

 Siblings

 v0.11.2

 [image: Logo]

 Table of contents

 	Siblings

 	Modules

 	Siblings

 	Siblings.Lookup

 	Siblings.Throttler

 	Siblings.Worker

 	Siblings.InternalWorker

 	Siblings.InternalWorker.State

Siblings [image: Kantox ❤ OSS] [image: Test] [image: Dialyzer]

The partitioned dynamic supervision of FSM-backed workers.
Usage
Siblings is a library to painlessly manage many uniform processes,
all having the lifecycle and the FSM behind.
Consider the service, that polls the market rates from several
diffferent sources, allowing semi-automated trading based
on predefined conditions. For each bid, the process is to be spawn,
polling the external resources. Once the bid condition is met,
the bid gets traded.
With Siblings, one should implement Siblings.Worker.perform/3
callback, doing actual work and returning either :ok if no action
should be taken, or {:transition, event, payload} to initiate the
FSM transition. When the FSM get exhausted (reaches its end state,)
both the performing process and the FSM itself do shut down.
FSM instances leverage Finitomata
library, which should be used alone if no recurrent perform should be
accomplished or if the instances are not uniform.
Typical code for the Siblings.Worker implementation would be as follows
defmodule MyApp.Worker do
 @fsm """
 born --> |reject| rejected
 born --> |bid| traded
 """

 use Finitomata, @fsm

 def on_transition(:born, :reject, _nil, payload) do
 perform_rejection(payload)
 {:ok, :rejected, payload}
 end

 def on_transition(:born, :bid, _nil, payload) do
 perform_bidding(payload)
 {:ok, :traded, payload}
 end

 @behaviour Siblings.Worker

 @impl Siblings.Worker
 def perform(state, id, payload)

 def perform(:born, id, payload) do
 cond do
 time_to_bid?() -> {:transition, :bid, nil}
 stale?() -> {:transition, :reject, nil}
 true -> :noop
 end
 end

 def perform(:rejected, id, _payload) do
 Logger.info("The bid #{id} was rejected")
 {:transition, :__end__, nil}
 end

 def perform(:traded, id, _payload) do
 Logger.info("The bid #{id} was traded")
 {:transition, :__end__, nil}
 end
end
Now it can be used as shown below
{:ok, pid} = Siblings.start_link()
Siblings.start_child(MyApp.Worker, "Bid1", %{}, interval: 1_000)
Siblings.start_child(MyApp.Worker, "Bid2", %{}, interval: 1_000)
...
The above would spawn two processes, checking the conditions once
per a second (interval,) and manipulating the underlying FSM to
walk through the bids’ lifecycles.
Worker’s interval might be reset with
GenServer.cast(pid, {:reset, interval}) and the message might be casted
to it with GenServer.call(pid, {:message, message}). For the latter
to work, the optional callback on_call/2 must be implemented.
Sidenote: Normally, Siblings supervisor would be put into
the supervision tree of the target application.
Installation
def deps do
 [
 {:siblings, "~> 0.1"}
]
end
Changelog
	0.11.2 — [FIX] wrong specs for start_link/1 and child_spec/1
	0.11.1 — upgraded to Finitomata (v0.11.0)
	0.11.0 — throttler → generic + on perform
	0.10.3 — accept {(any() -> :ok), timeout} as die_with_children, write-only InternalState
	0.10.2 — accept (any() -> :ok) as die_with_children option as a callback
	0.10.0 — die_with_children: boolean() option
	0.8.2 — updated with last finitomata compiler
	0.7.0 — Siblings.state/{0,1,2,3} + update to Finitoma 0.7
	0.5.1 — allow {:reschedule, non_neg_integer()} return from perform/3
	0.5.0 — use FSM for the Sibling.Lookup
	0.4.3 — accept hibernate?: boolean parameter in call to Siblings.start_child/4 to hibernate children
	0.4.2 — accept workers: in call to Siblings.child_spec/1 to statically initialize Siblings
	0.4.1 — [BUG] many named Siblings instances
	0.4.0 — Siblings.{multi_call/2, multi_transition/3}
	0.3.3 — Siblings.{state/1, payload/2}
	0.3.2 — Siblings.{call/3, reset/3, transition/4}
	0.3.1 — retrieve childrens as both map and list
	0.3.0 — GenServer.cast(pid, {:reset, interval}) and GenServer.call(pid, {:message, message})
	0.2.0 — Fast Worker lookup
	0.1.0 — Initial MVP

