 | :"Pacific/Kanton"
 | :"Pacific/Kiritimati"
 | :"Pacific/Kosrae"
 | :"Pacific/Kwajalein"
 | :"Pacific/Majuro"
 | :"Pacific/Marquesas"
 | :"Pacific/Midway"
 | :"Pacific/Nauru"
 | :"Pacific/Niue"
 | :"Pacific/Norfolk"
 | :"Pacific/Noumea"
 | :"Pacific/Pago_Pago"
 | :"Pacific/Palau"
 | :"Pacific/Pitcairn"
 | :"Pacific/Pohnpei"
 | :"Pacific/Ponape"
 | :"Pacific/Port_Moresby"
 | :"Pacific/Rarotonga"
 | :"Pacific/Saipan"
 | :"Pacific/Samoa"
 | :"Pacific/Tahiti"
 | :"Pacific/Tarawa"
 | :"Pacific/Tongatapu"
 | :"Pacific/Truk"
 | :"Pacific/Wake"
 | :"Pacific/Wallis"
 | :"Pacific/Yap"
 | :Poland
 | :Portugal
 | :ROC
 | :ROK
 | :Singapore
 | :Turkey
 | :UCT
 | :"US/Alaska"
 | :"US/Aleutian"
 | :"US/Arizona"
 | :"US/Central"
 | :"US/East-Indiana"
 | :"US/Eastern"
 | :"US/Hawaii"
 | :"US/Indiana-Starke"
 | :"US/Michigan"
 | :"US/Mountain"
 | :"US/Pacific"
 | :"US/Pacific-New"
 | :"US/Samoa"
 | :UTC
 | :Universal
 | :"W-SU"
 | :WET
 | :Zulu
}

Parameters specifying how the report should be run. Different Report Types have different required and optional parameters, listed in the API Access to Reports documentation.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Reporting.ReportRun{
 created: integer(),
 error: binary() | nil,
 id: binary(),
 livemode: boolean(),
 object: binary(),
 parameters: term(),
 report_type: binary(),
 result: Stripe.File.t() | nil,
 status: binary(),
 succeeded_at: integer() | nil
}

The reporting.report_run type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	error If something should go wrong during the run, a message about the failure (populated when
status=failed).
	id Unique identifier for the object.
	livemode true if the report is run on live mode data and false if it is run on test mode data.
	object String representing the object's type. Objects of the same type share the same value.
	parameters
	report_type The ID of the report type to run, such as "balance.summary.1".
	result The file object representing the result of the report run (populated when
status=succeeded).
	status Status of this report run. This will be pending when the run is initially created.
When the run finishes, this will be set to succeeded and the result field will be populated.
Rarely, we may encounter an error, at which point this will be set to failed and the error field will be populated.
	succeeded_at Timestamp at which this run successfully finished (populated when
status=succeeded). Measured in seconds since the Unix epoch.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:expand) => [binary()],
 optional(:parameters) => parameters(),
 optional(:report_type) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Creates a new object and begin running the report. (Certain report types require a live-mode API key..
Details
	Method: post
	Path: /v1/reporting/report_runs

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of Report Runs, with the most recent appearing first.
Details
	Method: get
	Path: /v1/reporting/report_runs

 Link to this function

 retrieve(client, report_run, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 report_run :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of an existing Report Run.
Details
	Method: get
	Path: /v1/reporting/report_runs/{report_run}

 Stripe.Reporting.ReportType - Striped v0.5.0

Stripe.Reporting.ReportType

The Report Type resource corresponds to a particular type of report, such as
the "Activity summary" or "Itemized payouts" reports. These objects are
identified by an ID belonging to a set of enumerated values. See
API Access to Reports documentation
for those Report Type IDs, along with required and optional parameters.
Note that certain report types can only be run based on your live-mode data (not test-mode
data), and will error when queried without a live-mode API key.

 Anchor for this section

 Summary

 Types

 t()

 The reporting.report_type type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 Returns a full list of Report Types.

 retrieve(client, report_type, params \\ %{}, opts \\ [])

 Retrieves the details of a Report Type. (Certain report types require a live-mode API key..

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Reporting.ReportType{
 data_available_end: integer(),
 data_available_start: integer(),
 default_columns: term() | nil,
 id: binary(),
 livemode: boolean(),
 name: binary(),
 object: binary(),
 updated: integer(),
 version: integer()
}

The reporting.report_type type.
	data_available_end Most recent time for which this Report Type is available. Measured in seconds since the Unix epoch.
	data_available_start Earliest time for which this Report Type is available. Measured in seconds since the Unix epoch.
	default_columns List of column names that are included by default when this Report Type gets run. (If the Report Type doesn't support the columns parameter, this will be null.)
	id The ID of the Report Type, such as balance.summary.1.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	name Human-readable name of the Report Type
	object String representing the object's type. Objects of the same type share the same value.
	updated When this Report Type was latest updated. Measured in seconds since the Unix epoch.
	version Version of the Report Type. Different versions report with the same ID will have the same purpose, but may take different run parameters or have different result schemas.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a full list of Report Types.
Details
	Method: get
	Path: /v1/reporting/report_types

 Link to this function

 retrieve(client, report_type, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 report_type :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the details of a Report Type. (Certain report types require a live-mode API key..
Details
	Method: get
	Path: /v1/reporting/report_types/{report_type}

 Stripe.FinancialConnections.Account - Striped v0.5.0

Stripe.FinancialConnections.Account

A Financial Connections Account represents an account that exists outside of Stripe, to which you have been granted some degree of access.

