

 Sibyl

 v0.1.8

 Table of contents

 	Modules

 	Sibyl

 	Sibyl.AST

 	Sibyl.Decorator

 	Sibyl.Dynamic

 	Sibyl.Dynamic.Guards

 	Sibyl.Events

 	Sibyl.Handler

 	Sibyl.Handlers

 	Sibyl.Handlers.FlameGraph

 	Sibyl.Handlers.Logger

 	Sibyl.Handlers.OpenTelemetry

 	Sibyl.BadEmissionError

 	Sibyl.UndefinedEventError

Sibyl

Sibyl is a library which augments the BEAM's default tracing capabilities by hooking
into :telemetry, :dbg (the BEAM's built in tracing and debugging functionality),
and OpenTelemetry.
Basic Usage
To leverage all that Sibyl gives you, you need to use it in a module like so:
defmodule MyApp.Users do
 use Sibyl
end
Following this, you're able to begin emitting telemetry events and tracing function
execution.
Tracing Function Execution
Sibyl provides two decorators which you can use in your modules to automatically
trace function execution. These are @decorate_all trace() and @decorate trace(),
which automatically traces all functions in the given module, or the function
most immediately following the decorator respectively.
Sibyl's function tracing follows :telemetry's standard specification for capturing
spans. At the beginning of a function a :start event is emitted; and at the end
of a function a :stop event is emitted. If an exception (arising from a raise
or throw) is detected, an :exception event is emitted instead.
Unlike :telemetry.span/3 however, Sibyl's trace decorators inline these event
emissions into the compiled bytecode of your module, which is slightly more efficient
than wrapping traces within anonymous functions. This also has the benefit of making
stacktraces easier to read.
Event names are automatically determined such that a :start event is emitted by
the function MyApp.Users.sign_up; the [:my_app, :users, :sign_up, :start] event
is emitted.
Examples follow:
defmodule MyApp.Users do
 use Sibyl

 @decorate trace()
 def sign_up(attrs) do
 :ok
 end
end

defmodule MyApp.Mailer do
 use Sibyl

 @decorate_all trace()

 def build_mail(attrs) do
 :ok
 end

 def send_mail(attrs) do
 attrs
 |> build_mail()
 |> handle_send()
 end
end
Custom Event Emission
Sibyl also provides a thin wrapper over :telemetry.execute/3 to make event emission
less error prone.
Sibyl will perform compile time checks prior to attempting to emit an event to make
sure that it has previously been defined in the current module.
Events which are defined in a module are automatically prefixed with that module's
namespace such that given a module MyApp.Users and an event :registered, the
resultant event will be compiled and ultimately emitted as [:my_app, :users, :registered].
Otherwise, you can specify a module which defined a given event by using Sibyl.emit/4 over
Sibyl.emit/3.
For more in-depth information, see Sibyl.emit/4.
Examples follow:
defmodule MyApp.Users do
 use Sibyl

 def sign_up(attrs) do
 emit :registered # Fails to compile as event is unknown.
 end
end

defmodule MyApp.Users do
 use Sibyl

 define_event :registered

 def sign_up(attrs) do
 emit :registered # Compiles properly and emits event
 end
end

defmodule MyApp.Users.Mailer do
 use Sibyl

 def send_email do
 emit MyApp.Users, :registered # Compiles properly and emits events
 emit MyApp.Users, :invalid_event # Causes error as this was not defined in specified module
 end
end
Reflection
Due to the fact that Sibyl is able to check whether or not events have been defined
prior to use, Sibyl exposes a reflection API in the way of Sibyl.Events.reflect/0
and Sibyl.Events.reflect/1.
Please see documentation for Sibyl.Events if you're interested in more potential
avenues for extending Sibyl or metaprogramming.
Telemetry Handlers
Building on top of Sibyl's reflection API, we are able to provide functions to
automatically attach defined events to :telemetry handlers. You can do this via
the helper functions in Sibyl.Handlers.
Please see the documentation for Sibyl.Handlers for more information, but a brief
usage example follows:
@impl Sibyl.Handler
def handle_event(event, measurement, metadata, opts) do
 IO.inspect({event, measurement, metadata, opts})
end

