

 Spandex

 v3.2.0

 [image: Logo]

 Table of contents

 	Change Log

 	

 	Modules

 	Spandex

 	Spandex.Adapter

 	Spandex.Decorators

 	Spandex.Plug.AddContext

 	Spandex.Plug.EndTrace

 	Spandex.Plug.StartTrace

 	Spandex.Plug.Utils

 	Spandex.Span

 	Spandex.SpanContext

 	Spandex.Strategy

 	Spandex.Strategy.Pdict

 	Spandex.Trace

 	Spandex.Tracer

Change Log

3.2.0 (2022-10-20)
Features:
	Add Service Version Support by @kamilkowalski in https://github.com/spandex-project/spandex/pull/122

Bug Fixes:
	Fix interpolated string span and trace names by @gerbal in https://github.com/spandex-project/spandex/pull/136

New Contributors:
	@gerbal made their first contribution in https://github.com/spandex-project/spandex/pull/136

3.1.0 (2021-10-23)
	Encode logger metadata as string. by @aselder in https://github.com/spandex-project/spandex/pull/127
	Set up sponsorship links by @GregMefford in https://github.com/spandex-project/spandex/pull/132
	Guard clauses for trace and span macros by @GregMefford in https://github.com/spandex-project/spandex/pull/130
	Misc doc changes by @kianmeng in https://github.com/spandex-project/spandex/pull/128

3.0.3 (2020-11-10)
3.0.2 (2020-07-13)
Bug Fixes:
	add a name to failed traces (#116)

3.0.1 (2020-05-14)
Bug Fixes:
	configure sender in tests

3.0.0 (2020-05-14)
Breaking Changes:
	allow headers to be passed into Spandex.distributed_context/2 (#113)

2.4.4 (2020-4-28)
Bug Fixes:
	Set Logger.metadata when continue_trace/3 is called as well (#111)

2.4.3 (2020-3-25)
Bug Fixes:
	No unmatched returns (#109)

2.4.2 (2020-1-13)
Bug Fixes:
	Add missing trace_id to logger metadata (#107)

2.4.1 (2018-12-11)
Bug Fixes:
	Resolve unknown dialyzer type error

Bug Fixes:
	don't silence errors on span update calls (#90)

	update span on finish trace/update (#88)

2.4.0 (2018-10-11)
Features:
	Add(bring back) span and trace decorators

The below is before automated changelog management
2.3.0
Added
	Spandex.current_context/1 and Spandex.Tracer.current_context/1 functions,
which get a Spandex.SpanContext struct based on the current context.
	Spandex.inject_context/3 and Spandex.Tracer.inject_context/2 functions,
which inject a distributed tracing context into a list of HTTP headers.

Changed
	The Spandex.Adapter behaviour now requires an inject_context/3 callback,
which encodes a Spandex.SpanContext as HTTP headers for distributed
tracing.

2.2.0
Added
	The Spandex.Trace struct now includes priority and baggage fields, to
support priority sampling of distributed traces and trace-level baggage,
respectively. More details about these concepts can be found in the
OpenTracing documentation. An updated version of the spandex_datadog
library will enable support for this feature in terms of the
Spandex.Adapter and Sender APIs.

Changed
	It is no longer required that you specify the env option. If not specified,
it will default to nil. This is useful, for example, for allowing the
Datadog trace collector configured default to be used.
	The Spandex.Adapter.distributed_context/2 callback now expects a
SpanContext struct to be returned, rather than a Map.
	Similarly, the Spandex.continue_trace function now expects a SpanContext
struct rather than a separate trace_id and span_id.
	The sender API now calls the send_trace function, passing in a
Spandex.Trace struct, rather than passing a list of Spandex.Span structs.
This means that you need to update the spandex_datadog to a compatible
version.

Deprecated
	Spandex.continue_trace/4 is deprecated in favor of
Spandex.continue_trace/3
	Similarly, Tracer.continue_trace/4 is deprecated in favor of
Tracer.continue_trace/3

2.1.0
It is recommended to reread the README, to see the upgrade guide and understand the changes.
Added
	Massive changes, including separating adapters into their own repositories

Changed
	Many interface changes, specifically around return values

Removed
	Adapters now exist in their own repositories

1.6.1 - 2018-06-04
Added
	private key, when updating spans, for non-inheriting meta

1.6.0 - 2018-06-04
Added
	Storage strategy behaviour

Changed
	Centralize most storage logic, requiring only the most adapter specific behaviour to be defined by the adapter.

1.5.0 - 2018-06-02
Changed
	Interface for updating span metadata, and creating with metadata has been updated
	Check documentation for examples

1.4.1 - 2018-05-31
Changed
	Resolved an issue with distributed trace header parsing

1.4.0 - 2018-05-29
Added
	The tracer pattern
	Modernized configuration
	More: Please read the readme again!