 Anchor for this section

 Summary

 Types

 account_holder()

 t()

 The financial_connections.account type.

 Functions

 disconnect(client, account, params \\ %{}, opts \\ [])

 Disables your access to a Financial Connections Account. You will no longer be able to access data associated with the account (e.g. balances, transactions).

 list(client, params \\ %{}, opts \\ [])

 Returns a list of Financial Connections Account objects.

 list_owners(client, account, params \\ %{}, opts \\ [])

 Lists all owners for a given Account

 Stripe.FinancialConnections.AccountOwner - Striped v0.5.0

Stripe.FinancialConnections.AccountOwner

 Anchor for this section

 Summary

 Types

 t()

 The financial_connections.account_owner type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.FinancialConnections.AccountOwner{
 email: binary() | nil,
 id: binary(),
 name: binary(),
 object: binary(),
 ownership: binary(),
 phone: binary() | nil,
 raw_address: binary() | nil,
 refreshed_at: integer() | nil
}

The financial_connections.account_owner type.
	email The email address of the owner.
	id Unique identifier for the object.
	name The full name of the owner.
	object String representing the object's type. Objects of the same type share the same value.
	ownership The ownership object that this owner belongs to.
	phone The raw phone number of the owner.
	raw_address The raw physical address of the owner.
	refreshed_at The timestamp of the refresh that updated this owner.

 Stripe.FinancialConnections.Session - Striped v0.5.0

Stripe.FinancialConnections.Session

A Financial Connections Session is the secure way to programmatically launch the client-side Stripe.js modal that lets your users link their accounts.

 Anchor for this section

 Summary

 Types

 account_holder()

 The account holder to link accounts for.

 filters()

 Filters to restrict the kinds of accounts to collect.

 t()

 The financial_connections.session type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 To launch the Financial Connections authorization flow, create a Session. The session’s client_secret can be used to launch the flow using Stripe.js.

 retrieve(client, session, params \\ %{}, opts \\ [])

 Retrieves the details of a Financial Connections Session

 Stripe.Identity.VerificationReport - Striped v0.5.0

Stripe.Identity.VerificationReport

A VerificationReport is the result of an attempt to collect and verify data from a user.
The collection of verification checks performed is determined from the type and options
parameters used. You can find the result of each verification check performed in the
appropriate sub-resource: document, id_number, selfie.
Each VerificationReport contains a copy of any data collected by the user as well as
reference IDs which can be used to access collected images through the FileUpload
API. To configure and create VerificationReports, use the
VerificationSession API.
Related guides: Accessing verification results.

 Anchor for this section

 Summary

 Types

 created()

 t()

 The identity.verification_report type.

 Functions

 list(client, params \\ %{}, opts \\ [])

 List all verification reports.

 retrieve(client, report, params \\ %{}, opts \\ [])

 Retrieves an existing VerificationRepor.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Identity.VerificationReport{
 created: integer(),
 document: term(),
 id: binary(),
 id_number: term(),
 livemode: boolean(),
 object: binary(),
 options: term(),
 selfie: term(),
 type: binary(),
 verification_session: binary() | nil
}

The identity.verification_report type.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	document
	id Unique identifier for the object.
	id_number
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	object String representing the object's type. Objects of the same type share the same value.
	options
	selfie
	type Type of report.
	verification_session ID of the VerificationSession that created this report.

 Anchor for this section

Functions

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:created) => created() | integer(),
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary(),
 optional(:type) => :document | :id_number,
 optional(:verification_session) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

List all verification reports.
Details
	Method: get
	Path: /v1/identity/verification_reports

 Link to this function

 retrieve(client, report, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 report :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves an existing VerificationRepor.
Details
	Method: get
	Path: /v1/identity/verification_reports/{report}

 Stripe.Identity.VerificationSession - Striped v0.5.0

Stripe.Identity.VerificationSession

A VerificationSession guides you through the process of collecting and verifying the identities
of your users. It contains details about the type of verification, such as what verification
check to perform. Only create one VerificationSession for
each verification in your system.
A VerificationSession transitions through multiple
statuses throughout its lifetime as it progresses through
the verification flow. The VerificationSession contains the user's verified data after
verification checks are complete.
Related guide: The Verification Sessions API

 Anchor for this section

 Summary

 Types

 created()

 document()

 options()

 A set of options for the session’s verification checks.

 t()

 The identity.verification_session type.

 Functions

 cancel(client, session, params \\ %{}, opts \\ [])

 A VerificationSession object can be canceled when it is in requires_input status.

 create(client, params \\ %{}, opts \\ [])

 Creates a VerificationSession object.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of VerificationSession.

 redact(client, session, params \\ %{}, opts \\ [])

 Redact a VerificationSession to remove all collected information from Stripe. This will redactthe VerificationSession and all objects related to it, including VerificationReports, Events,
request logs, etc.

 retrieve(client, session, params \\ %{}, opts \\ [])

 Retrieves the details of a VerificationSession that was previously created.

 update(client, session, params \\ %{}, opts \\ [])

 Updates a VerificationSession object.

 Anchor for this section

Types

 Link to this type

 created()

 View Source

 @type created() :: %{
 optional(:gt) => integer(),
 optional(:gte) => integer(),
 optional(:lt) => integer(),
 optional(:lte) => integer()
}

 Link to this type

 document()

 View Source

 @type document() :: %{
 optional(:allowed_types) => [:driving_license | :id_card | :passport],
 optional(:require_id_number) => boolean(),
 optional(:require_live_capture) => boolean(),
 optional(:require_matching_selfie) => boolean()
}

 Link to this type

 options()

 View Source

 @type options() :: %{optional(:document) => document() | binary()}

A set of options for the session’s verification checks.