:ok = Sibyl.Handlers.attach_all_events(__MODULE__)
Additionally, Sibyl provides two example :telemetry handlers: a very basic
Elixir Logger handler for demonstration purposes, as well as an OpenTelemetry
handler which was what prompted the building of Sibyl in the first place.
OpenTelemetry Integration
OpenTelemetry is a widely understood specification for dealing with event emission
and traces.
One can use OpenTelemetry to be able to instrument your code base with events and
traces quite easily. However; the Elixir community also very much utilises :telemetry
as the standard telemetry/metric/span gathering library.
It is possible, of course, to use OpenTelemetry as well as :telemetry, but it
would be convinient to have one unified API which bridges both worlds.
Very much inspired by the OpentelemetryTelemetry library, Sibyl provides a generic
:telemetry handler which bridges any :telemetry.span/3-spec complaint events
to OpenTelemetry traces.
Simply attach the Sibyl.Handlers.OpenTelemetry handler and start tracing functions,
any captured traces will be handled by your configured OLTP exporter of choice.
For demonstration purposes, this project also contains a docker-compose.yml which
sets up Jaeger: an easy to use distributed tracing UI to view spans which understands
OpenTelemetry.
Dynamic Tracing
In order to aide debugging of running systems without needing to instrument your code
with decorators or event emission, Sibyl also provides an experimental dynamic
tracer which leverages the BEAM's built in tracing functionalities.
Please make sure you understand what turning on the BEAM's tracing functionality
can do to overload a production system however. This is not neccessarily advisable,
but it is possible.
After enabling Sibyl's dynamic tracer and attaching a :telemetry handler, all future
invokations of any given functions will be handled as though you had instrumented
your codebase with @decorate trace().
Examples follow:
{:ok, _meta} = Sibyl.Dynamic.enable(Sibyl.Handlers.OpenTelemetry)
{:ok, _meta} = Sibyl.Dynamic.trace(Enum, :map, 2)

Enum.map([1, 2, 3], & &1) # Produces OpenTelemetry traces

:ok = Sibyl.Dynamic.disable()

 Anchor for this section

 Summary

 Functions

 emit(arg1, arg2 \\ Macro.escape(%{}), arg3 \\ Macro.escape(%{}), arg4 \\ unused())

 Emits an event.

 Anchor for this section

Functions

 Link to this macro

 emit(arg1, arg2 \\ Macro.escape(%{}), arg3 \\ Macro.escape(%{}), arg4 \\ unused())

 View Source

 (macro)

 @spec emit(Sibyl.AST.alias(), Sibyl.Events.event(), measurements(), metadata()) ::
 Sibyl.AST.ast()

 @spec emit(Sibyl.Events.sibyl_event(), measurements(), metadata(), Sibyl.AST.unused()) ::
 Sibyl.AST.ast()

 @spec emit(Sibyl.Events.event(), measurements(), metadata(), Sibyl.AST.unused()) ::
 Sibyl.AST.ast()

Emits an event.
Can be called in one of two modes, either: Sibyl.emit/4 or Sibyl.emit/3.
When called via the arity-4 variant, expects the following arguments to be passed in:
	A module alias such as Enum or MyApp.Telemetry.
	An atom: the name of the event you wish to emit, which should be defined in the given module.
	An optional map containing "measurements" for the given event.
	An optional map containing "metadata" for the given event.

When called via the arity-3 variant, expects the following arguments to be passed in:
	An event, either in the form of a singular atom, or in the form of a list of atoms.

	If a singular atom is passed in, it is expected that the given atom is defined as
as event in the caller's module.
	If a list of atoms is passed in, no expectations hold as Sibyl assumes you're
trying to emit an event that was not defined by Sibyl.

	An optional map containing "measurements" for the given event.
	An optional map containing "metadata" for the given event.

No other combination of arguments is supported and an error will be raised at compile time
if called any other way than described.
When called properly, Sibyl will perform a compile-time check on the event you're attempting
to emit (unless the event was specified as a list of atoms), to ensure that the event was
properly defined by Sibyl before use.

