

 PropCheck - Property Testing

 v1.2.1

 Table of contents

 	PropCheck - Property based testing for Elixir

 	PropCheck Changelog

 	Modules

 	PropCheck

 	PropCheck.BasicTypes

 	PropCheck.FSM

 	PropCheck.Instrument

 	PropCheck.OutputAgent

 	PropCheck.Properties

 	PropCheck.StateM

 	PropCheck.StateM.DSL

 	PropCheck.StateM.ModelDSL

 	PropCheck.TargetedPBT

 	PropCheck.YieldInstrumenter

 	Mix Tasks

 	mix propcheck

 	mix propcheck.clean

 	mix propcheck.inspect

PropCheck - Property based testing for Elixir

PropCheck is a testing library, that provides a wrapper around PropEr, an Erlang
based property testing framework in the spirit of QuickCheck.

[image: Build Status]
[image: Hex.pm version]

 PropCheck Changelog - PropCheck - Property Testing v1.2.1

PropCheck Changelog

1.2.2-Development

	Support for parallel testing of state machines started. Requires also PRs in the upstream
PropEr. An upgrade to (the future) PropEr 1.4 will result in better reports.

1.2.1

	Support for Elixir 1.10 in tests

	Refactorings of the statemachine implementation to be closer to PropEr. Thanks to https://github.com/x4lldux.

	property/1for marking properties to be implemented in the future.
 Thanks to https://github.com/evnu

	Prevent crashing if no counter examples was returned in a failing property.
Thanks to https://github.com/evnu

	Consistent reporting of Erlang terms in Elixir syntax. Thanks to https://github.com/x4lldux.

	Enhanced handling and reporting of exception. Thanks to https://github.com/evnu

	Include credo in the build. Thanks to https://github.com/evnu

	Fix PROPCHECK_VERBOSE to work with property

	Allow PROPCHECK_VERBOSE=0 to make all properties quiet

	GitHub Actions are the new CI environemnt. Thanks to https://github.com/evnu

	Pinning of variables in let allows easier re-use of variables. Thanks to https://github.com/Ecialo

1.2.0

	Handling of tags corrected. This changes slighty existing the behavior and gives
reason to introduce a new minor version.
Thanks to https://github.com/evnu

	Verbose settings can be configured at the command line via environment variable
PROPCHECK_VERBOSE. Thanks to https://github.com/evnu

	Setting default options to forall on module or describe level.
Thanks to https://github.com/x4lldux.

	Support for Elixir 1.9 in tests. Thanks to https://github.com/evnu

	Moving back from CircleCI to TravisCI. Thanks to https://github.com/evnu

1.1.5

	:verbose option is propagated from the property directly to forall.
 Thanks to https://github.com/evnu

	Storing of counter-examples can excluded by tag :store_counter_example
 Thanks to https://github.com/evnu

	Improved documentation for longer statemachine runs. Thanks
to https://github.com/adkron

	Improved error message for missing command in StateM.DSL.
Thanks to https://github.com/devonestes

	Introduction of linter credo and CircleCi as new CI tool.
Thanks to https://github.com/evnu

	let syntax is the same now as forall.
Thanks to https://github.com/evnu

1.1.4

	Fixes an issue with the setup of regular and targeted properties rendering 1.1.3 unusable

	Enhanced documentation for targeted properties

1.1.3

	Better command generator with improved shrinking for complex argument generations.

	Support for map-generator, thanks to https://github.com/IRog

	Support for targeted properties, a new feature of Proper 1.3

	Requires at least Elixir 1.5

1.1.2

	Proper v1.3.0 is supported (effectively, all 1.x versions are allowed
as dependency)

1.1.1

	the weight callback for the DSL was incorrectly specified and documented. Thanks
to https://github.com/adkron

1.1.0

	New command oriented DSL for testing stateful systems, inspired by EQC and
discussions about stateful testing in StreamData

	More details regarding licensing

	Rerun of properties fixed

	Better and corrected type specs, compatible with dialyxir 1.0.0(-rc*)

	Old modules for automatic type generators removed. They were never completed and
since 2016 no longer part of the API (i.e. even before release 0.0.1).

1.0.6

	After a counter example is resolved, the entire property is run again to
ensure that no other counter examples exist. Thanks to https://github.com/evnu

	tabs vs whitespace corrected for test cases, thanks to https://github.com/ryanwinchester

	added a hint about stored counterexamples for users, thanks to https://github.com/evnu

	Corrected formatting of markdown for documentation, thanks to https://github.com/zamith

1.0.5

	Allows to use ExUnit assertions as boolean conditions, thanks to https://github.com/evnu

	let and let_shrink allow more than two parameters, thanks to https://github.com/BinaryNoggin

	Errors, that aren't counter examples, are no longer stored as counter examples, thanks to https://github.com/evnu

	new feature sample_shrink, thanks to https://github.com/evnu

	the examples for stateful testing use GenServer.stop/0 for a reliable
stopping of gen servers.

	several documentation issues

1.0.4

	produce has now a valid default parameter

	Removed several lazy compiler warnings

	Link in README corrected.

1.0.3

	Removed debug log output.

1.0.2

	only labeled, never released...

1.0.1

	Bugfix for Mix integration in Umbrella projects, thanks to https://github.com/evnu

1.0.0

	Counter examples are automatically stored and reapplied until the properties work
or the counter examples are deleted. See https://github.com/alfert/propcheck/pull/18

	Mix configuration for counter examples file and for inspecting and cleaning
counter examples.

0.0.2

	Fixed a lot of 1.5 (and 1.4) Elixir warnings thanks to https://github.com/evnu

	Readme additions regarding installation thanks to https://github.com/evnu

	Added more concurrency robustness for the ping pong tests

	Fixed a bug a in the movie server, which did not startup properly.

0.0.1

	Initial release

 PropCheck - PropCheck - Property Testing v1.2.1

PropCheck

Provides the macros and functions for property based testing
using proper as base implementation. PropCheck supports many
features of PropEr, but the automated generation of test data
generators is only partially supported due to internal features of
PropEr focusing of Erlang only.

Using PropCheck

To use PropCheck, you need to add use PropCheck to your Elixir
files. This gives you access to the functions and macros defined
here as well as to the property macro, defined in
PropCheck.Properties.property/4. To set default options for your
properties, you can use use PropCheck, default_opts: [numtests: 50]. default_opts can be a list of options defined below or a
function that returns a list of option. In most examples shown
here, we directly use the quickcheck function, but typically you
use the property macro instead to define test cases for ExUnit.

Also available are the value generators which are imported directly
from PropCheck.BasicTypes.

How to write properties

The simplest properties that PropEr can test consist of a single boolean
expression (or a statement block that returns a boolean), which is expected
to evaluate to true. Thus, the test true always succeeds, while the test
false always fails (the failure of a property may also be signified by
throwing an exception, error or exit. More complex (and useful) properties
can be written by wrapping such a boolean expression with one or more of the
following wrappers:

	forall/2

	implies/2

	when_fail/2

	trap_exit/1

	conjunction/1

	equals/2

There are also multiple wrappers that can be used to collect statistics on
the distribution of test data:

	collect/2

	collect/3

	aggregate/2

	aggregate/3

	classify/3

	measure/3

A property may also be wrapped with one or more of the following outer-level
wrappers, which control the behaviour of the testing subsystem. If an
outer-level wrapper appears more than once in a property, the innermost
instance takes precedence.

	numtests/2

	fails/1

	on_output/2

PropCheck follows the Elixir idioms that for fluent API the first
parameter flows through a pipeline of functions. Therefore, in PropCheck
the wrapper functions have the property as first argument allowing to
use the |> to concatenate wrapper functions. It helps to distinguish
between the property to test and those wrappers which beautify the
results or the collection information about the test values. This is a
significant derivation of the API of both, PropEr and QuickCheck.

For some actual usage examples, see the code in the examples directory, or
check out PropEr's site. The testing modules in the tests directory may also
be of interest.

Program behaviour

When running in verbose mode (this is the default for quickcheck), each successful test
prints a . on screen. If a test fails, a ! is printed, along with the
failing test case (the instances of the types in every forall) and the
cause of the failure, if it was not simply the falsification of the
property.

Then, unless the test was expected to fail, PropEr attempts to produce a
minimal test case that fails the property in the same way. This process is
called shrinking. During shrinking, a . is printed for each
successful simplification of the failing test case. When PropEr reaches its
shrinking limit or realizes that the instance cannot be shrunk further while
still failing the test, it prints the minimal failing test case and failure
reason and exits.

The return value of PropEr can be one of the following:

	true: The property held for all valid produced inputs.

	false: The property failed for some input.

	{error, type_of_error}: An error occurred; see the section Errors
section for more information.

To test all properties exported from a module (a property is a 0-arity
function whose name begins with prop_), you can use module/1 or
module/2. This returns a list of all failing properties, represented
by MFAs. Testing progress is also printed on screen (unless quiet mode is
active). The provided options are passed on to each property, except for
long_result, which controls the return value format of the module
function itself.

Counterexamples

A counterexample for a property is represented as a list of terms; each such
term corresponds to the type in a forall. The instances are provided in
the same order as the forall wrappers in the property, i.e. the instance
at the head of the list corresponds to the outermost forall etc.
Instances generated inside a failing sub-property of a conjunction are
marked with the sub-property's tag.

The last (simplest) counterexample produced by PropEr during a (failing) run
can be retrieved after testing has finished, by running
counterexample/0. When testing a whole module, run
counterexamples/0 to get a counterexample for each failing property,
as a list of {mfa, counterexample} tuples. To enable this
functionality, some information has to remain in the process dictionary
even after PropEr has returned. If, for some reason, you want to completely
clean up the process dictionary of PropEr-produced entries, run
clean_garbage/0.

Counterexamples can also be retrieved by running PropEr in long-result mode,
where counterexamples are returned as part of the return value.
Specifically, when testing a single property under long-result mode
(activated by supplying the option :long_result, or by calling
counterexample/1 or counterexample/2 instead of
quickcheck/1 and quickcheck/2 respectively), PropEr will
return a counterexample in case of failure (instead of simply returning
false). When testing a whole module under long-result mode (activated by
supplying the option :long_result to module/2), PropEr will return
a list of {mfa(), counterexample} tuples, one for each failing
property.

You can re-check a specific counterexample against the property that it
previously falsified by running check/2 or check/3. This
will return one of the following (both in short- and long-result mode):

	true: The property now holds for this test case.

	false: The test case still fails (although not necessarily for the
same reason as before).

	{error, type_of_error}: An error occurred - see the section Errors
section for more information.

PropEr will not attempt to shrink the input in case it still fails the
property. Unless silent mode is active, PropEr will also print a message on
screen, describing the result of the re-checking. Note that PropEr can do
very little to verify that the counterexample actually corresponds to the
property that it is tested against.

Options

Options can be provided as an extra argument to most testing functions (such
as quickcheck/1). A single option can be written stand-alone, or
multiple options can be provided in a list. When two settings conflict, the
one that comes first in the list takes precedence. Settings given inside
external wrappers to a property (see the section on How to write properties)
override any conflicting settings provided as options.

The available options are:

	:quiet Enables quiet mode - no output is printed on screen while PropEr is
running.

 PropCheck.BasicTypes - PropCheck - Property Testing v1.2.1

PropCheck.BasicTypes

This modules contains all basic type generators from PropEr. It is
automatically available by use PropCheck.

Acknowledgments

The functions defined here are delegated to the corresponding
definition proper_types. Also most of the documentation is
copied over from there.

 Anchor for this section

 Summary

 Types

 ext_float()

 Floats extend by infinity

 ext_int()

 Integers extend by infinity

 ext_non_neg_integer()

 Non negative integers extend by infinity

 frequency()

 raw_type()

 The internal representation of a basic type in PropEr

 size()

 type()

 The internal representation of a type in PropEr

 value()

 Functions

 any()

 All Elixir terms (that PropEr can produce).

 arity()

 Arity is a byte value, i.e. integer(0, 255)

 atom()

 All atoms.

 binary()

 All binaries.

 binary(length)

 All binaries with a byte size of length.

 bitstring()

 All bitstrings.

 bitstring(length)

 All bitstrings with a bit size of length.

 bool()

 bool is equivalent to boolean

 boolean()

 The atoms true and false. Instances shrink towards false.

 byte()

 Byte values, i.e. integer(0, 255)

 char()

 Char values (16 bit for some reason), i.e. integer(0, 0xffff)

 char_list()

 An Erlang string, i.e. list(char)

 choose(low, high)

 choose is equivalent to integer(low, high)

 default(default_value, type)

 Adds a default value, default_value, to type.

 elements(choices)

 elements is equivalent to union([..])

 exactly(value)

 Singleton type consisting only of value.

 fixed_list(list_of_types)

 All lists whose i-th element is an instance of the type at index i of
list_of_types. Also written simply as a list of types.

 float()

 All floats, i.e. float(:inf, :inf)

 float(low, high)

 All floats between low and high, bounds included.

 frequency(freq_choices)

 frequency is equivalent to weighted_union([..])

 function(arg_types, return_type)

 All pure functions that map instances of arg_types to instances of
ret_type.

 function0(ret_type)

 A function with 0 parameters, i.e. function(0, ret_type)

 function1(ret_type)

 A function with 1 parameter, i.e. function(1, ret_type)

 function2(ret_type)

 A function with 2 parameters, i.e. function(2, ret_type)

 function3(ret_type)

 A function with 3 parameters, i.e. function(3, ret_type)

 function4(ret_type)

 A function with 4 parameters, i.e. function(4, ret_type)

 int()

 Small integers (bound by the current value of the size parameter).

 integer()

 All integers, i.e. integer(:inf, :inf)

 integer(low, high)

 All integers between low and high, bounds included.

 large_int()

 Large_int is equivalent to integer

 list()

 List of any types, i.e. list(any)

 list(elem_type)

 All lists containing elements of type elem_type.

 loose_tuple(elem_type)

 Tuples whose elements are all of type elem_type.

 map(k, v)

 A map whose keys are defined by the generator k and values by the generator v.

 nat()

 Small Small non-negative integers (bound by the current value of the size
 parameter).

 neg_integer()

 Negative integers, i.e. integer(:inf, -1)

 non_empty(list_type)

 This is a predefined constraint that can be applied to random-length
list and binary types to ensure that the produced values are never empty.

 non_neg_float()

 Non negative floats, i.e. float(0.0, inf)

 non_neg_integer()

 Non negative integers, i.e. integer(0, :inf)

 noshrink(type)

 Creates a new type which is equivalent to type, but whose instances
are never shrunk by the shrinking subsystem.

 number()

 Numbers are integers or floats, i.e. union([integer(), float()])

 oneof(choices)

 oneof is equivalent to union([..])

 ordered_list(elem_type)

 All sorted lists containing elements of type elem_type.

 parameter(parameter)

 Returns the value associated with parameter, or :undefined in case
parameter is not associated with any value.

 parameter(parameter, default)

 Returns the value associated with parameter, or default in case
parameter is not associated with any value.

 pos_integer()

 Strictly positive integers, i.e. integer(1, :inf)

 range(low, high)

 A range is equivalent to integers

 real()

 real is equivalent to float

 resize(new_size, raw_type)

 Overrides the size parameter used when generating instances of
type with new_size.

 return(e)

 return is equivalent to exactly

 shrink_list(list)

 A type that generates exactly the list list.

 term()

 Term is a synonym for any

 timeout()

 timeout values, i.e. union([non_neg_integer() | :infinity])

 tuple()

 Tuples of any types, i.e. loose_tuple(any)

 tuple(list_of_types)

 All tuples whose i-th element is an instance of the type at index i of
list_of_types.

 union(list_of_types)

 The union of all types in list_of_types.

 utf8()

 utf8-encoded unbounded size binary

 utf8(n)

 utf8-encoded bounded upper size binary.

 utf8(n, max_codepoint_size)

 Bounded upper size utf8 binary, codepoint length =< MaxCodePointSize.

 vector(length, elem_type)

 All lists of length length containing elements of type elem_type.

 weighted_default(default, type)

 A specialization of default/2.

 weighted_union(list_of_types)

 A specialization of union/1, where each type in list_of_types is
assigned a frequency.

 with_parameter(parameter, value, type)

 Associates the atom key parameter with the value value while
generating instances of type.

 with_parameters(pv_list, type)

 Similar to with_parameter/3, but accepts a list of
{parameter, value} pairs.

 wunion(freq_choices)

 weighted_union(FreqChoices)

 Anchor for this section

Types

 Link to this type

 ext_float()

 View Source

 ext_float() :: float() | :inf

Floats extend by infinity

 Link to this type

 ext_int()

 View Source

 ext_int() :: integer() | :inf

Integers extend by infinity

 Link to this type

 ext_non_neg_integer()

 View Source

 ext_non_neg_integer() :: non_neg_integer() | :inf

Non negative integers extend by infinity

 Link to this type

 frequency()

 View Source

 frequency() :: pos_integer()

 Link to this type

 raw_type()

 View Source

 raw_type() :: :proper_types.raw_type()

The internal representation of a basic type in PropEr

 Link to this type

 size()

 View Source

 size() :: PropCheck.size()

 Link to this type

 type()

 View Source

 type() :: :proper_types.type()

The internal representation of a type in PropEr

 Link to this type

 value()

 View Source

 value() :: any()

 Anchor for this section

Functions

 Link to this function

 any()

 View Source

 any() :: type()

All Elixir terms (that PropEr can produce).