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.Identity.VerificationSession{
 client_secret: binary() | nil,
 created: integer(),
 id: binary(),
 last_error: term() | nil,
 last_verification_report:
 (binary() | Stripe.Identity.VerificationReport.t()) | nil,
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 options: term(),
 redaction: term() | nil,
 status: binary(),
 type: binary(),
 url: binary() | nil,
 verified_outputs: term() | nil
}

The identity.verification_session type.
	client_secret The short-lived client secret used by Stripe.js to show a verification modal inside your app. This client secret expires after 24 hours and can only be used once. Don’t store it, log it, embed it in a URL, or expose it to anyone other than the user. Make sure that you have TLS enabled on any page that includes the client secret. Refer to our docs on passing the client secret to the frontend to learn more.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	id Unique identifier for the object.
	last_error If present, this property tells you the last error encountered when processing the verification.
	last_verification_report ID of the most recent VerificationReport. Learn more about accessing detailed verification results.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	options
	redaction Redaction status of this VerificationSession. If the VerificationSession is not redacted, this field will be null.
	status Status of this VerificationSession. Learn more about the lifecycle of sessions.
	type The type of verification check to be performed.
	url The short-lived URL that you use to redirect a user to Stripe to submit their identity information. This URL expires after 48 hours and can only be used once. Don’t store it, log it, send it in emails or expose it to anyone other than the user. Refer to our docs on

 Stripe.WebhookEndpoint - Striped v0.5.0

Stripe.WebhookEndpoint

You can configure webhook endpoints via the API to be
notified about events that happen in your Stripe account or connected
accounts.
Most users configure webhooks from the dashboard, which provides a user interface for registering and testing your webhook endpoints.
Related guide: Setting up Webhooks.

 Anchor for this section

 Summary

 Types

 t()

 The webhook_endpoint type.

 Functions

 create(client, params \\ %{}, opts \\ [])

 A webhook endpoint must have a url and a list of enabled_events. You may optionally specify the Boolean connect parameter. If set to true, then a Connect webhook endpoint that notifies the specified url about events from all connected accounts is created; otherwise an account webhook endpoint that notifies the specified url only about events from your account is created. You can also create webhook endpoints in the webhooks settings section of the Dashboard.

 delete(client, webhook_endpoint, opts \\ [])

 You can also delete webhook endpoints via the webhook endpoint management page of the Stripe dashboard.

 list(client, params \\ %{}, opts \\ [])

 Returns a list of your webhook endpoints.

 retrieve(client, webhook_endpoint, params \\ %{}, opts \\ [])

 Retrieves the webhook endpoint with the given ID.

 update(client, webhook_endpoint, params \\ %{}, opts \\ [])

 Updates the webhook endpoint. You may edit the url, the list of enabled_events, and the status of your endpoint.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.WebhookEndpoint{
 api_version: binary() | nil,
 application: binary() | nil,
 created: integer(),
 description: binary() | nil,
 enabled_events: term(),
 id: binary(),
 livemode: boolean(),
 metadata: term(),
 object: binary(),
 secret: binary(),
 status: binary(),
 url: binary()
}

The webhook_endpoint type.
	api_version The API version events are rendered as for this webhook endpoint.
	application The ID of the associated Connect application.
	created Time at which the object was created. Measured in seconds since the Unix epoch.
	description An optional description of what the webhook is used for.
	enabled_events The list of events to enable for this endpoint. ['*'] indicates that all events are enabled, except those that require explicit selection.
	id Unique identifier for the object.
	livemode Has the value true if the object exists in live mode or the value false if the object exists in test mode.
	metadata Set of key-value pairs that you can attach to an object. This can be useful for storing additional information about the object in a structured format.
	object String representing the object's type. Objects of the same type share the same value.
	secret The endpoint's secret, used to generate webhook signatures. Only returned at creation.
	status The status of the webhook. It can be enabled or disabled.
	url The URL of the webhook endpoint.

 Anchor for this section

Functions

 Link to this function

 create(client, params \\ %{}, opts \\ [])