Sibyl.AST

Utility module for working with ASTs

 Anchor for this section

 Summary

 Types

 alias()

 ast()

 unused()

 Functions

 alias?(ast)

 Returns true if the given argument is an Elixir AST node representing a module alias
such as Enum.

 module(ast, env \\ %{})

 Given an alias AST node, returns the fully resolved alias that said node would expand
to.

 unused()

 Returns the :__unused__ atom.

 unused?(term)

 Returns true if the given argument is equal to :__unused__. Primarily used internally.

 Anchor for this section

Types

 Link to this type

 alias()

 View Source

 @type alias() :: {:__aliases__, term(), [atom()]}

 Link to this type

 ast()

 View Source

 @type ast() :: term()

 Link to this type

 unused()

 View Source

 @type unused() :: :__unused__

 Anchor for this section

Functions

 Link to this macro

 alias?(ast)

 View Source

 (macro)

Returns true if the given argument is an Elixir AST node representing a module alias
such as Enum.

 Link to this function

 module(ast, env \\ %{})

 View Source

 @spec module(alias(), env :: map()) :: module()

Given an alias AST node, returns the fully resolved alias that said node would expand
to.
For example, given: {:__aliases, unused(), [Elixir, Enum]}, returns: Enum.

 Link to this macro

 unused()

 View Source

 (macro)

 @spec unused() :: ast()

Returns the :__unused__ atom.

 Link to this macro

 unused?(term)

 View Source

 (macro)

Returns true if the given argument is equal to :__unused__. Primarily used internally.

Sibyl.Decorator

Module encapsulating Sibyl's business logic for decorating functions for automated
tracing.
Should be used only via use Sibyl.
When used like this, provides the ability to decorate your function calls with:
	@decorate trace() to automatically trace a single function's execution, emitting
telemetry events for :start, :end, and :exception sub-events.

	@decorate_all trace() which does the same as the above, but automatically for
all functions in a module.

Automatically traced functions are available for reflection by via Sibyl.Events.reflect/1.

 Anchor for this section

 Summary

 Functions

 trace()

 trace(body, ctx)

 Decorator which wraps a given function with a standard telemetry span.

 Anchor for this section

Functions

 Link to this macro

 trace()

 View Source

 (macro)

 Link to this function

 trace(body, ctx)

 View Source

 @spec trace(function_body :: Sibyl.AST.ast(), ctx :: map()) ::
 Sibyl.AST.ast() | no_return()

Decorator which wraps a given function with a standard telemetry span.
The name of the captured event will be determined by however Sibyl is configured
to generate event names.
Due to how anonymous functions are defined and executed in the BEAM, it ends up
being quite a bit more performant to build the span manually rather than using
:telemetry.span/3.
See here for an example of
how to emit the correct events.
See here for explanations
w.r.t. anonymous function perf.

Sibyl.Dynamic

Module which contains functions which allow you to bridge together the built in
BEAM debugging and tracer with modules implementing the Sibyl.Handler behaviour.
This provides extremely powerful functionality as you can effectively instruct
the BEAM to start building OpenTelemetry traces without code instrumentation on
production environments.
It is important to note that leveraging the BEAM's built in debugging and tracing
functionality can have severe memory and CPU requirements so it isn't something
one should do lightly.
Regardless, in order to track down heisenbugs and other maladies which can only
be reproduced on production environments, this functionality should prove extremely
useful.

 Anchor for this section

 Summary

 Functions

 disable()

 enable(handler \\ Logger)

 trace(m, f, a)

 Anchor for this section

Functions

 Link to this function

 disable()

 View Source

 @spec disable() :: :ok

 Link to this function

 enable(handler \\ Logger)

 View Source

 @spec enable(sibyl_handler :: module()) :: {:ok, term()}

 Link to this function

 trace(m, f, a)

 View Source

 @spec trace(module(), function :: atom(), arity :: integer()) :: {:ok, term()}

Sibyl.Dynamic.Guards

Utils module contianing various custom guards in the scope of Sibyl.Dynamic

 Anchor for this section

 Summary

 Functions

 trace?(message)

 Returns true if given term is a message sent by the Erlang :dbg module for
function and function-return traces.

 type?(message, type)

 Returns true if given term is a message sent by the Erlang :dbg module and if
the message type corresponds to the given type.

