

 rustler_precompiled

 v0.5.1

 Table of contents

 	Precompilation guide

 	Changelog

 	Modules

 	RustlerPrecompiled

 	Mix Tasks

 	mix rustler_precompiled.download

Precompilation guide

Rustler provides an easy way to use safer NIFs in OTP applications. But in some
environments it's harder to use the benefits of the tool because every user
needs to install the Rust toolchain and compile the project,
which can take several minutes in some cases.
This changes with the help of the RustlerPrecompiled package. Now we can easily
use precompiled Rustler NIFs from an external source.
The precompilation happens in a CI server, always in a transparent way, and
the Hex package published should always include a checksum file to ensure
the NIFs stays the same, therefore avoiding supply chain attacks.
In this guide I will show you how to prepare your project to use this feature.
Prepare for the build
Most of the work is done in the CI server. In this example we are going to use GitHub Actions.
The GH Actions service has the benefit of hosting artifacts for releases and make them
public available.
Configure Github Actions
In order for the workflow to succeed, read and write permissions will need to be enabled for the
repository.
	Settings > Actions > General
	Workflow permissions
	Check the box "Read and write permissions"

Configure Targets
Usually we want to build for the most popular targets and the three last NIF versions. NIF versions
are more stable than OTP versions because they only change after two major releases of OTP.
For this guide our targets will be the following:
	OS: Linux, Windows, macOS
	Architectures: x86_64, aarch64 (ARM 64 bits), arm
	NIF versions: 2.14, 2.15, 2.16.

In summary the build matrix looks like this:
matrix:
 nif: ["2.16", "2.15", "2.14"]
 job:
 - { target: arm-unknown-linux-gnueabihf , os: ubuntu-20.04 , use-cross: true }
 - { target: aarch64-unknown-linux-gnu , os: ubuntu-20.04 , use-cross: true }
 - { target: aarch64-apple-darwin , os: macos-11 }
 - { target: x86_64-apple-darwin , os: macos-11 }
 - { target: x86_64-unknown-linux-gnu , os: ubuntu-20.04 }
 - { target: x86_64-unknown-linux-musl , os: ubuntu-20.04 , use-cross: true }
 - { target: x86_64-pc-windows-gnu , os: windows-2019 }
 - { target: x86_64-pc-windows-msvc , os: windows-2019 }
A complete workflow example can be found in the rustler_precompilation_example project.
Some targets are only supported by later versions of cross. For those, you might want to
install cross directly from GitHub. You can see an example in this
pipeline.
Additional configuration before build
In our build we are going to cross compile our crate project (the Rust code for our NIF) using
a variety of targets as we saw in the previous section. For this to work we need to guide the Rust
compiler in some cases by providing additional configuration in the .cargo/config file of our project.
Here is an example of that file:
[target.'cfg(target_os = "macos")']
rustflags = [
 "-C", "link-arg=-undefined",
 "-C", "link-arg=dynamic_lookup",
]

See https://github.com/rust-lang/rust/issues/59302
[target.x86_64-unknown-linux-musl]
rustflags = [
 "-C", "target-feature=-crt-static"
]

Provides a small build size, but takes more time to build.
[profile.release]
lto = true
In addition to that, we also use a tool called cross that
makes the build easier for some targets (the ones using use-cross: true in our example).
We need to tell cross to read an environment variable from our "host machine", because cross uses
containers to build our software.
So you need to create the file Cross.toml in the NIF directory with the following content:
[build.env]
passthrough = [
 "RUSTLER_NIF_VERSION"
]
The Rustler module
We need to tell RustlerPrecompiled where to find our NIF files, and we need to tell which version to use.
defmodule RustlerPrecompilationExample.Native do
 version = Mix.Project.config()[:version]

 use RustlerPrecompiled,
 otp_app: :rustler_precompilation_example,
 crate: "example",
 base_url:
 "https://github.com/philss/rustler_precompilation_example/releases/download/v#{version}",
 force_build: System.get_env("RUSTLER_PRECOMPILATION_EXAMPLE_BUILD") in ["1", "true"],
 version: version

 # When your NIF is loaded, it will override this function.
 def add(_a, _b), do: :erlang.nif_error(:nif_not_loaded)
end
This example was extracted from the rustler_precompilation_example project.
RustlerPrecompiled will try to figure out the target and download the correct file for us. This will happen in compile
time only.
Optionally it's possible to force the compilation by setting an env var, like the example suggests.
It's also possible to force the build by using a pre release version, like 0.1.0-dev. The only
requirement to force the build is to have Rustler declared as a dependency as well:
{:rustler, ">= 0.0.0", optional: true}.
The release flow
Generating a checksum file
In a scenario where you need to release a Hex package using precompiled NIFs, you first need to
build the release in the CI, wait for all artifacts to be available and then generate
the checksum file that is MANDATORY for your package to work.
This checksum file is generated by running the following command after the build is complete:
$ mix rustler_precompiled.download YourRustlerModule --all --print

With the module I used for this guide, the command would be:
$ mix rustler_precompiled.download RustlerPrecompilationExample.Native --all --print

The file generated will be named checksum-Elixir.RustlerPrecompilationExample.Native.exs and
it's extremely important that you include this file in your Hex package (by updating the files:
field in your mix.exs). Otherwise your package won't work. Your files: key at your
package configuration will look like this:
defp package do
 [
 files: [
 "lib",
 "native",
 "checksum-*.exs",
 "mix.exs"
],
 # ...
]
end
Note: you don't need to track the checksum file in your version control system (git or other).
For an example, refer to the mix.exs file of the rustler precompilation example
or elixir-nx's explorer library.
Tip: use the mix hex.build --unpack command to confirm which files are being included (and if the package looks good before publishing).
Recommended flow
To recap, the suggested flow is the following:
	release a new tag
	push the code to your repository with the new tag: git push origin main --tags
	wait for all NIFs to be built
	run the mix rustler_precompiled.download task (with the flag --all)
	release the package to Hex.pm (make sure your release includes the correct files).