 View Source

 @spec create(
 client :: Stripe.t(),
 params :: %{
 optional(:api_version) =>
 :"2011-01-01"
 | :"2011-06-21"
 | :"2011-06-28"
 | :"2011-08-01"
 | :"2011-09-15"
 | :"2011-11-17"
 | :"2012-02-23"
 | :"2012-03-25"
 | :"2012-06-18"
 | :"2012-06-28"
 | :"2012-07-09"
 | :"2012-09-24"
 | :"2012-10-26"
 | :"2012-11-07"
 | :"2013-02-11"
 | :"2013-02-13"
 | :"2013-07-05"
 | :"2013-08-12"
 | :"2013-08-13"
 | :"2013-10-29"
 | :"2013-12-03"
 | :"2014-01-31"
 | :"2014-03-13"
 | :"2014-03-28"
 | :"2014-05-19"
 | :"2014-06-13"
 | :"2014-06-17"
 | :"2014-07-22"
 | :"2014-07-26"
 | :"2014-08-04"
 | :"2014-08-20"
 | :"2014-09-08"
 | :"2014-10-07"
 | :"2014-11-05"
 | :"2014-11-20"
 | :"2014-12-08"
 | :"2014-12-17"
 | :"2014-12-22"
 | :"2015-01-11"
 | :"2015-01-26"
 | :"2015-02-10"
 | :"2015-02-16"
 | :"2015-02-18"
 | :"2015-03-24"
 | :"2015-04-07"
 | :"2015-06-15"
 | :"2015-07-07"
 | :"2015-07-13"
 | :"2015-07-28"
 | :"2015-08-07"
 | :"2015-08-19"
 | :"2015-09-03"
 | :"2015-09-08"
 | :"2015-09-23"
 | :"2015-10-01"
 | :"2015-10-12"
 | :"2015-10-16"
 | :"2016-02-03"
 | :"2016-02-19"
 | :"2016-02-22"
 | :"2016-02-23"
 | :"2016-02-29"
 | :"2016-03-07"
 | :"2016-06-15"
 | :"2016-07-06"
 | :"2016-10-19"
 | :"2017-01-27"
 | :"2017-02-14"
 | :"2017-04-06"
 | :"2017-05-25"
 | :"2017-06-05"
 | :"2017-08-15"
 | :"2017-12-14"
 | :"2018-01-23"
 | :"2018-02-05"
 | :"2018-02-06"
 | :"2018-02-28"
 | :"2018-05-21"
 | :"2018-07-27"
 | :"2018-08-23"
 | :"2018-09-06"
 | :"2018-09-24"
 | :"2018-10-31"
 | :"2018-11-08"
 | :"2019-02-11"
 | :"2019-02-19"
 | :"2019-03-14"
 | :"2019-05-16"
 | :"2019-08-14"
 | :"2019-09-09"
 | :"2019-10-08"
 | :"2019-10-17"
 | :"2019-11-05"
 | :"2019-12-03"
 | :"2020-03-02"
 | :"2020-08-27"
 | :"2022-08-01"
 | :"2022-11-15",
 optional(:connect) => boolean(),
 optional(:description) => binary(),
 optional(:enabled_events) => [
 :*
 | :"account.application.authorized"
 | :"account.application.deauthorized"
 | :"account.external_account.created"
 | :"account.external_account.deleted"
 | :"account.external_account.updated"
 | :"account.updated"
 | :"application_fee.created"
 | :"application_fee.refund.updated"
 | :"application_fee.refunded"
 | :"balance.available"
 | :"billing_portal.configuration.created"
 | :"billing_portal.configuration.updated"
 | :"billing_portal.session.created"
 | :"capability.updated"
 | :"cash_balance.funds_available"
 | :"charge.captured"
 | :"charge.dispute.closed"
 | :"charge.dispute.created"
 | :"charge.dispute.funds_reinstated"
 | :"charge.dispute.funds_withdrawn"
 | :"charge.dispute.updated"
 | :"charge.expired"
 | :"charge.failed"
 | :"charge.pending"
 | :"charge.refund.updated"
 | :"charge.refunded"
 | :"charge.succeeded"
 | :"charge.updated"
 | :"checkout.session.async_payment_failed"
 | :"checkout.session.async_payment_succeeded"
 | :"checkout.session.completed"
 | :"checkout.session.expired"
 | :"coupon.created"
 | :"coupon.deleted"
 | :"coupon.updated"
 | :"credit_note.created"
 | :"credit_note.updated"
 | :"credit_note.voided"
 | :"customer.created"
 | :"customer.deleted"
 | :"customer.discount.created"
 | :"customer.discount.deleted"
 | :"customer.discount.updated"
 | :"customer.source.created"
 | :"customer.source.deleted"
 | :"customer.source.expiring"
 | :"customer.source.updated"
 | :"customer.subscription.created"
 | :"customer.subscription.deleted"
 | :"customer.subscription.pending_update_applied"
 | :"customer.subscription.pending_update_expired"
 | :"customer.subscription.trial_will_end"
 | :"customer.subscription.updated"
 | :"customer.tax_id.created"
 | :"customer.tax_id.deleted"
 | :"customer.tax_id.updated"
 | :"customer.updated"
 | :"customer_cash_balance_transaction.created"
 | :"file.created"
 | :"financial_connections.account.created"
 | :"financial_connections.account.deactivated"
 | :"financial_connections.account.disconnected"
 | :"financial_connections.account.reactivated"
 | :"financial_connections.account.refreshed_balance"
 | :"identity.verification_session.canceled"
 | :"identity.verification_session.created"
 | :"identity.verification_session.processing"
 | :"identity.verification_session.redacted"
 | :"identity.verification_session.requires_input"
 | :"identity.verification_session.verified"
 | :"invoice.created"
 | :"invoice.deleted"
 | :"invoice.finalization_failed"
 | :"invoice.finalized"
 | :"invoice.marked_uncollectible"
 | :"invoice.paid"
 | :"invoice.payment_action_required"
 | :"invoice.payment_failed"