1.3.4 - 2018-05-25
Added
	Support distributed tracing via trace headers.
	Added a changelog

Changed
	No new changes

[image: Spandex]

[image: CircleCI]
[image: Inline docs]
[image: Coverage Status]
[image: Hex pm]
[image: Total Download]
[image: License]
View the documentation
Spandex is a library for tracing your elixir application. Tracing is a
monitoring tool that allows you get extremely granular information about the
runtime of your system. Using distributed tracing, you can also get a view of
how requests make their way through your entire ecosystem of microservices or
applications. Currently, Spandex only supports integrating with
datadog, but it is built to be agnostic to what
platform you choose to view your trace data. Eventually it should support Open
Zipkin, Stackdriver, and any other trace viewer/aggregation tool you'd like to
integrate with. We are still under active development, working on moving to a
more standard/generic implementation of the internals. Contributions welcome!
3.0 Release
The 3.0 release only involves ensuring that you're using the latest adapter, which will be explicit in its dependency on a spandex version. This major version was done only to solve for breaking changes between the adapter and spandex core, in order to honor semver and also not break everyone's installation.
2.0 Upgrade Guide
This is Datadog-specific since that's currently the only adapter.
	Include the adapter as a dependency (see below).
	Replace any occurrences of Spandex.Adapters.Datadog with
SpandexDatadog.Adapter in your code.
	Replace any occurrences of Spandex.Adapters.ApiSender with
SpandexDatadog.ApiSender in your code.

Adapters
	Datadog
	Thats it so far! If you want another adapter, it should be relatively easy to
write! This library is in charge of handling the state management of spans,
and the adapter is just in charge of generating certain values and ultimately
sending the values to the service.

Installation
def deps do
 [{:spandex, "~> 3.2"}]
end
Setup and Configuration
Define your tracer:
defmodule MyApp.Tracer do
 use Spandex.Tracer, otp_app: :my_app
end
Configure it:
config :my_app, MyApp.Tracer,
 service: :my_api,
 adapter: SpandexDatadog.Adapter,
 disabled?: false,
 env: "PROD"
Or at runtime, by calling configure/1 (usually in your application's startup)
MyApp.Tracer.configure(disabled?: System.get_env("TRACE") != "true")
For more information on Tracer configuration, view the docs for
Spandex.Tracer. There you will find the documentation for the opts schema.
The entire configuration can also be passed into each function in your tracer
to be overridden if desired. For example:
MyApp.Tracer.start_span("span_name", service: :some_special_service)
Your configuration and the configuration in your config files are merged
together, to avoid needing to specify this config at all times.
To bypass the Tracer pattern entirely, you can call directly into the functions
in Spandex, like Spandex.start_span("span_name", [adapter: Foo, service: :bar]). Note that in this case, you will need to specify all of the
configuration options in each call, because the Tracer is not managing the
defaults for you.
Adapter specific configuration
For adapter configuration, see the documentation for that adapter
Phoenix Plugs
There are 3 plugs provided for usage w/ Phoenix:
	Spandex.Plug.StartTrace - See module docs for options. Goes as early in your
pipeline as possible.
	Spandex.Plug.AddContext - See moduledoc for options. Either after the
router, or inside a pipeline in the router.
	Spandex.Plug.EndTrace - Must go after your router.

Distributed Tracing
Individual adapters can support distributed tracing. See their documentation
for more information.
Logger metadata
In general, you'll probably want the current span_id and trace_id in your logs,
so that you can find them in your tracing service. Make sure to add span_id
and trace_id to logger_metadata
config :logger, :console,
 metadata: [:request_id, :trace_id, :span_id]
General Usage
The nicest interface for working with spans is the span macro, illustrated in
span_me_also below.
defmodule ManuallyTraced do
 require Spandex

 # Does not handle exceptions for you.
 def trace_me() do
 Tracer.start_trace("my_trace") #also opens a span
 Tracer.update_span(service: :my_app, type: :db)

 result = span_me()

 Tracer.finish_trace()

 result
 end

 # Does not handle exceptions for you.
 def span_me() do
 Tracer.start_span("this_span")
 Tracer.update_span(service: :my_app, type: :web)

 result = span_me_also()

 Tracer.finish_span()
 end

 # Handles exception at the span level. Trace still must be reported.
 def span_me_also() do
 Tracer.span("span_me_also") do
 ...
 end
 end
end
Metadata
See the module documentation for Spandex.Span as well as the documentation
for the structs contained as keys for that struct. They illustrate the keys
that are known to either be common keys or to have UI sugar with certain
clients. Its hard to find any kind of list of these published anywhere, so let
me know if you know of more!
For example:
Spandex.update_span(
 type: :db,
 http: [url: "/posts", status_code: 400],
 sql_query: [query: "SELECT * FROM posts", rows: 10]
)
Asynchronous Processes
The current trace_id and span_id can be retrieved and later used (for
example, from another process) as follows:
trace_id = Tracer.current_trace_id()
span_id = Tracer.current_span_id()
span_context = %SpanContext{trace_id: trace_id, parent_id: span_id}
Tracer.continue_trace("new_trace", span_context)
New spans can then be logged from there and sent in a separate batch.
Strategies
There is (currently and temporarily) only one storage strategy, which can be
changed via the strategy option. See Tracer opt documentation for an example
of setting it. To implement your own (ETS adapter should be on its way), simply
implement the Spandex.Strategy behaviour. Keep in mind that the strategy is
not an atomic pattern. It represents retrieving and wholesale replacing a
trace, meaning that it is not safe to use across processes or concurrently.
Each process should have its own store for its own generated spans. This should
be fine because you can send multiple batches of spans for the same trace
separately.
Decorators
Because the decorator library can cause conflicts when it interacts with other dependencies in the same project, we support it as an optional dependency. This allows you to disable it if it causes problems for you, but it also means that you need to explicitly include some version of decorator in your application's dependency list:
mix.exs

