

 shippex

 v0.13.0

 Table of contents

 	Shippex

 	Modules

 	Shippex

 	Shippex.Address

 	Shippex.Carrier

 	Shippex.Item

 	Shippex.Label

 	Shippex.Package

 	Shippex.Rate

 	Shippex.Service

 	Shippex.Shipment

 	Shippex.Transaction

 	Shippex.InvalidConfigError

 	Exceptions

 	Shippex.InvalidConfigError

Shippex
[image: Module Version]
[image: Hex Docs]
[image: Total Download]
[image: License]
[image: Last Updated]
Shippex is an abstraction of commonly used features in shipping with various carriers. It provides a (hopefully) pleasant API to work with carrier-provided web interfaces for fetching rates and printing shipping labels.
As of now, only UPS and USPS are supported. More carrier support will come in the future. Units of measurement are mostly hardcoded to inches and miles.
Installation
Add shippex to your list of dependencies in mix.exs:
def deps do
 [{:shippex, "~> 0.13"}]
end
Ensure shippex is started before your application:
def application do
 [applications: [:shippex]]
end
Configuration
config :shippex,
 env: :dev,
 distance_unit: :in, # either :in or :cm
 weight_unit: :lbs, # either :lbs or :kg
 currency: :usd, # :usd, :can, :mxn, :eur
 carriers: [
 ups: [
 username: "MyUsername",
 password: "MyPassword",
 secret_key: "123123",
 shipper: %{
 account_number: "AB1234",
 name: "My Company",
 phone: "123-456-7890",
 address: "1234 Foo St",
 city: "Foo",
 state: "TX",
 postal_code: "78999"
 }
],
 usps: [
 username: "MyUsername",
 password: "MyPassword"
]
]
Usage
Create origin/destination addresses.
origin = Shippex.Address.new(%{
 name: "Earl G",
 phone: "123-123-1234",
 address: "9999 Hobby Lane",
 address_line_2: nil,
 city: "Austin",
 state: "TX",
 postal_code: "78703"
})

destination = Shippex.Address.new(%{
 name: "Bar Baz",
 phone: "123-123-1234",
 address: "1234 Foo Blvd",
 address_line_2: nil,
 city: "Plano",
 state: "TX",
 postal_code: "75074",
 country: "US" # optional
})

Create a package. Currently only inches and pounds (lbs) supported.
package = Shippex.Package.new(%{
 length: 8,
 width: 8,
 height: 4,
 weight: 5,
 description: "Headphones",
 monetary_value: 20 # optional
})

Link the origin, destination, and package with a shipment.
shipment = Shippex.Shipment.new(origin, destination, package)

Fetch rates to present to the user.
rates = Shippex.fetch_rates(shipment, carriers: :usps)

Accept one of the services and print the label
{:ok, rate} = Enum.shuffle(rates) |> hd

Fetch the label. Includes the tracking number and a gif image of the label.
{:ok, transaction} = Shippex.create_transaction(shipment, rate.service)

rate = transaction.rate
label = transaction.label

Print the price.
IO.puts(rate.price)

Write the label to disk.
File.write!("#{label.tracking_number}.#{label.format}", Base.decode64!(label.image))
TODO:
Carrier support:
	[x] UPS
	[x] USPS
	[] FedEx

Shippex

Module documentation for Shippex.

 Anchor for this section

 Summary

 Types

 response()

 Functions

 cancel_transaction(transaction)

 Cancels the transaction associated with label, if possible. The result is
returned in a tuple.

 cancel_transaction(carrier, shipment, tracking_number)

 create_transaction(shipment, service)

 Fetches the label for shipment for a specific Service. The service
module contains the Carrier and selected delivery speed.

 fetch_rate(shipment, service)

 Fetches the rate for shipment for a specific Service. The service module
contains the Carrier and selected delivery speed. You can also pass in the
ID of the service.

 fetch_rates(shipment, opts \\ [])

 Fetches rates for a given shipment. Possible options

 services_country?(carrier, country)

 Returns true if the carrier services the given country. An
ISO-3166-compliant country code is required.

 validate_address(address, opts \\ [])

 Performs address validation. If the address is completely invalid,
{:error, result} is returned. For addresses that may have typos,
{:ok, candidates} is returned. You can iterate through the list of
candidates to present to the end user. Addresses that pass validation
perfectly will still be in a list where length(candidates) == 1.

