

 stargate

 v0.2.0

 Table of contents

 	Stargate

 	Modules

 	Stargate

 	Stargate.Connection

 	Stargate.Consumer.QueryParams

 	Stargate.Message

 	Stargate.Producer

 	Stargate.Producer.Acknowledger

 	Stargate.Producer.QueryParams

 	Stargate.Producer.State

 	Stargate.Producer.Supervisor

 	Stargate.Reader.QueryParams

 	Stargate.Receiver

 	Stargate.Receiver.Acknowledger

 	Stargate.Receiver.Acknowledger.State

 	Stargate.Receiver.Dispatcher

 	Stargate.Receiver.Dispatcher.State

 	Stargate.Receiver.MessageHandler

 	Stargate.Receiver.Processor

 	Stargate.Receiver.Processor.State

 	Stargate.Receiver.State

 	Stargate.Receiver.Supervisor

 	Stargate.Supervisor

[image:]
Stargate
An Apache Pulsar client written in Elixir using the Pulsar websocket API.
Stargate allows you to create producer and consumer connections to a Pulsar
cluster and send messages to or receive messages from the cluster. Receivers
of messages from Pulsar can be a Reader connection, receiving messages from a
topic based on an initial message in the log defined by the user, or via a Consumer
connection, receiving all messages on the topic after initial connection.
Per Pulsar's documentation, all messages received from a topic are acknowledged by the websocket
API, but the Reader acknowledgment is solely to signal to the socket the reader is
ready for additional messages, while Consumer acknowledgement will additionally signal
to the socket the consumer is ready for the message to be deleted from its subscription.
Stargate receivers must supply a message handler module to tell Stargate how to handle
messages received from the socket.
Producers must supply connection settings for a persistent connection or may
supply a single URL signifying the desired persistence, tenant, namespace, and topic
to produce to when ad hoc produce is desired.
Installation
Available in Hex, the package can be installed
by adding stargate to your list of dependencies in mix.exs via the Github strategy:
def deps do
 [
 {:stargate, "~> 0.1.0"}
]
end
The docs can be found at https://hexdocs.pm/stargate.
Usage
Locating Processes
Under the hood, Stargate uses the Registry module to create a via-tuple name for each process within a Stargate-
managed supervision tree. The intended API is to create a top-level Stargate.Supervisor and attach option producers
and receivers under it as needed. When you do this, Stargate creates the top-level supervisor and prepends :sg_sup_#{name}
to the name of the process (defaults to :default) as well as a Registry named :sg_reg_#{name} (defaults to :default).
All processes spun up under this pair receive a via-tuple name identified by {via, Registry, {<registry_name>, {<component>, <persistence>, <tenant>, <namespace>, <topic>}}} where component is the type of process (:producer, :consumer, etc),
persistence is either "persistent" or "non-persistent", and the remaining values are all strings representing the values supplied
when creating the topic in Pulsar.
To assist in finding the correct process to send messages to, Stargate provides the Stargate.registry_key/4 function as a
helper to calculate this via-tuple easily. When supplying the Stargate.registry_key(<tenant>, <namespace>, <topic>), Stargate
assumes you're trying to reach the Producer process as this is the process most likely to be called directly (in conjunction within
Stargate.produce/2,3), assumes a persistent topic (because Pulsar assumes topics are persistent by default) and assumes the
Supervisor and Registry name suffix to be :default. If necessary, you can supply a Keyword List of options to customize the
via-tuple returned by Stargate.registry_key/4 with a combination of the arguments :name or :registry, :component, :persistence.
iex> Stargate.registry_key("foo", "bar", "baz")
{:via, Registry, {:sg_reg_default, {:producer, "persistent", "foo", "bar", "baz"}}}

iex> Stargate.registry("foo", "bar", "baz", name: :custom, persistence: "non-persistent", component: :consumer)
{:via, Registry, {:sg_reg_custom, {:consumer, "non-persistent", "foo", "bar", "baz"}}}
Produce
Producing to Pulsar via Stargate is as simple as passing an Erlang term to the produce function. Stargate
takes care of encoding the message payload with the necessary fields and format required by Pulsar with
options to specify certain fields as fits the users' specific needs (see below).
To ad hoc produce to Pulsar via Stargate, call Stargate.produce(url, [message])
where url is something like ws://cluster-url:8080/ws/v2/producer/:persistence/:tenant/:namespace/:topic"
and [message] is a single message or a list of messages which can be one of:
	a string-keyed map containing the "payload" key and optionally the "context" key if a specific
message context is desired (Stargate uses the "context" for tracking receipt of produced messages by the cluster).
	A two-element tuple containing a key as the first element and a payload as the second.
	A message payload only
Stargate will clean up the producer processes once the produce has completed.