defp deps do
 [
 {:decorator, "~> 1.2"}
]
end
Then, configure the Spandex decorator with your default tracer:
config :spandex, :decorators, tracer: MyApp.Tracer
Span function decorators take an optional argument which is the attributes to update the span with. One of those attributes can be the :tracer in case you want to override the default tracer (e.g., in case you want to use multiple tracers).
IMPORTANT If you define multiple clauses for a function, you'll have to decorate all of the ones you want to span.
defmodule TracedModule do
 use Spandex.Decorators

 @decorate trace(service: :my_app, type: :web)
 def trace_me() do
 span_1()
 end

 @decorate span(name: "span_1")
 def span_1() do
 inner_span_1()
 end

 @decorate span()
 def inner_span_1() do
 _ = ThirdPartyApi.different_service_call()
 inner_span_2()
 end

 @decorate span(tracer: MyApp.OtherTracer)
 def inner_span_2() do
 "this produces a span stack to be reported by another tracer"
 end

 # Multiple Clauses
 @decorate span()
 def divide(n, 0), do: {:error, :divide_by_zero}
 @decorate span()
 def divide(n, m), do: n / m
end

defmodule ThirdPartyApi do
 use Spandex.Decorators

 @decorate span(service: :third_party, type: :cache)
 def different_service_call() do
 ...
 end
end
Note: Decorators don't magically do everything. It often makes a lot of sense to use Tracer.update_span from within your function to add details that are only available inside that same function.
Ecto Tracing
Check out spandex_ecto.
Phoenix Tracing
Check out spandex_phoenix.

Spandex

The functions here call the corresponding functions on the configured adapter.

 Anchor for this section

 Summary

 Types

 headers()

 id()

 Used for Span and Trace IDs (type defined by adapters)

 timestamp()

 Unix timestamp in nanoseconds

 Functions

 continue_trace(name, span_context, opts)

 Given a %SpanContext{}, resumes a trace from a different process or service.

 continue_trace(name, trace_id, span_id, opts)

 deprecated

 Given a trace_id and span_id, resumes a trace from a different process or service.

 continue_trace_from_span(name, span, opts)

 Given a span struct, resumes a trace from a different process or service.

 current_context(opts)

 Returns the current %SpanContext{} or an error.

 current_span(opts)

 Returns the %Span{} struct for the currently-running span

 current_span_id(opts)

 Returns the id of the currently-running span.

 current_trace_id(opts)

 Returns the id of the currently-running trace.

 distributed_context(metadata, opts)

 Returns the context from a given set of HTTP headers, as determined by the adapter.

 finish_span(opts)

 Finishes the current span.

 finish_trace(opts)

 Finishes the current trace.

 inject_context(headers, span_context, opts)

 Alters headers to include the outgoing HTTP headers necessary to continue a
distributed trace, as determined by the adapter.

 span_error(exception, stacktrace, opts)

 Updates the current span with error details.

 start_span(name, opts)

 Start a new span.

 start_trace(name, opts)

 Starts a new trace.

 update_all_spans(opts)

 Updates all spans, whether complete or in-progress.

 update_span(opts, top? \\ false)

 Updates the current span.

 update_top_span(opts)

 Updates the top-most parent span.

 Anchor for this section

Types

 Link to this type

 headers()

 View Source

 @type headers() ::
 [{atom(), binary()}]
 | [{binary(), binary()}]
 | %{required(binary()) => binary()}

 Link to this type

 id()

 View Source

 @type id() :: term()

Used for Span and Trace IDs (type defined by adapters)

 Link to this type

 timestamp()

 View Source

 @type timestamp() :: non_neg_integer()

Unix timestamp in nanoseconds

 Anchor for this section

Functions

 Link to this function

 continue_trace(name, span_context, opts)

 View Source

 @spec continue_trace(String.t(), Spandex.SpanContext.t(), Keyword.t()) ::
 {:ok, Spandex.Trace.t()}
 | {:error, :disabled}
 | {:error, :trace_already_present}

Given a %SpanContext{}, resumes a trace from a different process or service.
Span updates for the top span may be passed in. They are skipped if they are
invalid updates. As such, if you aren't sure if your updates are valid, it is
safer to perform a second call to update_span/2 and check the return value.

 Link to this function

 continue_trace(name, trace_id, span_id, opts)

 View Source

 This function is deprecated. Use continue_trace/3 instead.

 @spec continue_trace(String.t(), id(), id(), Keyword.t()) ::
 {:ok, Spandex.Trace.t()}
 | {:error, :disabled}
 | {:error, :trace_already_present}

Given a trace_id and span_id, resumes a trace from a different process or service.
Span updates for the top span may be passed in. They are skipped if they are
invalid updates. As such, if you aren't sure if your updates are valid, it is
safer to perform a second call to update_span/2 and check the return value.