For reasons of efficiency, functions are never produced as instances of
this type.

CAUTION: Instances of this type are expensive to produce, shrink and instance-
check, both in terms of processing time and consumed memory. Only use this
type if you are certain that you need it.

 Link to this function

 arity()

 View Source

 arity() :: type()

Arity is a byte value, i.e. integer(0, 255)

 Link to this function

 atom()

 View Source

 atom() :: type()

All atoms.

All atoms used internally by PropEr start with a :$, so
such atoms will never be produced as instances of this type. You should also
refrain from using such atoms in your code, to avoid a potential clash.
Instances shrink towards the empty atom, :"".

 Link to this function

 binary()

 View Source

 binary() :: type()

All binaries.

Instances shrink towards the empty binary, "".

 Link to this function

 binary(length)

 View Source

 binary(non_neg_integer()) :: type()

All binaries with a byte size of length.

length must be an Elixir expression that evaluates to a non-negative integer.
Instances shrink towards binaries of zeroes.

 Link to this function

 bitstring()

 View Source

 bitstring() :: type()

All bitstrings.

Instances shrink towards the empty bitstring, "".

 Link to this function

 bitstring(length)

 View Source

 bitstring(non_neg_integer()) :: type()

All bitstrings with a bit size of length.

length must be an Elixir expression that evaluates to a non-negative integer.
Instances shrink towards bitstrings of zeroes.

 Link to this function

 bool()

 View Source

 bool() :: type()

bool is equivalent to boolean

 Link to this function

 boolean()

 View Source

 boolean() :: type()

The atoms true and false. Instances shrink towards false.

 Link to this function

 byte()

 View Source

 byte() :: type()

Byte values, i.e. integer(0, 255)

 Link to this function

 char()

 View Source

 char() :: type()

Char values (16 bit for some reason), i.e. integer(0, 0xffff)

 Link to this function

 char_list()

 View Source

 char_list() :: type()

An Erlang string, i.e. list(char)

 Link to this function

 choose(low, high)

 View Source

 choose(ext_int(), ext_int()) :: type()

choose is equivalent to integer(low, high)

 Link to this function

 default(default_value, type)

 View Source

 default(raw_type(), raw_type()) :: type()

Adds a default value, default_value, to type.

The default serves as a primary shrinking target for instances, while it
is also chosen by the random instance generation subsystem half the time.

 Link to this function

 elements(choices)

 View Source

 elements([raw_type(), ...]) :: type()

elements is equivalent to union([..])

 Link to this function

 exactly(value)

 View Source

 exactly(any()) :: type()

Singleton type consisting only of value.

value must be an evaluated term. Also written simply as value.

 Link to this function

 fixed_list(list_of_types)

 View Source

 fixed_list([raw_type()]) :: type()

All lists whose i-th element is an instance of the type at index i of
list_of_types. Also written simply as a list of types.

 Link to this function

 float()

 View Source

 float() :: type()

All floats, i.e. float(:inf, :inf)

 Link to this function

 float(low, high)

 View Source

 float(ext_float(), ext_float()) :: type()

All floats between low and high, bounds included.

low and high must be Elixir expressions that evaluate to floats, with
Low =< high. Additionally, low and high may have the value :inf, in
which case they represent minus infinity and plus infinity respectively.
Instances shrink towards 0.0 if low =< 0.0 =< high, or towards the bound
with the smallest absolute value otherwise.

 Link to this function

 frequency(freq_choices)

 View Source

 frequency([{frequency(), raw_type()}, ...]) :: type()

frequency is equivalent to weighted_union([..])

 Link to this function

 function(arg_types, return_type)

 View Source

 function([raw_type()] | arity(), raw_type()) :: type()

All pure functions that map instances of arg_types to instances of
ret_type.

The syntax function(arity, ret_type) is also acceptable.

 Link to this function

 function0(ret_type)

 View Source

 function0(type()) :: type()

A function with 0 parameters, i.e. function(0, ret_type)

 Link to this function

 function1(ret_type)

 View Source

 function1(type()) :: type()

A function with 1 parameter, i.e. function(1, ret_type)

 Link to this function

 function2(ret_type)

 View Source

 function2(type()) :: type()

A function with 2 parameters, i.e. function(2, ret_type)

 Link to this function

 function3(ret_type)

 View Source

 function3(type()) :: type()

A function with 3 parameters, i.e. function(3, ret_type)

 Link to this function

 function4(ret_type)

 View Source

 function4(type()) :: type()

A function with 4 parameters, i.e. function(4, ret_type)

 Link to this function

 int()

 View Source

 int() :: type()

Small integers (bound by the current value of the size parameter).

Instances shrink towards 0.

 Link to this function

 integer()

 View Source

 integer() :: type()

All integers, i.e. integer(:inf, :inf)

 Link to this function

 integer(low, high)

 View Source

 integer(ext_int(), ext_int()) :: type()

All integers between low and high, bounds included.

low and high must be Elixir expressions that evaluate to integers, with
low =< high. Additionally, low and high may have the value :inf, in
which case they represent minus infinity and plus infinity respectively.
Instances shrink towards 0 if low =< 0 =< high, or towards the bound with
the smallest absolute value otherwise.

 Link to this function

 large_int()

 View Source

 large_int() :: type()

Large_int is equivalent to integer

 Link to this function

 list()

 View Source

 list() :: type()

List of any types, i.e. list(any)

 Link to this function

 list(elem_type)

 View Source

 list(raw_type()) :: type()

All lists containing elements of type elem_type.

Instances shrink towards the empty list, [].

 Link to this function

 loose_tuple(elem_type)

 View Source

 loose_tuple(raw_type()) :: type()

Tuples whose elements are all of type elem_type.

Instances shrink towards the 0-size tuple, {}.

 Link to this function

 map(k, v)

 View Source

 map(raw_type(), raw_type()) :: type()

A map whose keys are defined by the generator k and values by the generator v.

 Link to this function

 nat()

 View Source

 nat() :: type()

Small Small non-negative integers (bound by the current value of the size
 parameter).

Instances shrink towards 0.

 Link to this function

 neg_integer()

 View Source

 neg_integer() :: type()

Negative integers, i.e. integer(:inf, -1)

 Link to this function

 non_empty(list_type)

 View Source

 non_empty(raw_type()) :: type()

This is a predefined constraint that can be applied to random-length
list and binary types to ensure that the produced values are never empty.

Use for e.g. list/0, char_list/0, binary/0

 Link to this function

 non_neg_float()

 View Source

 non_neg_float() :: type()

Non negative floats, i.e. float(0.0, inf)

 Link to this function

 non_neg_integer()

 View Source

 non_neg_integer() :: type()

Non negative integers, i.e. integer(0, :inf)

 Link to this function

 noshrink(type)

 View Source

 noshrink(raw_type()) :: type()

Creates a new type which is equivalent to type, but whose instances
are never shrunk by the shrinking subsystem.

 Link to this function

 number()

 View Source

 number() :: type()

Numbers are integers or floats, i.e. union([integer(), float()])

 Link to this function

 oneof(choices)

 View Source

 oneof([raw_type(), ...]) :: type()

oneof is equivalent to union([..])

 Link to this function

 ordered_list(elem_type)

 View Source

 ordered_list(raw_type()) :: type()

All sorted lists containing elements of type elem_type.

Instances shrink towards the empty list, [].

 Link to this function

 parameter(parameter)

 View Source

 parameter(atom()) :: value()

Returns the value associated with parameter, or :undefined in case
parameter is not associated with any value.

Association occurs with calling with_parameter/3 or with_parameters/2
before.

 Link to this function

 parameter(parameter, default)

 View Source

 parameter(atom(), value()) :: value()

Returns the value associated with parameter, or default in case
parameter is not associated with any value.

Association occurs with calling with_parameter/3 or with_parameters/2
before.

 Link to this function

 pos_integer()

 View Source

 pos_integer() :: type()

Strictly positive integers, i.e. integer(1, :inf)

 Link to this function

 range(low, high)

 View Source

 range(ext_int(), ext_int()) :: type()

A range is equivalent to integers

 Link to this function

 real()

 View Source

 real() :: type()

real is equivalent to float

 Link to this function

 resize(new_size, raw_type)

 View Source

 resize(size(), raw_type()) :: type()

Overrides the size parameter used when generating instances of
type with new_size.

Has no effect on size-less types, such as unions.
Also, this will not affect the generation of any internal types contained in
type, such as the elements of a list - those will still be generated
using the test-wide value of size. One use of this function is to modify
types to produce instances that grow faster or slower, like so:

iex> quickcheck(forall l <- list(integer()) do
...> length(l) <= 42
...> end)
true

iex> long_list = sized(size, resize(size * 2, list(integer())))
iex> really_long = such_that_maybe l <- long_list, when:
...> length(l) > 42
iex> quickcheck(forall l <- really_long do
...> (length(l) <= 84)
...> |> measure("List length", length l)
...> |> collect(length l)
...> end)
true

The above specifies a list type that grows twice as fast as normal lists.

 Link to this function

 return(e)

 View Source

 return(any()) :: type()

return is equivalent to exactly

 Link to this function

 shrink_list(list)

 View Source

 shrink_list([any()]) :: type()

A type that generates exactly the list list.

Instances shrink towards shorter sublists of the original list.

 Link to this function

 term()

 View Source

 term() :: type()

Term is a synonym for any

 Link to this function

 timeout()

 View Source

 timeout() :: type()

timeout values, i.e. union([non_neg_integer() | :infinity])

 Link to this function

 tuple()

 View Source

 tuple() :: type()

Tuples of any types, i.e. loose_tuple(any)

 Link to this function

 tuple(list_of_types)

 View Source

 tuple([raw_type()]) :: type()

All tuples whose i-th element is an instance of the type at index i of
list_of_types.

Also written simply as a tuple of types.

 Link to this function

 union(list_of_types)

 View Source

 union([raw_type(), ...]) :: type()

The union of all types in list_of_types.

list_of_types can't be empty.
The random instance generator is equally likely to choose any one of the
types in list_of_types. The shrinking subsystem will always try to shrink an
instance of a type union to an instance of the first type in list_of_types,
thus you should write the simplest case first.

 Link to this function

 utf8()

 View Source

 utf8() :: type()

utf8-encoded unbounded size binary

 Link to this function

 utf8(n)

 View Source

 utf8(ext_non_neg_integer()) :: type()

utf8-encoded bounded upper size binary.

 Link to this function

 utf8(n, max_codepoint_size)

 View Source

 utf8(ext_non_neg_integer(), 1..4) :: type()

Bounded upper size utf8 binary, codepoint length =< MaxCodePointSize.

Limiting codepoint size can be useful when applications do not accept full
unicode range. For example, MySQL in utf8 encoding accepts only 3-byte
unicode codepoints in VARCHAR fields.

If unbounded length is needed, use :inf as first argument.

 Link to this function

 vector(length, elem_type)

 View Source

 vector(non_neg_integer(), raw_type()) :: type()

All lists of length length containing elements of type elem_type.

length must be an Elixir expression that evaluates to a non-negative integer.

 Link to this function

 weighted_default(default, type)

 View Source

 weighted_default({frequency(), raw_type()}, {frequency(), raw_type()}) :: type()

A specialization of default/2.

Parameters default and type are
assigned weights to be considered by the random instance generator. The
shrinking subsystem will ignore the weights and try to shrink using the
default value.

 Link to this function

 weighted_union(list_of_types)

 View Source

 weighted_union([{frequency(), raw_type()}, ...]) :: type()

A specialization of union/1, where each type in list_of_types is
assigned a frequency.

Frequencies must be Elixir expressions that evaluate to
positive integers. Types with larger frequencies are more likely to be chosen
by the random instance generator. The shrinking subsystem will ignore the
frequencies and try to shrink towards the first type in the list.

 Link to this function

 with_parameter(parameter, value, type)

 View Source

 with_parameter(atom(), value(), raw_type()) :: type()

Associates the atom key parameter with the value value while
generating instances of type.

 Link to this function

 with_parameters(pv_list, type)

 View Source

 with_parameters([{atom(), value()}], raw_type()) :: type()

Similar to with_parameter/3, but accepts a list of
{parameter, value} pairs.

 Link to this function

 wunion(freq_choices)

 View Source

 wunion([{frequency(), raw_type()}, ...]) :: type()

weighted_union(FreqChoices)

 PropCheck.FSM - PropCheck - Property Testing v1.2.1

PropCheck.FSM behaviour

The finite state machine approach for stateful systems, which is closer
to Erlang's gen_fsm model.

This module defines the proper_fsm behaviour, useful for testing
systems that can be modeled as finite state machines. That is, a finite
collection of named states and transitions between them. PropCheck.FSM is
closely related to PropCheck.StateM and is, in fact, implemented in
terms of that. Test cases generated using PropCheck.FSM will be on precisely
the same form as test cases generated using PropCheck.StateM. The
difference lies in the way the callback modules are specified.
The relation between PropCheck.StateM and PropCheck.FSM is similar
to the one between gen_server and gen_fsm in OTP libraries.

Due to name conflicts with functions automatically imported from
PropCheck.StateM, a fully qualified call is needed in order to
use the API functions of PropCheck.FSM.

The states of the finite state machine

Following the convention used in gen_fsm behaviour, the state is
separated into types state_name/0 and some
state_data/0. state_name is used to denote a state
of the finite state machine and state_data is any relevant information
that has to be stored in the model state. States are fully
represented as tuples {state_name, state_data}.

state_name is usually an atom (i.e. the name of the state), but can also
be a tuple. In the latter case, the first element of the tuple must be an
atom specifying the name of the state, whereas the rest of the elements can
be arbitrary terms specifying state attributes. For example, when
implementing the fsm of an elevator which can reach n different floors, the
state_name for each floor could be {:floor, k}, 1 <= k <= n.

state_data can be an arbitrary term, but is usually a record.

Transitions between states

A transition transition/0 is represented as a tuple
{target_state, {:call, m, f, a}}. This means that performing the specified
symbolic call at the current state of the fsm will lead to target_state.
The atom :history can be used as target_state to denote that a transition
does not change the current state of the fsm.

The callback functions

The following functions must be exported from the callback module
implementing the finite state machine:

	initial_state/0

	initial_data/0

	precondition/4

	postcondition/5

	next_state_data/5

	weight/3

In addition to these functions, we also need functions for each
state:

	state_name(s::state_data) ::[transition]
There should be one instance of this function for each reachable
state state_name of the finite state machine. In case state_name is a
tuple the function takes a different form, described just below. The
function returns a list of possible transitions (transition/0)
from the current state.

 PropCheck.Instrument - PropCheck - Property Testing v1.2.1

PropCheck.Instrument behaviour

Provides functions and macros for instrument byte code with additional yields and
other constructs to ease testing of concurrent programs and state machines.

Why is instrumentation important?

The Erlang scheduler is relatively predictable and stable with regard to pre-emptive
scheduling. This means that every run has more or the less the same amount of
virtual machine instructions before a switch to another process happens. These
process switches are required to reveal any concurrency bugs. A simple way to
provoke more process switches are calls to :erlang.yield() which gives the scheduler
the possibility to switch early on to another process. It is not defined if
the scheduler reacts on this hint, but it often does and allows for more
unpredictable schedules revealing more concurrency bugs.

The usual advice is to sprinkle the code under test with manually added
calls to :erlang.yield(), but this is a daunting task. Additionally, you
need to remove this additional code before production use.

The instrumentation

The functions in this module automate the instrumentation immediately before
running the tests. We instrument call to "interesting" functions of the Erlang
and Elixir ecosystem, e.g. calls to GenServer or ets tables. We do this by examining
the byte code, checking each function call, and if we found some interesting call target,
we add a call to :erlang.yield() immediately before. This is what the
PropCheck.YieldInstrumenter module provides. It implements the behaviour Instrument,
which requires the implementation of two callbacks handle_function_call/1 and
is_instrumentable_function/2. After instrumentation, the code reloading mechanism of
the Erlang VM enables the new code and the tests can run.

Typical usage

To ensure instrumentation before running the tests, you implement the setup_all macro
of ExUnit:

setup_all do
 Instrument.instrument_module(Cache, YieldInstrumenter)
 :ok # no update of a context
end

In this example, we instrument only a specific module. You can also instrument
all modules of an application by calling Instrument.instrument_app(:my_app_under_test, YieldInstrumenter).

Implementing your own instrumenter

For implementing your own instrumenter, you need to get acquainted with the Erlang
Abstract Form (EAF), which is the internal abstract syntax tree available to the Erlang VM at runtime.
This format is quite different from the Elixir AST, in particular it has not the regular form but
consists of many different structures. This requires a lot of cases to be handled for analyizing
the AST. Little helpers for encoding the instrumented code is provided by encode_call/1 and
encode_value/1 as well as by prepend_call/2. For debugging and revealing the structure of
a specific EAF, you can use print_fun/1.

