

 PromEx

 v1.4.1

 [image: Logo]

 Table of contents

 	Contents

 	How-To's

 	Writing PromEx Plugins

 	Introduction to Telemetry

 	Grafana

 	Dashboards Screenshots

 	Modules

 	PromEx

 	PromEx.BucketGenerator

 	PromEx.Config

 	PromEx.DashboardRenderer

 	PromEx.DashboardUploader

 	PromEx.Debug

 	PromEx.ETSCronFlusher

 	PromEx.GrafanaClient

 	PromEx.GrafanaClient.Connection

 	PromEx.GrafanaClient.DashboardChecker

 	PromEx.LifecycleAnnotator

 	PromEx.ManualMetricsManager

 	PromEx.MetricTypes.Event

 	PromEx.MetricTypes.Manual

 	PromEx.MetricTypes.Polling

 	PromEx.MetricsServer.Plug

 	PromEx.Plug

 	PromEx.Plugin

 	PromEx.Plugins.Absinthe

 	PromEx.Plugins.Application

 	PromEx.Plugins.Beam

 	PromEx.Plugins.Ecto

 	PromEx.Plugins.Oban

 	PromEx.Plugins.Phoenix

 	PromEx.Plugins.PhoenixLiveView

 	PromEx.Plugins.PlugCowboy

 	PromEx.Plugins.PlugRouter

 	Mix Tasks

 	mix prom_ex.dashboard.export

 	mix prom_ex.dashboard.lint

 	mix prom_ex.dashboard.publish

 	mix prom_ex.gen.config

[image: PromEx Logo][image: PromEx Logo]
Prometheus metrics and Grafana dashboards for all of your favorite Elixir libraries

[image: Hex.pm]

 Writing PromEx Plugins - PromEx v1.4.1

Writing PromEx Plugins
This guide will walk you through writing a PromEx plugin. Whether this plugin is for a dependent library or for your
internal application metrics, the same patterns apply.
Getting started
In order for PromEx to be able to load the appropriate metrics from your plugins, your modules need to leverage the
PromEx behaviour. This behaviour defines 3 optional callbacks. Those callbacks are:
	event_metrics/1
	polling_metrics/1
	manual_metrics/1

Each of these callbacks is supposed to return a list of metrics of that type. For example, polling_metrics/1 needs to
return a list of PromEx.MetricTypes.Polling structs (a single struct is also an acceptable return). By doing this, you
plugin can load your metrics and deal with the nuances of each metric type properly. Each of the MetricTypes structs
all have a field called :metrics. This field contains a list of all the Telemetry.Metrics definitions that were
provided to the struct build function.
Adding Event Metrics
To have your custom plugin expose event based metrics, implement a event_metrics/1 function and build our a collection
of Telemetry.Metrics structs (distribution, counter, last_value, and sum). Be sure to look at plugins like
PromEx.Plugins.Phoenix for more in depth examples.
defmodule MyApp.PromEx.Plugins.MyPhoenix do
 use PromEx.Plugin

 @impl true
 def event_metrics(opts) do
 http_metrics_tags = gen_http_metrics_tags(opts)
 phoenix_router = get_phoenix_router(opts)
 phoenix_stop_event = [:phoenix, :endpoint, :stop]

 Event.build(
 :phoenix_http_event_metrics,
 [
 # Capture request duration information
 distribution(
 [:phoenix, :http, :request, :duration, :milliseconds],
 event_name: phoenix_stop_event,
 measurement: :duration,
 description: "The time it takes for the application to respond to HTTP requests.",
 reporter_options: [
 buckets: exponential(1, 2, 12)
],
 tag_values: get_conn_tags(phoenix_router),
 tags: http_metrics_tags,
 unit: {:native, :millisecond}
)

 # Additional event based metrics ...
]
)
 end
end
Adding Polling Metrics
Polling metrics are similar to event metrics in that they require similar fields (group_name and metrics to be
specific). In addition, the PromEx.MetricTypes.Polling.build/4 function requires an measurements_mfa argument which
specifies what function will be executed on the polling interval. This function should run :telemetry.execute/3
somewhere in its function body. Once that event is executed, the corresponding event in the struct will be triggered and
you will capture the desired data point. The following example from PromEx.Plugins.Beam should highlight this concept:
defmodule PromEx.Plugins.Beam do
 use PromEx.Plugin