 Link to this function

 continue_trace_from_span(name, span, opts)

 View Source

 @spec continue_trace_from_span(String.t(), Spandex.Span.t(), Spandex.Tracer.opts()) ::
 {:ok, Spandex.Trace.t()}
 | {:error, :disabled}
 | {:error, :trace_already_present}

Given a span struct, resumes a trace from a different process or service.
Span updates for the top span may be passed in. They are skipped if they are
invalid updates. As such, if you aren't sure if your updates are valid, it is
safer to perform a second call to update_span/2 and check the return value.

 Link to this function

 current_context(opts)

 View Source

 @spec current_context(Spandex.Tracer.opts()) ::
 {:ok, Spandex.SpanContext.t()}
 | {:error, :disabled}
 | {:error, :no_span_context}
 | {:error, :no_trace_context}

Returns the current %SpanContext{} or an error.

 deprecation-warning

 DEPRECATION WARNING

Expect changes to this in the future, as this will eventualy be refactored to
only ever return a %SpanContext{}, or at least to always return something
consistent.

 Link to this function

 current_span(opts)

 View Source

 @spec current_span(Spandex.Tracer.opts()) :: Spandex.Span.t() | nil

Returns the %Span{} struct for the currently-running span

 Link to this function

 current_span_id(opts)

 View Source

 @spec current_span_id(Spandex.Tracer.opts()) :: id() | nil

Returns the id of the currently-running span.

 Link to this function

 current_trace_id(opts)

 View Source

 @spec current_trace_id(Spandex.Tracer.opts()) :: id() | nil

Returns the id of the currently-running trace.

 Link to this function

 distributed_context(metadata, opts)

 View Source

 @spec distributed_context(Plug.Conn.t(), Spandex.Tracer.opts()) ::
 {:ok, Spandex.SpanContext.t()} | {:error, :disabled}

 @spec distributed_context(headers(), Spandex.Tracer.opts()) ::
 {:ok, Spandex.SpanContext.t()} | {:error, :disabled}

Returns the context from a given set of HTTP headers, as determined by the adapter.

 Link to this function

 finish_span(opts)

 View Source

 @spec finish_span(Spandex.Tracer.opts()) ::
 {:ok, Spandex.Span.t()}
 | {:error, :disabled}
 | {:error, :no_trace_context}
 | {:error, :no_span_context}

Finishes the current span.
Span updates for that span may be passed in. They are skipped if they are
invalid updates. As such, if you aren't sure if your updates are valid, it is
safer to perform a call to update_span/2 and check the return value before
finishing the span.

 Link to this function

 finish_trace(opts)

 View Source

 @spec finish_trace(Spandex.Tracer.opts()) ::
 {:ok, Spandex.Trace.t()} | {:error, :disabled} | {:error, :no_trace_context}

Finishes the current trace.
Span updates for the top span may be passed in. They are skipped if they are
invalid updates. As such, if you aren't sure if your updates are valid, it is
safer to perform a call to update_span/2 and check the return value before
finishing the trace.

 Link to this function

 inject_context(headers, span_context, opts)

 View Source

 @spec inject_context(headers(), Spandex.SpanContext.t(), Spandex.Tracer.opts()) ::
 headers()

Alters headers to include the outgoing HTTP headers necessary to continue a
distributed trace, as determined by the adapter.

 Link to this function

 span_error(exception, stacktrace, opts)

 View Source

 @spec span_error(Exception.t(), Enum.t(), Spandex.Tracer.opts()) ::
 {:ok, Spandex.Span.t()}
 | {:error, :disabled}
 | {:error, :no_trace_context}
 | {:error, :no_span_context}
 | {:error, [Optimal.error()]}

Updates the current span with error details.
In the case of an invalid value, validation errors are returned.

 Link to this function

 start_span(name, opts)

 View Source

 @spec start_span(String.t(), Spandex.Tracer.opts()) ::
 {:ok, Spandex.Span.t()} | {:error, :disabled} | {:error, :no_trace_context}

Start a new span.
Span updates for that span may be passed in. They are skipped if they are
invalid updates. As such, if you aren't sure if your updates are valid, it is
safer to perform a second call to update_span/2 and check the return value.

 Link to this function

 start_trace(name, opts)

 View Source

 @spec start_trace(binary(), Spandex.Tracer.opts()) ::
 {:ok, Spandex.Trace.t()}
 | {:error, :disabled}
 | {:error, :trace_running}
 | {:error, [Optimal.error()]}

Starts a new trace.
Span updates for the first span may be passed in. They are skipped if they are
invalid updates. As such, if you aren't sure if your updates are valid, it is
safer to perform a second call to update_span/2 and check the return value.

 Link to this function

 update_all_spans(opts)

 View Source

 @spec update_all_spans(Spandex.Tracer.opts()) ::
 {:ok, Spandex.Trace.t()}
 | {:error, :disabled}
 | {:error, :no_trace_context}
 | {:error, [Optimal.error()]}

Updates all spans, whether complete or in-progress.
In the case of an invalid update for any span, validation errors are returned.

 Link to this function

 update_span(opts, top? \\ false)

 View Source

 @spec update_span(Spandex.Tracer.opts(), boolean()) ::
 {:ok, Spandex.Span.t()}
 | {:error, :disabled}
 | {:error, :no_trace_context}
 | {:error, :no_span_context}
 | {:error, [Optimal.error()]}

Updates the current span.
In the case of an invalid update, validation errors are returned.