For persistent producer connections to the cluster, you may also start a supervised tree of processes
including the socket producer itself and an acknowledger, the job of which is to ensure receipt of messages
by the cluster.
To start a supervised producer, call something like the following within your application:
opts = [
 name: :my_producer, optional \\ default :default
 host: ["example.com": 8080],
 protocol: "ws", optional \\ default ws
 producer: [
 persistence: "persistent", optional \\ default persistent
 tenant: "public",
 namespace: "default",
 topic: "foo",
 query_params: %{ all query params are optional
 name: "summer",
 send_timeout: 30_000, \\ default 30_000
 batch_enabled: true, \\ default false
 batch_max_msg: 1_000, \\ default 1_000
 max_pending_msg: 1_000, \\ default 1_000
 batch_max_delay: 25, \\ default 10
 routing_mode: :round_robin, \\ (deprecated by Pulsar) options :round_robin | :single
 compression_type: :lz4, \\ default uncompressed, options :lz4 | :zlib
 producer_name: "myapp-producer",
 initial_seq_id: 100,
 hashing_scheme: :murmur3 \\ options :java_string | :murmur3
 }
]
]
Stargate.Supervisor.start_link(opts)
By default, the Stargate.produce/2 will block until it receives
acknowledgement the message has successfully been produced to the cluster. To ackowledge produce
operations in a non-blocking manner, you may also use Stargate.produce/3 and pass an MFA tuple
as the third argument instructing the acknowledger which module, function, and arguments to execute
upon receipt of acknowledgement from Pulsar that the produce succeeded.
Receive (Consume/Read)
To consume messages from Pulsar via Stargate, your application needs to create a consumer or reader
process by calling something like the following:
 opts = [
 name: :my_reader, optional \\ default :default
 host: ["example.com": 8080],
 protocol: "ws", optional \\ default ws
 reader: [
 persistence: "persistent", optional \\ default persistent
 tenant: "public",
 namespace: "default",
 topic: "foo",
 processors: 3, optional \\ default 1
 handler: MyApp.Reader.Handler,
 handler_init_args: [] optional \\ default []
 query_params: %{ all query params are optional
 queue_size: 1_000, \\ default 1_000
 name: "morty",
 starting_message: :latest \\ default :latest, options :latest | :earliest | "some-message-id"
 }
]
]

 opts = [
 name: :my_consumer, optional \\ default :default
 host: ["example.com": 8080],
 protocol: "ws", optional \\ default ws
 consumer: [
 persistence: "persistent", optional \\ default persistent
 tenant: "public",
 namespace: "default",
 topic: "foo",
 subscription: "my-app",
 processors: 3, optional \\ default 1
 handler: MyApp.Reader.Handler,
 handler_init_args: [] optional \\ default []
 query_params: %{ all query params are optional
 subscription_type: :shared, \\ default :exclusive
 ack_timeout: 100, \\ default 0
 queue_size: 1_000, \\ default 1_000
 name: "rick",
 priority: 10,
 max_redeliver_count: 10, \\ default 0
 dead_letter_topic: "ricks-dlq", \\ default "{topic}-{subscription}-DLQ"
 pull_mode: true \\ default false
 }
]
]

 Stargate.Supervisor.start_link(opts)
Stargate's receivers are implemented using GenStage to allow for the message processing (the processes that actually
call your handler function on messages received) to be parallelized as well as to backpressure into the cluster
when setting your consumer connection to pull_mode: true.
Producing AND Receiving
Starting producers and consumer can but need not require different supervision trees. If your application is a link
in a chain that will both receive and produce to the same cluster, you can start a single supervisor with keys for
both the receiver and producer configs in the options passed to the Stargate.Supervisor.start_link/1 function.
As an example, the configuration below would start a Stargate Supervisor that will manage processes that both monitor an
hypothetical company's internal R&D topic publishing application features ready for release and then turn around and
produce messages about those feature messages to the application marketing team's topic for public consumption.
 options = [
 name: :pulsar_app,
 host: [{:"example.com", 8080}],
 producer: [
 persistence: "non-persistent",
 tenant: "marketing",
 namespace: "public",
 topic: "new-stuff"
]
 consumer: [
 tenant: "internal",
 namespace: "research",
 topic: "ready-to-release",
 subscription: "rss-feed",
 handler: Publicizer.MessageHandler
]
]

 Stargate.Supervisor.start_link(options)
Security
Stargate supports client security in two ways: by allowing TLS encryption of the connection between the client
and the Pulsar cluster, and by JWT token authentication of the Websocket connection.
In order to allow TLS encryption of the websocket connection, the URL to the cluster must be over the secure
port (Pulsar defaults to 8443) and using the wss:// prefix instead of the plaintext ws://.
To pass custom certificates, to the client connection, include the following in the init options passed to the
producer or receiver connection:
 options = [
 ...
 ssl_options: [
 cacertfile: "/certificates/cacert.pem",
 certfile: "/certificates/cert.pem",
 keyfile: "/certificates/key.pem"
],
 ...
]
In order to pass a JWT token for authentication, include the following in your connection options for either
the producer or receiver process when starting the process.
 options = [
 ...
 auth_token: "some-jwt-token-string",
 ...
]
Receiving Messages
The message handler module passed to a receiver is expected to implement the Stargate.Receiver.MessageHandler
behaviour which includes an optional init/1 if your message handler is expected to track state across
messages received from the topic and handle_message/1, handle_message/2 where handle_message/1 receives
only a message while handle_message/2 receives a message and the state being tracked across all messages handled.
Including use Stargate.Receiver.MessageHandler in your handler module will created default implementations of
these functions that can be overridden as needed. handle_message/1 is expected to return either :ack or :continue
while handle_message/2 is expected to return {:ack, state} or {:continue, state}
Messages received by Stargate are automatically converted to a %Stargate.Message{} struct by the time they reach
the message handler module. This struct contains all the information about where the message came from (topic, namespace,
tenant, and persistence) as well as the message identifier assigned to it by the Pulsar cluster, the key if one was
supplied, any properties (key/value pairs) attached to the message by the producer, the timestamp the message was published
by the cluster as an Elixir DateTime struct and of course the message payload decoded from the Base64 encoding received from
Pulsar.
Limitations
Cumulative acknowledgement
At present, Apache Pulsar does not support cumulative acknowledgement of messages via
the websocket API. When this is supported (PR forthcoming with the upstream project), Stargate
will be updated to include this as an optional ack strategy for faster processing of large groups
of messages.
Custom topic configuration and administrative functionality
At the time of initial release, Stargate only provides functionality for producing to and
receiving (reading or consuming) from Pulsar topics. Pulsar allows for automatically creating
single-partition topics within existing tenants and namespaces.
While Pulsar provides a RESTful management API, Stargate does not currently provide any
functions for interacting with this API. This is a planned expansion of Stargate functionality
with the intent that management of tenants, namespaces, and topics can all be accomplished
natively from Stargate modules.
Stay tuned!
Additional information
Testing
Stargate uses the divo and the plugin
divo_pulsar for integration testing,
using Docker to stand up a single-node Pulsar "cluster" in standalone mode for testing.
See the documentation on the divo and divo_pulsar hex packages for further details.
Pulsar
For additional information on Pulsar, including configuring and running a cluster,
see the project's official documentation.