 @memory_event [:prom_ex, :plugin, :beam, :memory]

 @impl true
 def polling_metrics(opts) do
 poll_rate = Keyword.get(opts, :poll_rate, 5_000)

 [
 memory_metrics(poll_rate)
]
 end

 defp memory_metrics(poll_rate) do
 Polling.build(
 :beam_memory_polling_events,
 poll_rate,
 {__MODULE__, :execute_memory_metrics, []},
 [
 # Capture the total memory allocated to the entire Erlang VM (or BEAM for short)
 last_value(
 [:beam, :memory, :total, :kilobytes],
 event_name: @memory_event,
 description: "The total amount of memory currently allocated.",
 measurement: :total,
 unit: {:byte, :kilobyte}
)

 # More memory metrics here
]
)
 end

 @doc false
 def execute_memory_metrics do
 memory_measurements =
 :erlang.memory()
 |> Map.new()

 :telemetry.execute(@memory_event, memory_measurements, %{})
 end
end
Depending on what :poll_rate value you pass to the initialization tuple for PromEx.Plugins.Beam, the
execute_memory_metrics/0 function will be execute on that specified interval.
Adding Manual Metrics
Manual metrics behave more or less the same as polling metrics except they do not require a poll rate value. Instead the
provided measurements_mfa is called once on application start, and the metrics are only then updated if you make a
call to PromEx.ManualMetricsManager.refresh_metrics/1. An example of this can be seen from the
PromEx.Plugins.Application plugin:
defmodule PromEx.Plugins.Application do
 use PromEx.Plugin

 @impl true
 def manual_metrics(opts) do
 otp_app = Keyword.fetch!(opts, :otp_app)
 apps = Keyword.get(opts, :deps, :all)

 Manual.build(
 :application_versions_manual_metrics,
 {__MODULE__, :apps_running, [otp_app, apps]},
 [
 # Capture information regarding the primary application (i.e the user's application)
 last_value(
 [otp_app | [:application, :primary, :info]],
 event_name: [otp_app | [:application, :primary, :info]],
 description: "Information regarding the primary application.",
 measurement: :status,
 tags: [:name, :version, :modules]
)

 # Additional metrics here
]
)
 end

 @doc false
 def apps_running(otp_app, apps) do
 ...

 # Emit primary app details
 :telemetry.execute(
 [otp_app | [:application, :primary, :info]],
 %{
 status: if(Map.has_key?(started_apps, otp_app), do: 1, else: 0)
 },
 %{
 name: otp_app,
 version:
 Map.get_lazy(started_apps, otp_app, fn ->
 Map.get(loaded_only_apps, otp_app, "undefined")
 end),
 modules: length(Application.spec(otp_app)[:modules])
 }
)
 end
end
So in this example, apps_running/2 is the function that is denoted by the MFA and will be called once automatically on
application start, but then at that point it is up to the user to refresh the data point.