 Link to this function

 update_top_span(opts)

 View Source

 @spec update_top_span(Spandex.Tracer.opts()) ::
 {:ok, Spandex.Span.t()}
 | {:error, :disabled}
 | {:error, :no_trace_context}
 | {:error, [Optimal.error()]}

Updates the top-most parent span.
Any spans that have already been started will not inherit any of the updates
from that span. For instance, if you change service, it will not be
reflected in already-started spans.
In the case of an invalid update, validation errors are returned.

Spandex.Adapter behaviour

The callbacks required to implement the Spandex.Adapter behaviour.

 Anchor for this section

 Summary

 Callbacks

 default_sender()

 distributed_context(t, t)

 inject_context(headers, t, t)

 now()

 span_id()

 trace_id()

 Anchor for this section

Callbacks

 Link to this callback

 default_sender()

 View Source

 @callback default_sender() :: module()

 Link to this callback

 distributed_context(t, t)

 View Source

 @callback distributed_context(Plug.Conn.t(), Keyword.t()) ::
 {:ok, Spandex.SpanContext.t()} | {:error, atom()}

 @callback distributed_context(Spandex.headers(), Keyword.t()) ::
 {:ok, Spandex.SpanContext.t()} | {:error, atom()}

 Link to this callback

 inject_context(headers, t, t)

 View Source

 @callback inject_context(Spandex.headers(), Spandex.SpanContext.t(), Keyword.t()) ::
 Spandex.headers()

 Link to this callback

 now()

 View Source

 @callback now() :: Spandex.timestamp()

 Link to this callback

 span_id()

 View Source

 @callback span_id() :: Spandex.id()

 Link to this callback

 trace_id()

 View Source

 @callback trace_id() :: Spandex.id()

Spandex.Decorators

Provides a way of annotating functions to be traced.
Span function decorators take an optional argument which is the attributes to update the span with. One of those attributes can be the :tracer in case you want to override the default tracer (e.g., in case you want to use multiple tracers).
IMPORTANT If you define multiple clauses for a function, you'll have to decorate all of the ones you want to span.
Note: Decorators don't magically do everything. It often makes a lot of sense to use Tracer.update_span from within your function to add details that are only available inside that same function.
defmodule Foo do
 use Spandex.Decorators

 @decorate trace()
 def bar(a) do
 a * 2
 end

 @decorate trace(service: "ecto", type: "sql")
 def databaz(a) do
 a * 3
 end
end

 Anchor for this section

 Summary

 Functions

 span()

 span(var1)

 span(body, context)

 span(attributes, body, context)

 trace()

 trace(var1)

 trace(body, context)

 trace(attributes, body, context)

 Anchor for this section

Functions

 Link to this macro

 span()

 View Source

 (macro)

 Link to this macro

 span(var1)

 View Source

 (macro)

 Link to this function

 span(body, context)

 View Source

 Link to this function

 span(attributes, body, context)

 View Source

 Link to this macro

 trace()

 View Source

 (macro)

 Link to this macro

 trace(var1)

 View Source

 (macro)

 Link to this function

 trace(body, context)

 View Source

 Link to this function

 trace(attributes, body, context)

 View Source

Spandex.Plug.AddContext

Adds request context to the top span of the trace, setting
the resource, method, url, service, type and env

 Anchor for this section

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Starts a trace, considering the filters/parameters in the provided options.

 Anchor for this section

Functions

 Link to this function

 call(conn, opts)

 View Source

 @spec call(conn :: Plug.Conn.t(), _opts :: Keyword.t()) :: Plug.Conn.t()

Callback implementation for Plug.call/2.

 Link to this function

 init(opts)

 View Source

 @spec init(opts :: Keyword.t()) :: Keyword.t()

Starts a trace, considering the filters/parameters in the provided options.

 opts

 Opts

	tracer(:atom) Required: The tracing module to be used to start the trace.
	allowed_route_replacements([{:list, :atom}, nil]): A list of route parts that may be replaced with their actual value. If not set or set to nil, then all will be allowed, unless they are disallowed. - Default: nil
	disallowed_route_replacements({:list, :atom}): A list of route parts that may not be replaced with their actual value. - Default: []
	query_params({:list, :atom}): A list of query params who's value will be included in the resource name. - Default: []
	tracer_opts(:keyword): Any opts to be passed to the tracer when starting or continuing the trace. - Default: []

You would generally not use allowed_route_replacements and disallowed_route_replacements together.

Spandex.Plug.EndTrace

Finishes a trace, setting status and error based on the HTTP status.

 Anchor for this section

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Accepts and validates opts for the plug, and underlying tracer.

 Anchor for this section

Functions

 Link to this function

 call(conn, opts)

 View Source

 @spec call(conn :: Plug.Conn.t(), _opts :: Keyword.t()) :: Plug.Conn.t()

Callback implementation for Plug.call/2.