 Anchor for this section

 Summary

 Types

 erl_ast_atom_type()

 The type for a node in the Erlang Abstract Form encoding an atom value

 erl_ast_block()

 Type type for a block of expression in Erlang Abstract Form

 erl_ast_remote_call()

 The type for a remote call in Erlang Abstract Form

 Functions

 call_yield()

 Encodes a call to :erlang.yield() as Erlang Astract Form.

 compile_module(mod, filename, code)

 Compiles the abstract code of a module and loads it immediately into
the VM.

 encode_call(call)

 Enocdes a call given as tuple {m, f, a} as Erlang Abstract Form.

 encode_call(m, f, a)

 Encodes a call to m.f.(a) as Erlang Abstract Form.

 encode_value(value)

 Encodes a value as Erlang Astract Form.

 get_forms_of_module(mod)

 Retrieves the abstract code, i.e. the list of forms, of the given
module as found in the code server.

 instrument_app(app, instrumenter)

 Instruments all modules of an entire OTP application.

 instrument_module(mod, instrumenter)

 Takes the object code of the module, instruments it and update the module
in the code server with instrumented byte code.

 instrumentable_function(mod, fun)

 Checks if the given function is a candidate for instrumentation, i.e. does something
interesting with respect to concurrency. Examples are process handling, handling
of shared state or sending and receiving messages.

 is_instrumented?(module_form)

 Checks if the code is already instrumented. If not, returns false otherwise returns true

 prepend_call(to_be_wrapped_call, new_call)

 Prepends the call to to_be_wrapped_call by a call to new_call.
The result of new_call is ignored.

 print_fun(fun, mod \\ __MODULE__)

 Debugging aid for analyzing code generations. Prints the restructered Erlang code of function
fun in module mod. We use Erlang code here, because Elixir source code cannot generated from
the byte code format due to macros, which change the compilation process too heavily.

 Callbacks

 handle_function_call(call)

 Handle the instrumentation of a (remote) function call. Must return a
valid expression in Erlang Abstract Form.

 is_instrumentable_function(mod, fun)

 A callback to decide if the function mod:fun with any arity is a candidate
for instrumentation. The default implementation is simply calling
instrumentable_function/2.

 Anchor for this section

Types

 Link to this type

 erl_ast_atom_type()

 View Source

 erl_ast_atom_type() :: {:atom, any(), atom()}

The type for a node in the Erlang Abstract Form encoding an atom value

 Link to this type

 erl_ast_block()

 View Source

 erl_ast_block() :: {:block, any(), [any()]}

Type type for a block of expression in Erlang Abstract Form

 Link to this type

 erl_ast_remote_call()

 View Source

 erl_ast_remote_call() ::
 {:call, any(), {:remote, any(), erl_ast_atom_type(), erl_ast_atom_type()},
 [any()]}

The type for a remote call in Erlang Abstract Form

 Anchor for this section

Functions

 Link to this function

 call_yield()

 View Source

 call_yield() :: erl_ast_remote_call()

Encodes a call to :erlang.yield() as Erlang Astract Form.

 Link to this function

 compile_module(mod, filename, code)

 View Source

Compiles the abstract code of a module and loads it immediately into
the VM.

 Link to this function

 encode_call(call)

 View Source

 encode_call({m :: module(), f :: atom(), a :: list()}) :: erl_ast_remote_call()

Enocdes a call given as tuple {m, f, a} as Erlang Abstract Form.

 Link to this function

 encode_call(m, f, a)

 View Source

 encode_call(m :: module(), f :: atom(), a :: list()) :: erl_ast_remote_call()

Encodes a call to m.f.(a) as Erlang Abstract Form.

 Link to this function

 encode_value(value)

 View Source

 encode_value(val :: any()) :: :erl_parse.abstract_expr()

Encodes a value as Erlang Astract Form.

 Link to this function

 get_forms_of_module(mod)

 View Source

Retrieves the abstract code, i.e. the list of forms, of the given
module as found in the code server.

 Link to this function

 instrument_app(app, instrumenter)

 View Source

 instrument_app(app :: atom(), instrumenter :: module()) :: :ok

Instruments all modules of an entire OTP application.

 Link to this function

 instrument_module(mod, instrumenter)

 View Source

 instrument_module(mod :: module(), instrumenter :: module()) :: :ok

Takes the object code of the module, instruments it and update the module
in the code server with instrumented byte code.

 Link to this function

 instrumentable_function(mod, fun)

 View Source

 instrumentable_function(
 {:atom, any(), mod :: module()},
 {:atom, any(), fun :: atom()}
) :: boolean()

Checks if the given function is a candidate for instrumentation, i.e. does something
interesting with respect to concurrency. Examples are process handling, handling
of shared state or sending and receiving messages.

 Link to this function

 is_instrumented?(module_form)

 View Source

Checks if the code is already instrumented. If not, returns false otherwise returns true

 Link to this function

 prepend_call(to_be_wrapped_call, new_call)

 View Source

 prepend_call(
 to_be_wrapped_call :: erl_ast_remote_call(),
 new_call :: erl_ast_remote_call()
) :: erl_ast_block()

Prepends the call to to_be_wrapped_call by a call to new_call.
The result of new_call is ignored.

All arugments and return values are in Erlang Astract Form.

 Link to this function

 print_fun(fun, mod \\ __MODULE__)

 View Source

 print_fun(fun :: atom(), mod :: module()) :: :ok

Debugging aid for analyzing code generations. Prints the restructered Erlang code of function
fun in module mod. We use Erlang code here, because Elixir source code cannot generated from
the byte code format due to macros, which change the compilation process too heavily.

 Anchor for this section

Callbacks

 Link to this callback

 handle_function_call(call)

 View Source

 handle_function_call(call :: erl_ast_remote_call()) ::
 :erl_parse.abstract_expr()

Handle the instrumentation of a (remote) function call. Must return a
valid expression in Erlang Abstract Form.

 Link to this callback

 is_instrumentable_function(mod, fun)

 View Source

 is_instrumentable_function(
 mod :: erl_ast_atom_type(),
 fun :: erl_ast_atom_type()
) :: boolean()

A callback to decide if the function mod:fun with any arity is a candidate
for instrumentation. The default implementation is simply calling
instrumentable_function/2.

 PropCheck.OutputAgent - PropCheck - Property Testing v1.2.1

PropCheck.OutputAgent

An agent to gather unique PropCheck-internal output from tests.

 Anchor for this section

 Summary

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 close(agent)

 Stop the agent and retrieve the output.

 put(agent, string)

 Put new output to the agent.

 start_link()

 Start the agent.

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.

See Supervisor.

 Link to this function

 close(agent)

 View Source

Stop the agent and retrieve the output.

 Link to this function

 put(agent, string)

 View Source

Put new output to the agent.

 Link to this function

 start_link()

 View Source

Start the agent.

 PropCheck.Properties - PropCheck - Property Testing v1.2.1

PropCheck.Properties

This module defines the property/4 and property/1 macros. It is automatically available
by use PropCheck.

 Anchor for this section

 Summary

 Functions

 property(message)

 Defines a not yet implemented property.

 property(name, opts \\ [], var \\ quote do
 _
end, list)

 Defines a property as part of an ExUnit test.

 Anchor for this section

Functions

 Link to this macro

 property(message)

 View Source

 (macro)

Defines a not yet implemented property.

This convenient macro provides a property which will always flunk. It resembles
the test/1 macro from ExUnit. Similarly to ExUnit, it also tags the test with
:not_implemented, allowing to filter it when running mix test.

 Example

property "This property will be implemented in the future"

 Link to this macro

 property(name, opts \\ [], var \\ quote do
 _
end, list)

 View Source

 (macro)

Defines a property as part of an ExUnit test.

The property macro takes at minimum a name and a do-block containing
the code of the property to be tested. The property code is encapsulated
as an ExUnit test case of category property, which is released as
part of Elixir 1.3 and allows a nice mix of regular unit test and property
based testing. This is the reason for the third parameter taking an
environment of variables defined in a test setup function. In ExUnit, this
is referred to as a test's "context".

The second parameter sets options for Proper (see PropCheck). The default
is :quiet such that execution during ExUnit runs are silent, as normal
unit tests are. You can change it e.g. to :verbose or setting the
maximum size of the test data generated or what ever may be helpful. For
seeing the result of wrapper functions PropCheck.aggregate/2 etc., the
verbose mode is required.

 Counter Examples

If a property fails, the counter example is in a file. The next time this
property is checked again, only the counter example is used to ensure that
the property now behaves correctly. Additionally, a property with an existing
counter example is embellished with the tag failing_prop. You can skip all
other tests and property by running mix test --only failing_prop. In this case
only the properties with counter example are run. Another option is to use
the --stale option of ExUnit to reduce the amount of tests and properties
while fixing the code tested by a property.

After a property was ran successfully against a previous counter example, PropCheck will
run the property again to check if other counter examples can be found.

 Disable Storing Counter Examples

Storing counter examples can be disabled using the :store_counter_example tag. This
can be done in three different scopes: module-wide scope, describe-wide scope or for
a single property.

NOTE that this facility is meant for properties which cannot run with a value generated
in a previous test run. This should usually not be the case, and :store_counter_example
should only be used after careful consideration.

Disable for all properties in a module:

defmodule Test do
 # ...
 @moduletag store_counter_example: false
 #...
end

Disable for all properties in a describe block:

defmodule Test do
 # ...
 describe "describe block" do
 @describetag store_counter_example: false
 # ...
 end
end

Disable for a single property:

@tag store_counter_example: false
property "a property" do
 # ...
end

 PropCheck.StateM - PropCheck - Property Testing v1.2.1

PropCheck.StateM behaviour

This module defines the :proper_statem behaviour, useful for testing
stateful reactive systems whose internal state and side-effects are
specified via an abstract state machine. Given a callback module
implementing the :proper_statem behaviour (i.e. defining an abstract state
machine of the system under test), PropEr can generate random symbolic
sequences of calls to that system.

As a next step, generated symbolic calls are actually performed, while
monitoring the system's responses to ensure it behaves as expected. Upon
failure, the shrinking mechanism attempts to find a minimal sequence of
calls provoking the same error.

The role of commands

Test cases generated for testing a stateful system are lists of symbolic API
calls to that system. Symbolic representation has several benefits, which
are listed here in increasing order of importance:

	Generated test cases are easier to read and understand.

	Failing test cases are easier to shrink.

	The generation phase is side-effect free and this results in
repeatable test cases, which is essential for correct shrinking.

Since the actual results of symbolic calls are not known at generation time,
we use symbolic variables of type symbolic_var/0 to refer to them.
A command of type command/0 is a symbolic term, used to bind a symbolic
variable to the result of a symbolic call. For example:

[{:set, {:var, 1}, {:call, :erlang, :put, [:a, 42]}},
{:set, {:var, 2}, {:call, :erlang, :erase, [:a]}},
{:set, {:var, 3}, {:call, :erlang, :put, [:b, {:var, 2}]}}]

is a command sequence that could be used to test the process dictionary.
In this example, the first call stores the pair {:a, 42} in the process
dictionary, while the second one deletes it. Then, a new pair {:b, {:var, 2}}
is stored. {:var, 2} is a symbolic variable bound to the result of
:erlang.erase/1. This result is not known at generation time, since none of
these operations is performed at that time. After evaluating the command
sequence at runtime, the process dictionary will eventually contain the
pair {:b, 42}.

The abstract model-state

In order to be able to test impure code, we need a way to track its
internal state (at least the useful part of it). To this end, we use an
abstract state machine representing the possible configurations of the
system under test. When referring to the model state, we mean the
state of the abstract state machine. The model state can be either
symbolic or dynamic:

	During command generation, we use symbolic variables to bind the
results of symbolic calls. Therefore, the model state might
(and usually does) contain symbolic variables and/or symbolic calls, which
are necessary to operate on symbolic variables. Thus, we refer to it as
symbolic state. For example, assuming that the internal state of the
process dictionary is modeled as a proplist, the model state after
generating the previous command sequence will be [b: {:var, 2}}].

	During runtime, symbolic calls are evaluated and symbolic variables are
replaced by their corresponding real values. Now we refer to the state as
dynamic state. After running the previous command sequence, the model state
will be [b: 42].

The callback functions

The following functions must be exported from the callback module
implementing the abstract state machine:

	initial_state/0

	command/1

	precondition/2

	postcondition/3

	next_state/3

The property used

Each test consists of two phases:

	As a first step, PropEr generates random symbolic command sequences
deriving information from the callback module implementing the abstract
state machine. This is the role of commands/1 generator.

	As a second step, command sequences are executed so as to check that
the system behaves as expected. This is the role of
run_commands/2, a function that evaluates a symbolic command
sequence according to an abstract state machine specification.

These two phases are encapsulated in the following property, which can be
used for testing the process dictionary:

def prop_pdict() do
 forall cmds <- commands(__MODULE__) do
 {_history, _state, result} = run_commands(__MODULE__, cmds)
 cleanup()
 result == ok
 end
end

When testing impure code, it is very important to keep each test
self-contained. For this reason, almost every property for testing stateful
systems contains some clean-up code. Such code is necessary to put the
system in a known state, so that the next test can be executed
independently from previous ones.

Parallel testing

After ensuring that a system's behaviour can be described via an abstract
state machine when commands are executed sequentially, it is possible to
move to parallel testing. The same state machine can be used to generate
command sequences that will be executed in parallel to test for race
conditions. A parallel test case (parallel_testcase/0) consists of
a sequential and a parallel component. The sequential component is a
command sequence that is run first to put the system in a random state.
The parallel component is a list containing 2 command sequences to be
executed in parallel, each of them in a separate newly-spawned process.

Generating parallel test cases involves the following actions. Initially,
we generate a command sequence deriving information from the abstract
state machine specification, as in the case of sequential statem testing.
Then, we parallelize a random suffix (up to 12 commands) of the initial
sequence by splitting it into 2 subsequences that will be executed
concurrently. Limitations arise from the fact that each subsequence should
be a valid command sequence (i.e. all commands should satisfy
preconditions and use only symbolic variables bound to the results of
preceding calls in the same sequence). Furthermore, we apply an additional
check: we have to ensure that preconditions are satisfied in all possible
interleavings of the concurrent tasks. Otherwise, an exception might be
raised during parallel execution and lead to unexpected (and unwanted) test
failure. In case these constraints cannot be satisfied for a specific test
case, the test case will be executed sequentially. Then an f is printed
on screen to inform the user. This usually means that preconditions need
to become less strict for parallel testing to work.

After running a parallel test case, PropEr uses the state machine
specification to check if the results observed could have been produced by
a possible serialization of the parallel component. If no such serialization
is possible, then an atomicity violation has been detected. In this case,
the shrinking mechanism attempts to produce a counterexample that is minimal
in terms of concurrent operations. Properties for parallel testing are very
similar to those used for sequential testing.

def prop_parallel_testing() do
 forall testcase <- parallel_commands(__MODULE__) do
 {_sequential, _parallel, result} = run_parallel_commands(__MODULE__, testcase),
 cleanup(),
 result == :ok
 end
end

Please note that the actual interleaving of commands of the parallel
component depends on the Erlang scheduler, which is too deterministic.
For PropEr to be able to detect race conditions, the code of the system
under test should be instrumented with erlang:yield/0 calls to the
scheduler.

Acknowledgments

Very much of the documentation is immediately taken from the
proper API documentation.

 Anchor for this section

 Summary

 Types

 command()

 A value of type command denotes the execution of a symbolic command and
storing its result in a symbolic variable.

 command_list()

 A sequence of commands.

 dynamic_state()

 A dynamic state can be anything and appears only during phase 2.

 history()

 History of command execution in phase 2. It contains current dynamic state and
the result of the call.

 parallel_history()

 The history of concurrent execution of commands in phase 2.

 parallel_testcase()

 A parallel testcase consists of a sequential and a parallel component. The
sequential component is a command sequence that is run first to put the system
in a random state. The parallel component is a list containing 2 command
sequences to be executed in parallel, each of them in a separate newly-spawned
process.

 result()

 The outcome of the command sequence execution.

 symbolic_call()

 A symbolic call is the typical mfa-tuple plus the tag :call.

 symbolic_state()

 A symbolic state can be anything and appears only during phase 1.

 symbolic_var()

 Each result of a symbolic call is stored in a symbolic variable. Their values
are opaque and can only used as whole.