 Introduction to Telemetry - PromEx v1.4.1

Introduction to Telemetry
This section serves as a quick primer for the Telemetry library, how it works, and how you can leverage it in your
applications. While there is nothing specific to PromEx here, but it is important to know how Telemetry works so that
you can effectively create your own PromEx plugins.
What is Telemetry?
At a high level, Telemetry offers a means for libraries and applications to surface internal events. These events can
be emitted prior to starting some logical body of work, after the work has completed, after the processing of the work
has resulted in an exception, or even any time you want to denote that something of importance has occurred. As an
example, these events can include the time it takes to process incoming HTTP requests (like in Phoenix) or the time
it takes to process a job (like in Broadway & Oban) and well as metadata related to the event (like the requested route
in Phoenix).
How Does it Work?
Under the hood, Telemetry works by attaching callback functions to events (tracked in ETS), and then invoking those
functions serially whenever that event occurs. In other words, any time an event is triggered, Telemetry dynamically
dispatches to each of the callbacks that are registered for that particular event. You can think of this as effectively
being a pub/sub style library but synchronous as opposed to asynchronous. Given that the callbacks are executed in a
synchronous fashion, it is highly recommended that you keep your callbacks very lightweight and functionally limited. If
additional blocking work needs to take place as a result of an event, be sure to spin that work off into its own Task or
pass it along to a separate GenServer.
Why is Telemetry Important?
In my opinion, Telemetry (and the other repositories in the beam-telemetry GitHub organization) provides two key benefits
to the Erlang, Elixir and Beam communities.
Firstly, Telemetry provides a consistent interface through which applications and libraries can expose internal events.
This consistent interface consists of measurements and metadata that are attached to each event that can then be used by
consumers in whichever way fits the user's needs. For example, using the same Telemetry event, you can produce a custom
log message and even metrics by attaching two separate callback functions to the desired Telemetry event.
Secondly, attaching callbacks to Telemetry events is a very low friction operation and can be done without much
ceremony. This is important given that if the ergonomics of Telemetry were cumbersome to work with, library authors
would not be inclined to leverage Telemetry for surfacing internal events. Specifically, Telemetry does not require
any global setup or configuration by either the library author or the user. Instead, Telemetry will sort out the dynamic
function dispatch through ETS tables that it manages and will only invoke callback functions when callbacks have been
attached to a particular event.
As a result of these two points (and others), it is no surprise that over 100 libraries in the Elixir and Erlang
ecosystem have adopted Telemetry as their primary means of surfacing internal events.
How Can I Use Telemetry in my Project?
As previously mentioned, leveraging Telemetry consists of a library (or your application) executing an event, and you as
the user attaching a callback to said event. As an example, let's suppose that we want to emit an event any time a user
registers for our service. In our registration function we could do something like so in order to capture when users are
successfully created and when errors are encountered:
def register_user(attrs) do
 %User{}
 |> User.registration_changeset(updated_attrs)
 |> Repo.insert()
 |> case do
 {:ok, new_user} = result ->
 :telemetry.execute([:my_cool_app, :accounts, :new_user, :success], %{}, %{user: new_user})
 result

 {:error, changeset} = error ->
 :telemetry.execute([:my_cool_app, :accounts, :new_user, :error], %{}, %{error: changeset})
 error
 end
end
Elsewhere in your application code (perhaps where you initialize your application) you can attach to these events by
doing the following:
:telemetry.attach(
 [:my_cool_app, :accounts, :new_user, :success],
 query_event,
 fn _event_name, _event_measurement, event_metadata, _config ->
 Logger.debug("User has registered: #{inspect(event_metadata)}")
 end,
 %{}
)

:telemetry.attach(
 [:my_cool_app, :accounts, :new_user, :error],
 query_event,
 fn _event_name, _event_measurement, event_metadata, _config ->
 Logger.warn("User failed to register: #{inspect(event_metadata)}")
 end,
 %{}
)
Now, any time an error occurs and a user fails to register a warning log is generated with the metadata related to the
error. Similarly, a debug log message is created any time a user is successfully created.
Additional Resources
	https://github.com/beam-telemetry/telemetry
	https://hexdocs.pm/telemetry_metrics/Telemetry.Metrics.html
	https://keathley.io/blog/telemetry-conventions.html

 Dashboards Screenshots - PromEx v1.4.1

Dashboards Screenshots
Application
The application dashboard surfaces static information regarding the application. Things such as the dependencies of the
application, GIT SHA+author and uptime.
[image: Application Dashboard]BEAM
The BEAM dashboard presents information regarding the Erlang virtual machine. Things such as memory statistics,
process and atom counts, scheduler information, and much more
[image: BEAM Dashboard]Ecto
The Ecto dashboard contains charts to track query execution time, number of results returned, and static information
regarding the configured Repo.
[image: Ecto Dashboard]Oban
The Oban plugin presents information regarding the job execution time, job queue time, available jobs in queue, static
configuration settings and much, much more.
[image: Oban Dashboard]Phoenix
The Phoenix dashboard presents information regarding HTTP requests and channel connections.
[image: Phoenix Dashboard]Phoenix LiveView
The Phoenix LiveView dashboard presents information regarding the various LiveView callbacks and the time it takes to
execute them.
[image: Phoenix LiveView Dashboard]