 Link to this function

 init(opts)

 View Source

 @spec init(opts :: Keyword.t()) :: Keyword.t()

Accepts and validates opts for the plug, and underlying tracer.

 opts

 Opts

	tracer(:atom) Required: The tracing module to be used to start the trace.
	tracer_opts(:keyword): Any opts to be passed to the tracer when starting or continuing the trace. - Default: []

Spandex.Plug.StartTrace

Starts a trace, skipping ignored routes or methods.
Store info in Conn assigns if we actually trace the request.

 Anchor for this section

 Summary

 Functions

 call(conn, opts)

 Callback implementation for Plug.call/2.

 init(opts)

 Accepts and validates opts for the plug, and underlying tracer.

 Anchor for this section

Functions

 Link to this function

 call(conn, opts)

 View Source

 @spec call(conn :: Plug.Conn.t(), opts :: Keyword.t()) :: Plug.Conn.t()

Callback implementation for Plug.call/2.

 Link to this function

 init(opts)

 View Source

 @spec init(opts :: Keyword.t()) :: Keyword.t()

Accepts and validates opts for the plug, and underlying tracer.

 opts

 Opts

	tracer(:atom) Required: The tracing module to be used to start the trace.
	ignored_methods({:list, :string}): A list of strings representing methods to ignore. A good example would be ["OPTIONS"] - Default: []
	ignored_routes({:list, [:regex, :string]}): A list of strings or regexes. If it is a string, it must match exactly. - Default: []
	tracer_opts(:keyword): Any opts to be passed to the tracer when starting or continuing the trace. - Default: []
	span_name(:string): The name to be used for the top level span. - Default: "request"

Spandex.Plug.Utils

Helper methods for accessing Spandex plug assigns.

 Anchor for this section

 Summary

 Functions

 trace(conn, trace?)

 Stores in conn whenever we trace request or not.

 trace?(conn)

 Checks conn whenever we trace request or not.

 Anchor for this section

Functions

 Link to this function

 trace(conn, trace?)

 View Source

 @spec trace(conn :: Plug.Conn.t(), trace? :: boolean()) :: Plug.Conn.t()

Stores in conn whenever we trace request or not.

 Link to this function

 trace?(conn)

 View Source

 @spec trace?(conn :: Plug.Conn.t()) :: boolean()

Checks conn whenever we trace request or not.

Spandex.Span

A container for all span data and metadata.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 child_of(parent_span, name, id, start, opts)

 new(opts)

 Create a new span.

 span_opts()

 update(span, opts, schema \\ Map.put(%{__struct__: Optimal.Schema, annotations: [], custom: [], defaults: [private: [], services: [], tags: []], describe: [], extra_keys?: true, opts: [:completion_time, :env, :error, :http, :id, :name, :parent_id, :private, :resource, :service, :service_version, :services, :sql_query, :start, :tags, :trace_id, :type], required: [:id, :name, :service, :start, :trace_id], types: [completion_time: :integer, env: :string, error: :keyword, http: :keyword, id: :any, name: :string, parent_id: :any, private: :keyword, resource: [:atom, :string], service: :atom, service_version: :string, services: :keyword, sql_query: :keyword, start: :integer, tags: :keyword, trace_id: :any, type: :atom]}, :required, []))

 Update an existing span.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Spandex.Span{
 completion_time: Spandex.timestamp() | nil,
 env: String.t() | nil,
 error: Keyword.t() | nil,
 http: Keyword.t() | nil,
 id: Spandex.id(),
 name: String.t(),
 parent_id: Spandex.id() | nil,
 private: Keyword.t(),
 resource: atom() | String.t(),
 service: atom(),
 service_version: String.t() | nil,
 services: Keyword.t() | nil,
 sql_query: Keyword.t() | nil,
 start: Spandex.timestamp(),
 tags: Keyword.t() | nil,
 trace_id: Spandex.id(),
 type: atom()
}

 Anchor for this section

Functions

 Link to this function

 child_of(parent_span, name, id, start, opts)

 View Source

 @spec child_of(t(), String.t(), Spandex.id(), Spandex.timestamp(), Keyword.t()) ::
 {:ok, t()} | {:error, [Optimal.error()]}

 Link to this function

 new(opts)

 View Source

 @spec new(Keyword.t()) :: {:ok, t()} | {:error, [Optimal.error()]}

Create a new span.

 opts

 Opts

	id(:any) Required
	name(:string) Required
	service(:atom) Required
	start(:integer) Required
	trace_id(:any) Required
	completion_time(:integer)
	env(:string)
	error(:keyword)
	http(:keyword)
	parent_id(:any)
	private(:keyword) - Default: []
	resource([:atom, :string])
	service_version(:string)
	services(:keyword) - Default: []
	sql_query(:keyword)
	tags(:keyword) - Default: []
	type(:atom)

Also accepts extra opts that are not named here.