 Anchor for this section

Types

 Link to this type

 response()

 View Source

 Specs

 response() :: %{code: String.t(), message: String.t()}

 Anchor for this section

Functions

 Link to this function

 cancel_transaction(transaction)

 View Source

 Specs

 cancel_transaction(Shippex.Transaction.t()) :: {atom(), response()}

Cancels the transaction associated with label, if possible. The result is
returned in a tuple.
You may pass in either the transaction, or if the full transaction struct
isn't available, you may pass in the carrier, shipment, and tracking number
instead.
case Shippex.cancel_shipment(transaction) do
 {:ok, result} ->
 IO.inspect(result) #=> %{code: "1", message: "Voided successfully."}
 {:error, %{code: code, message: message}} ->
 IO.inspect(code)
 IO.inspect(message)
end

 Link to this function

 cancel_transaction(carrier, shipment, tracking_number)

 View Source

 Specs

 cancel_transaction(Shippex.Carrier.t(), Shippex.Shipment.t(), String.t()) ::
 {atom(), response()}

 Link to this function

 create_transaction(shipment, service)

 View Source

 Specs

 create_transaction(Shippex.Shipment.t(), Shippex.Service.t()) ::
 {:ok, Shippex.Transaction.t()} | {:error, response()}

Fetches the label for shipment for a specific Service. The service
module contains the Carrier and selected delivery speed.
Shippex.create_transaction(shipment, service)

 Link to this function

 fetch_rate(shipment, service)

 View Source

 Specs

 fetch_rate(Shippex.Shipment.t(), atom() | Shippex.Service.t()) ::
 {atom(), Shippex.Rate.t()}

Fetches the rate for shipment for a specific Service. The service module
contains the Carrier and selected delivery speed. You can also pass in the
ID of the service.
Shippex.fetch_rate(shipment, service)

 Link to this function

 fetch_rates(shipment, opts \\ [])

 View Source

 Specs

 fetch_rates(Shippex.Shipment.t(), Keyword.t()) :: [{atom(), Shippex.Rate.t()}]

Fetches rates for a given shipment. Possible options:
	carriers - Fetches rates for all services for the given carriers
	services - Fetches rates only for the given services

These may be used in combination. To fetch rates for all UPS services, as
well as USPS Priority, for example:
Shippex.fetch_rates(shipment, carriers: :ups, services: [:usps_priority])
If no options are provided, Shippex will fetch rates for every service from
every available carrier.

 Link to this function

 services_country?(carrier, country)

 View Source

 Specs

 services_country?(Shippex.Carrier.t(), ISO.country_code()) :: boolean()

Returns true if the carrier services the given country. An
ISO-3166-compliant country code is required.
iex> Shippex.services_country?(:usps, "US")
true

iex> Shippex.services_country?(:usps, "KP")
false

 Link to this function

 validate_address(address, opts \\ [])

 View Source

 Specs

 validate_address(Shippex.Address.t(), Keyword.t()) ::
 {atom(), response() | [Shippex.Address.t()]}

Performs address validation. If the address is completely invalid,
{:error, result} is returned. For addresses that may have typos,
{:ok, candidates} is returned. You can iterate through the list of
candidates to present to the end user. Addresses that pass validation
perfectly will still be in a list where length(candidates) == 1.
Note that the candidates returned will automatically pass through
Shippex.Address.address() for casting. Also, if :usps is used as the
validation provider, the number of candidates will always be 1.
address = Shippex.Address.address(%{
 name: "Earl G",
 phone: "123-123-1234",
 address: "9999 Hobby Lane",
 address_line_2: nil,
 city: "Austin",
 state: "TX",
 postal_code: "78703"
})

case Shippex.validate_address(address) do
 {:error, %{code: code, message: message}} ->
 # Present the error.
 {:ok, candidates} when length(candidates) == 1 ->
 # Use the address
 {:ok, candidates} when length(candidates) > 1 ->
 # Present candidates to user for selection
end

Shippex.Address

Represents an address that can be passed to other Shippex functions. Do
not initialize this struct directly. Instead, use address/1.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 address_line_list(address)

 Returns the list of non-nil address lines. If no address_line_2 is
present, it returns a list of a single String.

 common_country_code(common_name)

 Returns the country code for the given common name, or nil if none was found.

 common_country_name(code)