 PromEx - PromEx v1.4.1

PromEx behaviour

PromEx is a plugin based library which can be used to capture
telemetry events and report them out for consumption by Prometheus.
The main purpose of this particular library is to provide the
behaviour that all PromEx plugins leverage so that a consistent
interface can be achieved and so that leveraging multiple plugins is
effortless from the user's point of view.
To use PromEx you need to define a module that uses the PromEx library. This module
will also need to have some application config set for it similarly to how Ecto does.
For example, for a PromEx module defined like so:
defmodule MyApp.PromEx do
 use PromEx, otp_app: :web_app

 ...
end
You would have an application configuration set like so:
config :my_app, MyApp.PromEx,
 manual_metrics_start_delay: :no_delay,
 drop_metrics_groups: [],
 grafana: [
 host: System.get_env("GRAFANA_HOST", "http://grafana:3000"),
 auth_token: System.get_env("GRAFANA_TOKEN", ""),
 upload_dashboards_on_start: true,
 folder_name: "My App Dashboards",
 annotate_app_lifecycle: true
]
The options that you can pass to PromEx macro are outlined in the following section. In order
to tell PromEx what plugins you would like to use and what dashboards you would like PromEx
to upload for you, implement the plugins/0 and dashboards/0 callbacks respectively. The
dashboard_assigns/0 callback will be used when your EEx template Grafana dashboards are
rendered so that the dashboards that are created for your application coincide with the PromEx
configuration for the application. If your dashboards are not EEx templates, then the dashboard
assigns are not passed through. Each plugin also has an accompanying Grafana dashboard that you
can leverage to plot all of the plugin captured data.
In order to expose captured metrics, you can leverage the PromEx provided Plug PromEx.Plug.
See the PromEx.Plug documentation modules for specifics on how to use it.
Options
	:otp_app - This is a REQUIRED field and is used by PromEx to fetch the application
configuration values for the various PromEx capture modules. Make sure that this value
matches the :app value in project/0 from your mix.exs file. If you use the PromEx
mix prom_ex.create mix task this will be done automatically for you.

PromEx Plugins
All metrics collection will be delegated to plugins which can be found here:
Foundational metrics:
	[X] PromEx.Plugins.Application Application related informational metrics
	[X] PromEx.Plugins.Beam BEAM virtual machine metrics
	[] Operating System (http://erlang.org/doc/man/os_mon_app.html)

Library metrics:
	[X] Ecto (https://hexdocs.pm/ecto/Ecto.Repo.html#module-telemetry-events)
	[X] Oban (https://hexdocs.pm/oban/Oban.Telemetry.html)
	[X] Phoenix (https://hexdocs.pm/phoenix/Phoenix.Logger.html)
	[X] Phoenix LiveView (https://hexdocs.pm/phoenix_live_view/telemetry.html)
	[X] Absinthe (https://hexdocs.pm/absinthe/1.5.3/telemetry.html)
	[X] PlugCowboy (https://hexdocs.pm/plug_cowboy/2.4.0/Plug.Cowboy.html#module-instrumentation)
	[X] PlugRouter (https://hexdocs.pm/plug/1.12.1/Plug.Router.html#module-telemetry)

Backlog Elixir library metrics:
	[] Finch (https://hexdocs.pm/finch/Finch.Telemetry.html#content)
	[] Broadway (https://hexdocs.pm/broadway/Broadway.html#module-telemetry)
	[] Swoosh (https://hexdocs.pm/swoosh/1.5.0/Swoosh.html#module-telemetry)
	[] ChromicPDF (https://hexdocs.pm/chromic_pdf/ChromicPDF.html#module-telemetry-support)
	[] Dataloader (https://hexdocs.pm/dataloader/telemetry.html)
	[] GenRMQ (https://hexdocs.pm/gen_rmq/3.0.0/GenRMQ.Publisher.Telemetry.html and https://hexdocs.pm/gen_rmq/3.0.0/GenRMQ.Consumer.Telemetry.html)
	[] Plug (https://hexdocs.pm/plug/Plug.Telemetry.html)
	[] Redix (https://hexdocs.pm/redix/Redix.Telemetry.html)
	[] Tesla (https://hexdocs.pm/tesla/Tesla.Middleware.Telemetry.html)
	[] Memcachex (https://hexdocs.pm/memcachex/0.5.0/Memcache.html#module-telemetry)
	[] Nebulex (https://hexdocs.pm/nebulex/2.0.0-rc.0/telemetry.html)
	[] Horde (https://github.com/derekkraan/horde/blob/master/lib/horde/supervisor_telemetry_poller.ex)
	[] Cachex (Need to open up PR)
	[] Quantum (https://hexdocs.pm/quantum/3.3.0/telemetry.html#content)