Stargate

Stargate provides an Elixir client for the Apache Pulsar distributed message
log service, based on the Pulsar project's websocket API.
Producer
Create a producer process under your application's supervision tree with the following:
options = [
 name: :pulsar_app,
 host: [{:"broker-url.com", 8080}],
 producer: [
 persistence: "non-persistent",
 tenant: "marketing",
 namespace: "public",
 topic: "new-stuff"
]
]

Stargate.Supervisor.start_link(options)
Once the producer is running, pass messages to the client by pid or by the named
registry entry:
Stargate.produce(producer, [{"key", "value"}])
If you won't be producing frequently you can choose to run ad hoc produce commands against
the url of the Pulsar cluster/topic as follows:
url = "ws://broker-url.com:8080/ws/v2/producer/non-persistent/marketing/public/new-stuff"

Stargate.produce(url, [{"key, "value"}])
Consumer and Reader
Both consumers and readers connected to Pulsar via Stargate process received messages the
same way. Stargate takes care of receiving the messages and sending acknowledgements back
to the cluster so all you need to do is start a process and define a module in your application
that invokes use Stargate.Receiver.MessageHandler and has a handle_message/1 or handle_message/2
function as follows:
defmodule Publicize.MessageHandler do
 use Stargate.Receiver.MessageHandler

 def handle_message(%{context: context, payload: payload}) do
 publish_to_channel(payload, context)

 :ack
 end

 defp publish_to_channel(payload, context) do
 ...do stuff...
 end
end
The handle_message/1 must return either :ack or :continue in order to ack successful
processing of the message back to the cluster or continue processing without ack (in the event
you want to do a bulk/cumulative ack at a later time). If using the handle_message/2 callback
for handlers that keep state across messages handled, it must return {:ack, state} or
{:continue, state}.
Then, create a consumer or reader process under your application's supevision tree with the following:
options = [
 name: :pulsar_app,
 host: [{:"broker-url.com", 8080}]
 consumer: [<====== replace with `:reader` for a reader client
 tenant: "internal",
 namespace: "research",
 topic: "ready-to-release",
 subscription: "rss-feed", <====== required for a `:consumer`
 handler: Publicizer.MessageHandler
]
]

Stargate.Supervisor.start_link(options)
Readers and Consumers share the same configuration API with the two key differences that the
:consumer key in the options differentiates from the :reader key, as well as the requirement
to provide a "subscription" to a consumer for the cluster to manage messages.

 Anchor for this section

 Summary

 Types

 component()

 key_opt()

 namespace()

 persistence()

 tenant()

 topic()

 Functions

 produce(url_or_connection, message)

 See Stargate.Producer.produce/2.

 produce(connection, message, mfa)

 See Stargate.Producer.produce/3.

 registry_key(tenant, namespace, topic, opts \\ [])

 Generate the via-tuple needed for addressing a process within the Stargate supervision tree. Expects
at minimum the tenant, namespace, and topic of the process being addressed and assumes by default the
desired process is the Producer of a persistent topic managed by the default supervisor/registry.

 Anchor for this section

Types

 Link to this type

 component()

 View Source

 Specs

 component() ::
 :producer | :producer_ack | :consumer | :consumer_ack | :reader | :reader_ack

 Link to this type

 key_opt()

 View Source

 Specs

 key_opt() ::
 {:persistence, persistence()}
 | {:name, atom()}
 | {:registry, atom()}
 | {:component, component()}

 Link to this type

 namespace()

 View Source

 Specs

 namespace() :: String.t()

 Link to this type

 persistence()

 View Source

 Specs

 persistence() :: String.t()

 Link to this type

 tenant()

 View Source

 Specs

 tenant() :: String.t()

 Link to this type

 topic()

 View Source

 Specs

 topic() :: String.t()

 Anchor for this section

Functions

 Link to this function

 produce(url_or_connection, message)

 View Source

See Stargate.Producer.produce/2.

 Link to this function

 produce(connection, message, mfa)

 View Source

See Stargate.Producer.produce/3.