 Anchor for this section

Functions

 Link to this macro

 trace?(message)

 View Source

 (macro)

Returns true if given term is a message sent by the Erlang :dbg module for
function and function-return traces.

 Link to this macro

 type?(message, type)

 View Source

 (macro)

Returns true if given term is a message sent by the Erlang :dbg module and if
the message type corresponds to the given type.

Sibyl.Events

Module containing the core business logic of Sibyl.
Includes utility functions to defining events, emitting events, and reflecting
on events which are defined in any module loaded on the BEAM.

 Anchor for this section

 Summary

 Types

 event()

 sibyl_event()

 Functions

 build_event(event)

 Given an atom denoting some abstract event (but not of type event()), builds an event
name such that the given abstract event is formatted as per telemetry best practices.

 build_event(module, function, arity, event \\ nil)

 Builds a consistent telemetry event name following the conventions specified in
this post.

 define_event(event, module \\ nil)

 Defines the given event.

 emit(event, measurements \\ %{}, metadata \\ %{})

 See emit/4

 emit(module, event, measurements, metadata)

 Emits the given event.

 is_event(event)

 Returns true if event was defined.

 is_event(module, event)

 Given a module that may, or may not, use Sibyl as well as an event, returns
true if said module defines the given event.

 reflect()

 Returns a list of all telemetry events which have been defined by Sibyl.Events

 reflect(module)

 Returns a list of all telemetry events which have been defined by Sibyl.Events for
the given module.

 Anchor for this section

Types

 Link to this type

 event()

 View Source

 @type event() :: [atom()]

 Link to this type

 sibyl_event()

 View Source

 @type sibyl_event() :: atom()

 Anchor for this section

Functions

 Link to this macro

 build_event(event)

 View Source

 (macro)

 @spec build_event(event_fragment :: sibyl_event()) :: Sibyl.AST.ast()

Given an atom denoting some abstract event (but not of type event()), builds an event
name such that the given abstract event is formatted as per telemetry best practices.

 examples-assuming-this-is-being-called-in-a-module-and-function

 Examples (assuming this is being called in a module and function)

iex> Sibyl.Events.build_event(:not_found)
[:my_app, :"some_function/2", :not_found]

 Link to this function

 build_event(module, function, arity, event \\ nil)

 View Source

 @spec build_event(module(), function :: atom(), arity :: integer(), sibyl_event()) ::
 event()

 @spec build_event(module(), function :: nil, arity :: nil, sibyl_event()) :: event()

Builds a consistent telemetry event name following the conventions specified in
this post.
Called like: Sibyl.build_event(MyApp.Accounts, :register_user, 2, :email_sent),
produces the following event: [:my_app, :accounts, :"register_user/2", :email_sent]

 Link to this macro

 define_event(event, module \\ nil)

 View Source

 (macro)

 @spec define_event(event(), module() | nil) :: Sibyl.AST.ast()

Defines the given event.
Events should only be used once they are defined. Unless this is done, reflect/0
and reflect/1 will fail to see said event and will eventually throw errors.
When given a singular atom, it is assumed that the event you are trying to define
is namespaced to said module as: [:my_app, :my_module, :custom_event].
When given a list of atoms, the event is simply registered as whatever you passed
in; i.e. [:some, :custom, :event].

 Link to this function

 emit(event, measurements \\ %{}, metadata \\ %{})

 View Source

 @spec emit(event(), measurements :: map(), metadata :: map()) :: :ok

See emit/4

 Link to this function

 emit(module, event, measurements, metadata)

 View Source

 @spec emit(module(), event(), measurements :: map(), metadata :: map()) :: :ok

 @spec emit(module(), sibyl_event(), measurements :: map(), metadata :: map()) :: :ok

Emits the given event.
Note: this is a low level API which should not be called outside of Sibyl's own
code, and largely exists to plumb together the system.
Please prefer to use Sibyl.emit/3 which includes compile time checks to make
sure the events being emitted were registered.
When given an event as an atom, tries to emit the event namespaced to the given
module (see define_event/2 for more information).
When given a event as a list, simply emits that given list.