Database cron based metrics:
	[] Postgres (https://github.com/pawurb/ecto_psql_extras for inspiration)
	[] Mnesia (https://github.com/deadtrickster/prometheus.erl/blob/master/src/collectors/mnesia/prometheus_mnesia_collector.erl for inspiration)
	[] MySQL (https://github.com/prometheus/mysqld_exporter for inspiration)
	[] Redis (https://github.com/oliver006/redis_exporter for inspiration)
	[] MongoDB (https://github.com/percona/mongodb_exporter for inspiration)

 Anchor for this section

 Summary

 Types

 dashboard_definition()

 measurements_mfa()

 plugin_definition()

 telemetry_metrics()

 Functions

 get_metrics(prom_ex_module)

 A simple pass-through to fetch all of the currently configured metrics. This is
primarily used by the exporter plug to fetch all of the metrics so that they
can be scraped.

 Callbacks

 dashboard_assigns()

 dashboards()

 init_opts()

 plugins()

 Anchor for this section

Types

 Link to this type

 dashboard_definition()

 View Source

 Specs

 dashboard_definition() ::
 {atom(), String.t()} | {atom(), String.t(), keyword(String.t())}

 Link to this type

 measurements_mfa()

 View Source

 Specs

 measurements_mfa() :: {module(), atom(), list()}

 Link to this type

 plugin_definition()

 View Source

 Specs

 plugin_definition() :: module() | {module(), keyword()}

 Link to this type

 telemetry_metrics()

 View Source

 Specs

 telemetry_metrics() ::
 Telemetry.Metrics.Counter.t()
 | Telemetry.Metrics.Distribution.t()
 | Telemetry.Metrics.LastValue.t()
 | Telemetry.Metrics.Sum.t()
 | Telemetry.Metrics.Summary.t()

 Anchor for this section

Functions

 Link to this function

 get_metrics(prom_ex_module)

 View Source

 Specs

 get_metrics(prom_ex_module :: module()) :: String.t() | :prom_ex_down

A simple pass-through to fetch all of the currently configured metrics. This is
primarily used by the exporter plug to fetch all of the metrics so that they
can be scraped.

 Anchor for this section

Callbacks

 Link to this callback

 dashboard_assigns()

 View Source

 Specs

 dashboard_assigns() :: keyword()

 Link to this callback

 dashboards()

 View Source

 Specs

 dashboards() :: [dashboard_definition()]

 Link to this callback

 init_opts()

 View Source

 Specs

 init_opts() :: PromEx.Config.t()

 Link to this callback

 plugins()

 View Source

 Specs

 plugins() :: [plugin_definition()]

 PromEx.BucketGenerator - PromEx v1.4.1

PromEx.BucketGenerator

This module provides functions to generate histogram bucket ranges.
The lists of buckets that can be generated are either linear
or exponential.

 Anchor for this section

 Summary

 Functions

 exponential!(start, factor, num_buckets)

 Create an exponential set of buckets based on the provided parameters.

 linear!(start, step, num_buckets)

 Create a linear set of buckets based on the provided parameters.

 Anchor for this section

Functions

 Link to this function

 exponential!(start, factor, num_buckets)

 View Source

 Specs

 exponential!(start :: number(), factor :: number(), num_buckets :: number()) ::
 [non_neg_integer()]

Create an exponential set of buckets based on the provided parameters.

 Examples

iex> PromEx.BucketGenerator.exponential!(1, 4, 10)
[1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144]

iex> PromEx.BucketGenerator.exponential!(1, 2, 10)
[1, 2, 4, 8, 16, 32, 64, 128, 256, 512]

 Link to this function

 linear!(start, step, num_buckets)

 View Source

 Specs

 linear!(start :: number(), step :: number(), num_buckets :: number()) :: [
 non_neg_integer()
]

Create a linear set of buckets based on the provided parameters.