 Link to this function

 registry_key(tenant, namespace, topic, opts \\ [])

 View Source

 Specs

 registry_key(tenant(), namespace(), topic(), [key_opt()]) ::
 {:via, Registry,
 {atom(), {component(), persistence(), tenant(), namespace(), topic()}}}

Generate the via-tuple needed for addressing a process within the Stargate supervision tree. Expects
at minimum the tenant, namespace, and topic of the process being addressed and assumes by default the
desired process is the Producer of a persistent topic managed by the default supervisor/registry.
iex> Stargate.registry_key("foo", "bar", "baz")
{:via, Registry, {:sg_reg_default, {:producer, "persistent", "foo", "bar", "baz"}}}
iex> Stargate.registry_key("foo", "bar", "baz", registry: MyCustom.Registry, persistence: "non-persistent", component: :producer_ack)
{:via, Registry, {MyCustom.Registry, {:producer_ack, "non-persistent", "foo", "bar", "baz"}}}

Stargate.Connection

Connection provides the core abstraction for the websocket connection
between the client application and the Pulsar cluster shared by all
Stargate producer, reader, and consumer processes.

 Anchor for this section

 Summary

 Types

 connection_settings()

 Functions

 __using__(opts)

 The Connection using macro provides the common websocket connection
and keepalive functionality into a single line for replicating connection
and ping/pong handling in a single place.

 auth_settings(opts)

 Parses the keyword list configuration passed to a websocket and constructs the
authentication options, either SSL or token-based, to be passed to the websocket
process.

 connection_settings(opts, type, params)

 Parses the keyword list configuration passed to a websocket and constructs
the url needed to establish a connection to the Pulsar cluster. If query
params are provided, appends the connection-specific params string to the url
and returns the full result as a map to pass to the connection start_link/1 function.

 Anchor for this section

Types

 Link to this type

 connection_settings()

 View Source

 Specs

 connection_settings() :: %{
 url: String.t(),
 host: String.t(),
 protocol: String.t(),
 persistence: String.t(),
 tenant: String.t(),
 namespace: String.t(),
 topic: String.t()
}

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

The Connection using macro provides the common websocket connection
and keepalive functionality into a single line for replicating connection
and ping/pong handling in a single place.

 Link to this function

 auth_settings(opts)

 View Source

 Specs

 auth_settings(keyword()) :: keyword()

Parses the keyword list configuration passed to a websocket and constructs the
authentication options, either SSL or token-based, to be passed to the websocket
process.

 Link to this function

 connection_settings(opts, type, params)

 View Source

 Specs

 connection_settings(keyword(), atom(), String.t()) :: connection_settings()

Parses the keyword list configuration passed to a websocket and constructs
the url needed to establish a connection to the Pulsar cluster. If query
params are provided, appends the connection-specific params string to the url
and returns the full result as a map to pass to the connection start_link/1 function.

Stargate.Consumer.QueryParams

This module provides the function to generate query parameters
for establishing a consumer connection to a topic and subscription
with Pulsar.

 Anchor for this section

 Summary

 Functions

 build_params(config)

 Generates a query parameter string to append to the URL and path
parameters when creating a Stargate.Receiver consumer connection.

 Anchor for this section

Functions

 Link to this function

 build_params(config)

 View Source

 Specs

 build_params(map() | nil) :: String.t()

Generates a query parameter string to append to the URL and path
parameters when creating a Stargate.Receiver consumer connection.
Stargate does not generate explicit query parameters for default
values when not supplied by the calling application as Pulsar itself
assumes default values when not supplied.
Query parameters with nil values are removed from the resulting
connection string so only those with explicit values will be
passed to Pulsar when creating a connection.

Stargate.Message

Defines the Elixir Struct that represents the structure of a Pulsar message.
The struct combines the "location" data of the received messages (persistent vs. non-persistent,
tenant, namespace, topic) with the payload, any key and/or properties provided with the message,
and the publication timestamp as an DateTime struct, and the messageId assigned by the cluster.
Example
message = %Stargate.Message{
 topic: "ready-for-release",
 namespace: "research",
 tenant: "internal",
 persistence: "persistent",
 message_id: "CAAQAw==",
 payload: "Hello World",
 key: "1234",
 properties: nil,
 publish_time: ~U[2020-01-10 18:13:34.443264Z]
}

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(message, persistence, tenant, namespace, topic)

 Create a %Stargate.Message{} struct from a list of arguments. Takes the map decoded from
the json message payload received from Pulsar and adds the tenant, namespace, topic, persistence
information to maintain "location awareness" of a message's source topic.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Stargate.Message{
 key: String.t(),
 message_id: String.t(),
 namespace: String.t(),
 payload: String.t(),
 persistence: String.t(),
 properties: map(),
 publish_time: DateTime.t(),
 tenant: String.t(),
 topic: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new(message, persistence, tenant, namespace, topic)

 View Source

 Specs

 new(map(), String.t(), String.t(), String.t(), String.t()) :: t()

Create a %Stargate.Message{} struct from a list of arguments. Takes the map decoded from
the json message payload received from Pulsar and adds the tenant, namespace, topic, persistence
information to maintain "location awareness" of a message's source topic.
Creating a %Stargate.Message{} via the new/5 function automatically converts the ISO8601-formatted
publish timestamp to a DateTime struct and decodes the message payload from the Base64 encoding
received from the cluster.

Stargate.Producer

Provides a producer websocket process and functions for producing
messages to the cluster.
Pass a keyword list of configuration options to the start_link/1
function or simply call produce/2 passing a valid
Pulsar producer URL in place of a producer process.

 Anchor for this section

 Summary

 Types

 message()

 Pulsar messages produced by Stargate can be any of the following forms

 producer()

 A producer websocket process identified by a pid or via tuple.
The atom key for identifying the producer in the via tuple is of
the form :"sg_prod_<tenant>_<namespace>_<topic>.

 url()

 A URL defining the host and topic to which a Stargate producer can
connect for sending messages.