Documentation

Siblings

Bolerplate to effectively handle many long-lived entities
of the same shape, driven by FSM.
Siblings is a library to painlessly manage many uniform processes,
all having the lifecycle and the FSM behind.
Consider the service, that polls the market rates from several
diffferent sources, allowing semi-automated trading based
on predefined conditions. For each bid, the process is to be spawn,
polling the external resources. Once the bid condition is met,
the bid gets traded.
With Siblings, one should implement Siblings.Worker.perform/3
callback, doing actual work and returning either :ok if no action
should be taken, or {:transition, event, payload} to initiate the
FSM transition. When the FSM get exhausted (reaches its end state,)
both the performing process and the FSM itself do shut down.
FSM instances leverage Finitomata
library, which should be used alone if no recurrent perform should be
accomplished or if the instances are not uniform.
Typical code for the Siblings.Worker implementation would be as follows
defmodule MyApp.Worker do
 @fsm """
 born --> |reject| rejected
 born --> |bid| traded
 """

 use Finitomata, @fsm

 def on_transition(:born, :reject, _nil, payload) do
 perform_rejection(payload)
 {:ok, :rejected, payload}
 end

 def on_transition(:born, :bid, _nil, payload) do
 perform_bidding(payload)
 {:ok, :traded, payload}
 end

 @behaviour Siblings.Worker

 @impl Siblings.Worker
 def perform(state, id, payload)

 def perform(:born, id, payload) do
 cond do
 time_to_bid?() -> {:transition, :bid, nil}
 stale?() -> {:transition, :reject, nil}
 true -> :noop
 end
 end

 def perform(:rejected, id, _payload) do
 Logger.info("The bid #{id} was rejected")
 {:transition, :__end__, nil}
 end

 def perform(:traded, id, _payload) do
 Logger.info("The bid #{id} was traded")
 {:transition, :__end__, nil}
 end
end
Now it can be used as shown below
{:ok, pid} = Siblings.start_link()
Siblings.start_child(MyApp.Worker, "Bid1", %{}, interval: 1_000)
Siblings.start_child(MyApp.Worker, "Bid2", %{}, interval: 1_000)
...
The above would spawn two processes, checking the conditions once
per a second (interval,) and manipulating the underlying FSM to
walk through the bids’ lifecycles.
Worker’s interval might be reset with
GenServer.cast(pid, {:reset, interval}) and the message might be casted
to it with GenServer.call(pid, {:message, message}). For the latter
to work, the optional callback on_call/2 must be implemented.
Sidenote: Normally, Siblings supervisor would be put into
the supervision tree of the target application.

 Anchor for this section

 Summary

 Types

 start_options()

 worker()

 Functions

 call(name \\ default_fqn(), id, message)

 Performs a GenServer.call/3 on the named worker.

 child_spec(init_arg)

 Returns the child spec
 for the named or unnamed Siblings process.

 multi_call(name \\ default_fqn(), message)

 Performs a GenServer.call/3 on all the workers.

 multi_transition(name \\ default_fqn(), event, payload)

 Initiates the transition of all the workers.

 payload(name \\ default_fqn(), id)

 Returns the payload of FSM behind the named worker.

 reset(name \\ default_fqn(), id, interval)

 Resets the the named worker’s interval.

 start_child(worker, id, payload, opts \\ [])

 Starts the supervised child under the PartitionSupervisor.

 start_link(opts \\ [])

 Starts the supervision subtree, holding the PartitionSupervisor.

 state(request \\ :instance, id \\ nil, name \\ default_fqn())

 Returns the state of the Siblings instance itself, of the named worker, or
 the named worker’s underlying FSM, depending on the first argument.

 states(name \\ default_fqn())

 Returns the states of all the workers as a map.

 transition(name \\ default_fqn(), id, event, payload)

 Initiates the transition of the named worker.