 Functions

 command_names(cmds)

 Extracts the names of the commands from a given command sequence, in
the form of MFAs.

 commands(mod)

 A special PropEr type which generates random command sequences,
according to an abstract state machine specification.

 commands(mod, initial_state)

 Similar to commands/1, but generated command sequences always
start at a given state.

 more_commands(n, cmd_type)

 Increases the expected length of command sequences generated from
cmd_type by a factor n.

 parallel_commands(mod)

 A special PropEr type which generates parallel test cases,
according to an abstract state machine specification.

 parallel_commands(mod, initial_state)

 Similar to parallel_commands/1, but generated command sequences
always start at a given state.

 print_report(run_result, cmds, opts \\ [])

 Print pretty report of the failed command run.

 run_commands(mod, cmds)

 Evaluates a given symbolic command sequence cmds according to the
state machine specified in mod.

 run_commands(mod, cmds, env)

 Similar to run_commands/2, but also accepts an environment,
used for symbolic variable evaluation during command execution. The
environment consists of {key::atom, value::any} pairs. Keys may be
used in symbolic variables (i.e. {:var, key}) within the command sequence
cmds. These symbolic variables will be replaced by their corresponding
value during command execution.

 run_parallel_commands(mod, testcase)

 Runs a given parallel test case according to the state machine
specified in mod.

 run_parallel_commands(mod, testcase, env)

 Similar to run_parallel_commands/2, but also accepts an
environment used for symbolic variable evaluation, exactly as described in
run_commands/3.

 state_after(mod, cmds)

 Returns the symbolic state after running a given command sequence,
according to the state machine specification found in mod.

 zip(l1, l2)

 Behaves exactly like Enum.zip/2.

 Callbacks

 command(s)

 Generates a symbolic call to be included in the command sequence,
given the current state s of the abstract state machine.

 initial_state()

 Specifies the symbolic initial state of the state machine.

 next_state(s, res, call)

 Specifies the next state of the abstract state machine, given the
current state s, the symbolic call chosen and its result res. This
function is called both at command generation and command execution time
in order to update the model state, therefore the state s and the
result Res can be either symbolic or dynamic.

 postcondition(s, call, res)

 Specifies the postcondition that should hold about the result res of
performing call, given the dynamic state s of the abstract state
machine prior to command execution.

 precondition(s, call)

 Specifies the precondition that should hold so that call can be
included in the command sequence, given the current state s of the
abstract state machine.

 Anchor for this section

Types

 Link to this type

 command()

 View Source

 command() :: {:set, symbolic_var(), symbolic_call()} | {:init, symbolic_state()}

A value of type command denotes the execution of a symbolic command and
storing its result in a symbolic variable.

 Link to this type

 command_list()

 View Source

 command_list() :: [command()]

A sequence of commands.

 Link to this type

 dynamic_state()

 View Source

 dynamic_state() :: any()

A dynamic state can be anything and appears only during phase 2.

 Link to this type

 history()

 View Source

 history() :: [{dynamic_state(), term()}]

History of command execution in phase 2. It contains current dynamic state and
the result of the call.

 Link to this type

 parallel_history()

 View Source

 parallel_history() :: [{command(), term()}]

The history of concurrent execution of commands in phase 2.

 Link to this type

 parallel_testcase()

 View Source

 parallel_testcase() :: {command_list(), [command_list()]}

A parallel testcase consists of a sequential and a parallel component. The
sequential component is a command sequence that is run first to put the system
in a random state. The parallel component is a list containing 2 command
sequences to be executed in parallel, each of them in a separate newly-spawned
process.

 Link to this type

 result()

 View Source

 result() :: :proper_statem.statem_result()

The outcome of the command sequence execution.

 Link to this type

 symbolic_call()

 View Source

 symbolic_call() :: :proper_statem.symbolic_call()

A symbolic call is the typical mfa-tuple plus the tag :call.

 Link to this type

 symbolic_state()

 View Source

 symbolic_state() :: any()

A symbolic state can be anything and appears only during phase 1.

 Link to this type

 symbolic_var()

 View Source

 symbolic_var() :: :proper_statem.symbolic_var()

Each result of a symbolic call is stored in a symbolic variable. Their values
are opaque and can only used as whole.

 Anchor for this section

Functions

 Link to this function

 command_names(cmds)

 View Source

Extracts the names of the commands from a given command sequence, in
the form of MFAs.

It is useful in combination with functions such as
PropCheck.aggregate/2 in order to collect statistics about command
execution.

 Link to this function

 commands(mod)

 View Source

A special PropEr type which generates random command sequences,
according to an abstract state machine specification.

The function takes as
input the name of a callback module, which contains the state machine
specification. The initial state is computed by mod:initial_state/0.

 Link to this function

 commands(mod, initial_state)

 View Source

Similar to commands/1, but generated command sequences always
start at a given state.

In this case, the first command is always
{:init, initial_state} and is used to correctly initialize the state
every time the command sequence is run (i.e. during normal execution,
while shrinking and when checking a counterexample). In this case,
mod:initial_state/0 is never called.

 Link to this function

 more_commands(n, cmd_type)

 View Source

Increases the expected length of command sequences generated from
cmd_type by a factor n.

CAVEAT
This function does not work properly. My current guess is that this is
a limitation of how PropEr works with sizing an din particular resizing.
The commands list generator (cmd_type) is not a simple list which can
be sized easily, but a complex construct where the rather simple approach
of resizing does not work as expected.

 PropCheck.StateM.DSL - PropCheck - Property Testing v1.2.1

PropCheck.StateM.DSL behaviour

DEPRECATED : This module is deprecated, please use
PropCheck.Statem.ModelDSL instead.

This module provides a shallow DSL (domain specific language) in Elixir
for property based testing of stateful systems.

The basic approach

Property based testing of stateful systems is different from ordinary property
based testing. Instead of testing operations and their effects on the
data structure directly, we construct a model of the system and generate a sequence
of commands operating on both, the model and the system. Then we check that
after each command step, the system has evolved accordingly to the model.
This is the same idea which is used in model checking and is sometimes called
a bisimulation.

After defining a model, we have two phases during executing the property.
In phase 1, the generators create a list of
(symbolic) commands including their parameters to be run against the system under test
(SUT). A state machine guides the generation of commands.

In phase 2, the commands are executed and the state machine checks that the
SUT is in the same state as the state machine. If an invalid state is
detected, then the command sequence is shrunk towards a shorter sequence
serving then as counterexamples.

This approach works exactly the same as with PropCheck.StateM and
PropCheck.FSM. The main difference is the API, grouping pre- and postconditions,
state transitions, and argument generators around the commands of the SUT. This
leads towards more logical locality compared to the former implementations.
QuickCheck EQC has a similar approach for structuring their modern state machines.

The DSL

A state machine acting as a model of the SUT can be defined by focusing on
states or on transitions. We focus here on the transitions. A transition is a
command calling the SUT. Therefore the main phrase of the DSL is the defcommand
macro.

defcommand :find do
 # define the rules for executing the find command here
end

Inside the command macro, we define all the rules which the command must
obey. As an example, we discuss here as an example the slightly simplified
command :find from test/cache_dsl_test.exs. The SUT is a cache
implementation based on an ETS and the model is is based on a list of
(key/value)-pairs. This example is derived from Fred Hebert's PropEr Testing,
Chapter 9

The find-command is a call to the find/1 API function. Its arguments are
generated by key(), which boils down to numeric values. The arguments for
the command are defined by the function args(state) returning a list
of generators. In our example, the arguments do not depend on the model state.
Next, we need to define the execution of the command by defining function
impl/n. This function takes as many arguments as args/1 has elements in
the argument list. The impl-function allows to apply conversion of
parameters and return values to ease the testing. A typical example is the
conversion of an {:ok, value} tuple to only value which can simplify
working with value.

defcommand :find do
 def impl(key), do: Cache.find(key)
 def args(_state), do: [key()]
end

After defining how a command is executed, we need to define in which state
this is allowed. For this, we define function pre/2, taking the model state
and the generated list of arguments to check whether this call is
allowed in the current model state. In this particular example, find is always
allowed, hence we return true without any further checking. This is also the
default implementation and the reason why the precondition is missing
in the test file.

defcommand :find do
 def impl(key), do: Cache.find(key)
 def args(_state), do: [key()]
 def pre(_state, [_key]), do: true
end

If the precondition is satisfied, the call can happen. After the call, the SUT
can be in a different state and the model state must be updated according to
the mapping of the SUT to the model. The function next/3 takes the state before
the call, the list of arguments and the symbolic or dynamic result (depending
on phase 1 or 2, respectively). next/3 returns the new model state. Since
searching for a key in the cache does not modify the system nor the model
state, nothing has to be done. This is again the default implementation and thus
left out in the test file.

defcommand :find do
 def impl(key), do: Cache.find(key)
 def args(_state), do: [key()]
 def pre(_state, [_key]), do: true
 def next(old_state, _args, call_result), do: old_state
end

The missing part of the command definition is the post condition, checking
that after calling the system in phase 2 the system is in the expected state
compared the model. This check is implemented in function post/3, which
again has a trivial default implementation for post conditions that always returns
true. In this example, we check if the call_result is {:error, :not_found},
then we also do not find the key in our model list entries. The other case is
that if we a return value of {:ok, val}, then we also find the value via
the key in our list of entries.

defcommand :find do
 def impl(key), do: Cache.find(key)
 def args(_state), do: [key()]
 def pre(_state, [_key]), do: true
 def next(old_state, _args, _call_result), do: old_state
 def post(entries, [key], call_result) do
 case List.keyfind(entries, key, 0, false) do
 false -> call_result == {:error, :not_found}
 {^key, val} -> call_result == {:ok, val}
 end
 end
end

This completes the DSL for command definitions.

Additional model elements

In addition to commands, we need to define the model itself. This is the
ingenious part of stateful property based testing! The initial state
of the model must be implemented as the function initial_state/0. From this
function, all model evolutions start. In our simplified cache example the
initial model is an empty list:

def initial_state(), do: []

The commands are generated with the same frequency by default. Often, this
is not appropriate, e.g. in the cache example we expect many more find than
cache commands. Therefore, commands can have a weight, which is technically used
inside a PropCheck.BasicTypes.frequency/1 generator. The weights are defined
in callback function weight/1, taking the current model state and returning
a map of command and frequency pairs to be generated. In our cache example
we want the find command to appear three times more often than other commands:

def weight(_state), do: %{find: 3, cache: 1, flush: 1}

The property to test

The property to test the stateful system is more or less the same for all systems.
We generate all commands via generator commands/1, which takes
a module with callbacks as parameter. Inside the test, we first start
the SUT, execute the commands with run_commands/1, stopping the SUT
and evaluating the result of the executions as a boolean expression.
This boolean expression can be adorned with further functions and macros
to analyze the generated commands (via PropCheck.aggregate/2) or to
inspect the history if a failure occurs (via PropCheck.when_fail/2).
In the test cases, you find more examples of such adornments.

property "run the sequential cache", [:verbose] do
 forall cmds <- commands(__MODULE__) do
 Cache.start_link(@cache_size)
 execution = run_commands(cmds)
 Cache.stop()
 (execution.result == :ok)
 end
end

Increasing the Number of Commands in a Sequence

Sometimes issues can hide when the command sequences are short. In order to
tease out these hidden bugs we can increase the number of commands generated
by using the max_size option in our property.

 property "run the sequential cache", [max_size: 250] do
 forall cmds <- commands(__MODULE__) do
 Cache.start_link(@cache_size)
 execution = run_commands(cmds)
 Cache.stop()
 (execution.result == :ok)
 end

 Anchor for this section

 Summary

 Types

 command()

 A value of type command denotes the execution of a symbolic command and
storing its result in a symbolic variable.

 command_name()

 The name of a command must be an atom.

 dynamic_state()

 A dynamic state can be anything and appears only during phase 2.

 history_event()

 The history of command execution in phase 2 is stored in a history element.
It contains the current dynamic state and the call to be made.

 result_t()

 The result of the command execution. It contains either the state of the failing
precondition, the command's return value of the failing postcondition,
the exception values or :ok if everything is fine.

 state_call()

 The sequence of calls consists of state and symbolic calls.

 state_t()

 The combination of symbolic and dynamic states are required for functions
which are used in both phases 1 and 2.

 symbolic_call()

 A symbolic call is the typical mfa-tuple plus the indicator :call.

 symbolic_state()

 A symbolic state can be anything and appears only during phase 1.

 symbolic_var()

 Each result of a symbolic call is stored in a symbolic variable. Their values
are opaque and can only used as whole.

 t()

 The combined result of the test. It contains the history of all executed commands,
the final state, the final result and the environment, mapping symbolic
vars to their actual values. Everything is fine, if result is :ok.

 Functions

 command_names(cmds)

 Takes a list of generated commands and returns a list of
mfa-tuples. This can be used for aggregation of commands.

 commands(mod)
 deprecated

 Generates the command list for the given module

 defcommand(name, list)
 deprecated

 DEPRECATED : This module is deprecated, please use
PropCheck.Statem.ModelDSL instead.

 run_commands(commands)
 deprecated

 Runs the list of generated commands according to the model.

 run_commands(mod, commands)

 Runs the list of generated commands according to the model.

 Callbacks

 initial_state()

 The initial state of the state machine is computed by this callback.

 weight(symbolic_state)

 DEPRECATED : This module is deprecated, please use
PropCheck.Statem.ModelDSL instead.

 Anchor for this section

Types

 Link to this type

 command()

 View Source

 command() :: {:set, symbolic_var(), symbolic_call()}

A value of type command denotes the execution of a symbolic command and
storing its result in a symbolic variable.

 Link to this type

 command_name()

 View Source

 command_name() :: atom()

The name of a command must be an atom.

 Link to this type

 dynamic_state()

 View Source

 dynamic_state() :: any()

A dynamic state can be anything and appears only during phase 2.

 Link to this type

 history_event()

 View Source

 history_event() :: {state_t(), symbolic_call(), {any(), result_t()}}

The history of command execution in phase 2 is stored in a history element.
It contains the current dynamic state and the call to be made.

 Link to this type

 result_t()

 View Source

 result_t() ::
 :ok
 | {:pre_condition, state_t()}
 | {:post_condition, any()}
 | {:exception, any()}
 | {:ok, any()}

The result of the command execution. It contains either the state of the failing
precondition, the command's return value of the failing postcondition,
the exception values or :ok if everything is fine.

 Link to this type

 state_call()

 View Source

 state_call() :: {dynamic_state(), command()}

The sequence of calls consists of state and symbolic calls.

 Link to this type

 state_t()

 View Source

 state_t() :: symbolic_state() | dynamic_state()

The combination of symbolic and dynamic states are required for functions
which are used in both phases 1 and 2.

 Link to this type

 symbolic_call()

 View Source

 symbolic_call() :: {:call, module(), atom(), [any()]}

A symbolic call is the typical mfa-tuple plus the indicator :call.

 Link to this type

 symbolic_state()

 View Source

 symbolic_state() :: any()

A symbolic state can be anything and appears only during phase 1.

 Link to this type

 symbolic_var()

 View Source

 symbolic_var() :: {:var, pos_integer()}

Each result of a symbolic call is stored in a symbolic variable. Their values
are opaque and can only used as whole.

 Link to this type

 t()

 View Source

 t() :: %PropCheck.StateM.DSL{
 env: environment(),
 history: [history_event()],
 result: result_t(),
 state: state_t()
}

The combined result of the test. It contains the history of all executed commands,
the final state, the final result and the environment, mapping symbolic
vars to their actual values. Everything is fine, if result is :ok.

 Anchor for this section

Functions

 Link to this function

 command_names(cmds)

 View Source

 command_names(cmds :: [command()]) :: [mfa()]

Takes a list of generated commands and returns a list of
mfa-tuples. This can be used for aggregation of commands.

 Link to this function

 commands(mod)

 View Source

 commands(module()) :: PropCheck.BasicTypes.type()

 This function is deprecated. This module is deprecated, use `PropCheck.StateM.ModelDSL` instead!.

Generates the command list for the given module

 Link to this macro

 defcommand(name, list)

 View Source

 (macro)

 This macro is deprecated. This module is deprecated, use `PropCheck.StateM.ModelDSL` instead!.

DEPRECATED : This module is deprecated, please use
PropCheck.Statem.ModelDSL instead.

Defines a new command of the model.

Inside the command, local functions define

	how the command is executed (impl(...)). This is required.

	how the arguments in the current model state are generated (args(state).
The default is the empty list of arguments.

	if the command is allowed in the current model state (pre(state, arg_list) :: boolean)
This is true per default.

	what the next state of the model is after the call (next(old_state, arg_list, result) :: new_state).
The default implementation does not change the model state, sufficient for
queries.

	if the system under test is in the correct state after the call
(post(old_state, arg_list, result) :: boolean). This is true in the
default implementation.

These local functions inside the macro are effectively callbacks to guide and
evolve the model state.

 Link to this function

 run_commands(commands)

 View Source

 run_commands([command()]) :: t()

 This function is deprecated. Use run_commands/2 instead!.

Runs the list of generated commands according to the model.

Returns the result, the history and the final state of the model.

Due to an internal refactoring and to achieve a common API with the PropCheck.StateM
module, we changed the API for run_commands. This implementation infers the
callback module from the first generated command. Usually, this will be the case,
but we cannot rely on that.

 Link to this function

 run_commands(mod, commands)

 View Source

 run_commands(atom(), [command()]) :: t()

Runs the list of generated commands according to the model.

Returns the result, the history and the final state of the model.

 Anchor for this section

Callbacks

 Link to this callback

 initial_state()

 View Source

 initial_state() :: symbolic_state()

The initial state of the state machine is computed by this callback.

 Link to this callback

 weight(symbolic_state)

 View Source

 (optional)

 weight(symbolic_state()) :: %{required(command_name()) => pos_integer()}

DEPRECATED : This module is deprecated, please use
PropCheck.Statem.ModelDSL instead.