 Functions

 generate()

 Generate puid

 info()

 Puid.Info module info

 produce(url, messages)

 Produce a message or list of messages to the cluster by producer URL or producer process.
Messages can be any of the accepted forms (see message type).

 produce(producer, messages, mfa)

 Produce a list of messages to a Stargate producer process. Messages can be any
of the accepted forms (see message type).

 start_link(args)

 Start a producer websocket process and link it to the current process.

 Anchor for this section

Types

 Link to this type

 message()

 View Source

 Specs

 message() ::
 String.t()
 | {String.t(), String.t()}
 | %{
 :payload => String.t(),
 optional(:key) => String.t(),
 optional(:context) => String.t(),
 optional(:properties) => map(),
 optional(:replicationClusters) => [String.t()]
 }

Pulsar messages produced by Stargate can be any of the following forms:
* raw binary payload (must be encodable to base64)
* a {key, value} tuple where key is the optional message key and value is the payload
* a map with a "payload" field and optional fields for a key, context, properties (key/value
 pairs as a map), and list of strings identifying replication clusters.
Stargate uses the context field on a message produced to Pulsar to correlate receipt messages
from the cluster to sent messages. If you do not define a context in your message, Stargate
generates one automatically.

 Link to this type

 producer()

 View Source

 Specs

 producer() :: GenServer.server()

A producer websocket process identified by a pid or via tuple.
The atom key for identifying the producer in the via tuple is of
the form :"sg_prod_<tenant>_<namespace>_<topic>.

 Link to this type

 url()

 View Source

 Specs

 url() :: String.t()

A URL defining the host and topic to which a Stargate producer can
connect for sending messages.

 Anchor for this section

Functions

 Link to this function

 generate()

 View Source

Generate puid

 Link to this function

 info()

 View Source

Puid.Info module info

 Link to this function

 produce(url, messages)

 View Source

 Specs

 produce(url() | producer(), message() | [message()]) :: :ok | {:error, term()}

Produce a message or list of messages to the cluster by producer URL or producer process.
Messages can be any of the accepted forms (see message type).
Producing by URL is good for irregular and/or ad hoc producer needs that do not require
a persistent websocket connection and ideally with few to no query parameters
to configure producer options from the default. For higher volume producing, a persistent
connection with an addressable producer process is recommended.
Once the message(s) is produced, the calling process automatically blocks until
it receives acknowledgement from the cluster that the message(s) has been received.

 Link to this function

 produce(producer, messages, mfa)

 View Source

 Specs

 produce(producer(), message() | [message()], {module(), atom(), [term()]}) ::
 :ok | {:error, term()}

Produce a list of messages to a Stargate producer process. Messages can be any
of the accepted forms (see message type).
When calling produce/3 the third argument must be an MFA tuple which is used by
the producer's acknowledger process to asynchronously perform acknowledgement that the
message was received by the cluster successfully. This is used to avoid blocking the
calling process for performance reasons.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Start a producer websocket process and link it to the current process.
Producer options require, at minimum:
* `host` is a tuple of the address or URL of the Pulsar cluster (broker service)
 and the port on which the service is exposed.
* `tenant` is a string representing the tenant portion of the producer URL path parameter.
* `namespace` is a string representing the namespace portion of the producer URL path parameter.
* `topic` is a string representing the topic portion of the producer URL path parameter.
* `registry` is the name of the process registry associated to the client's supervision tree.
 Stargate uses this to send messages back and forth between the producer and its acknowledger.
Additional optional parameters to a producer are:
* `protocol` can be one of "ws" or "wss"; defaults to "ws"
* `persistence` can be one of "persistent" or "non-persistent" per the Pulsar
 specification of topics as being in-memory only or persisted to the brokers' disks.
 Defaults to "persistent".
* `query_params` is a map containing any or all of the following:

 * `send_timeout` the time at which a produce operation will time out; defaults to 30 seconds
 * `batch_enabled` can be true or false to enable/disable the batching of messages.
 Defaults to "false".
 * `batch_max_msg` defines the maximum number of messages in a batch (if enabled).
 Defaults to 1000.
 * `max_pending_msg` defines the maximum size of the internal queue holding messages. Defaults
 to 1000.
 * `batch_max_delay` sets the time period within which message batches will be published.
 Defaults to 10 milliseconds.
 * `routing_mode` can be one of :round_robin or :single. _Pulsar has deprecated this parameter_.
 * `compression_type` can be one of :lz4, :zlib, or :none. Defaults to :none
 * `name` is used to enforce only one producer with the given name is publishing to
 connected topic.
 * `initial_seq_id` sets the baseline for the sequence ids assigned to published messages.
 * `hashing_scheme` can be one of :java_string or :murmur3 when defining a hashing function to
 use with partitioned topics. _Pulsar has deprecated this parameter_.

Stargate.Producer.Acknowledger

By default, Stargate.produce/2 will block the calling
process until acknowledgement is received from Pulsar that the
message was successfully produced. This can optionally switch
to an asynchronous acknowledgement by passing an MFA tuple to
Stargate.produce/3.
This modules defines a GenServer process that
works in tandem with a producer websocket connection
to wait for and send receipt acknowledgements received
from produce operations to the calling process or otherwise
perform asynchronous acknowledgement operations.

 Anchor for this section

 Summary

 Functions

 ack(acknowledger, response)

 Sends a message to the acknowledger process to perform the ack
operation saved for that particular message (as identified by the
context sent with the message).