 Returns a common country name for the given country code. This removes
occurrences of "(the)" that may be present in the ISO-3166-2 data. For
example, the code "US" normally maps to "United States of America (the)". We
can shorten this with

 new(params)

 Initializes an Address struct from the given params, and performs minor
validations that do not require any service requests.

 new!(params)

 Calls new/1 and raises an error on failure.

 state_without_country(map)

 Returns the state code without its country code prefix.

 subdivision_required?(arg1)

 Returns true if addresses for the country require a province, state, or
other subdivision to be specified to validate addresses.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Address{
 address: String.t(),
 address_line_2: nil | String.t(),
 city: String.t(),
 company_name: nil | String.t(),
 country: ISO.country_code(),
 first_name: nil | String.t(),
 last_name: nil | String.t(),
 name: nil | String.t(),
 phone: nil | String.t(),
 postal_code: String.t(),
 state: String.t()
}

 Anchor for this section

Functions

 Link to this function

 address_line_list(address)

 View Source

 Specs

 address_line_list(t()) :: [String.t()]

Returns the list of non-nil address lines. If no address_line_2 is
present, it returns a list of a single String.

 Link to this function

 common_country_code(common_name)

 View Source

 Specs

 common_country_code(String.t()) :: nil | String.t()

Returns the country code for the given common name, or nil if none was found.
iex> Address.common_country_code("United States")
"US"
iex> Address.common_country_code("United States of America")
"US"

 Link to this function

 common_country_name(code)

 View Source

 Specs

 common_country_name(String.t()) :: String.t()

Returns a common country name for the given country code. This removes
occurrences of "(the)" that may be present in the ISO-3166-2 data. For
example, the code "US" normally maps to "United States of America (the)". We
can shorten this with:
iex> Address.common_country_name("US")
"United States"

 Link to this function

 new(params)

 View Source

 Specs

 new(map()) :: {:ok, t()} | {:error, String.t()}

Initializes an Address struct from the given params, and performs minor
validations that do not require any service requests.
You may specify first_name and last_name separately, which will be
concatenated to make the name property, or just specify name directly.
If name is specified directly, Shippex will try to infer the first and last
names in case they're required separately for API calls.
Shippex.Address.new(%{
 first_name: "Earl",
 last_name: "Grey",
 phone: "123-123-1234",
 address: "9999 Hobby Lane",
 address_line_2: nil,
 city: "Austin",
 state: "TX",
 postal_code: "78703"
})

 Link to this function

 new!(params)

 View Source

 Specs

 new!(map()) :: t() | none()

Calls new/1 and raises an error on failure.

 Link to this function

 state_without_country(map)

 View Source

 Specs

 state_without_country(t() | %{state: String.t(), country: String.t()}) ::
 String.t()

Returns the state code without its country code prefix.
iex> address = Shippex.Address.new!(%{
...> first_name: "Earl",
...> last_name: "Grey",
...> phone: "123-123-1234",
...> address: "9999 Hobby Lane",
...> address_line_2: nil,
...> city: "Austin",
...> state: "US-TX",
...> postal_code: "78703",
...> country: "US"
...> })
iex> Address.state_without_country(address)
"TX"

 Link to this function

 subdivision_required?(arg1)

 View Source

 Specs

 subdivision_required?(ISO.country_code()) :: boolean()

Returns true if addresses for the country require a province, state, or
other subdivision to be specified to validate addresses.
iex> Address.subdivision_required?("US")
true

iex> Address.subdivision_required?("CN")
true

iex> Address.subdivision_required?("SG")
false

Shippex.Carrier behaviour

Defines a behaviour for implementing a new Carrier module. Includes a helper
function for fetching the Carrier module.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 module(carrier)

 Fetches a Carrier module by its atom/string representation.