 Link to this function

 span_opts()

 View Source

 Link to this function

 update(span, opts, schema \\ Map.put(%{__struct__: Optimal.Schema, annotations: [], custom: [], defaults: [private: [], services: [], tags: []], describe: [], extra_keys?: true, opts: [:completion_time, :env, :error, :http, :id, :name, :parent_id, :private, :resource, :service, :service_version, :services, :sql_query, :start, :tags, :trace_id, :type], required: [:id, :name, :service, :start, :trace_id], types: [completion_time: :integer, env: :string, error: :keyword, http: :keyword, id: :any, name: :string, parent_id: :any, private: :keyword, resource: [:atom, :string], service: :atom, service_version: :string, services: :keyword, sql_query: :keyword, start: :integer, tags: :keyword, trace_id: :any, type: :atom]}, :required, []))

 View Source

 @spec update(t() | nil, Keyword.t(), Optimal.Schema.t()) ::
 {:ok, t()} | {:error, [Optimal.error()]}

Update an existing span.

 opts

 Opts

	completion_time(:integer)
	env(:string)
	error(:keyword)
	http(:keyword)
	id(:any)
	name(:string)
	parent_id(:any)
	private(:keyword) - Default: []
	resource([:atom, :string])
	service(:atom)
	service_version(:string)
	services(:keyword) - Default: []
	sql_query(:keyword)
	start(:integer)
	tags(:keyword) - Default: []
	trace_id(:any)
	type(:atom)

Also accepts extra opts that are not named here.

 special-meta

 Special Meta

[
 http: [
 url: "my_website.com?foo=bar",
 status_code: "400",
 method: "GET",
 query_string: "foo=bar",
 user_agent: "Mozilla/5.0...",
 request_id: "special_id"
],
 error: [
 exception: ArgumentError.exception("foo"),
 stacktrace: __STACKTRACE__,
 error?: true # Used for specifying that a span is an error when there is no exception or stacktrace.
],
 sql_query: [
 rows: 100,
 db: "my_database",
 query: "SELECT * FROM users;"
],
 # Private has the same structure as the outer meta structure, but private metadata does not
 # transfer from parent span to child span.
 private: [
 ...
]
]

Spandex.SpanContext

From the OpenTracing specification:
Each SpanContext encapsulates the following state:
	Any OpenTracing-implementation-dependent state (for example, trace and span ids) needed to refer to a distinct Span across a process boundary
	Baggage Items, which are just key:value pairs that cross process boundaries

 Anchor for this section

 Summary

 Types

 t()

 From the OpenTracing specification

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Spandex.SpanContext{
 baggage: Keyword.t(),
 parent_id: Spandex.id(),
 priority: integer(),
 trace_id: Spandex.id()
}

From the OpenTracing specification:
Each SpanContext encapsulates the following state:
	Any OpenTracing-implementation-dependent state (for example, trace and span ids) needed to refer to a distinct Span across a process boundary
	Baggage Items, which are just key:value pairs that cross process boundaries

Spandex.Strategy behaviour

The behaviour for a storage strategy for storing an ongoing trace.

 Anchor for this section

 Summary

 Types

 tracer()

 Callbacks

 delete_trace(tracer)

 get_trace(tracer)

 put_trace(tracer, t)

 trace_active?(tracer)

 Anchor for this section

Types

 Link to this type

 tracer()

 View Source

 @type tracer() :: module()

 Anchor for this section

Callbacks

 Link to this callback

 delete_trace(tracer)

 View Source

 @callback delete_trace(tracer()) :: {:ok, Spandex.Trace.t()} | {:error, term()}

 Link to this callback

 get_trace(tracer)

 View Source

 @callback get_trace(tracer()) :: {:ok, Spandex.Trace.t()} | {:error, term()}

 Link to this callback

 put_trace(tracer, t)

 View Source

 @callback put_trace(tracer(), Spandex.Trace.t()) ::
 {:ok, Spandex.Trace.t()} | {:error, term()}

 Link to this callback

 trace_active?(tracer)

 View Source

 @callback trace_active?(tracer()) :: boolean()

Spandex.Strategy.Pdict

This stores traces in the local process dictionary, scoped by the
tracer running the trace, such that you could have multiple traces
going at one time by using a different tracer.

Spandex.Trace

A representation of an ongoing trace.
	baggage: Key-value metadata about the overall trace (propagated across distributed service)
	id: The trace ID, which consistently refers to this trace across distributed services
	priority: The trace sampling priority for this trace (propagated across distributed services)
	spans: The set of completed spans for this trace from this process
	stack: The stack of active parent spans

 Anchor for this section

 Summary

 Types

 t()

 A representation of an ongoing trace.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Spandex.Trace{
 baggage: Keyword.t(),
 id: Spandex.id(),
 priority: integer(),
 spans: [Spandex.Span.t()],
 stack: [Spandex.Span.t()]
}

A representation of an ongoing trace.
	baggage: Key-value metadata about the overall trace (propagated across distributed service)
	id: The trace ID, which consistently refers to this trace across distributed services
	priority: The trace sampling priority for this trace (propagated across distributed services)
	spans: The set of completed spans for this trace from this process
	stack: The stack of active parent spans

Spandex.Tracer behaviour

A module that can be used to build your own tracer.
Example:
defmodule MyApp.Tracer do
 use Spandex.Tracer, otp_app: :my_app
end

 Anchor for this section

 Summary

 Types

 opts()

 span_name()

 tagged_tuple(arg)

 Callbacks

 configure(opts)

 continue_trace(span_name, trace_context, opts)

 continue_trace_from_span(span_name, span, opts)

 current_context(opts)

 current_span(opts)

 current_span_id(opts)

 current_trace_id(opts)

 distributed_context(t, opts)

 finish_span(opts)

 finish_trace(opts)

 inject_context(headers, opts)

 span(span_name, opts, list)

 span_error(error, stacktrace, opts)

 start_span(span_name, opts)

 start_trace(span_name, opts)

 trace(span_name, opts, list)

 update_span(opts)

 update_top_span(opts)

 Functions

 tracer_opts()

 A schema for the opts that a tracer accepts.