 Anchor for this section

Types

 Link to this type

 start_options()

 View Source

 @type start_options() :: [
 name: atom(),
 workers: [worker() | {module(), keyword()}],
 callbacks: [function()],
 throttler: keyword(),
 die_with_children: boolean() | (() -> :ok) | {(() -> :ok), non_neg_integer()}
]

 Link to this type

 worker()

 View Source

 @type worker() :: %{
 module: module(),
 id: Siblings.Worker.id(),
 payload: Siblings.Worker.payload(),
 options: Siblings.InternalWorker.options()
}

 Anchor for this section

Functions

 Link to this function

 call(name \\ default_fqn(), id, message)

 View Source

 @spec call(module(), Siblings.Worker.id(), Siblings.Worker.message()) ::
 Siblings.Worker.call_result() | {:error, :callback_not_implemented}

Performs a GenServer.call/3 on the named worker.

 Link to this function

 child_spec(init_arg)

 View Source

 @spec child_spec(start_options()) :: Supervisor.child_spec()

Returns the child spec
 for the named or unnamed Siblings process.
Useful when many Siblings processes are running simultaneously.

 Link to this function

 multi_call(name \\ default_fqn(), message)

 View Source

 @spec multi_call(module(), Siblings.Worker.message()) :: [
 Siblings.Worker.call_result() | {:error, :callback_not_implemented}
]

Performs a GenServer.call/3 on all the workers.

 Link to this function

 multi_transition(name \\ default_fqn(), event, payload)

 View Source

 @spec multi_transition(
 module(),
 Finitomata.Transition.event(),
 Finitomata.event_payload()
) :: :ok

Initiates the transition of all the workers.

 Link to this function

 payload(name \\ default_fqn(), id)

 View Source

 @spec payload(module(), Siblings.Worker.id()) :: Siblings.Worker.payload()

Returns the payload of FSM behind the named worker.

 Link to this function

 reset(name \\ default_fqn(), id, interval)

 View Source

 @spec reset(module(), Siblings.Worker.id(), non_neg_integer()) :: :ok

Resets the the named worker’s interval.

 Link to this function

 start_child(worker, id, payload, opts \\ [])

 View Source

 @spec start_child(
 module(),
 Siblings.Worker.id(),
 Siblings.Worker.payload(),
 Siblings.InternalWorker.options()
) :: :ok | DynamicSupervisor.on_start_child()

Starts the supervised child under the PartitionSupervisor.

 Link to this function

 start_link(opts \\ [])

 View Source

 @spec start_link(start_options()) :: Supervisor.on_start()

Starts the supervision subtree, holding the PartitionSupervisor.
This is the main entry point of Siblings.
 It starts the supervision tree, holding the partitioned
 DynamicSupervisors, the lookup to access children,
 and the optional set of workers to start immediately.
Siblings are fully controlled by FSM instances. Children
 are added using Siblings.Lookup interface methods which go
 all the way through underlying FSM implementation.
opts might include:
	name: atom() which is a name of the Siblings instance, defaults to Siblings
	workers: list() the list of the workers to start imminently upon Siblings start
	throttler: keyword() the throttler options, see Siblings.Throttler for details
	die_with_children: true | false | (-> :ok) | {(-> :ok), timeout} shutdown
the process when there is no more active child, defaults to false
(if a function of arity 0 is given, it’ll be called before the process shuts down)

	callbacks: list() the list of the handler to call back upon Lookup transitions

 Link to this function

 state(request \\ :instance, id \\ nil, name \\ default_fqn())

 View Source

 @spec state(
 request :: :instance | :sibling | :fsm | Siblings.Worker.id(),
 Siblings.Worker.id() | module(),
 module()
) :: nil | Siblings.InternalWorker.State.t() | Finitomata.State.t()

Returns the state of the Siblings instance itself, of the named worker, or
 the named worker’s underlying FSM, depending on the first argument.