 Examples

iex> PromEx.BucketGenerator.linear!(10, 10, 10)
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]

iex> PromEx.BucketGenerator.linear!(0, 250, 11)
[0, 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, 2500]

 PromEx.Config - PromEx v1.4.1

PromEx.Config

This module defines a struct that contains all of the fields necessary to configure
an instance of PromEx.
While this module does not directly access your Application config, PromEx will call the
PromEx.Config.build/1 function directly with the contents of Application.get_env(:your_otp_app, YourPromEx.Module). As
such, this is an appropriate place to talk about how you go about configuring PromEx via your Application config.
By default, you can run PromEx without any additional configuration and PromEx will fall back on some sane defaults. Specifically,
if you were to not add any configuration to your config.exs, dev.exs, prod.exs, etc files it would be the same as setting the
following config:
config :web_app, WebApp.PromEx,
 disabled: false,
 manual_metrics_start_delay: :no_delay,
 drop_metrics_groups: [],
 grafana: :disabled,
 metrics_server: :disabled
In this configuration, the Grafana dashboards are not uploaded on application start, and a standalone HTTP metrics server is not
started. In addition, the PromEx.ManualMetricsManager is started without any time delay, and all metrics groups from all the plugins
are registered and set up.
If you would like to set up PromEx to communicate with Grafana, your config would look something like:
config :web_app, WebApp.PromEx,
 grafana: [
 host: "http://localhost:3000",
 username: "<YOUR_USERNAME>", # Or authenticate via Basic Auth
 password: "<YOUR_PASSWORD>"
 auth_token: "<YOUR_AUTH_TOKEN_HERE>", # Or authenticate via API Token
 upload_dashboards_on_start: true # This is an optional setting and will default to `true`
]
If you would like PromEx to start a standalone HTTP server to serve your aggregated metrics, you can leverage the :metrics_server
config:
config :web_app, WebApp.PromEx,
 metrics_server: [
 port: 4021,
 path: "/metrics", # This is an optional setting and will default to `"/metrics"`
 protocol: :http, # This is an optional setting and will default to `:http`
 pool_size: 5, # This is an optional setting and will default to `5`
 cowboy_opts: [], # This is an optional setting and will default to `[]`
 auth_strategy: :none # This is an optional and will default to `:none`
]
If you would like the metrics server to be protected behind some sort of authentication, you can configure your :metrics_server
like so:
config :web_app, WebApp.PromEx,
 metrics_server: [
 port: 4021,
 auth_strategy: :bearer,
 auth_token: "VGhpcyBpcyBzdXBlciBzZWNyZXQuLi5kb24ndCBkZWNvZGUgbWU="
]
Option Details
	:disabled - This option will diable the PromEx supervision tree entirely and will not
start any metris collectors. This is primarily used for disabling PromEx during testing. Default
value: false

	:manual_metrics_start_delay - Manual metrics are gathered once on start up and then only when
you call PromEx.ManualMetricsManager.refresh_metrics/1. Sometimes, you may have metrics
that require your entire supervision tree to be started in order to fetch accurate data.
This option will allow you to delays the initial metrics capture of the
ManualMetricsManager by a certain number of milliseconds or the :no_delay atom if you
want the metrics to be captured as soon as the ManualMetricsManager starts up. Default
value: :no_delay

	:drop_metrics_groups - A list of all the metrics groups that you are not interested in
tracking. For example, if your application does not leverage Phoenix channels at all but
you still would like to use the PromEx.Plugins.Phoenix plugin, you can pass
[:phoenix_channel_event_metrics] as the value to :drop_metrics_groups and that set of
metrics will not be captured. Default value: []