 Callbacks

 cancel_transaction(arg1)

 cancel_transaction(arg1, arg2)

 create_transaction(arg1, arg2)

 fetch_rate(arg1, arg2)

 fetch_rates(arg1)

 services_country?(arg1)

 track_packages(arg1)

 validate_address(arg1)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: atom()

 Anchor for this section

Functions

 Link to this function

 module(carrier)

 View Source

 Specs

 module(atom() | String.t()) :: module()

Fetches a Carrier module by its atom/string representation.
iex> Carrier.module(:ups)
Carrier.UPS
iex> Carrier.module("UPS")
Carrier.UPS
iex> Carrier.module("ups")
Carrier.UPS

 Anchor for this section

Callbacks

 Link to this callback

 cancel_transaction(arg1)

 View Source

 Specs

 cancel_transaction(Shippex.Transaction.t()) :: {atom(), String.t()}

 Link to this callback

 cancel_transaction(arg1, arg2)

 View Source

 Specs

 cancel_transaction(Shippex.Shipment.t(), String.t()) :: {atom(), String.t()}

 Link to this callback

 create_transaction(arg1, arg2)

 View Source

 Specs

 create_transaction(Shippex.Shipment.t(), atom() | Shippex.Service.t()) ::
 {atom(), Shippex.Transaction.t() | map()}

 Link to this callback

 fetch_rate(arg1, arg2)

 View Source

 Specs

 fetch_rate(Shippex.Shipment.t(), Shippex.Service.t()) ::
 [{atom(), Shippex.Rate.t()}] | {atom(), Shippex.Rate.t()}

 Link to this callback

 fetch_rates(arg1)

 View Source

 Specs

 fetch_rates(Shippex.Shipment.t()) :: [{atom(), Shippex.Rate.t()}]

 Link to this callback

 services_country?(arg1)

 View Source

 Specs

 services_country?(ISO.country_code()) :: boolean()

 Link to this callback

 track_packages(arg1)

 View Source

 Specs

 track_packages(String.t() | [String.t()]) :: {:ok | :error, any()}

 Link to this callback

 validate_address(arg1)

 View Source

 Specs

 validate_address(Address.t()) :: {:ok, [Address.t()]} | {:error, any()}

Shippex.Item

Defines a struct for storing an Item in a Package.
The monetary_value might be required depending on the origin/destination
countries of the shipment. Both monetary_value and insurance are integers
stored in USD cents.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(attrs)

 Builds and returns an Item. Use this instead of directly initializing the
struct.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Item{
 description: nil | String.t(),
 monetary_value: nil | integer(),
 quantity: nil | number(),
 weight: nil | number()
}

 Anchor for this section

Functions

 Link to this function

 new(attrs)

 View Source

 Specs

 new(map()) :: t()

Builds and returns an Item. Use this instead of directly initializing the
struct.

Shippex.Label

Defines the struct for storing a returned Rate, along with the tracking
number, base64-encoded image and its format.
%Shippex.Label{rate: %Shippex.Rate{},
 tracking_number: "ABCDEF1234",
 format: :gif,
 image: "iVBORw0K..."}
Note that :image is always a pure base64 string, and doesn't contain common
prefixes like "data:image/gif;base64," and so on.
Currently, UPS returns GIF labels, and USPS returns PDF labels.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Label{
 format: :gif | :pdf | :tif | :png,
 image: String.t(),
 tracking_number: String.t()
}

Shippex.Package

Defines the struct for storing a Package, which is then passed along with
an origin and destination address for shipping estimates. A description is
optional, as it may or may not be used with various carriers.
For USPS, a package has a container string which can be one of the
pre-defined USPS containers.
Do not pass a weight parameter. Instead, pass in a list of :items with a
weight parameter on each of these. The weight on the package will be the sum
of the weights of each of these. Same for :monetary_value.
:description can optionally be passed in. Otherwise, it will be generated
by joining the descriptions of each of the items.
Shippex.Package.package(%{length: 8
 width: 8,
 height: 8,
 items: [
 %{weight: 1, monetary_value: 100, description: "A"},
 %{weight: 2, monetary_value: 200, description: "B"}
]})

=> %Package{weight: 3, monetary_value: 300, description: "A, B", ...}

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(attrs)

 Builds and returns a Package. Use this instead of directly initializing
the struct.

 usps_containers()

 Returns a map of predefined containers for use with USPS. These can be
passed to package.container for fetching rates.

 usps_flat_rate_containers()

 Returns a map of flat rate USPS containers, along with their string description
and flat shipping rate (in cents).

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Package{
 container: nil | atom() | String.t(),
 description: nil | String.t(),
 girth: nil | number(),
 height: number(),
 insurance: nil | number(),
 items: [Shippex.Item.t()],
 length: number(),
 monetary_value: number(),
 weight: number(),
 width: number()
}

 Anchor for this section

Functions

 Link to this function

 new(attrs)

 View Source

 Specs

 new(map()) :: t()

Builds and returns a Package. Use this instead of directly initializing
the struct.