 | :"invoice.payment_succeeded"
 | :"invoice.sent"
 | :"invoice.upcoming"
 | :"invoice.updated"
 | :"invoice.voided"
 | :"invoiceitem.created"
 | :"invoiceitem.deleted"
 | :"invoiceitem.updated"
 | :"issuing_authorization.created"
 | :"issuing_authorization.request"
 | :"issuing_authorization.updated"
 | :"issuing_card.created"
 | :"issuing_card.updated"
 | :"issuing_cardholder.created"
 | :"issuing_cardholder.updated"
 | :"issuing_dispute.closed"
 | :"issuing_dispute.created"
 | :"issuing_dispute.funds_reinstated"
 | :"issuing_dispute.submitted"
 | :"issuing_dispute.updated"
 | :"issuing_transaction.created"
 | :"issuing_transaction.updated"
 | :"mandate.updated"
 | :"order.created"
 | :"payment_intent.amount_capturable_updated"
 | :"payment_intent.canceled"
 | :"payment_intent.created"
 | :"payment_intent.partially_funded"
 | :"payment_intent.payment_failed"
 | :"payment_intent.processing"
 | :"payment_intent.requires_action"
 | :"payment_intent.succeeded"
 | :"payment_link.created"
 | :"payment_link.updated"
 | :"payment_method.attached"
 | :"payment_method.automatically_updated"
 | :"payment_method.detached"
 | :"payment_method.updated"
 | :"payout.canceled"
 | :"payout.created"
 | :"payout.failed"
 | :"payout.paid"
 | :"payout.updated"
 | :"person.created"
 | :"person.deleted"
 | :"person.updated"
 | :"plan.created"
 | :"plan.deleted"
 | :"plan.updated"
 | :"price.created"
 | :"price.deleted"
 | :"price.updated"
 | :"product.created"
 | :"product.deleted"
 | :"product.updated"
 | :"promotion_code.created"
 | :"promotion_code.updated"
 | :"quote.accepted"
 | :"quote.canceled"
 | :"quote.created"
 | :"quote.finalized"
 | :"radar.early_fraud_warning.created"
 | :"radar.early_fraud_warning.updated"
 | :"recipient.created"
 | :"recipient.deleted"
 | :"recipient.updated"
 | :"reporting.report_run.failed"
 | :"reporting.report_run.succeeded"
 | :"reporting.report_type.updated"
 | :"review.closed"
 | :"review.opened"
 | :"setup_intent.canceled"
 | :"setup_intent.created"
 | :"setup_intent.requires_action"
 | :"setup_intent.setup_failed"
 | :"setup_intent.succeeded"
 | :"sigma.scheduled_query_run.created"
 | :"sku.created"
 | :"sku.deleted"
 | :"sku.updated"
 | :"source.canceled"
 | :"source.chargeable"
 | :"source.failed"
 | :"source.mandate_notification"
 | :"source.refund_attributes_required"
 | :"source.transaction.created"
 | :"source.transaction.updated"
 | :"subscription_schedule.aborted"
 | :"subscription_schedule.canceled"
 | :"subscription_schedule.completed"
 | :"subscription_schedule.created"
 | :"subscription_schedule.expiring"
 | :"subscription_schedule.released"
 | :"subscription_schedule.updated"
 | :"tax_rate.created"
 | :"tax_rate.updated"
 | :"terminal.reader.action_failed"
 | :"terminal.reader.action_succeeded"
 | :"test_helpers.test_clock.advancing"
 | :"test_helpers.test_clock.created"
 | :"test_helpers.test_clock.deleted"
 | :"test_helpers.test_clock.internal_failure"
 | :"test_helpers.test_clock.ready"
 | :"topup.canceled"
 | :"topup.created"
 | :"topup.failed"
 | :"topup.reversed"
 | :"topup.succeeded"
 | :"transfer.created"
 | :"transfer.reversed"
 | :"transfer.updated"
 | :"treasury.credit_reversal.created"
 | :"treasury.credit_reversal.posted"
 | :"treasury.debit_reversal.completed"
 | :"treasury.debit_reversal.created"
 | :"treasury.debit_reversal.initial_credit_granted"
 | :"treasury.financial_account.closed"
 | :"treasury.financial_account.created"
 | :"treasury.financial_account.features_status_updated"
 | :"treasury.inbound_transfer.canceled"
 | :"treasury.inbound_transfer.created"
 | :"treasury.inbound_transfer.failed"
 | :"treasury.inbound_transfer.succeeded"
 | :"treasury.outbound_payment.canceled"
 | :"treasury.outbound_payment.created"
 | :"treasury.outbound_payment.expected_arrival_date_updated"
 | :"treasury.outbound_payment.failed"
 | :"treasury.outbound_payment.posted"
 | :"treasury.outbound_payment.returned"
 | :"treasury.outbound_transfer.canceled"
 | :"treasury.outbound_transfer.created"
 | :"treasury.outbound_transfer.expected_arrival_date_updated"
 | :"treasury.outbound_transfer.failed"
 | :"treasury.outbound_transfer.posted"
 | :"treasury.outbound_transfer.returned"
 | :"treasury.received_credit.created"
 | :"treasury.received_credit.failed"
 | :"treasury.received_credit.succeeded"
 | :"treasury.received_debit.created"
],
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:url) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