 Link to this function

 states(name \\ default_fqn())

 View Source

 @spec states(module()) :: %{required(Siblings.Worker.id()) => Finitomata.State.t()}

Returns the states of all the workers as a map.

 Link to this function

 transition(name \\ default_fqn(), id, event, payload)

 View Source

 @spec transition(
 module(),
 Siblings.Worker.id(),
 Finitomata.Transition.event(),
 Finitomata.event_payload()
) :: :ok

Initiates the transition of the named worker.

Siblings.Lookup

Lookup module to quick access children and the _FSM_
 for the Siblings instance itself.
This module is a part of Siblings supervision tree
 and should never be started manually. It exposes the interface

 Anchor for this section

 Summary

 Types

 state()

 Functions

 all(name \\ Siblings.default_fqn())

 Returns all the workers running under this Siblings instance as a map
 %{Siblings.Worker.id() => pid()}.

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 del(name \\ Siblings.default_fqn(), id)

 Removes the reference for the naturally terminated child from the workers map
 through :delete_child transition with all the respective callbacks.

 get(name \\ Siblings.default_fqn(), id, default \\ nil)

 Returns the pid of the single dynamically supervised worker by its id.

 put(name \\ Siblings.default_fqn(), worker)

 Initiates the :start_child transition with all the respective callbacks
 to add a new child to the supervised list.

 Anchor for this section

Types

 Link to this type

 state()

 View Source

 @type state() :: :terminated | :ready | :idle | :*

 Anchor for this section

Functions

 Link to this function

 all(name \\ Siblings.default_fqn())

 View Source

 @spec all(module()) :: %{required(Siblings.Worker.id()) => pid()}

Returns all the workers running under this Siblings instance as a map
 %{Siblings.Worker.id() => pid()}.
This map might be really huge when there are many processes managed.

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 del(name \\ Siblings.default_fqn(), id)

 View Source

 @spec del(module(), Siblings.Worker.id()) :: :ok

Removes the reference for the naturally terminated child from the workers map
 through :delete_child transition with all the respective callbacks.

 Link to this function

 get(name \\ Siblings.default_fqn(), id, default \\ nil)

 View Source

Returns the pid of the single dynamically supervised worker by its id.

 Link to this function

 put(name \\ Siblings.default_fqn(), worker)

 View Source

 @spec put(module(), Siblings.worker()) :: :ok

Initiates the :start_child transition with all the respective callbacks
 to add a new child to the supervised list.

Siblings.Throttler

The internal definition of the call to throttle.
Siblings.Throttler.call/3 is a blocking call similar to GenServer.call/3, but
 served by the underlying GenStage producer-consumer pair.
Despite this implementation of throttling based on GenStage is provided
 mostly for internal needs, it is generic enough to use wherever. Use the childspec
 {Siblings.Throttler, name: name, initial: [], max_demand: 3, interval: 1_000}
 to start a throttling process and Siblings.Throttler.call/3 to perform throttled
 synchronous calls from different processes.

 Anchor for this section

 Summary

 Types

 t()

 The in/out parameter for calls to Siblings.Throttler.call/3

 throttlee()

 The simplified in parameter for calls to Siblings.Throttler.call/3

 Functions

 call(name \\ Siblings.default_fqn(), request, timeout \\ :infinity)

 Synchronously executes the function, using throttling based on GenStage.

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Starts the throttler with the underlying producer-consumer stages.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Siblings.Throttler{
 from: GenServer.from(),
 fun: (keyword() -> any()),
 args: keyword(),
 result: any(),
 payload: any()
}

The in/out parameter for calls to Siblings.Throttler.call/3

 Link to this type

 throttlee()

 View Source

 @type throttlee() :: t() | {(keyword() -> any()), [any()]}

The simplified in parameter for calls to Siblings.Throttler.call/3

 Anchor for this section

Functions

 Link to this function

 call(name \\ Siblings.default_fqn(), request, timeout \\ :infinity)

 View Source

Synchronously executes the function, using throttling based on GenStage.
This function has a default timeout :infinity because of its nature
 (throttling is supposed to take a while,) but it might be passed as the third
 argument in a call to call/3.
If a list of functions is given, executes all of them in parallel,
 collects the results, and then returns them to the caller.
The function might be given as t:Siblings.Throttler.t() or
 in a simplified form as {function_of_arity_1, arg}.