 Link to this function

 is_event(event)

 View Source

 @spec is_event(event()) :: boolean()

Returns true if event was defined.

 Link to this function

 is_event(module, event)

 View Source

 @spec is_event(module(), event()) :: boolean()

Given a module that may, or may not, use Sibyl as well as an event, returns
true if said module defines the given event.

 Link to this function

 reflect()

 View Source

 @spec reflect() :: [event()]

Returns a list of all telemetry events which have been defined by Sibyl.Events

 Link to this function

 reflect(module)

 View Source

 @spec reflect(module()) :: [event()]

Returns a list of all telemetry events which have been defined by Sibyl.Events for
the given module.
Note: some events may be implicitly defined via the top level @decorate trace()
or @decorate_all trace() decorators.

Sibyl.Handler behaviour

Behaviour for :telemetry handlers

 Anchor for this section

 Summary

 Callbacks

 handle_event(
 event,
 measurement,
 metadata,
 config
)

 Anchor for this section

Callbacks

 Link to this callback

 handle_event(
 event,
 measurement,
 metadata,
 config
)

 View Source

 @callback handle_event(
 event :: Sibyl.Events.event(),
 measurement :: term(),
 metadata :: term(),
 config :: term()
) :: any()

Sibyl.Handlers

Groups functions to make it easy to attach telemetry events to handlers

 Anchor for this section

 Summary

 Types

 handler()

 Functions

 attach_all_events(handler, opts \\ [])

 Reflects upon the state of the current application's modules and all other dynamically
loaded module and attaches any events defined in those modules to the given handler.

 attach_events(events, handler, opts \\ [])

 Attaches the given events the given handler.

 attach_module_events(module, handler, opts \\ [])

 Reflects upon the given module and attaches any events defined in those modules to
the given handler.

 Anchor for this section

Types

 Link to this type

 handler()

 View Source

 @type handler() :: module()

 Anchor for this section

Functions

 Link to this function

 attach_all_events(handler, opts \\ [])

 View Source

 @spec attach_all_events(handler(), Keyword.t()) :: :ok

Reflects upon the state of the current application's modules and all other dynamically
loaded module and attaches any events defined in those modules to the given handler.
Any options are forwarded to the given handler also.
Takes an optional, but recommended :name => String.t() option too.

 Link to this function

 attach_events(events, handler, opts \\ [])

 View Source

 @spec attach_events([Sibyl.Events.event()], handler(), Keyword.t()) :: :ok

Attaches the given events the given handler.
Any options are forwarded to the given handler also.
Takes an optional, but recommended :name => String.t() option too.

 Link to this function

 attach_module_events(module, handler, opts \\ [])

 View Source

 @spec attach_module_events(module(), handler(), Keyword.t()) :: :ok

Reflects upon the given module and attaches any events defined in those modules to
the given handler.
Any options are forwarded to the given handler also.
Takes an optional, but recommended :name => String.t() option too.

Sibyl.Handlers.FlameGraph

An example Telemetry handler converting :telemetry events into Chrome-compatible
flamegraphs.
Exposes two additional functions when compared to traditional Sibyl.Handlers:
	start/0 which instructs Elixir.Sibyl.Handlers.FlameGraph to start persisting metadata in order
to build the resultant flamegraph.

	stop/1 which instructs Elixir.Sibyl.Handlers.FlameGraph to flush any captured metadata into a
JSON file for further use.

If you're using a Chrome-derived browser, you'll be able to open and introspect
generated flamegraphs via the Chrome Tracing builtin. Otherwise,
you can use open source tools which understand Chrome Tracing's format to render
graphs.
Examples of open source apps that can render Chrome Traces include
Speedscope and Perfetto.
Note that this utility has only been tested and confirmed working with telemetry
explicitly passed in via Sibyl and may not work when listening to arbitrary
:telemetry events passed in from other OTP applications.
Notes on the file format used by Google's tracer, Speedscope, and other related tools
can be found here.