The optional weights for the command generation. It takes the current
model state and returns a map of command/weight pairs. Commands,
which are not allowed in a specific state, should be omitted, since
a frequency of 0 is not allowed.

def weight(state), do: %{x: 1, y: 1, a: 2, b: 2}

 PropCheck.StateM.ModelDSL - PropCheck - Property Testing v1.2.1

PropCheck.StateM.ModelDSL behaviour

This module provides a shallow DSL (domain specific language) in Elixir for
property based testing of stateful systems. It's built upon PropCheck.StateM
and all it's the characteristics apply here as well. It's a replacement for
PropCheck.StateM.DSL.

The basic approach

Property based testing of stateful systems is different from ordinary property
based testing. Instead of testing operations and their effects on the data
structure directly, we construct a model of the system and generate a sequence
of commands operating on both, the model and the system. Then we check that
after each command step, the system has evolved accordingly to the model.
This is the same idea which is used in model checking and is sometimes called
a bisimulation.

After defining a model, we have two phases during executing the property. In
phase 1, the generators create a list of (symbolic) commands including their
parameters to be run against the system under test (SUT). A state machine
guides the generation of commands.

In phase 2, the commands are executed and the state machine checks that the
SUT is in the same state as the state machine. If an invalid state is
detected, then the command sequence is shrunk towards a shorter sequence
serving then as counterexamples.

This approach works exactly the same as with PropCheck.StateM and
PropCheck.FSM. The main difference is the API, grouping pre- and
postconditions, state transitions around the commands of the SUT. This leads
towards more logical locality compared to the former implementations.
QuickCheck EQC has a similar approach for structuring their modern state
machines.

The DSL

A state machine acting as a model of the SUT can be defined by focusing on
states or on transitions. We focus here on the transitions. A transition is a
command calling the SUT. Therefore the main phrase of the DSL is the
defcommand macro.

defcommand :find do
 # define the rules for executing the find command here
end

Inside the defcommand macro, we define all the rules which the command must
obey. As an example, we discuss here as an example the slightly simplified
command :find from test/cache_dsl_test.exs. The SUT is a cache
implementation based on an ETS and the model is is based on a list of
(key/value)-pairs. This example is derived from Fred Hebert's PropEr Testing,
Chapter 9

The find-command is a call to the find/1 API function. Its arguments are
generated in command_gen/1 (described later) callback, which for this
command is using just one argument, a key() generator. Next, we need to
define the execution of the command by defining function impl/n. The
impl-function allows to apply conversion of parameters and return values to
ease the testing. A typical example is the conversion of an {:ok, value}
tuple to only value which can simplify working with value.

defcommand :find do
 def impl(key), do: Cache.find(key)
end

After defining how a command is executed, we need to define in which state
this is allowed. For this, we define function pre/2, taking the model state
and the generated list of arguments to check whether this call is allowed in
the current model state. In this particular example, find is always allowed,
hence we return true without any further checking. This is also the default
implementation and the reason why the precondition is missing in the test
file.

defcommand :find do
 def impl(key), do: Cache.find(key)
 def pre(_state, [_key]), do: true
end

If the precondition is satisfied, the call can happen. After the call, the SUT
can be in a different state and the model state must be updated according to
the mapping of the SUT to the model. The function next/3 takes the state
before the call, the list of arguments and the symbolic or dynamic result
(depending on phase 1 or 2, respectively). next/3 returns the new model
state. Since searching for a key in the cache does not modify the system nor
the model state, nothing has to be done. This is again the default
implementation and thus left out in the test file.

defcommand :find do
 def impl(key), do: Cache.find(key)
 def pre(_state, [_key]), do: true
 def next(old_state, _args, call_result), do: old_state
end

The missing part of the command definition is the post condition, checking
that after calling the system in phase 2, the system is in the expected state
compared the model. This check is implemented in function post/3, which
again has a trivial default implementation for post conditions that always
returns true. In this example, we check if we can find the key in our list of
entries and if we do, we check if call_result resulted in {:ok, val}. Or
if we don't found it, we check if the SUT also cannot find it by comparing if
call_result returned {:error, :not_found}.

defcommand :find do
 def impl(key), do: Cache.find(key)
 def pre(_state, [_key]), do: true
 def next(old_state, _args, _call_result), do: old_state
 def post(entries, [key], call_result) do
 case List.keyfind(entries, key, 0, false) do
 false -> call_result == {:error, :not_found}
 {^key, val} -> call_result == {:ok, val}
 end
 end
end

This completes the DSL for command definitions.

Additional model elements

In addition to commands, we need to define the model itself. This is the
ingenious part of stateful property based testing! The initial state of the
model must be implemented as the function initial_state/0. It doesn't accept
any arguments, because this function has to be deterministic. From this
function, all model evolutions start. In our simplified cache example the
initial model is an empty list:

def initial_state(), do: []

The sequence of commands to be run is generated repeatedly by
command_gen/1 callback. The generator has to return a tuple of with a
command name and a list of it's arguments (a list of generators). This
callback expects the current state as an argument, which often is used to
determine the next one from a set of appropriate commands (e.g. there might
not be much sense in calling the delete_user command, if there are no users
in the system yet). Usually a PropCheck.BasicTypes.oneof/1 or
PropCheck.BasicTypes.frequency/1 generators are used to pick one of possible
commands. In our cache example we want the find command to appear three
times more often than other commands:

def command_gen(_state) do
 frequency([
 {3, {:find, [key()]}},
 {1, {:cache, [key(), val()]}},
 {1, {:flush, []}}
])

The property to test

The property to test the stateful system is more or less the same for all systems.
We generate all commands via generator commands/1, which takes
a module with callbacks as parameter. Inside the test, we first start
the SUT, execute the commands with run_commands/1, stopping the SUT
and evaluating the result of the executions as a boolean expression.
This boolean expression can be adorned with further functions and macros
to analyze the generated commands (via PropCheck.aggregate/2) or to
inspect the history if a failure occurs (via PropCheck.when_fail/2).
In the test cases, you find more examples of such adornments.

property "run the sequential cache", [:verbose] do
 forall cmds <- commands(__MODULE__) do
 Cache.start_link(@cache_size)
 {_history, _state, result} = run_commands(cmds)
 Cache.stop()
 (result == :ok)
 end
end

Increasing the Number of Commands in a Sequence

Sometimes issues can hide when the command sequences are short. In order to
tease out these hidden bugs we can increase the number of commands generated
by using the max_size option in our property.

 property "run the sequential cache", [max_size: 250] do
 forall cmds <- commands(__MODULE__) do
 Cache.start_link(@cache_size)
 {_history, _state, result} = run_commands(cmds)
 Cache.stop()
 (result == :ok)
 end

 Anchor for this section

 Summary

 Types

 command()

 A value of type command denotes the execution of a symbolic command and
storing its result in a symbolic variable.

 command_list()

 A sequence of commands.

 dynamic_state()

 A dynamic state can be anything and appears only during phase 2.

 history()

 History of command execution in phase 2. It contains current dynamic state and
the result of the call.

 parallel_history()

 The history of concurrent execution of commands in phase 2.

 parallel_testcase()

 A parallel testcase consists of a sequential and a parallel component. The
sequential component is a command sequence that is run first to put the system
in a random state. The parallel component is a list containing 2 command
sequences to be executed in parallel, each of them in a separate newly-spawned
process.

 result()

 The outcome of the command sequence execution.

 symbolic_call()

 A symbolic call is the typical mfa-tuple plus the tag :call.

 symbolic_state()

 A symbolic state can be anything and appears only during phase 1.

 symbolic_var()

 Each result of a symbolic call is stored in a symbolic variable. Their values
are opaque and can only used as whole.

 Functions

 command_names(cmds)

 Extracts the names of the commands from a given command sequence, in
the form of MFAs.

 commands(mod)

 A special PropEr type which generates random command sequences,
according to an abstract state machine specification.

 commands(mod, initial_state)

 Similar to commands/1, but generated command sequences always
start at a given state.

 def_commands()

 def_next_states(commands)

 def_postconds(commands)

 def_preconds(commands)

 defcommand(name, list)

 Defines a new command of the model.

 more_commands(n, cmd_type)

 Increases the expected length of command sequences generated from
cmd_type by a factor n.

 parallel_commands(mod)

 A special PropEr type which generates parallel test cases,
according to an abstract state machine specification.

 parallel_commands(mod, initial_state)

 Similar to parallel_commands/1, but generated command sequences
always start at a given state.

 print_report(run_result, cmds, opts \\ [])

 Print pretty report of the failed command run.

 run_commands(mod, cmds)

 Evaluates a given symbolic command sequence cmds according to the
state machine specified in mod.

 run_commands(mod, cmds, env)

 Similar to run_commands/2, but also accepts an environment,
used for symbolic variable evaluation during command execution. The
environment consists of {key::atom, value::any} pairs. Keys may be
used in symbolic variables (i.e. {:var, key}) within the command sequence
cmds. These symbolic variables will be replaced by their corresponding
value during command execution.

 run_parallel_commands(mod, testcase)

 Runs a given parallel test case according to the state machine
specified in mod.

 run_parallel_commands(mod, testcase, env)

 Similar to run_parallel_commands/2, but also accepts an
environment used for symbolic variable evaluation, exactly as described in
run_commands/3.

 state_after(mod, cmds)

 Returns the symbolic state after running a given command sequence,
according to the state machine specification found in mod.

 zip(l1, l2)

 Behaves exactly like Enum.zip/2.

 Callbacks

 command_gen(s)

 Generates a symbolic call to be included in the command sequence, given the
current state s of the abstract state machine. Must return a type that
generates tuples
{command_name :: atom, args :: [PropCheck.BasicTypes.type]}.

 initial_state()

 Specifies the symbolic initial state of the state machine.

 Anchor for this section

Types

 Link to this type

 command()

 View Source

 command() :: {:set, symbolic_var(), symbolic_call()} | {:init, symbolic_state()}

A value of type command denotes the execution of a symbolic command and
storing its result in a symbolic variable.

 Link to this type

 command_list()

 View Source

 command_list() :: [command()]

A sequence of commands.

 Link to this type

 dynamic_state()

 View Source

 dynamic_state() :: any()

A dynamic state can be anything and appears only during phase 2.

 Link to this type

 history()

 View Source

 history() :: [{dynamic_state(), term()}]

History of command execution in phase 2. It contains current dynamic state and
the result of the call.

 Link to this type

 parallel_history()

 View Source

 parallel_history() :: [{command(), term()}]

The history of concurrent execution of commands in phase 2.

 Link to this type

 parallel_testcase()

 View Source

 parallel_testcase() :: {command_list(), [command_list()]}

A parallel testcase consists of a sequential and a parallel component. The
sequential component is a command sequence that is run first to put the system
in a random state. The parallel component is a list containing 2 command
sequences to be executed in parallel, each of them in a separate newly-spawned
process.

 Link to this type

 result()

 View Source

 result() :: :proper_statem.statem_result()

The outcome of the command sequence execution.

 Link to this type

 symbolic_call()

 View Source

 symbolic_call() :: :proper_statem.symbolic_call()

A symbolic call is the typical mfa-tuple plus the tag :call.

 Link to this type

 symbolic_state()

 View Source

 symbolic_state() :: any()

A symbolic state can be anything and appears only during phase 1.

 Link to this type

 symbolic_var()

 View Source

 symbolic_var() :: :proper_statem.symbolic_var()

Each result of a symbolic call is stored in a symbolic variable. Their values
are opaque and can only used as whole.

 Anchor for this section

Functions

 Link to this function

 command_names(cmds)

 View Source

Extracts the names of the commands from a given command sequence, in
the form of MFAs.

It is useful in combination with functions such as
PropCheck.aggregate/2 in order to collect statistics about command
execution.

 Link to this function

 commands(mod)

 View Source

A special PropEr type which generates random command sequences,
according to an abstract state machine specification.

The function takes as
input the name of a callback module, which contains the state machine
specification. The initial state is computed by mod:initial_state/0.

 Link to this function

 commands(mod, initial_state)

 View Source

Similar to commands/1, but generated command sequences always
start at a given state.

In this case, the first command is always
{:init, initial_state} and is used to correctly initialize the state
every time the command sequence is run (i.e. during normal execution,
while shrinking and when checking a counterexample). In this case,
mod:initial_state/0 is never called.

 Link to this function

 def_commands()

 View Source

 Link to this function

 def_next_states(commands)

 View Source

 Link to this function

 def_postconds(commands)

 View Source

 Link to this function

 def_preconds(commands)

 View Source

 Link to this macro

 defcommand(name, list)

 View Source

 (macro)

Defines a new command of the model.

Inside the command, local functions define

	how the command is executed: impl(...) - this is required,

	if the command is allowed in the current model state:
pre(state, arg_list) :: boolean - this is true per default,

	what the next state of the model is after the call:
next(old_state, arg_list, result) :: new_state - the default
implementation does not change the model state, sufficient for queries,

	if the system under test is in the correct state after the call:
post(old_state, arg_list, result) :: boolean - this is true in the
default implementation.

These local functions inside the macro are effectively callbacks to guide and
evolve the model state.

 Link to this function

 more_commands(n, cmd_type)

 View Source

Increases the expected length of command sequences generated from
cmd_type by a factor n.

CAVEAT
This function does not work properly. My current guess is that this is
a limitation of how PropEr works with sizing an din particular resizing.
The commands list generator (cmd_type) is not a simple list which can
be sized easily, but a complex construct where the rather simple approach
of resizing does not work as expected.

 PropCheck.TargetedPBT - PropCheck - Property Testing v1.2.1

PropCheck.TargetedPBT

This module defines the top-level behaviour for targeted property-based testing (TPBT).
Using TPBT the input generation is no longer random, but guided by a search strategy to
increase the probability of finding failing input. For this to work the user has to specify
a search strategy and also needs to extract utility-values from the system under test that
the search strategy then tries to maximize.

To use TPBT the test specification macros forall_targeted, exists, and not_exists are used.
The typical structure for a targeted property looks as follows:

property prop_target do # Try to check that
 exists input <- params do # some input exists that fulfills the property.
 uv = sut.run(input) # Do so by running SUT with input
 maximize(uv) # and maximize its utility value
 uv < threshold # up to some threshold, the property condition.
 end
end

Some thoughts on strategies how to use targeted properties

Targeted PBT is a rather new technology and really fascinating. But when should you to use it and when are
the classical technologies more suitable? Here are some thoughts on that topic based on the
limited experience we currently have.

If you want to test interesting parts of your algorithms or data structures, you would typically invest
into more elaborated generators. If you are working on binary trees and you need more lefty trees, then a new
generator is required that somehow generates trees of that particular shape. The big advantage here is that
you can use all of the standard functions and macros, in particular for collecting statistics about the quality
of the generated data (e.g. by PropCheck.collect/2 and its friends).

Another approach would be to use targeted properties
as shown in targeted_tree_test.exs: You use a rather simple data generator and define a measuring function
on the data to express the "leftiness" of the tree. Equiped with that, a target property searches automatically
for data the maximizes (or minimizes) the measuring function (often called utility value or function). Not
inventing a clever data generators comes with a price - there is no free lunch...

	You need some relevant property of your generated data which you can measure, i.e. you need a function
from your data to the real numbers. This is not always possible.

	Searching for an optimum takes more time than simply generating random data: the run-time of the properties
increases.

	Data collecting functions and macros such as PropCheck.collect/2 are currently not available. This
it the reason why in targeted_tree_test.exs we use print-outs to show and verify the generated data.

	Counter examples and shrinking are not available

	The current implementation in PropEr does not work well together with recursive data generators, which
renders the approach unusable for state-based PBT.

But, of course, you gain also something. You can use rather straight data generators and let the searching
algorithm find the interesting parts with respect to the measuring function.

In level_tpbt_test.exs a very different approach is used. Here the basic idea is to verify that a data
structure (here: a maze in a computer game) has a proper structure (here: there exists at least one valid
path from the entrance to the exit of the maze). The function to minimize is the distance from the end of
the path to the exit position. The searching algorithm then optimizes the path length for a minimal
distance until the exit is found. For more complex mazes, it is required to adopt the amount of search_steps
and the neighbor_hood function to find the exit. They takes over the role numtests and resize to
enlarge or refit the generated data for the next search step.

You can combine approaches by using a classical generator for e.g. generating a new maze, and then use
inside a targeted property to find a path to the maze's exit. This would be roughly like this:

forall maze <- maze_generator() do
 exists p <- path_generator() do
 pos = Maze.follow_path(maze, maze.entry_pos, p)
 uv = distance(pos, maze.exit_pos)
 minimize(uv)
 pos == maze.exit_pos
 end
end

How the targeted properties relate

The targeted macros forall_targeted, exists and not_exists are related to each other.
The universal laws of quantors from first-order logic apply here as well (cf.
provable entities in first-order logic)
and explain why some conditions in the test examples are constructed the way they are.