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 produce(acknowledger, ctx, ack)

 Called by the producer when a message is produced to the Pulsar cluster.
This function sends a message's context and the desired operation to perform
for acknowledgement to the Acknowledger process to save in its state and act
on when directed to acknowledge that message.

 start_link(init_args)

 Starts a Stargate.Producer.Acknowledger process and link it to the calling process.

 Anchor for this section

Functions

 Link to this function

 ack(acknowledger, response)

 View Source

 Specs

 ack(GenServer.server(), {:ack, term()} | {:error, term(), term()}) :: :ok

Sends a message to the acknowledger process to perform the ack
operation saved for that particular message (as identified by the
context sent with the message).

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 produce(acknowledger, ctx, ack)

 View Source

 Specs

 produce(GenServer.server(), String.t(), pid() | tuple()) :: :ok

Called by the producer when a message is produced to the Pulsar cluster.
This function sends a message's context and the desired operation to perform
for acknowledgement to the Acknowledger process to save in its state and act
on when directed to acknowledge that message.
Unless instructed otherwise by calling Stargate.produce/3, Stargate.produce/2
assumes the third argument to be the PID of the calling process to send
receipt confirmation and unblock.

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Starts a Stargate.Producer.Acknowledger process and link it to the calling process.

Stargate.Producer.QueryParams

This modules provides the function to generate query parameters
for establishing a producer connection to a topic with Pulsar.

 Anchor for this section

 Summary

 Functions

 build_params(config)

 Generates a query parameter string to apped to the URL and path
parameters when creating a Stargate.Producer connection.

 Anchor for this section

Functions

 Link to this function

 build_params(config)

 View Source

 Specs

 build_params(map() | nil) :: String.t()

Generates a query parameter string to apped to the URL and path
parameters when creating a Stargate.Producer connection.
Stargate does not generate explicit query parameters for default
values when not supplied by the calling application as Pulsar itself
assumes default values when not supplied.
Query parameters with nil values are removed from the resulting
connection string so only those with explicit values will be
passed to Pulsar when creating a connection.

Stargate.Producer.State

Defines the state stored by the producer websocket process. The Stargate producer
records the registry name associated to its supervision tree, the URL of the cluster and topic
it connects to, as well as the individual components that make up the URL including the
host, protocol (ws or wss), topic path parameters (persistent or non-persistent, tenant,
namespace, and topic) and any query parameters configuring the connection.

Stargate.Producer.Supervisor

Creates and manages a supervisor process for the Stargate
producer websocket process and acknowledger process.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Generates a child specification for creating producer supervisor
trees.

 start_link(args)

 Create a Stargate.Producer.Supervisor process and link it
to the calling process.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

 Specs

 child_spec(keyword()) :: Supervisor.child_spec()

Generates a child specification for creating producer supervisor
trees.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Create a Stargate.Producer.Supervisor process and link it
to the calling process.
Passes the shared and :producer configurations from the
top-level supervisor to the producer and acknowledger and
starts them under a :one_for_one strategy.

Stargate.Reader.QueryParams

This module provides the function to generate query parameters
for establishing a reader connection to a topic with Pulsar.

 Anchor for this section

 Summary

 Functions

 build_params(config)

 Generates a query parameter string to apped to the URL and path
parameters when creating a Stargate.Receiver reader connection.

 Anchor for this section

Functions

 Link to this function

 build_params(config)

 View Source

 Specs

 build_params(map() | nil) :: String.t()

Generates a query parameter string to apped to the URL and path
parameters when creating a Stargate.Receiver reader connection.
Stargate does not generate explicit query parameters for default
values when not supplied by the calling application as Pulsar itself
assumes default values when not supplied.
Query parameters with nil values are removed from the resulting
connection string so only those with explicit values will be
passed to Pulsar when creating a connection.

Stargate.Receiver

Provides a Stargate websocket process that can be either a
reader or consumer connection based on the configuration passed
when starting the process.

 Anchor for this section

 Summary

 Types

 message_id()

 A string identifier assigned to each message by the cluster

 Functions

 ack(receiver, message_id)

 Sends an acknowledgement of the given message ID back to the Pulsar
cluster via the provided websocket process connection. This is required
for all Stargate consumers and readers where acknowledgement signals the
cluster to delete messages from the topic/subscription and send more while
readers require acknowledgement to signal readiness for more messages.

 pull_permit(receiver, count)

 Sends a permit request to the Pulsar cluster via the provided websocket process
connection. Used for consumers in pull mode to release up to the requested number
of messages to be returned when available.

 start_link(args)

 Start a consumer or reader websocket process and link it to the current process.

 Anchor for this section

Types

 Link to this type

 message_id()

 View Source

 Specs

 message_id() :: String.t()

A string identifier assigned to each message by the cluster

 Anchor for this section

Functions

 Link to this function

 ack(receiver, message_id)

 View Source

 Specs

 ack(GenServer.server(), message_id()) :: :ok | {:error, term()}

Sends an acknowledgement of the given message ID back to the Pulsar
cluster via the provided websocket process connection. This is required
for all Stargate consumers and readers where acknowledgement signals the
cluster to delete messages from the topic/subscription and send more while
readers require acknowledgement to signal readiness for more messages.