A webhook endpoint must have a url and a list of enabled_events. You may optionally specify the Boolean connect parameter. If set to true, then a Connect webhook endpoint that notifies the specified url about events from all connected accounts is created; otherwise an account webhook endpoint that notifies the specified url only about events from your account is created. You can also create webhook endpoints in the webhooks settings section of the Dashboard.
Details
	Method: post
	Path: /v1/webhook_endpoints

 Link to this function

 delete(client, webhook_endpoint, opts \\ [])

 View Source

 @spec delete(client :: Stripe.t(), webhook_endpoint :: binary(), opts :: Keyword.t()) ::
 {:ok, Stripe.DeletedWebhookEndpoint.t()}
 | {:error, Stripe.ApiErrors.t()}
 | {:error, term()}

You can also delete webhook endpoints via the webhook endpoint management page of the Stripe dashboard.
Details
	Method: delete
	Path: /v1/webhook_endpoints/{webhook_endpoint}

 Link to this function

 list(client, params \\ %{}, opts \\ [])

 View Source

 @spec list(
 client :: Stripe.t(),
 params :: %{
 optional(:ending_before) => binary(),
 optional(:expand) => [binary()],
 optional(:limit) => integer(),
 optional(:starting_after) => binary()
 },
 opts :: Keyword.t()
) ::
 {:ok, Stripe.List.t(t())} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Returns a list of your webhook endpoints.
Details
	Method: get
	Path: /v1/webhook_endpoints

 Link to this function

 retrieve(client, webhook_endpoint, params \\ %{}, opts \\ [])

 View Source

 @spec retrieve(
 client :: Stripe.t(),
 webhook_endpoint :: binary(),
 params :: %{optional(:expand) => [binary()]},
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Retrieves the webhook endpoint with the given ID.
Details
	Method: get
	Path: /v1/webhook_endpoints/{webhook_endpoint}

 Link to this function

 update(client, webhook_endpoint, params \\ %{}, opts \\ [])

 View Source

 @spec update(
 client :: Stripe.t(),
 webhook_endpoint :: binary(),
 params :: %{
 optional(:description) => binary(),
 optional(:disabled) => boolean(),
 optional(:enabled_events) => [
 :*
 | :"account.application.authorized"
 | :"account.application.deauthorized"
 | :"account.external_account.created"
 | :"account.external_account.deleted"
 | :"account.external_account.updated"
 | :"account.updated"
 | :"application_fee.created"
 | :"application_fee.refund.updated"
 | :"application_fee.refunded"
 | :"balance.available"
 | :"billing_portal.configuration.created"
 | :"billing_portal.configuration.updated"
 | :"billing_portal.session.created"
 | :"capability.updated"
 | :"cash_balance.funds_available"
 | :"charge.captured"
 | :"charge.dispute.closed"
 | :"charge.dispute.created"
 | :"charge.dispute.funds_reinstated"
 | :"charge.dispute.funds_withdrawn"
 | :"charge.dispute.updated"
 | :"charge.expired"
 | :"charge.failed"
 | :"charge.pending"
 | :"charge.refund.updated"
 | :"charge.refunded"
 | :"charge.succeeded"
 | :"charge.updated"
 | :"checkout.session.async_payment_failed"
 | :"checkout.session.async_payment_succeeded"
 | :"checkout.session.completed"
 | :"checkout.session.expired"
 | :"coupon.created"
 | :"coupon.deleted"
 | :"coupon.updated"
 | :"credit_note.created"
 | :"credit_note.updated"
 | :"credit_note.voided"
 | :"customer.created"
 | :"customer.deleted"
 | :"customer.discount.created"
 | :"customer.discount.deleted"
 | :"customer.discount.updated"
 | :"customer.source.created"
 | :"customer.source.deleted"
 | :"customer.source.expiring"
 | :"customer.source.updated"
 | :"customer.subscription.created"
 | :"customer.subscription.deleted"
 | :"customer.subscription.pending_update_applied"
 | :"customer.subscription.pending_update_expired"
 | :"customer.subscription.trial_will_end"
 | :"customer.subscription.updated"
 | :"customer.tax_id.created"
 | :"customer.tax_id.deleted"
 | :"customer.tax_id.updated"
 | :"customer.updated"
 | :"customer_cash_balance_transaction.created"
 | :"file.created"
 | :"financial_connections.account.created"
 | :"financial_connections.account.deactivated"
 | :"financial_connections.account.disconnected"
 | :"financial_connections.account.reactivated"
 | :"financial_connections.account.refreshed_balance"
 | :"identity.verification_session.canceled"
 | :"identity.verification_session.created"
 | :"identity.verification_session.processing"
 | :"identity.verification_session.redacted"
 | :"identity.verification_session.requires_input"
 | :"identity.verification_session.verified"
 | :"invoice.created"
 | :"invoice.deleted"
 | :"invoice.finalization_failed"
 | :"invoice.finalized"
 | :"invoice.marked_uncollectible"
 | :"invoice.paid"