In the following, we use the variable x, the generator x_gen() and a boolean predicate p(). The
term <==> means that the expression on both sides are equivalent.

forall_targeted x <- x_gen(), do: p(x)
 <==> not_exists x <- x_gen(), do: not(p(x))

exists x <- x_gen(), do: p(x)
 <==> forall_targeted x <- x_gen(), do: not(p(x))
 |> fails()

not_exists x <- x_gen(), do: p(x)
 <==> forall_targeted x <- x_gen(), do: not(p(x))

Options

For targeted properties exists a new option:

	{:search_steps, non_negative_number}
takes an integer defining how many search steps the searching algorithm takes.
Its default value is 1_000. The effect of search_steps is similar to num_tests for
ordinary properties. num_tests has no effect on the search strategy. This helps when you
combine a regular property with search strategy, e.g. generating a configuration parameter
and search for specific properties to hold depending on that parameter.

 PropCheck.YieldInstrumenter - PropCheck - Property Testing v1.2.1

PropCheck.YieldInstrumenter

Instruments with prepending :erlang.yield/0 for calls typical concurrency bug
aware functions.

 mix propcheck - PropCheck - Property Testing v1.2.1

mix propcheck

PropCheck runs property checking as part of ExUnit test and
stores counter examples of failing properties in order to
reapply them in the next test run.

The file name for the counter examples can be configured in mix.exs
in the project configuration as

propcheck: [counter_example: "filename"]

With mix propcheck.inspect you can inspect the found counter examples,
with mix propcheck.clean the file is deleted afterwards.

 Anchor for this section

 Summary

 Functions

 run(_)

 A task needs to implement run which receives
a list of command line args.

 Anchor for this section

Functions

 Link to this function

 run(_)

 View Source

A task needs to implement run which receives
a list of command line args.

Callback implementation for Mix.Task.run/1.

 mix propcheck.clean - PropCheck - Property Testing v1.2.1

mix propcheck.clean

Removes the counter example file of propcheck.

 mix propcheck.inspect - PropCheck - Property Testing v1.2.1

mix propcheck.inspect

Inspects all counter examples.