 Anchor for this section

 Summary

 Functions

 start()

 Instructs Elixir.Sibyl.Handlers.FlameGraph to start capturing and persisting :telemetry metadata.

 started?()

 Returns true if Elixir.Sibyl.Handlers.FlameGraph has been started prior to invokation.

 stop(output_filepath)

 Instructs Elixir.Sibyl.Handlers.FlameGraph to output any captured :telemetry metadata into the JSON
file of your choice.

 Anchor for this section

Functions

 Link to this function

 start()

 View Source

 @spec start() :: :ok

Instructs Elixir.Sibyl.Handlers.FlameGraph to start capturing and persisting :telemetry metadata.

 Link to this function

 started?()

 View Source

 @spec started?() :: boolean()

Returns true if Elixir.Sibyl.Handlers.FlameGraph has been started prior to invokation.

 Link to this function

 stop(output_filepath)

 View Source

 @spec stop(output_filepath :: Path.t()) :: :ok

Instructs Elixir.Sibyl.Handlers.FlameGraph to output any captured :telemetry metadata into the JSON
file of your choice.

Sibyl.Handlers.Logger

An example Telemetry handler for logging given events to the current application's
configured logger.
Please note that this very much is an example. There is little reason to do this
in production code.

Sibyl.Handlers.OpenTelemetry

OpenTelemetry is an open source standard telemetry standard which allows us to capture
custom metrics and traces of our application.
For local development, you can install tools such as Jaeger
to be able to view and test OpenTelemetry traces.
However, much of the BEAM ecosystem (and this library) uses :telemetry as a standard
for emitting arbitrary telemetry events.
This handler is a bridge between standard :telemetry span events and OpenTelemetry
spec compliant traces.
	Any event which ends in :start will start an OpenTelemetry span context.

	Any event which ends in :stop or :exception will stop the currently active
OpenTelemetry span context, capturing any metadata that is passed in.

	Any event which ends in anything else will be attached as a custom event to
the currently active span context.

For Elixir's built in Task module, Sibyl.Handlers.OpenTelemetry will be able to
internal state and automatically attach said async Task to the original parent.
Distributed traces via non Task means is also supported, but this cannot be automated.
To opt into this behaviour, serialize the span state on the consumer end via the
build_distributed_trace_context/0 function, and prior to starting any new traces
on the consumer end, use attach_distributed_trace_context/1. Doing this should
attach both the consumer and producer side of the trace into one for rendering in tools
such as Jaeger.

 Anchor for this section

 Summary

 Functions

 attach_distributed_trace_context(trace_context)

 Processes a serialized OpenTelemetry trace context (obtained via build_distributed_trace_context/0)
and persists it within the current process.

 build_distributed_trace_context()

 Serializes the current OpenTelemetry trace context to allow it to be sent over-the-wire
to external services, with the intention to re-attach the context on the consumer's end.

 undefined_trace_context()

 A constant for the undefined OpenTelemetry trace context.

 Anchor for this section

Functions

 Link to this function

 attach_distributed_trace_context(trace_context)

 View Source

 @spec attach_distributed_trace_context(trace_context :: String.t()) :: :ok

Processes a serialized OpenTelemetry trace context (obtained via build_distributed_trace_context/0)
and persists it within the current process.
The next span which is created will be automatically attached to this distributed
trace context, allowing for the building of (tooling permitting) distributed traces
across multiple different nodes, releases, services, etc.

 Link to this function

 build_distributed_trace_context()

 View Source

 @spec build_distributed_trace_context() :: String.t()

Serializes the current OpenTelemetry trace context to allow it to be sent over-the-wire
to external services, with the intention to re-attach the context on the consumer's end.
This should allow you (tooling permitting) to build distributed traces across multiple
different nodes, releases, services, etc.

 Link to this function

 undefined_trace_context()

 View Source

 @spec undefined_trace_context() :: String.t()

A constant for the undefined OpenTelemetry trace context.
Useful for defaulting a distributed trace context parse to a "noop" if data is malformed
or mistransmitted.

Sibyl.BadEmissionError exception

Sibyl.UndefinedEventError exception

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