 | :"invoice.payment_action_required"
 | :"invoice.payment_failed"
 | :"invoice.payment_succeeded"
 | :"invoice.sent"
 | :"invoice.upcoming"
 | :"invoice.updated"
 | :"invoice.voided"
 | :"invoiceitem.created"
 | :"invoiceitem.deleted"
 | :"invoiceitem.updated"
 | :"issuing_authorization.created"
 | :"issuing_authorization.request"
 | :"issuing_authorization.updated"
 | :"issuing_card.created"
 | :"issuing_card.updated"
 | :"issuing_cardholder.created"
 | :"issuing_cardholder.updated"
 | :"issuing_dispute.closed"
 | :"issuing_dispute.created"
 | :"issuing_dispute.funds_reinstated"
 | :"issuing_dispute.submitted"
 | :"issuing_dispute.updated"
 | :"issuing_transaction.created"
 | :"issuing_transaction.updated"
 | :"mandate.updated"
 | :"order.created"
 | :"payment_intent.amount_capturable_updated"
 | :"payment_intent.canceled"
 | :"payment_intent.created"
 | :"payment_intent.partially_funded"
 | :"payment_intent.payment_failed"
 | :"payment_intent.processing"
 | :"payment_intent.requires_action"
 | :"payment_intent.succeeded"
 | :"payment_link.created"
 | :"payment_link.updated"
 | :"payment_method.attached"
 | :"payment_method.automatically_updated"
 | :"payment_method.detached"
 | :"payment_method.updated"
 | :"payout.canceled"
 | :"payout.created"
 | :"payout.failed"
 | :"payout.paid"
 | :"payout.updated"
 | :"person.created"
 | :"person.deleted"
 | :"person.updated"
 | :"plan.created"
 | :"plan.deleted"
 | :"plan.updated"
 | :"price.created"
 | :"price.deleted"
 | :"price.updated"
 | :"product.created"
 | :"product.deleted"
 | :"product.updated"
 | :"promotion_code.created"
 | :"promotion_code.updated"
 | :"quote.accepted"
 | :"quote.canceled"
 | :"quote.created"
 | :"quote.finalized"
 | :"radar.early_fraud_warning.created"
 | :"radar.early_fraud_warning.updated"
 | :"recipient.created"
 | :"recipient.deleted"
 | :"recipient.updated"
 | :"reporting.report_run.failed"
 | :"reporting.report_run.succeeded"
 | :"reporting.report_type.updated"
 | :"review.closed"
 | :"review.opened"
 | :"setup_intent.canceled"
 | :"setup_intent.created"
 | :"setup_intent.requires_action"
 | :"setup_intent.setup_failed"
 | :"setup_intent.succeeded"
 | :"sigma.scheduled_query_run.created"
 | :"sku.created"
 | :"sku.deleted"
 | :"sku.updated"
 | :"source.canceled"
 | :"source.chargeable"
 | :"source.failed"
 | :"source.mandate_notification"
 | :"source.refund_attributes_required"
 | :"source.transaction.created"
 | :"source.transaction.updated"
 | :"subscription_schedule.aborted"
 | :"subscription_schedule.canceled"
 | :"subscription_schedule.completed"
 | :"subscription_schedule.created"
 | :"subscription_schedule.expiring"
 | :"subscription_schedule.released"
 | :"subscription_schedule.updated"
 | :"tax_rate.created"
 | :"tax_rate.updated"
 | :"terminal.reader.action_failed"
 | :"terminal.reader.action_succeeded"
 | :"test_helpers.test_clock.advancing"
 | :"test_helpers.test_clock.created"
 | :"test_helpers.test_clock.deleted"
 | :"test_helpers.test_clock.internal_failure"
 | :"test_helpers.test_clock.ready"
 | :"topup.canceled"
 | :"topup.created"
 | :"topup.failed"
 | :"topup.reversed"
 | :"topup.succeeded"
 | :"transfer.created"
 | :"transfer.reversed"
 | :"transfer.updated"
 | :"treasury.credit_reversal.created"
 | :"treasury.credit_reversal.posted"
 | :"treasury.debit_reversal.completed"
 | :"treasury.debit_reversal.created"
 | :"treasury.debit_reversal.initial_credit_granted"
 | :"treasury.financial_account.closed"
 | :"treasury.financial_account.created"
 | :"treasury.financial_account.features_status_updated"
 | :"treasury.inbound_transfer.canceled"
 | :"treasury.inbound_transfer.created"
 | :"treasury.inbound_transfer.failed"
 | :"treasury.inbound_transfer.succeeded"
 | :"treasury.outbound_payment.canceled"
 | :"treasury.outbound_payment.created"
 | :"treasury.outbound_payment.expected_arrival_date_updated"
 | :"treasury.outbound_payment.failed"
 | :"treasury.outbound_payment.posted"
 | :"treasury.outbound_payment.returned"
 | :"treasury.outbound_transfer.canceled"
 | :"treasury.outbound_transfer.created"
 | :"treasury.outbound_transfer.expected_arrival_date_updated"
 | :"treasury.outbound_transfer.failed"
 | :"treasury.outbound_transfer.posted"
 | :"treasury.outbound_transfer.returned"
 | :"treasury.received_credit.created"
 | :"treasury.received_credit.failed"
 | :"treasury.received_credit.succeeded"
 | :"treasury.received_debit.created"
],
 optional(:expand) => [binary()],
 optional(:metadata) => %{optional(binary()) => binary()} | binary(),
 optional(:url) => binary()
 },
 opts :: Keyword.t()
) :: {:ok, t()} | {:error, Stripe.ApiErrors.t()} | {:error, term()}