OEBPS/dist/epub-ef4100bf32a25dac1eda.js
!function(t){var a={};function r(e){if(a[e])return a[e].exports;var n=a[e]={i:e,l:!1,exports:{}};return t[e].call(n.exports,n,n.exports,r),n.l=!0,n.exports}r.m=t,r.c=a,r.d=function(e,n,t){r.o(e,n)||Object.defineProperty(e,n,{enumerable:!0,get:t})},r.r=function(e){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(e,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(e,"__esModule",{value:!0})},r.t=function(n,e){if(1&e&&(n=r(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var t=Object.create(null);if(r.r(t),Object.defineProperty(t,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var a in n)r.d(t,a,function(e){return n[e]}.bind(null,a));return t},r.n=function(e){var n=e&&e.__esModule?function(){return e.default}:function(){return e};return r.d(n,"a",n),n},r.o=function(e,n){return Object.prototype.hasOwnProperty.call(e,n)},r.p="",r(r.s=35)}([,function(e,n,t){!function(e){"object"==typeof window&&window||"object"==typeof self&&self;(function(r){var u=[],c=Object.keys,h={},o={},n=/^(no-?highlight|plain|text)$/i,l=/\blang(?:uage)?-([\w-]+)\b/i,t=/((^(<[^>]+>|\t|)+|(?:\n)))/gm,v="",y={classPrefix:"hljs-",tabReplace:null,useBR:!1,languages:void 0};function E(e){return e.replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">")}function g(e){return e.nodeName.toLowerCase()}function w(e,n){var t=e&&e.exec(n);return t&&0===t.index}function d(e){return n.test(e)}function a(e){var n,t={},a=Array.prototype.slice.call(arguments,1);for(n in e)t[n]=e[n];return a.forEach(function(e){for(n in e)t[n]=e[n]}),t}function p(e){var r=[];return function e(n,t){for(var a=n.firstChild;a;a=a.nextSibling)3===a.nodeType?t+=a.nodeValue.length:1===a.nodeType&&(r.push({event:"start",offset:t,node:a}),t=e(a,t),g(a).match(/br|hr|img|input/)||r.push({event:"stop",offset:t,node:a}));return t}(e,0),r}function m(n){return n.variants&&!n.cached_variants&&(n.cached_variants=n.variants.map(function(e){return a(n,{variants:null},e)})),n.cached_variants||n.endsWithParent&&[a(n)]||[n]}function x(s){function o(e){return e&&e.source||e}function l(e,n){return new RegExp(o(e),"m"+(s.case_insensitive?"i":"")+(n?"g":""))}!function n(t,e){if(t.compiled)return;t.compiled=!0;t.keywords=t.keywords||t.beginKeywords;if(t.keywords){var a={},r=function(t,e){s.case_insensitive&&(e=e.toLowerCase()),e.split(" ").forEach(function(e){var n=e.split("|");a[n[0]]=[t,n[1]?Number(n[1]):1]})};"string"==typeof t.keywords?r("keyword",t.keywords):c(t.keywords).forEach(function(e){r(e,t.keywords[e])}),t.keywords=a}t.lexemesRe=l(t.lexemes||/\w+/,!0);e&&(t.beginKeywords&&(t.begin="\\b("+t.beginKeywords.split(" ").join("|")+")\\b"),t.begin||(t.begin=/\B|\b/),t.beginRe=l(t.begin),t.end||t.endsWithParent||(t.end=/\B|\b/),t.end&&(t.endRe=l(t.end)),t.terminator_end=o(t.end)||"",t.endsWithParent&&e.terminator_end&&(t.terminator_end+=(t.end?"|":"")+e.terminator_end));t.illegal&&(t.illegalRe=l(t.illegal));null==t.relevance&&(t.relevance=1);t.contains||(t.contains=[]);t.contains=Array.prototype.concat.apply([],t.contains.map(function(e){return m("self"===e?t:e)}));t.contains.forEach(function(e){n(e,t)});t.starts&&n(t.starts,e);var i=t.contains.map(function(e){return e.beginKeywords?"\\.?("+e.begin+")\\.?":e.begin}).concat([t.terminator_end,t.illegal]).map(o).filter(Boolean);t.terminators=i.length?l(i.join("|"),!0):{exec:function(){return null}}}(s)}function N(e,n,o,t){function l(e,n,t,a){var r=a?"":y.classPrefix,i='')+n+s}function c(){p+=null!=g.subLanguage?function(){var e="string"==typeof g.subLanguage;if(e&&!h[g.subLanguage])return E(m);var n=e?N(g.subLanguage,m,!0,i[g.subLanguage]):O(m,g.subLanguage.length?g.subLanguage:void 0);0<g.relevance&&(f+=n.relevance);e&&(i[g.subLanguage]=n.top);return l(n.language,n.value,!1,!0)}():function(){var e,n,t,a;if(!g.keywords)return E(m);a="",n=0,g.lexemesRe.lastIndex=0,t=g.lexemesRe.exec(m);for(;t;)a+=E(m.substring(n,t.index)),r=g,i=t,void 0,s=u.case_insensitive?i[0].toLowerCase():i[0],(e=r.keywords.hasOwnProperty(s)&&r.keywords[s])?(f+=e[1],a+=l(e[0],E(t[0]))):a+=E(t[0]),n=g.lexemesRe.lastIndex,t=g.lexemesRe.exec(m);var r,i,s;return a+E(m.substr(n))}(),m=""}function d(e){p+=e.className?l(e.className,"",!0):"",g=Object.create(e,{parent:{value:g}})}function a(e,n){if(m+=e,null==n)return c(),0;var t=function(e,n){var t,a;for(t=0,a=n.contains.length;t<a;t++)if(w(n.contains[t].beginRe,e))return n.contains[t]}(n,g);if(t)return t.skip?m+=n:(t.excludeBegin&&(m+=n),c(),t.returnBegin||t.excludeBegin||(m=n)),d(t),t.returnBegin?0:n.length;var a,r,i=function e(n,t){if(w(n.endRe,t)){for(;n.endsParent&&n.parent;)n=n.parent;return n}if(n.endsWithParent)return e(n.parent,t)}(g,n);if(i){var s=g;for(s.skip?m+=n:(s.returnEnd||s.excludeEnd||(m+=n),c(),s.excludeEnd&&(m=n));g.className&&(p+=v),g.skip||(f+=g.relevance),(g=g.parent)!==i.parent;);return i.starts&&d(i.starts),s.returnEnd?0:n.length}if(a=n,r=g,!o&&w(r.illegalRe,a))throw new Error('Illegal lexeme "'+n+'" for mode "'+(g.className||"<unnamed>")+'"');return m+=n,n.length||1}var u=k(e);if(!u)throw new Error('Unknown language: "'+e+'"');x(u);var r,g=t||u,i={},p="";for(r=g;r!==u;r=r.parent)r.className&&(p=l(r.className,"",!0)+p);var m="",f=0;try{for(var s,b,_=0;g.terminators.lastIndex=_,s=g.terminators.exec(n);)b=a(n.substring(_,s.index),s[0]),_=s.index+b;for(a(n.substr(_)),r=g;r.parent;r=r.parent)r.className&&(p+=v);return{relevance:f,value:p,language:e,top:g}}catch(e){if(e.message&&-1!==e.message.indexOf("Illegal"))return{relevance:0,value:E(n)};throw e}}function O(t,e){e=e||y.languages||c(h);var a={relevance:0,value:E(t)},r=a;return e.filter(k).forEach(function(e){var n=N(e,t,!1);n.language=e,n.relevance>r.relevance&&(r=n),n.relevance>a.relevance&&(r=a,a=n)}),r.language&&(a.second_best=r),a}function f(e){return y.tabReplace||y.useBR?e.replace(t,function(e,n){return y.useBR&&"\n"===e?"
":y.tabReplace?n.replace(/\t/g,y.tabReplace):""}):e}function i(e){var n,t,a,r,i,s=function(e){var n,t,a,r,i=e.className+" ";if(i+=e.parentNode?e.parentNode.className:"",t=l.exec(i))return k(t[1])?t[1]:"no-highlight";for(i=i.split(/\s+/),n=0,a=i.length;n<a;n++)if(d(r=i[n])||k(r))return r}(e);d(s)||(y.useBR?(n=document.createElementNS("http://www.w3.org/1999/xhtml","div")).innerHTML=e.innerHTML.replace(/\n/g,"").replace(/<br[\/]*>/g,"\n"):n=e,i=n.textContent,a=s?N(s,i,!0):O(i),(t=p(n)).length&&((r=document.createElementNS("http://www.w3.org/1999/xhtml","div")).innerHTML=a.value,a.value=function(e,n,t){var a=0,r="",i=[];function s(){return e.length&&n.length?e[0].offset!==n[0].offset?e[0].offset<n[0].offset?e:n:"start"===n[0].event?e:n:e.length?e:n}function o(e){function n(e){return" "+e.nodeName+'="'+E(e.value).replace('"',""")+'"'}r+="<"+g(e)+u.map.call(e.attributes,n).join("")+">"}function l(e){r+="</"+g(e)+">"}function c(e){("start"===e.event?o:l)(e.node)}for(;e.length||n.length;){var d=s();if(r+=E(t.substring(a,d[0].offset)),a=d[0].offset,d===e){for(i.reverse().forEach(l);c(d.splice(0,1)[0]),(d=s())===e&&d.length&&d[0].offset===a;);i.reverse().forEach(o)}else"start"===d[0].event?i.push(d[0].node):i.pop(),c(d.splice(0,1)[0])}return r+E(t.substr(a))}(t,p(r),i)),a.value=f(a.value),e.innerHTML=a.value,e.className=function(e,n,t){var a=n?o[n]:t,r=[e.trim()];e.match(/\bhljs\b/)||r.push("hljs");-1===e.indexOf(a)&&r.push(a);return r.join(" ").trim()}(e.className,s,a.language),e.result={language:a.language,re:a.relevance},a.second_best&&(e.second_best={language:a.second_best.language,re:a.second_best.relevance}))}function s(){if(!s.called){s.called=!0;var e=document.querySelectorAll("pre code");u.forEach.call(e,i)}}function k(e){return e=(e||"").toLowerCase(),h[e]||h[o[e]]}r.highlight=N,r.highlightAuto=O,r.fixMarkup=f,r.highlightBlock=i,r.configure=function(e){y=a(y,e)},r.initHighlighting=s,r.initHighlightingOnLoad=function(){addEventListener("DOMContentLoaded",s,!1),addEventListener("load",s,!1)},r.registerLanguage=function(n,e){var t=h[n]=e(r);t.aliases&&t.aliases.forEach(function(e){o[e]=n})},r.listLanguages=function(){return c(h)},r.getLanguage=k,r.inherit=a,r.IDENT_RE="[a-zA-Z]\\w*",r.UNDERSCORE_IDENT_RE="[a-zA-Z_]\\w*",r.NUMBER_RE="\\b\\d+(\\.\\d+)?",r.C_NUMBER_RE="(-?)(\\b0[xX][a-fA-F0-9]+|(\\b\\d+(\\.\\d*)?|\\.\\d+)([eE][-+]?\\d+)?)",r.BINARY_NUMBER_RE="\\b(0b[01]+)",r.RE_STARTERS_RE="!|!=|!==|%|%=|&|&&|&=|*|*=|\\+|\\+=|,|-|-=|/=|/|:|;|<<|<<=|<=|<|===|==|=|>>>=|>>=|>=|>>>|>>|>|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~",r.BACKSLASH_ESCAPE={begin:"\\\\[\\s\\S]",relevance:0},r.APOS_STRING_MODE={className:"string",begin:"'",end:"'",illegal:"\\n",contains:[r.BACKSLASH_ESCAPE]},r.QUOTE_STRING_MODE={className:"string",begin:'"',end:'"',illegal:"\\n",contains:[r.BACKSLASH_ESCAPE]},r.PHRASAL_WORDS_MODE={begin:/\b(a|an|the|are|I'm|isn't|don't|doesn't|won't|but|just|should|pretty|simply|enough|gonna|going|wtf|so|such|will|you|your|they|like|more)\b/},r.COMMENT=function(e,n,t){var a=r.inherit({className:"comment",begin:e,end:n,contains:[]},t||{});return a.contains.push(r.PHRASAL_WORDS_MODE),a.contains.push({className:"doctag",begin:"(?:TODO|FIXME|NOTE|BUG|XXX):",relevance:0}),a},r.C_LINE_COMMENT_MODE=r.COMMENT("//","$"),r.C_BLOCK_COMMENT_MODE=r.COMMENT("/*","*/"),r.HASH_COMMENT_MODE=r.COMMENT("#","$"),r.NUMBER_MODE={className:"number",begin:r.NUMBER_RE,relevance:0},r.C_NUMBER_MODE={className:"number",begin:r.C_NUMBER_RE,relevance:0},r.BINARY_NUMBER_MODE={className:"number",begin:r.BINARY_NUMBER_RE,relevance:0},r.CSS_NUMBER_MODE={className:"number",begin:r.NUMBER_RE+"(%|em|ex|ch|rem|vw|vh|vmin|vmax|cm|mm|in|pt|pc|px|deg|grad|rad|turn|s|ms|Hz|kHz|dpi|dpcm|dppx)?",relevance:0},r.REGEXP_MODE={className:"regexp",begin:/\//,end:/\/[gimuy]*/,illegal:/\n/,contains:[r.BACKSLASH_ESCAPE,{begin:/\[/,end:/\]/,relevance:0,contains:[r.BACKSLASH_ESCAPE]}]},r.TITLE_MODE={className:"title",begin:r.IDENT_RE,relevance:0},r.UNDERSCORE_TITLE_MODE={className:"title",begin:r.UNDERSCORE_IDENT_RE,relevance:0},r.METHOD_GUARD={begin:"\\.\\s*"+r.UNDERSCORE_IDENT_RE,relevance:0}})(n)}()},,,,,function(e,n){e.exports=function(e){var n={className:"variable",variants:[{begin:/\$[\w\d#@][\w\d_]*/},{begin:/\$\{(.*?)}/}]},t={className:"string",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE,n,{className:"variable",begin:/\$\(/,end:/\)/,contains:[e.BACKSLASH_ESCAPE]}]};return{aliases:["sh","zsh"],lexemes:/-?[a-z\._]+/,keywords:{keyword:"if then else elif fi for while in do done case esac function",literal:"true false",built_in:"break cd continue eval exec exit export getopts hash pwd readonly return shift test times trap umask unset alias bind builtin caller command declare echo enable help let local logout mapfile printf read readarray source type typeset ulimit unalias set shopt autoload bg bindkey bye cap chdir clone comparguments compcall compctl compdescribe compfiles compgroups compquote comptags comptry compvalues dirs disable disown echotc echoti emulate fc fg float functions getcap getln history integer jobs kill limit log noglob popd print pushd pushln rehash sched setcap setopt stat suspend ttyctl unfunction unhash unlimit unsetopt vared wait whence where which zcompile zformat zftp zle zmodload zparseopts zprof zpty zregexparse zsocket zstyle ztcp",_:"-ne -eq -lt -gt -f -d -e -s -l -a"},contains:[{className:"meta",begin:/^#![^\n]+sh\s*$/,relevance:10},{className:"function",begin:/\w[\w\d_]*\s*\(\s*\)\s*\{/,returnBegin:!0,contains:[e.inherit(e.TITLE_MODE,{begin:/\w[\w\d_]*/})],relevance:0},e.HASH_COMMENT_MODE,t,{className:"string",begin:/'/,end:/'/},n]}}},function(e,n){e.exports=function(e){var n={begin:/[A-Z_\.\-]+\s*:/,returnBegin:!0,end:";",endsWithParent:!0,contains:[{className:"attribute",begin:/\S/,end:":",excludeEnd:!0,starts:{endsWithParent:!0,excludeEnd:!0,contains:[{begin:/[\w-]+\(/,returnBegin:!0,contains:[{className:"built_in",begin:/[\w-]+/},{begin:/\(/,end:/\)/,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE]}]},e.CSS_NUMBER_MODE,e.QUOTE_STRING_MODE,e.APOS_STRING_MODE,e.C_BLOCK_COMMENT_MODE,{className:"number",begin:"#[0-9A-Fa-f]+"},{className:"meta",begin:"!important"}]}}]};return{case_insensitive:!0,illegal:/[=\/|'\$]/,contains:[e.C_BLOCK_COMMENT_MODE,{className:"selector-id",begin:/#[A-Za-z0-9_-]+/},{className:"selector-class",begin:/\.[A-Za-z0-9_-]+/},{className:"selector-attr",begin:/\[/,end:/\]/,illegal:"$"},{className:"selector-pseudo",begin:/:(:)?[a-zA-Z0-9_\-\+\(\)"'.]+/},{begin:"@(font-face|page)",lexemes:"[a-z-]+",keywords:"font-face page"},{begin:"@",end:"[{;]",illegal:/:/,contains:[{className:"keyword",begin:/\w+/},{begin:/\s/,endsWithParent:!0,excludeEnd:!0,relevance:0,contains:[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,e.CSS_NUMBER_MODE]}]},{className:"selector-tag",begin:"[a-zA-Z-][a-zA-Z0-9_-]*",relevance:0},{begin:"{",end:"}",illegal:/\S/,contains:[e.C_BLOCK_COMMENT_MODE,n]}]}}},function(e,n){e.exports=function(e){return{aliases:["patch"],contains:[{className:"meta",relevance:10,variants:[{begin:/^@@ +\-\d+,\d+ +\+\d+,\d+ +@@$/},{begin:/^*** +\d+,\d+ +****$/},{begin:/^\-\-\- +\d+,\d+ +\-\-\-\-$/}]},{className:"comment",variants:[{begin:/Index: /,end:/$/},{begin:/={3,}/,end:/$/},{begin:/^\-{3}/,end:/$/},{begin:/^*{3} /,end:/$/},{begin:/^\+{3}/,end:/$/},{begin:/*{5}/,end:/*{5}$/}]},{className:"addition",begin:"^\\+",end:"$"},{className:"deletion",begin:"^\\-",end:"$"},{className:"addition",begin:"^\\!",end:"$"}]}}},function(e,n){e.exports=function(e){var n="[a-z'][a-zA-Z0-9_']*",t="("+n+":"+n+"|"+n+")",a={keyword:"after and andalso|10 band begin bnot bor bsl bzr bxor case catch cond div end fun if let not of orelse|10 query receive rem try when xor",literal:"false true"},r=e.COMMENT("%","$"),i={className:"number",begin:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",relevance:0},s={begin:"fun\\s+"+n+"/\\d+"},o={begin:t+"\\(",end:"\\)",returnBegin:!0,relevance:0,contains:[{begin:t,relevance:0},{begin:"\\(",end:"\\)",endsWithParent:!0,returnEnd:!0,relevance:0}]},l={begin:"{",end:"}",relevance:0},c={begin:"\\b_([A-Z][A-Za-z0-9_]*)?",relevance:0},d={begin:"[A-Z][a-zA-Z0-9_]*",relevance:0},u={begin:"#"+e.UNDERSCORE_IDENT_RE,relevance:0,returnBegin:!0,contains:[{begin:"#"+e.UNDERSCORE_IDENT_RE,relevance:0},{begin:"{",end:"}",relevance:0}]},g={beginKeywords:"fun receive if try case",end:"end",keywords:a};g.contains=[r,s,e.inherit(e.APOS_STRING_MODE,{className:""}),g,o,e.QUOTE_STRING_MODE,i,l,c,d,u];var p=[r,s,g,o,e.QUOTE_STRING_MODE,i,l,c,d,u];o.contains[1].contains=p,l.contains=p;var m={className:"params",begin:"\\(",end:"\\)",contains:u.contains[1].contains=p};return{aliases:["erl"],keywords:a,illegal:"(</|*=|\\+=|-=|/*|*/|\\(*|*\\))",contains:[{className:"function",begin:"^"+n+"\\s*\\(",end:"->",returnBegin:!0,illegal:"\\(|#|//|/*|\\\\|:|;",contains:[m,e.inherit(e.TITLE_MODE,{begin:n})],starts:{end:";|\\.",keywords:a,contains:p}},r,{begin:"^-",end:"\\.",relevance:0,excludeEnd:!0,returnBegin:!0,lexemes:"-"+e.IDENT_RE,keywords:"-module -record -undef -export -ifdef -ifndef -author -copyright -doc -vsn -import -include -include_lib -compile -define -else -endif -file -behaviour -behavior -spec",contains:[m]},i,e.QUOTE_STRING_MODE,u,c,d,l,{begin:/\.$/}]}}},function(e,n){e.exports=function(e){return{keywords:{built_in:"spawn spawn_link self",keyword:"after and andalso|10 band begin bnot bor bsl bsr bxor case catch cond div end fun if let not of or orelse|10 query receive rem try when xor"},contains:[{className:"meta",begin:"^[0-9]+> ",relevance:10},e.COMMENT("%","$"),{className:"number",begin:"\\b(\\d+#[a-fA-F0-9]+|\\d+(\\.\\d+)?([eE][-+]?\\d+)?)",relevance:0},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,{begin:"\\?(::)?([A-Z]\\w*(::)?)+"},{begin:"->"},{begin:"ok"},{begin:"!"},{begin:"(\\b[a-z'][a-zA-Z0-9_']*:[a-z'][a-zA-Z0-9_']*)|(\\b[a-z'][a-zA-Z0-9_']*)",relevance:0},{begin:"[A-Z][a-zA-Z0-9_']*",relevance:0}]}}},function(e,n){e.exports=function(e){var n="HTTP/[0-9\\.]+";return{aliases:["https"],illegal:"\\S",contains:[{begin:"^"+n,end:"$",contains:[{className:"number",begin:"\\b\\d{3}\\b"}]},{begin:"^[A-Z]+ (.*?) "+n+"$",returnBegin:!0,end:"$",contains:[{className:"string",begin:" ",end:" ",excludeBegin:!0,excludeEnd:!0},{begin:n},{className:"keyword",begin:"[A-Z]+"}]},{className:"attribute",begin:"^\\w",end:": ",excludeEnd:!0,illegal:"\\n|\\s|=",starts:{end:"$",relevance:0}},{begin:"\\n\\n",starts:{subLanguage:[],endsWithParent:!0}}]}}},function(e,n){e.exports=function(e){var n="[A-Za-z$_][0-9A-Za-z$_]*",t={keyword:"in of if for while finally var new function do return void else break catch instanceof with throw case default try this switch continue typeof delete let yield const export super debugger as async await static import from as",literal:"true false null undefined NaN Infinity",built_in:"eval isFinite isNaN parseFloat parseInt decodeURI decodeURIComponent encodeURI encodeURIComponent escape unescape Object Function Boolean Error EvalError InternalError RangeError ReferenceError StopIteration SyntaxError TypeError URIError Number Math Date String RegExp Array Float32Array Float64Array Int16Array Int32Array Int8Array Uint16Array Uint32Array Uint8Array Uint8ClampedArray ArrayBuffer DataView JSON Intl arguments require module console window document Symbol Set Map WeakSet WeakMap Proxy Reflect Promise"},a={className:"number",variants:[{begin:"\\b(0[bB][01]+)"},{begin:"\\b(0[oO][0-7]+)"},{begin:e.C_NUMBER_RE}],relevance:0},r={className:"subst",begin:"\\$\\{",end:"\\}",keywords:t,contains:[]},i={className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE,r]};r.contains=[e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,i,a,e.REGEXP_MODE];var s=r.contains.concat([e.C_BLOCK_COMMENT_MODE,e.C_LINE_COMMENT_MODE]);return{aliases:["js","jsx"],keywords:t,contains:[{className:"meta",relevance:10,begin:/^\s*['"]use (strict|asm)['"]/},{className:"meta",begin:/^#!/,end:/$/},e.APOS_STRING_MODE,e.QUOTE_STRING_MODE,i,e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,a,{begin:/[{,]\s*/,relevance:0,contains:[{begin:n+"\\s*:",returnBegin:!0,relevance:0,contains:[{className:"attr",begin:n,relevance:0}]}]},{begin:"("+e.RE_STARTERS_RE+"|\\b(case|return|throw)\\b)\\s*",keywords:"return throw case",contains:[e.C_LINE_COMMENT_MODE,e.C_BLOCK_COMMENT_MODE,e.REGEXP_MODE,{className:"function",begin:"(\\(.*?\\)|"+n+")\\s*=>",returnBegin:!0,end:"\\s*=>",contains:[{className:"params",variants:[{begin:n},{begin:/\(\s*\)/},{begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,keywords:t,contains:s}]}]},{begin:/</,end:/(\/\w+|\w+\/)>/,subLanguage:"xml",contains:[{begin:/<\w+\s*\/>/,skip:!0},{begin:/<\w+/,end:/(\/\w+|\w+\/)>/,skip:!0,contains:[{begin:/<\w+\s*\/>/,skip:!0},"self"]}]}],relevance:0},{className:"function",beginKeywords:"function",end:/\{/,excludeEnd:!0,contains:[e.inherit(e.TITLE_MODE,{begin:n}),{className:"params",begin:/\(/,end:/\)/,excludeBegin:!0,excludeEnd:!0,contains:s}],illegal:/\[|%/},{begin:/\$[(.]/},e.METHOD_GUARD,{className:"class",beginKeywords:"class",end:/[{;=]/,excludeEnd:!0,illegal:/[:"\[\]]/,contains:[{beginKeywords:"extends"},e.UNDERSCORE_TITLE_MODE]},{beginKeywords:"constructor",end:/\{/,excludeEnd:!0}],illegal:/#(?!!)/}}},function(e,n){e.exports=function(e){var n={literal:"true false null"},t=[e.QUOTE_STRING_MODE,e.C_NUMBER_MODE],a={end:",",endsWithParent:!0,excludeEnd:!0,contains:t,keywords:n},r={begin:"{",end:"}",contains:[{className:"attr",begin:/"/,end:/"/,contains:[e.BACKSLASH_ESCAPE],illegal:"\\n"},e.inherit(a,{begin:/:/})],illegal:"\\S"},i={begin:"\\[",end:"\\]",contains:[e.inherit(a)],illegal:"\\S"};return t.splice(t.length,0,r,i),{contains:t,keywords:n,illegal:"\\S"}}},function(e,n){e.exports=function(e){return{aliases:["md","mkdown","mkd"],contains:[{className:"section",variants:[{begin:"^#{1,6}",end:"$"},{begin:"^.+?\\n[=-]{2,}$"}]},{begin:"<",end:">",subLanguage:"xml",relevance:0},{className:"bullet",begin:"^([*+-]|(\\d+\\.))\\s+"},{className:"strong",begin:"[*_]{2}.+?[*_]{2}"},{className:"emphasis",variants:[{begin:"*.+?*"},{begin:"_.+?_",relevance:0}]},{className:"quote",begin:"^>\\s+",end:"$"},{className:"code",variants:[{begin:"^```w*s*$",end:"^```s*$"},{begin:"`.+?`"},{begin:"^({4}|\t)",end:"$",relevance:0}]},{begin:"^[-*]{3,}",end:"$"},{begin:"\\[.+?\\][\\(\\[].*?