

 resolve

 v0.2.1

 Table of contents

 	Resolve

 	LICENSE

 	Modules

 	Resolve

Resolve

Dependency injection and resolution at compile time or runtime.
Resolve is designed for swapping out dependencies in multi-target systems,
like embedded / IoT devices, where different hardware may be available depending
on which target the firmware is running on, or where physical hardware may be
missing all together when running the firmware on the host for development and
testing. That being said, Resolve also works for the traditional case of unit
testing, as the test environment is essentially just another type of target.
Resolve can be used in conjunction with mocks for testing, as they each have
their own advantages. Resolve has the benefit of not being linked to a process,
which means Resolve can be helpful for testing GenServers or other code that
runs in a process your test doesn't have direct access to. Resolve also allows
you to create throw-away anonymous modules for unit tests, rather than creating
named mock modules or factories.
Installation
The package can be installed by adding resolve to your list of dependencies
in mix.exs:
def deps do
 [
 {:resolve, "~> 0.2.1"}
]
end
Usage
Include resolve in the module that requires dependency injection with
use Resolve. Any place in that module that might need a dependency injected
can then use resolve(Module) to allow another module to be injected. The
module passed to resolve/1 will be used if another module isn't injected.
defmodule MyInterface do
 use Resolve

 def some_command, do: resolve(__MODULE__).some_command
end
Configuration
Resolve can be configured in the project's config.exs.
Opts
	compile - false - Sets the mappings at compile time and doesn't start
 the process that allows them to be modified at runtime. This method is
 more secure and more performant. Compiling is intended for production and
 runtime is intended for unit tests.
	mappings - [] - A two element tuple of the modules to map from and to:
 {from, to}

Example
config :resolve,
 compile: true,
 mappings: [
 {OriginalModule, InjectedModule},
]
Runtime
Dependencies can be injected at runtime with inject/2. This is intended for
unit testing, but not necessarily limited to it. Runtime mappings will be
less performant compared to compiled mappings, as each lookup goes through
a read-optimized ETS table.
Resolve.inject(OriginalModule, InjectedModule)
Modules can also be defined directly in a block, which can be helpful if they
are only needed for certain tests.
Resolve.inject(Port, quote do
 def open(_name, _opts), do: self()

 def close(_port), do: :ok

 def command(_port, _data), do: :ok
end)
Reverting a mapping
If dependencies are resolved at runtime, any injected dependencies for a module
can be removed by calling revert/1. This removes any mappings for the module
from the lookup table.
Resolve.revert(Module)

LICENSE

The MIT License (MIT)

Copyright 2022 Alex McLain

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Resolve

Dependency injection and resolution at compile time or runtime

 Anchor for this section

 Summary

 Functions

 inject(target_module, injected_module)

 Inject a module in place of another one.

 resolve(module)

 Flag a module as eligible for dependency injection / resolution.

 revert(module)

 Revert this dependency to the original module.

 Anchor for this section

Functions

 Link to this function

 inject(target_module, injected_module)

 @spec inject(target_module :: module(), injected_module :: module()) :: any()

Inject a module in place of another one.

 Link to this function

 resolve(module)

 @spec resolve(module :: module()) :: module()

Flag a module as eligible for dependency injection / resolution.
Defaults to module unless a new dependency is injected in its place.

 Link to this function

 revert(module)

 @spec revert(module :: module()) :: any()

Revert this dependency to the original module.
This function is idempotent and will not fail if Resolve already points to
the original module.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