Updates the webhook endpoint. You may edit the url, the list of enabled_events, and the status of your endpoint.
Details
	Method: post
	Path: /v1/webhook_endpoints/{webhook_endpoint}

 Stripe.DeletedAccount - Striped v0.5.0

Stripe.DeletedAccount

 Anchor for this section

 Summary

 Types

 t()

 The deleted_account type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedAccount{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_account type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedApplePayDomain - Striped v0.5.0

Stripe.DeletedApplePayDomain

 Anchor for this section

 Summary

 Types

 t()

 The deleted_apple_pay_domain type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedApplePayDomain{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_apple_pay_domain type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedCoupon - Striped v0.5.0

Stripe.DeletedCoupon

 Anchor for this section

 Summary

 Types

 t()

 The deleted_coupon type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedCoupon{deleted: boolean(), id: binary(), object: binary()}

The deleted_coupon type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedCustomer - Striped v0.5.0

Stripe.DeletedCustomer

 Anchor for this section

 Summary

 Types

 t()

 The deleted_customer type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedCustomer{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_customer type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedDiscount - Striped v0.5.0

Stripe.DeletedDiscount

 Anchor for this section

 Summary

 Types

 t()

 The deleted_discount type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedDiscount{
 checkout_session: binary() | nil,
 coupon: Stripe.Coupon.t(),
 customer: (binary() | Stripe.Customer.t() | Stripe.DeletedCustomer.t()) | nil,
 deleted: boolean(),
 id: binary(),
 invoice: binary() | nil,
 invoice_item: binary() | nil,
 object: binary(),
 promotion_code: (binary() | Stripe.PromotionCode.t()) | nil,
 start: integer(),
 subscription: binary() | nil
}

The deleted_discount type.
	checkout_session The Checkout session that this coupon is applied to, if it is applied to a particular session in payment mode. Will not be present for subscription mode.
	coupon
	customer The ID of the customer associated with this discount.
	deleted Always true for a deleted object
	id The ID of the discount object. Discounts cannot be fetched by ID. Use expand[]=discounts in API calls to expand discount IDs in an array.
	invoice The invoice that the discount's coupon was applied to, if it was applied directly to a particular invoice.
	invoice_item The invoice item id (or invoice line item id for invoice line items of type='subscription') that the discount's coupon was applied to, if it was applied directly to a particular invoice item or invoice line item.
	object String representing the object's type. Objects of the same type share the same value.
	promotion_code The promotion code applied to create this discount.
	start Date that the coupon was applied.
	subscription The subscription that this coupon is applied to, if it is applied to a particular subscription.

 Stripe.DeletedExternalAccount - Striped v0.5.0

Stripe.DeletedExternalAccount

 Anchor for this section

 Summary

 Types

 t()

 The deleted_external_account type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedExternalAccount{}

The deleted_external_account type.

 Stripe.DeletedInvoice - Striped v0.5.0

Stripe.DeletedInvoice

 Anchor for this section

 Summary

 Types

 t()

 The deleted_invoice type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedInvoice{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_invoice type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedInvoiceitem - Striped v0.5.0

Stripe.DeletedInvoiceitem

 Anchor for this section

 Summary

 Types

 t()

 The deleted_invoiceitem type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedInvoiceitem{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_invoiceitem type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedPaymentSource - Striped v0.5.0

Stripe.DeletedPaymentSource

 Anchor for this section

 Summary

 Types

 t()

 The deleted_payment_source type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedPaymentSource{}

The deleted_payment_source type.

 Stripe.DeletedPerson - Striped v0.5.0

Stripe.DeletedPerson

 Anchor for this section

 Summary

 Types

 t()

 The deleted_person type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedPerson{deleted: boolean(), id: binary(), object: binary()}

The deleted_person type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedPlan - Striped v0.5.0

Stripe.DeletedPlan

 Anchor for this section

 Summary

 Types

 t()

 The deleted_plan type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedPlan{deleted: boolean(), id: binary(), object: binary()}

The deleted_plan type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedProduct - Striped v0.5.0

Stripe.DeletedProduct

 Anchor for this section

 Summary

 Types

 t()

 The deleted_product type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedProduct{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_product type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedRadar.ValueList - Striped v0.5.0

Stripe.DeletedRadar.ValueList

 Anchor for this section

 Summary

 Types

 t()

 The deleted_radar.value_list type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedRadar.ValueList{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_radar.value_list type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedRadar.ValueListItem - Striped v0.5.0

Stripe.DeletedRadar.ValueListItem

 Anchor for this section

 Summary

 Types

 t()

 The deleted_radar.value_list_item type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedRadar.ValueListItem{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_radar.value_list_item type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedSubscriptionItem - Striped v0.5.0

Stripe.DeletedSubscriptionItem

 Anchor for this section

 Summary

 Types

 t()

 The deleted_subscription_item type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedSubscriptionItem{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_subscription_item type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedTaxId - Striped v0.5.0

Stripe.DeletedTaxId

 Anchor for this section

 Summary

 Types

 t()

 The deleted_tax_id type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedTaxId{deleted: boolean(), id: binary(), object: binary()}

The deleted_tax_id type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedTerminal.Configuration - Striped v0.5.0

Stripe.DeletedTerminal.Configuration

 Anchor for this section

 Summary

 Types

 t()

 The deleted_terminal.configuration type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedTerminal.Configuration{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_terminal.configuration type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedTerminal.Location - Striped v0.5.0

Stripe.DeletedTerminal.Location

 Anchor for this section

 Summary

 Types

 t()

 The deleted_terminal.location type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedTerminal.Location{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_terminal.location type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedTerminal.Reader - Striped v0.5.0

Stripe.DeletedTerminal.Reader

 Anchor for this section

 Summary

 Types

 t()

 The deleted_terminal.reader type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedTerminal.Reader{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_terminal.reader type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedTestHelpers.TestClock - Striped v0.5.0

Stripe.DeletedTestHelpers.TestClock

 Anchor for this section

 Summary

 Types

 t()

 The deleted_test_helpers.test_clock type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Stripe.DeletedTestHelpers.TestClock{
 deleted: boolean(),
 id: binary(),
 object: binary()
}

The deleted_test_helpers.test_clock type.
	deleted Always true for a deleted object
	id Unique identifier for the object.
	object String representing the object's type. Objects of the same type share the same value.

 Stripe.DeletedWebhookEndpoint - Striped v0.5.0

Stripe.DeletedWebhookEndpoint

 Anchor for this section

 Summary

 Types

 t()

 The deleted_webhook_endpoint type.

 Anchor for this section

Types

 Link to this type

 t()

 View Source