[\\)\\]]",returnBegin:!0,contains:[{className:"string",begin:"\\[",end:"\\]",excludeBegin:!0,returnEnd:!0,relevance:0},{className:"link",begin:"\\]\\(",end:"\\)",excludeBegin:!0,excludeEnd:!0},{className:"symbol",begin:"\\]\\[",end:"\\]",excludeBegin:!0,excludeEnd:!0}],relevance:10},{begin:/^\[[^\n]+\]:/,returnBegin:!0,contains:[{className:"symbol",begin:/\[/,end:/\]/,excludeBegin:!0,excludeEnd:!0},{className:"link",begin:/:\s*/,end:/$/,excludeBegin:!0}]}]}}},function(e,n){e.exports=function(e){var n=e.COMMENT("--","$");return{case_insensitive:!0,illegal:/[<>{}*#]/,contains:[{beginKeywords:"begin end start commit rollback savepoint lock alter create drop rename call delete do handler insert load replace select truncate update set show pragma grant merge describe use explain help declare prepare execute deallocate release unlock purge reset change stop analyze cache flush optimize repair kill install uninstall checksum restore check backup revoke comment",end:/;/,endsWithParent:!0,lexemes:/[\w\.]+/,keywords:{keyword:"abort abs absolute acc acce accep accept access accessed accessible account acos action activate add addtime admin administer advanced advise aes_decrypt aes_encrypt after agent aggregate ali alia alias allocate allow alter always analyze ancillary and any anydata anydataset anyschema anytype apply archive archived archivelog are as asc ascii asin assembly assertion associate asynchronous at atan atn2 attr attri attrib attribu attribut attribute attributes audit authenticated authentication authid authors auto autoallocate autodblink autoextend automatic availability avg backup badfile basicfile before begin beginning benchmark between bfile bfile_base big bigfile bin binary_double binary_float binlog bit_and bit_count bit_length bit_or bit_xor bitmap blob_base block blocksize body both bound buffer_cache buffer_pool build bulk by byte byteordermark bytes cache caching call calling cancel capacity cascade cascaded case cast catalog category ceil ceiling chain change changed char_base char_length character_length characters characterset charindex charset charsetform charsetid check checksum checksum_agg child choose chr chunk class cleanup clear client clob clob_base clone close cluster_id cluster_probability cluster_set clustering coalesce coercibility col collate collation collect colu colum column column_value columns columns_updated comment commit compact compatibility compiled complete composite_limit compound compress compute concat concat_ws concurrent confirm conn connec connect connect_by_iscycle connect_by_isleaf connect_by_root connect_time connection consider consistent constant constraint constraints constructor container content contents context contributors controlfile conv convert convert_tz corr corr_k corr_s corresponding corruption cos cost count count_big counted covar_pop covar_samp cpu_per_call cpu_per_session crc32 create creation critical cross cube cume_dist curdate current current_date current_time current_timestamp current_user cursor curtime customdatum cycle data database databases datafile datafiles datalength date_add date_cache date_format date_sub dateadd datediff datefromparts datename datepart datetime2fromparts day day_to_second dayname dayofmonth dayofweek dayofyear days db_role_change dbtimezone ddl deallocate declare decode decompose decrement decrypt deduplicate def defa defau defaul default defaults deferred defi defin define degrees delayed delegate delete delete_all delimited demand dense_rank depth dequeue des_decrypt des_encrypt des_key_file desc descr descri describ describe descriptor deterministic diagnostics difference dimension direct_load directory disable disable_all disallow disassociate discardfile disconnect diskgroup distinct distinctrow distribute distributed div do document domain dotnet double downgrade drop dumpfile duplicate duration each edition editionable editions element ellipsis else elsif elt empty enable enable_all enclosed encode encoding encrypt end end-exec endian enforced engine engines enqueue enterprise entityescaping eomonth error errors escaped evalname evaluate event eventdata events except exception exceptions exchange exclude excluding execu execut execute exempt exists exit exp expire explain export export_set extended extent external external_1 external_2 externally extract failed failed_login_attempts failover failure far fast feature_set feature_value fetch field fields file file_name_convert filesystem_like_logging final finish first first_value fixed flash_cache flashback floor flush following follows for forall force form forma format found found_rows freelist freelists freepools fresh from from_base64 from_days ftp full function general generated get get_format get_lock getdate getutcdate global global_name globally go goto grant grants greatest group group_concat group_id grouping grouping_id groups gtid_subtract guarantee guard handler hash hashkeys having hea head headi headin heading heap help hex hierarchy high high_priority hosts hour http id ident_current ident_incr ident_seed identified identity idle_time if ifnull ignore iif ilike ilm immediate import in include including increment index indexes indexing indextype indicator indices inet6_aton inet6_ntoa inet_aton inet_ntoa infile initial initialized initially initrans inmemory inner innodb input insert install instance instantiable instr interface interleaved intersect into invalidate invisible is is_free_lock is_ipv4 is_ipv4_compat is_not is_not_null is_used_lock isdate isnull isolation iterate java join json json_exists keep keep_duplicates key keys kill language large last last_day last_insert_id last_value lax lcase lead leading least leaves left len lenght length less level levels library like like2 like4 likec limit lines link list listagg little ln load load_file lob lobs local localtime localtimestamp locate locator lock locked log log10 log2 logfile logfiles logging logical logical_reads_per_call logoff logon logs long loop low low_priority lower lpad lrtrim ltrim main make_set makedate maketime managed management manual map mapping mask master master_pos_wait match matched materialized max maxextents maximize maxinstances maxlen maxlogfiles maxloghistory maxlogmembers maxsize maxtrans md5 measures median medium member memcompress memory merge microsecond mid migration min minextents minimum mining minus minute minvalue missing mod mode model modification modify module monitoring month months mount move movement multiset mutex name name_const names nan national native natural nav nchar nclob nested never new newline next nextval no no_write_to_binlog noarchivelog noaudit nobadfile nocheck nocompress nocopy nocycle nodelay nodiscardfile noentityescaping noguarantee nokeep nologfile nomapping nomaxvalue nominimize nominvalue nomonitoring none noneditionable nonschema noorder nopr nopro noprom nopromp noprompt norely noresetlogs noreverse normal norowdependencies noschemacheck noswitch not nothing notice notrim novalidate now nowait nth_value nullif nulls num numb numbe nvarchar nvarchar2 object ocicoll ocidate ocidatetime ociduration ociinterval ociloblocator ocinumber ociref ocirefcursor ocirowid ocistring ocitype oct octet_length of off offline offset oid oidindex old on online only opaque open operations operator optimal optimize option optionally or oracle oracle_date oradata ord ordaudio orddicom orddoc order ordimage ordinality ordvideo organization orlany orlvary out outer outfile outline output over overflow overriding package pad parallel parallel_enable parameters parent parse partial partition partitions pascal passing password password_grace_time password_lock_time password_reuse_max password_reuse_time password_verify_function patch path patindex pctincrease pctthreshold pctused pctversion percent percent_rank percentile_cont percentile_disc performance period period_add period_diff permanent physical pi pipe pipelined pivot pluggable plugin policy position post_transaction pow power pragma prebuilt precedes preceding precision prediction prediction_cost prediction_details prediction_probability prediction_set prepare present preserve prior priority private private_sga privileges procedural procedure procedure_analyze processlist profiles project prompt protection public publishingservername purge quarter query quick quiesce quota quotename radians raise rand range rank raw read reads readsize rebuild record records recover recovery recursive recycle redo reduced ref reference referenced references referencing refresh regexp_like register regr_avgx regr_avgy regr_count regr_intercept regr_r2 regr_slope regr_sxx regr_sxy reject rekey relational relative relaylog release release_lock relies_on relocate rely rem remainder rename repair repeat replace replicate replication required reset resetlogs resize resource respect restore restricted result result_cache resumable resume retention return returning returns reuse reverse revoke right rlike role roles rollback rolling rollup round row row_count rowdependencies rowid rownum rows rtrim rules safe salt sample save savepoint sb1 sb2 sb4 scan schema schemacheck scn scope scroll sdo_georaster sdo_topo_geometry search sec_to_time second section securefile security seed segment select self sequence sequential serializable server servererror session session_user sessions_per_user set sets settings sha sha1 sha2 share shared shared_pool short show shrink shutdown si_averagecolor si_colorhistogram si_featurelist si_positionalcolor si_stillimage si_texture siblings sid sign sin size size_t sizes skip slave sleep smalldatetimefromparts smallfile snapshot some soname sort soundex source space sparse spfile split sql sql_big_result sql_buffer_result sql_cache sql_calc_found_rows sql_small_result sql_variant_property sqlcode sqldata sqlerror sqlname sqlstate sqrt square standalone standby start starting startup statement static statistics stats_binomial_test stats_crosstab stats_ks_test stats_mode stats_mw_test stats_one_way_anova stats_t_test_ stats_t_test_indep stats_t_test_one stats_t_test_paired stats_wsr_test status std stddev stddev_pop stddev_samp stdev stop storage store stored str str_to_date straight_join strcmp strict string struct stuff style subdate subpartition subpartitions substitutable substr substring subtime subtring_index subtype success sum suspend switch switchoffset switchover sync synchronous synonym sys sys_xmlagg sysasm sysaux sysdate sysdatetimeoffset sysdba sysoper system system_user sysutcdatetime table tables tablespace tan tdo template temporary terminated tertiary_weights test than then thread through tier ties time time_format time_zone timediff timefromparts timeout timestamp timestampadd timestampdiff timezone_abbr timezone_minute timezone_region to to_base64 to_date to_days to_seconds todatetimeoffset trace tracking transaction transactional translate translation treat trigger trigger_nestlevel triggers trim truncate try_cast try_convert try_parse type ub1 ub2 ub4 ucase unarchived unbounded uncompress under undo unhex unicode uniform uninstall union unique unix_timestamp unknown unlimited unlock unpivot unrecoverable unsafe unsigned until untrusted unusable unused update updated upgrade upped upper upsert url urowid usable usage use use_stored_outlines user user_data user_resources users using utc_date utc_timestamp uuid uuid_short validate validate_password_strength validation valist value values var var_samp varcharc vari varia variab variabl variable variables variance varp varraw varrawc varray verify version versions view virtual visible void wait wallet warning warnings week weekday weekofyear wellformed when whene whenev wheneve whenever where while whitespace with within without work wrapped xdb xml xmlagg xmlattributes xmlcast xmlcolattval xmlelement xmlexists xmlforest xmlindex xmlnamespaces xmlpi xmlquery xmlroot xmlschema xmlserialize xmltable xmltype xor year year_to_month years yearweek",literal:"true false null",built_in:"array bigint binary bit blob boolean char character date dec decimal float int int8 integer interval number numeric real record serial serial8 smallint text varchar varying void"},contains:[{className:"string",begin:"'",end:"'",contains:[e.BACKSLASH_ESCAPE,{begin:"''"}]},{className:"string",begin:'"',end:'"',contains:[e.BACKSLASH_ESCAPE,{begin:'""'}]},{className:"string",begin:"`",end:"`",contains:[e.BACKSLASH_ESCAPE]},e.C_NUMBER_MODE,e.C_BLOCK_COMMENT_MODE,n]},e.C_BLOCK_COMMENT_MODE,n]}}},function(e,n){e.exports=function(e){var n={endsWithParent:!0,illegal:/</,relevance:0,contains:[{className:"attr",begin:"[A-Za-z0-9\\._:-]+",relevance:0},{begin:/=\s*/,relevance:0,contains:[{className:"string",endsParent:!0,variants:[{begin:/"/,end:/"/},{begin:/'/,end:/'/},{begin:/[^\s"'=<>`]+/}]}]}]};return{aliases:["html","xhtml","rss","atom","xjb","xsd","xsl","plist"],case_insensitive:!0,contains:[{className:"meta",begin:"<!DOCTYPE",end:">",relevance:10,contains:[{begin:"\\[",end:"\\]"}]},e.COMMENT("\x3c!--","--\x3e",{relevance:10}),{begin:"<\\!\\[CDATA\\[",end:"\\]\\]>",relevance:10},{begin:/<\?(php)?/,end:/\?>/,subLanguage:"php",contains:[{begin:"/*",end:"*/",skip:!0}]},{className:"tag",begin:"<style(?=\\s|>|$)",end:">",keywords:{name:"style"},contains:[n],starts:{end:"</style>",returnEnd:!0,subLanguage:["css","xml"]}},{className:"tag",begin:"<script(?=\\s|>|$)",end:">",keywords:{name:"script"},contains:[n],starts:{end:"<\/script>",returnEnd:!0,subLanguage:["actionscript","javascript","handlebars","xml"]}},{className:"meta",variants:[{begin:/<\?xml/,end:/\?>/,relevance:10},{begin:/<\?\w+/,end:/\?>/}]},{className:"tag",begin:"</?",end:"/?>",contains:[{className:"name",begin:/[^\/><\s]+/,relevance:0},n]}]}}},function(e,n,t){"use strict";t.d(n,"a",function(){return s});var r="hll";function a(e){for(var n=e.target.getAttribute("data-group-id"),t=document.querySelectorAll("[data-group-id='"+n+"']"),a=0;a<t.length;++a)t[a].classList.add(r)}function i(e){for(var n=e.target.getAttribute("data-group-id"),t=document.querySelectorAll("[data-group-id='"+n+"']"),a=0;a<t.length;++a)t[a].classList.remove(r)}function s(){for(var e=document.querySelectorAll("[data-group-id]"),n=0;n<e.length;n++){var t=e[n];t.addEventListener("mouseenter",a),t.addEventListener("mouseleave",i)}}},,,function(e,n){e.exports=function(t){var s=[];return s.toString=function(){return this.map(function(e){var n=function(e,n){var t=e[1]||"",a=e[3];if(!a)return t;if(n&&"function"==typeof btoa){var r=(s=a,"/*# sourceMappingURL=data:application/json;charset=utf-8;base64,"+btoa(unescape(encodeURIComponent(JSON.stringify(s))))+" */"),i=a.sources.map(function(e){return"/*# sourceURL="+a.sourceRoot+e+" */"});return[t].concat(i).concat([r]).join("\n")}var s;return[t].join("\n")}(e,t);return e[2]?"@media "+e[2]+"{"+n+"}":n}).join("")},s.i=function(e,n){"string"==typeof e&&(e=[[null,e,""]]);for(var t={},a=0;a<this.length;a++){var r=this[a][0];"number"==typeof r&&(t[r]=!0)}for(a=0;a<e.length;a++){var i=e[a];"number"==typeof i[0]&&t[i[0]]||(n&&!i[2]?i[2]=n:n&&(i[2]="("+i[2]+") and ("+n+")"),s.push(i))}},s}},function(e,n,a){var t,r,i,l={},c=(t=function(){return window&&document&&document.all&&!window.atob},function(){return void 0===r&&(r=t.apply(this,arguments)),r}),s=(i={},function(e,n){if("function"==typeof e)return e();if(void 0===i[e]){var t=function(e,n){return n?n.querySelector(e):document.querySelector(e)}.call(this,e,n);if(window.HTMLIFrameElement&&t instanceof window.HTMLIFrameElement)try{t=t.contentDocument.head}catch(e){t=null}i[e]=t}return i[e]}),d=null,u=0,o=[],g=a(22);function p(e,n){for(var t=0;t<e.length;t++){var a=e[t],r=l[a.id];if(r){r.refs++;for(var i=0;i<r.parts.length;i++)r.parts[i](a.parts[i]);for(;i<a.parts.length;i++)r.parts.push(v(a.parts[i],n))}else{var s=[];for(i=0;i<a.parts.length;i++)s.push(v(a.parts[i],n));l[a.id]={id:a.id,refs:1,parts:s}}}}function m(e,n){for(var t=[],a={},r=0;r<e.length;r++){var i=e[r],s=n.base?i[0]+n.base:i[0],o={css:i[1],media:i[2],sourceMap:i[3]};a[s]?a[s].parts.push(o):t.push(a[s]={id:s,parts:[o]})}return t}function f(e,n){var t=s(e.insertInto);if(!t)throw new Error("Couldn't find a style target. This probably means that the value for the 'insertInto' parameter is invalid.");var a=o[o.length-1];if("top"===e.insertAt)a?a.nextSibling?t.insertBefore(n,a.nextSibling):t.appendChild(n):t.insertBefore(n,t.firstChild),o.push(n);else if("bottom"===e.insertAt)t.appendChild(n);else{if("object"!=typeof e.insertAt||!e.insertAt.before)throw new Error("[Style Loader]\n\n Invalid value for parameter 'insertAt' ('options.insertAt') found.\n Must be 'top', 'bottom', or Object.\n (https://github.com/webpack-contrib/style-loader#insertat)\n");var r=s(e.insertAt.before,t);t.insertBefore(n,r)}}function b(e){if(null===e.parentNode)return!1;e.parentNode.removeChild(e);var n=o.indexOf(e);0<=n&&o.splice(n,1)}function _(e){var n=document.createElement("style");if(void 0===e.attrs.type&&(e.attrs.type="text/css"),void 0===e.attrs.nonce){var t=function(){0;return a.nc}();t&&(e.attrs.nonce=t)}return h(n,e.attrs),f(e,n),n}function h(n,t){Object.keys(t).forEach(function(e){n.setAttribute(e,t[e])})}function v(n,e){var t,a,r,i,s,o;if(e.transform&&n.css){if(!(i=e.transform(n.css)))return function(){};n.css=i}if(e.singleton){var l=u++;t=d||(d=_(e)),a=w.bind(null,t,l,!1),r=w.bind(null,t,l,!0)}else r=n.sourceMap&&"function"==typeof URL&&"function"==typeof URL.createObjectURL&&"function"==typeof URL.revokeObjectURL&&"function"==typeof Blob&&"function"==typeof btoa?(s=e,o=document.createElement("link"),void 0===s.attrs.type&&(s.attrs.type="text/css"),s.attrs.rel="stylesheet",h(o,s.attrs),f(s,o),a=function(e,n,t){var a=t.css,r=t.sourceMap,i=void 0===n.convertToAbsoluteUrls&&r;(n.convertToAbsoluteUrls||i)&&(a=g(a));r&&(a+="\n/*# sourceMappingURL=data:application/json;base64,"+btoa(unescape(encodeURIComponent(JSON.stringify(r))))+" */");var s=new Blob([a],{type:"text/css"}),o=e.href;e.href=URL.createObjectURL(s),o&&URL.revokeObjectURL(o)}.bind(null,t=o,e),function(){b(t),t.href&&URL.revokeObjectURL(t.href)}):(t=_(e),a=function(e,n){var t=n.css,a=n.media;a&&e.setAttribute("media",a);if(e.styleSheet)e.styleSheet.cssText=t;else{for(;e.firstChild;)e.removeChild(e.firstChild);e.appendChild(document.createTextNode(t))}}.bind(null,t),function(){b(t)});return a(n),function(e){if(e){if(e.css===n.css&&e.media===n.media&&e.sourceMap===n.sourceMap)return;a(n=e)}else r()}}e.exports=function(e,s){if("undefined"!=typeof DEBUG&&DEBUG&&"object"!=typeof document)throw new Error("The style-loader cannot be used in a non-browser environment");(s=s||{}).attrs="object"==typeof s.attrs?s.attrs:{},s.singleton||"boolean"==typeof s.singleton||(s.singleton=c()),s.insertInto||(s.insertInto="head"),s.insertAt||(s.insertAt="bottom");var o=m(e,s);return p(o,s),function(e){for(var n=[],t=0;t<o.length;t++){var a=o[t];(r=l[a.id]).refs--,n.push(r)}e&&p(m(e,s),s);for(t=0;t<n.length;t++){var r;if(0===(r=n[t]).refs){for(var i=0;i<r.parts.length;i++)r.parts[i]();delete l[r.id]}}}};var y,E=(y=[],function(e,n){return y[e]=n,y.filter(Boolean).join("\n")});function w(e,n,t,a){var r=t?"":a.css;if(e.styleSheet)e.styleSheet.cssText=E(n,r);else{var i=document.createTextNode(r),s=e.childNodes;s[n]&&e.removeChild(s[n]),s.length?e.insertBefore(i,s[n]):e.appendChild(i)}}},function(e,n){e.exports=function(e){var n="undefined"!=typeof window&&window.location;if(!n)throw new Error("fixUrls requires window.location");if(!e||"string"!=typeof e)return e;var r=n.protocol+"//"+n.host,i=r+n.pathname.replace(/\/[^\/]*$/,"/");return e.replace(/url\s*\(((?:[^)(]|\((?:[^)(]+|\([^)(]*\))*\))*)\)/gi,function(e,n){var t,a=n.trim().replace(/^"(.*)"$/,function(e,n){return n}).replace(/^'(.*)'$/,function(e,n){return n});return/^(#|data:|http:\/\/|https:\/\/|file:\/\/\/|\s*$)/i.test(a)?e:(t=0===a.indexOf("//")?a:0===a.indexOf("/")?r+a:i+a.replace(/^\.\//,""),"url("+JSON.stringify(t)+")")})}},,,,,,,,,,,,,function(e,n,t){t(36),e.exports=t(37)},function(e,n,t){"use strict";t.r(n);var a=t(1),r=t.n(a),i=t(6),s=t.n(i),o=t(7),l=t.n(o),c=t(8),d=t.n(c),u=t(9),g=t.n(u),p=t(10),m=t.n(p),f=t(11),b=t.n(f),_=t(12),h=t.n(_),v=t(13),y=t.n(v),E=t(14),w=t.n(E),x=t(15),N=t.n(x),O=t(16),k=t.n(O),M=t(17);r.a.configure({tabReplace:" ",languages:[]}),r.a.registerLanguage("bash",s.a),r.a.registerLanguage("css",l.a),r.a.registerLanguage("diff",d.a),r.a.registerLanguage("erlang",g.a),r.a.registerLanguage("erlang-repl",m.a),r.a.registerLanguage("http",b.a),r.a.registerLanguage("javascript",h.a),r.a.registerLanguage("json",y.a),r.a.registerLanguage("markdown",w.a),r.a.registerLanguage("sql",N.a),r.a.registerLanguage("xml",k.a),Object(M.a)(),r.a.initHighlightingOnLoad()},function(e,n,t){var a=t(38);"string"==typeof a&&(a=[[e.i,a,""]]);var r={hmr:!0,tr