Conclusion
The ability to use precompiled NIFs written in Rust can increase the adoption of some packages,
because people won't need to have Rust installed. But this comes with some drawbacks and more
responsibilities to the maintainers, so use this feature carefully.

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
Unreleased
0.5.1 - 2022-05-24
Fixed
	Fix available targets naming to include the NIF version in the name. It was removed accidentally.
Thanks @adriankumpf.

0.5.0 - 2022-05-24
Added
	Now it's possible to configure the targets list, based in the Rust's Plataform Support
list. You can run rustc --print target-list to get the full list.
Thanks @adriankumpf.

Changed
	The precompilation guide was improved with instructions and suggestions for the files key at
the project config.
Thanks @nbw.
	Now we raise with a different error if the NIF artifact cannot be written when downloading to create
the checksum file.

0.4.1 - 2022-04-28
Fixed
	Fix __using__ macro for when Rustler is not loaded.

0.4.0 - 2022-04-28
Changed
	Make Rustler an optional dependency. This makes installation faster for most of the users.

0.3.0 - 2022-03-26
Added
	Add the possibility to skip the download of unavailable NIFs when generating the
checksum file - thanks @fahchen

0.2.0 - 2022-02-18
Fixed
	Fix validation of URL in order to be compatible with Elixir ~> 1.11.
The previous implementation was restricted to Elixir ~> 1.13.

Added
	Add :force_build option that fallback to Rustler. It passes all options
except the ones used by RustlerPrecompiled down to Rustler.
This option will be by default false, but if the project is using a pre-release,
then it will always be set to true.
With this change the project starts depending on Rustler.

Changed
	Relax dependencies to the minor versions.

0.1.0 - 2022-02-16
Added
	Add basic features to download and use the precompiled NIFs in a safe way.

RustlerPrecompiled

Download and use precompiled NIFs safely with checksums.
Rustler Precompiled is a tool for library maintainers that rely on Rustler.
It helps by removing the need to have the Rust compiler installed in the
user's machine.
Check the Precompilation Guide for details.
Example
defmodule MyNative do
 use RustlerPrecompiled,
 otp_app: :my_app,
 crate: "my_app_nif",
 base_url: "https://github.com/me/my_project/releases/download/v0.1.0",
 version: "0.1.0"
end
Options
	:otp_app - The OTP app name that the dynamic library will be loaded from.

	:crate - The name of Rust crate if different from the :otp_app. This is optional.

	:base_url - A valid URL that is used as base path for the NIF file.

	:version - The version of precompiled assets (it is part of the NIF filename).

	:force_build - Force the build with Rustler. This is false by default, but
if your :version is a pre-release (like "2.1.0-dev"), this option will always
be set true.
You can also configure this option by setting an application env like this:
config :rustler_precompiled, :force_build, your_otp_app: true
It is important to add the ":rustler" package to your dependencies in order to force
the build. To do that, just add it to your mix.exs file:
{:rustler, ">= 0.0.0", optional: true}

	:targets - A list of targets supported by
Rust for which
precompiled assets are available. By default the following targets are
configured:
	aarch64-apple-darwin
	x86_64-apple-darwin
	x86_64-unknown-linux-gnu
	x86_64-unknown-linux-musl
	arm-unknown-linux-gnueabihf
	aarch64-unknown-linux-gnu
	x86_64-pc-windows-msvc
	x86_64-pc-windows-gnu

In case "force build" is used, all options except :base_url, :version,
:force_build and :targets are going to be passed down to Rustler.
So if you need to configure the build, check the Rustler options.

 Anchor for this section

 Summary

 Functions

 available_nif_urls(nif_module)

 Returns URLs for NIFs based on its module name.

 current_target_nif_url(nif_module)

 Returns the file URL to be downloaded for current target.

 target(config \\ target_config(), available_targets)

 Returns the target triple for download or compile and load.

 Anchor for this section

Functions

 Link to this function

 available_nif_urls(nif_module)

 View Source

Returns URLs for NIFs based on its module name.
The module name is the one that defined the NIF and this information
is stored in a metadata file.

 Link to this function

 current_target_nif_url(nif_module)

 View Source

Returns the file URL to be downloaded for current target.
It receives the NIF module.

 Link to this function

 target(config \\ target_config(), available_targets)

 View Source

Returns the target triple for download or compile and load.
This function is translating and adding more info to the system
architecture returned by Elixir/Erlang to one used by Rust.
The returned string has the following format:
"nif-NIF_VERSION-ARCHITECTURE-VENDOR-OS-ABI"

 examples

 Examples

iex> RustlerPrecompiled.target()
{:ok, "nif-2.16-x86_64-unknown-linux-gnu"}

iex> RustlerPrecompiled.target()
{:ok, "nif-2.15-aarch64-apple-darwin"}

mix rustler_precompiled.download

A task responsible for downloading the precompiled NIFs for a given module.
This task must only be used by package creators who want to ship the
precompiled NIFs. The goal is to download the precompiled packages and
generate a checksum to check-in alongside the project in the the Hex repository.
This is done by passing the --all flag.
You can also use the --only-local flag to download only the precompiled
package for use during development.
You can use the --ignore-unavailable flag to ignore any NIFs that are not available.
This is useful when you are developing a new NIF that does not support all platforms.
This task also accept the --print flag to print the checksums.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