 Link to this function

 pull_permit(receiver, count)

 View Source

 Specs

 pull_permit(GenServer.server(), non_neg_integer()) :: :ok | {:error, term()}

Sends a permit request to the Pulsar cluster via the provided websocket process
connection. Used for consumers in pull mode to release up to the requested number
of messages to be returned when available.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Start a consumer or reader websocket process and link it to the current process.
Consumer and Receiver options require, at minimum:
* `host` is a tuple of the address or URL of the Pulsar cluster (broker service)
 and the port on which the service is exposed.
* `tenant` is a string representing the tenant portion of the receiver URL path parameter.
* `namespace` is a string representing the topic portion of the receiver URL path parameter.
* `topic` is a string representing the topic portion of the receiver URL path parameter.
* `subscription` (for consumers) is a string representing the subscription portion of the
 receiver URL path paramater.
* `registry` is the name of the process registry associated to the client's supervision tee.
 Stargate uses this to subscribe to the stages of the receiver and to send messages back
 and forth between them.
* `handler` is the name of the handler module that implements the
 `Stargate.Receiver.MessageHandler` behaviour.
Additional optional parameters to a consumer and reader are:
* `protocol` can be one of "ws" or "wss"; defaults to "ws".
* `persistence` can be one of "persistent" orr "non-persistent" per the Pulsar specification
 of topics as being in-memory only or persisted to the brokers' disks. Defaults to "persistent".
* `processors` is the number of GenStage processes in the "processor" stage to be created.
 This is the stage that performs the work of the message handler to perform processing logic
 on the received messages. Defaults to 1.
* `handler_init_args` is any term that will be passed to the message handler to initialize
 its state when a stateful handler is desired. Defaults to an empty list.
* `query_params` is a map containing any or all of the following:

Consumer

 * `ack_timeout` sets the timeout for unacked messages. Defaults to 0.
 * `subscription_type` can be one of `:exclusive`, `:failover`, or `:shared` to tell
 the Pulsar cluster if one or more consumers will be receiving messages on this topic
 and subscription. Defaults to exclusive.
 * `queue_size` sets the number of messages in the consumer's receive queue. Defaults to 1000.
 * `name` registers a name for the consumer client with the Pulsar cluster.
 * `priority` sets the priority with the cluster for the consumer client to receive messages.
 * `max_redeliver_count` defines a maximum number of times to attempt redelivery of a message
 to the consumer before sending it to a dead letter queue. Activates the dead letter topic feature.
 * `dead_letter_topic` defines a name for a topic's corresponding dead letter topic. Activates
 the dead letter topic feature. Defaults to "{topic}-{subscription}-DLQ".
 * `pull_mode` can be `true` or `false`. When a consumer is in pull mode, the cluster will hold
 messages on the subscription until it receives a permit request with an explicit number
 of desired messages to fulfill.

Reader

 * `name` registers a name for the reader client with the Pulsar cluster.
 * `queue_size` is the size of the queue maintained for the reader; defaults to 1000.
 * `starting_message` can be one of `:earliest`, `:latest`, or a message ID.
 Sets the reader's cursor to the desired message within the stream. Defaults to latest.

Stargate.Receiver.Acknowledger

Defines the Stargate.Receiver.Acknowledger GenStage process
that acts as the final consumer in the receive pipeline to
acknowledge successful processing of messages back to Pulsar
to allow more messages to be sent and for the cluster to
delete messages from the subscription in the case of consumers.

 Anchor for this section

 Summary

 Functions

 start_link(init_args)

 Starts a Stargate.Receiver.Acknowledger process and links it to
the calling process.

 Anchor for this section

Functions

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Starts a Stargate.Receiver.Acknowledger process and links it to
the calling process.

Stargate.Receiver.Acknowledger.State

Defines the struct used by a Stargate.Receiver.Acknowledger
to store its state. Includes the type of the receiver (reader
or consumer), the name of the process registry associated with
the client supervision tree, the atom key of the receiver socket
process within the process registry, and the path parameters
of the topic connection (tenant, namespace, topic).

Stargate.Receiver.Dispatcher

Defines the Stargate.Receiver.Dispatcher GenStage process
that functions as the producer in the pipeline, receiving messages
pushed from the reader or consumer socket and dispatching to the
rest of the pipeline.

 Anchor for this section

 Summary

 Types

 raw_message()

 Functions

 push(dispatcher, messages)

 Push messages received over the reader or consumer connection into the
GenStage processing pipeline for handling and acknowledgement. This is normally
handled automatically by the websocket connection but can also be called directly
for testing the receive pipeline.

 start_link(init_args)

 Starts a Stargate.Receiver.Dispatcher GenStage process and links it to
the calling process.

 Anchor for this section

Types

 Link to this type

 raw_message()

 View Source

 Specs

 raw_message() :: String.t()

 Anchor for this section

Functions

 Link to this function

 push(dispatcher, messages)

 View Source

 Specs

 push(GenServer.server(), [raw_message()] | raw_message()) :: :ok

Push messages received over the reader or consumer connection into the
GenStage processing pipeline for handling and acknowledgement. This is normally
handled automatically by the websocket connection but can also be called directly
for testing the receive pipeline.

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Starts a Stargate.Receiver.Dispatcher GenStage process and links it to
the calling process.

Stargate.Receiver.Dispatcher.State

Defines the struct used by a Stargate.Receiver.Dispatcher
to store its state.
Includes the type of the receiver (consumer or reader), the name
of the process registry associated to the supervision tree, the
path parameters of the topic (tenant, namespace, topic), the atom
key of the websocket connection within the process registry, and
whether or not the receiver is in push or pull mode if it's consumer.