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

Starts the throttler with the underlying producer-consumer stages.
Accepted options are:
	name the base name for the throttler to be used in calls to call/3
	initial the initial load of requests (avoid using it unless really needed)
	max_demand, initial the options to be passed directly to GenStage’s consumer

Siblings.Worker behaviour

The worker for the single sibling process.

 Anchor for this section

 Summary

 Types

 call_result()

 Value, returned from on_call/2 callback

 id()

 Identifier of the worker process

 message()

 Message to be sent to the worker process

 payload()

 Payload associated with the worker

 Callbacks

 finitomata()

 The Finitomata FSM implementation module.

 on_call(message, t)

 The handler for the routed message from
 Siblings.InternalWorker.handle_call({:message, any()}).

 on_init(pid)

 The function to re-initialize FSM after crash.

 perform(state, id, payload)

 The callback to be implemented in each and every worker.

 Anchor for this section

Types

 Link to this type

 call_result()

 View Source

 @type call_result() :: any()

Value, returned from on_call/2 callback

 Link to this type

 id()

 View Source

 @type id() :: any()

Identifier of the worker process

 Link to this type

 message()

 View Source

 @type message() :: any()

Message to be sent to the worker process

 Link to this type

 payload()

 View Source

 @type payload() :: Finitomata.State.payload()

Payload associated with the worker

 Anchor for this section

Callbacks

 Link to this callback

 finitomata()

 View Source

 (optional)

 @callback finitomata() :: module()

The Finitomata FSM implementation module.
It will be used internally to carry the state of FSM.
If not implemented, this module itself will be considered an FSM implementation.

 Link to this callback

 on_call(message, t)

 View Source

 (optional)

 @callback on_call(message :: message(), Siblings.InternalWorker.State.t()) ::
 {result :: call_result(), Siblings.InternalWorker.State.t()}

The handler for the routed message from
 Siblings.InternalWorker.handle_call({:message, any()}).

 Link to this callback

 on_init(pid)

 View Source

 (optional)

 @callback on_init(pid()) :: :ok

The function to re-initialize FSM after crash.

 Link to this callback

 perform(state, id, payload)

 View Source

 @callback perform(
 state :: Finitomata.Transition.state(),
 id :: id(),
 payload :: payload()
) ::
 {:transition, Finitomata.Transition.event(), Finitomata.event_payload()}
 | {:reschedule, non_neg_integer()}
 | :noop

The callback to be implemented in each and every worker.
It will be called internally continiously by the internal worker process,
transitioning the underlying FSM according to the return value.

Siblings.InternalWorker

The internal process to manage Siblings.Worker subsequent runs
along with its FSM.

 Anchor for this section

 Summary

 Types

 options()

 Allowed options in a call to start_link/4

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 Anchor for this section

Types

 Link to this type

 options()

 View Source

 @type options() :: [
 interval: nil | non_neg_integer(),
 lookup: nil | pid() | GenServer.name(),
 throttler: %{optional({module(), atom()}) => GenServer.name()},
 internal_state: nil | pid() | GenServer.name(),
 name: GenServer.name(),
 hibernate?: boolean(),
 offload: (Siblings.InternalWorker.State.t() -> :ok)
]

Allowed options in a call to start_link/4

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

Siblings.InternalWorker.State

The state of the worker.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Siblings.InternalWorker.State{
 id: Siblings.Worker.id(),
 initial_payload: Siblings.Worker.payload(),
 worker: module(),
 fsm: nil | {reference(), pid()},
 lookup: nil | pid() | GenServer.name(),
 throttler: %{optional({module(), atom()}) => GenServer.name()},
 internal_state: nil | pid() | GenServer.name(),
 hibernate?: boolean(),
 offload: nil | (t() -> :ok),
 interval: nil | non_neg_integer(),
 schedule: nil | reference()
}

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