 Anchor for this section

Types

 Link to this type

 opts()

 View Source

 @type opts() :: Keyword.t() | :disabled

 Link to this type

 span_name()

 View Source

 @type span_name() :: String.t()

 Link to this type

 tagged_tuple(arg)

 View Source

 @type tagged_tuple(arg) :: {:ok, arg} | {:error, term()}

 Anchor for this section

Callbacks

 Link to this callback

 configure(opts)

 View Source

 @callback configure(opts()) :: :ok

 Link to this callback

 continue_trace(span_name, trace_context, opts)

 View Source

 @callback continue_trace(
 span_name :: String.t(),
 trace_context :: Spandex.SpanContext.t(),
 opts()
) :: tagged_tuple(Spandex.Trace.t())

 Link to this callback

 continue_trace_from_span(span_name, span, opts)

 View Source

 @callback continue_trace_from_span(span_name(), span :: term(), opts()) ::
 tagged_tuple(Spandex.Trace.t())

 Link to this callback

 current_context(opts)

 View Source

 @callback current_context(opts()) ::
 {:ok, Spandex.SpanContext.t()}
 | {:error, :disabled}
 | {:error, :no_span_context}
 | {:error, :no_trace_context}
 | {:error, [Optimal.error()]}

 Link to this callback

 current_span(opts)

 View Source

 @callback current_span(opts()) :: nil | Spandex.Span.t()

 Link to this callback

 current_span_id(opts)

 View Source

 @callback current_span_id(opts()) :: nil | Spandex.id()

 Link to this callback

 current_trace_id(opts)

 View Source

 @callback current_trace_id(opts()) :: nil | Spandex.id()

 Link to this callback

 distributed_context(t, opts)

 View Source

 @callback distributed_context(Plug.Conn.t(), opts()) :: tagged_tuple(map())

 Link to this callback

 finish_span(opts)

 View Source

 @callback finish_span(opts()) :: tagged_tuple(Spandex.Span.t())

 Link to this callback

 finish_trace(opts)

 View Source

 @callback finish_trace(opts()) :: tagged_tuple(Spandex.Trace.t())

 Link to this callback

 inject_context(headers, opts)

 View Source

 @callback inject_context(Spandex.headers(), opts()) :: Spandex.headers()

 Link to this macrocallback

 span(span_name, opts, list)

 View Source

 @macrocallback span(span_name(), opts(), [{:do, Macro.t()}]) :: Macro.t()

 Link to this callback

 span_error(error, stacktrace, opts)

 View Source

 @callback span_error(error :: Exception.t(), stacktrace :: [term()], opts()) ::
 tagged_tuple(Spandex.Span.t())

 Link to this callback

 start_span(span_name, opts)

 View Source

 @callback start_span(span_name(), opts()) :: tagged_tuple(Spandex.Span.t())

 Link to this callback

 start_trace(span_name, opts)

 View Source

 @callback start_trace(span_name(), opts()) :: tagged_tuple(Spandex.Trace.t())

 Link to this macrocallback

 trace(span_name, opts, list)

 View Source

 @macrocallback trace(span_name(), opts(), [{:do, Macro.t()}]) :: Macro.t()

 Link to this callback

 update_span(opts)

 View Source

 @callback update_span(opts()) :: tagged_tuple(Spandex.Span.t())

 Link to this callback

 update_top_span(opts)

 View Source

 @callback update_top_span(opts()) :: tagged_tuple(Spandex.Span.t())

 Anchor for this section

Functions

 Link to this function

 tracer_opts()

 View Source

A schema for the opts that a tracer accepts.

 opts

 Opts

	adapter(:atom) Required: The third party adapter to use
	disabled?(:boolean): Allows for wholesale disabling a tracer - Default: false
	strategy(:atom): The storage and tracing strategy. Currently only supports local process dictionary. - Default: Spandex.Strategy.Pdict
	sender(:atom): Once a trace is complete, it is sent using this module. Defaults to the default_sender/0 of the selected adapter
	trace_key(:atom): Don't set manually. This option is passed automatically.

Span Creation
	service(:atom) Required: The default service name to use for spans declared without a service
	env(:string): A name used to identify the environment name, e.g prod or development
	service_version(:string): The version of the service, used for tracking deployments.
	services([{:keyword, :atom}, :keyword]): A mapping of service name to the default span types. - Default: []
	completion_time(:integer)
	error(:keyword)
	http(:keyword)
	id(:any)
	name(:string)
	parent_id(:any)
	private(:keyword) - Default: []
	resource([:atom, :string])
	sql_query(:keyword)
	start(:integer)
	tags(:keyword) - Default: []
	trace_id(:any)
	type(:atom)

All tracer functions that take opts use this schema.
This also accepts defaults for any value that can
be given to a span.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