Stargate.Receiver.MessageHandler behaviour

Defines the MessageHandler behaviour required by a module
passed to a Stargate reader or consumer.
A message handler must implement a handle_message/1 for
stateless message processing, and for stateful processing, a
handle_message/2 and an init/1 function.
This module also defines a __using__ macro to pull default
implementations of these functions into your module as well as
getter functions for the topic-aware data stored in the process
dictionary of the Processor stage calling the message handler.

 Anchor for this section

 Summary

 Functions

 __using__(opts)

 Provides a macro for implementing the behaviour in
the client application's message handler module and automatically
pull in default implementations of the required functions
and getters for the data stored in the processor stage's
process dictionary.

 Callbacks

 handle_message(term)

 handle_message(term, term)

 init(term)

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Provides a macro for implementing the behaviour in
the client application's message handler module and automatically
pull in default implementations of the required functions
and getters for the data stored in the processor stage's
process dictionary.

 Anchor for this section

Callbacks

 Link to this callback

 handle_message(term)

 View Source

 Specs

 handle_message(term()) :: :ack | :continue

 Link to this callback

 handle_message(term, term)

 View Source

 Specs

 handle_message(term(), term()) :: {:ack, term()} | {:continue, term()}

 Link to this callback

 init(term)

 View Source

 Specs

 init(term()) :: {:ok, term()}

Stargate.Receiver.Processor

Defines a Stargate.Receiver.Processor module as a GenStage
process under the consumer or reader supervision tree.
The processor stage performs the message handling step for all
messages received on the connection by storing and calling the
application's handler module on each message received.
To better handle complex or long-running operations when handling
messages, the processor stage can be scaled horizontally and takes
care of the necessary subscriptions both upstream and downstream
within the GenStage pipeline.
During initialization, the processor stage stores several
pieces of information in its process dictionary that are
available to the application's message handler module when
handling messages if necessary including the topicc, namespace,
tenant, and persistence of the connection.

 Anchor for this section

 Summary

 Types

 raw_message()

 Functions

 start_link(init_args)

 Starts a Stargate.Receiver.Processor GenStage process and
links it to the calling process.

 Anchor for this section

Types

 Link to this type

 raw_message()

 View Source

 Specs

 raw_message() :: String.t()

 Anchor for this section

Functions

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Starts a Stargate.Receiver.Processor GenStage process and
links it to the calling process.
Passes the configuration from the supervisors to the stage to
initialize its state and setup subscription to the
Stargate.Receiver.Dispatcher producer stage.

Stargate.Receiver.Processor.State

Defines the struct Stargate.Receiver.Processor uses
to store its state.
Records the name of the process registry, the path parameters
(persistence, tenant, namespace, and topic) as well as the
handler module defined by the calling application, any init
args rrequired for a stateful handler and the state of the handler.

Stargate.Receiver.State

Defines the state stored by the consumer or reader websocket process. The
Stargate receiver records the registry name associated to its supervision tree,
the URL of the cluster and topic it connects to, as well as the individual
components that make up the URL including the host, protocol (ws or wss), topic
path parameters (persistent or non-persistent, tenant, namespace, and topic)
and any query parameters configuing the connection.

Stargate.Receiver.Supervisor

Defines a supervisor for the Stargate.Receiver reader
and consumer connections and the associated GenStage pipeline
for processing and acknowledging messages received on the connection.
The top-level Stargate.Supervisor passes the shared connection and
:consumer or :reader configurations to the receiver supervisor
to delegate management of all receiving processes.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 init(init_args)

 Generates a list of child processes to initialize and
start them under the supervisor with a :one_for_all strategy
to ensure messages are not dropped if any single stage in
the pipeline fails.

 start_link(args)

 Starts a Stargate.Receiver.Supevisor and links it to the calling
process.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 init(init_args)

 View Source

Generates a list of child processes to initialize and
start them under the supervisor with a :one_for_all strategy
to ensure messages are not dropped if any single stage in
the pipeline fails.
The processors stage is configurable to a desired number of processes
for parallelizing complex or long-running message handling operations.

 Link to this function

 start_link(args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Starts a Stargate.Receiver.Supevisor and links it to the calling
process.

Stargate.Supervisor

This module defines a top-level supervisor for your Stargate client.
It takes a keyword list of configuration values for connecting to the
cluster and any producers, readers, or consumers desired, and orchestrates
the starting of the process registry and the websocket client(s).

 Anchor for this section

 Summary

 Types

 process_key()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(init_args)

 Creates a Stargate Supervisor and links it to the current process.
Pass a keyword list of connection and client information to define
the types of websocket connection to establish with the Pulsar cluster.

 via(registry, name)

 Convenience function for working with the Stargate process registry.

 Anchor for this section

Types

 Link to this type

 process_key()

 View Source

 Specs

 process_key() :: {atom(), String.t(), String.t(), String.t(), String.t()}

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(init_args)

 View Source

 Specs

 start_link(keyword()) :: GenServer.on_start()

Creates a Stargate Supervisor and links it to the current process.
Pass a keyword list of connection and client information to define
the types of websocket connection to establish with the Pulsar cluster.
Example
opts = [
 host: [{"broker-url.com", 8080}]
 producer: [
 ... producer configs ...
],
 consumer: [
 ... consumer configs ...
]
]
See the Stargate.Producer and Stargate.Receiver modules for the full
list of configuration options to each type of client connection.

 Link to this function

 via(registry, name)

 View Source

 Specs

 via(atom(), process_key()) :: {:via, atom(), {atom(), process_key()}}

Convenience function for working with the Stargate process registry.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