 Link to this function

 usps_containers()

 View Source

 Specs

 usps_containers() :: %{required(atom()) => String.t()}

Returns a map of predefined containers for use with USPS. These can be
passed to package.container for fetching rates.

 Link to this function

 usps_flat_rate_containers()

 View Source

 Specs

 usps_flat_rate_containers() :: %{required(atom()) => flat_rate_container()}

Returns a map of flat rate USPS containers, along with their string description
and flat shipping rate (in cents).

Shippex.Rate

A Rate is a representation of a price estimate from a given carrier for a
Service, which is typically selected by the end user for a desired shipping
speed.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Rate{
 line_items: nil | [%{name: String.t(), price: integer()}],
 price: integer(),
 service: Shippex.Service.t()
}

Shippex.Service

A Service represents a carrier's offered shipping option. This is not
initialized by the user directly. However, some convenience functions exist
to display all offered carrier services to the user.
Service fields are:
	:id - A unique Shippex ID that can be used to perform lookups or fetch rates
	:carrier - The atom representing the carrier
	:code - Internally used by Shippex for API requests
	:description - A user-friendly string containing the name of the service

Example
 iex> Shippex.Service.services_for_carrier(:ups)
 [
 %Shippex.Service{id: :ups_next_day_air, carrier: :ups, description: "UPS Next Day Air"},
 %Shippex.Service{id: :ups_second_day_air, carrier: :ups, description: "UPS 2nd Day Air"},
 %Shippex.Service{id: :ups_three_day_select, carrier: :ups, description: "UPS 3 Day Select"},
 %Shippex.Service{id: :ups_ground, carrier: :ups, description: "UPS Ground"}
]

 Anchor for this section

 Summary

 Types

 t()

 Functions

 get(arg1)

 Looks up a shipping service by its unique Shippex ID. Returns nil if none
exist.

 services_for_carrier(carrier, shipment)

 Returns all services for carrier based on the shipment provided.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Service{
 carrier: Shippex.Carrier.t(),
 description: String.t(),
 id: atom()
}

 Anchor for this section

Functions

 Link to this function

 get(arg1)

 View Source

 Specs

 get(atom()) :: t() | nil

Looks up a shipping service by its unique Shippex ID. Returns nil if none
exist.
iex> Service.get(:usps_priority)
%Service{id: :usps_priority, carrier: :usps, description: "Priority Mail"}
iex> Service.get(:invalid_service)
nil

 Link to this function

 services_for_carrier(carrier, shipment)

 View Source

 Specs

 services_for_carrier(Shippex.Carrier.t(), Shippex.Shipment.t()) :: [t()]

Returns all services for carrier based on the shipment provided.
Shippex.Service.services_for_carrier(:ups)

Shippex.Shipment

A Shipment represents everything needed to fetch rates from carriers: an
origin, a destination, and a package description. An optional :id field
is provided in the struct, which may be used by the end user to represent the
user's internal identifier for the shipment. The id is not used by Shippex.
Shipments are created by shipment/3.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new(from, to, package, opts \\ [])

 Builds a Shipment.

 new!(from, to, package, opts \\ [])

 Builds a Shipment. Raises on failure.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Shipment{
 from: Shippex.Address.t(),
 id: any(),
 package: Shippex.Package.t(),
 ship_date: any(),
 to: Shippex.Address.t()
}

 Anchor for this section

Functions

 Link to this function

 new(from, to, package, opts \\ [])

 View Source

 Specs

 new(Shippex.Address.t(), Shippex.Address.t(), Shippex.Package.t(), Keyword.t()) ::
 {:ok, t()} | {:error, String.t()}

Builds a Shipment.

 Link to this function

 new!(from, to, package, opts \\ [])

 View Source

 Specs

 new!(Shippex.Address.t(), Shippex.Address.t(), Shippex.Package.t(), Keyword.t()) ::
 t() | none()

Builds a Shipment. Raises on failure.

Shippex.Transaction

Defines a struct that represents billable transactions with carriers.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Shippex.Transaction{
 carrier: Shippex.Carrier.t(),
 label: nil | Shippex.Label.t(),
 rate: Shippex.Rate.t(),
 shipment: Shippex.Shipment.t()
}

Shippex.InvalidConfigError exception

Shippex.InvalidConfigError exception

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