	:grafana - This key contains the configuration information for connecting to Grafana. Its
configuration options are:
	:host - The host address of your Grafana instance. In order for PromEx to communicate with
Grafana this value should be in the format protocol://host:port like http://localhost:3000
for example.
	:username - The username that was created in Grafana so that PromEx can upload dashboards
via the API.
	:password - The password that was created in Grafana so that PromEx can upload dashboards
via the API.
	:auth_token - The auth token that was created in Grafana so that PromEx can upload dashboards
via the API.
	:upload_dashboards_on_start - Using the config values that you set in your application config
(config.exs, dev.exs, prod.exs, etc) PromEx will attempt to upload your Dashboards to
Grafana using Grafana's HTTP API.
	:folder_name - The name of the folder that PromEx will put all of the project dashboards in.
PromEx will automatically generate a unique ID for the folder based on the project's otp_app
value so that it can access the correct folder in Grafana. This also makes sure that different
Elixir projects running in the same cluster and publishing dashboards to Grafana do not collide
with one another. If no name is provided, then the dashboards will all be uploaded to the default
Grafana folder.
	:annotate_app_lifecycle - By enabling this setting, PromEx will leverage the Grafana API to annotate
when the application was started, and when it was shut down. By default this is disabled but if you
do enable it, no action is required from you in order to display these events on the dashboards. The
annotations will automatically contain the necessary tags to only display on the PromEx dashboards.
The annotation will include information including:	Hostname
	OTP app name
	App version
	Git SHA of the last commit (if the GIT_SHA environment variable is present)
	Git author of the last commit (if the GIT_AUTHOR environment variable is present)

	:metrics_server - This key contains the configuration information needed to run a standalone
HTTP server powered by Cowboy. This server provides a lightweight solution to serving up PromEx
metrics. Its configuration options are:
	:port - The port that the Cowboy HTTP server should run on.
	:path - The path that the metrics should be accessible at.
	:protocol - The protocol that the metrics should be accessible over (:http or :https).
	:pool_size - How many Cowboy processes should be in the pool to handle metrics related requests.
	:auth_strategy - What authentication strategy should be used to authorize requests to your metrics. The
Supported strategies are :none, :bearer, and :basic. Depending on what strategy is selected, you
will need to also add additional config values. For :none (which is the default), no additional
information needs to be provided. When using a :bearer strategy, you'll need to provide a :auth_token
config value. When using :basic strategy you'll need to provide :auth_user and :auth_password values.
	:auth_token - When using a :bearer authentication strategy, this field is required to validate the
incoming request against a valid auth token.
	:auth_user - When using a :basic authentication strategy, this field is required to validate the
incoming request against a valid user.
	:auth_password - When using a :bearer authentication strategy, this field is required to validate the
incoming request against a valid password.
	:cowboy_opts - A keyword list of any additional options that should be passed to Plug.Cowboy (see
docs for more information https://hexdocs.pm/plug_cowboy/Plug.Cowboy.html). The :port and
:transport_options options are handled by PromEx via the aforementioned config settings and so
adding them again here has no effect.

 Anchor for this section

 Summary

 Types

 t()

 	manual_metrics_start_delay: How the ManualMetricsManager worker process should be started (instantly or with a millisecond delay).
	drop_metrics_groups: A list of metrics groups that should be omitted from the metrics collection process.
	grafana_config: A map containing all the relevant settings to connect to Grafana.
	metrics_server_config: A map containing all the relevant settings to start a standalone HTTP Cowboy server for metrics.

 Functions

 build(opts)

 Create a struct that encapsulates all of the configuration needed to start a PromEx supervisor instance as well as all
of the worker processes.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %PromEx.Config{
 disabled: boolean(),
 drop_metrics_groups: MapSet.t(),
 grafana_config: map(),
 manual_metrics_start_delay: :no_delay | pos_integer(),
 metrics_server_config: map()
}

	manual_metrics_start_delay: How the ManualMetricsManager worker process should be started (instantly or with a millisecond delay).
	drop_metrics_groups: A list of metrics groups that should be omitted from the metrics collection process.
	grafana_config: A map containing all the relevant settings to connect to Grafana.
	metrics_server_config: A map containing all the relevant settings to start a standalone HTTP Cowboy server for metrics.

 Anchor for this section

Functions

 Link to this function

 build(opts)

 View Source

 Specs

 build(keyword()) :: t()

Create a struct that encapsulates all of the configuration needed to start a PromEx supervisor instance as well as all
of the worker processes.

 PromEx.DashboardRenderer - PromEx v1.4.1

PromEx.DashboardRenderer

This module is used to read dashboard definitions, render EEx dashboards,
and ensure that requested files actually exist

 Anchor for this section

 Summary

 Types

 t()

 Functions

 build(dashboard_otp_app, dashboard_relative_path, metrics_otp_app)

 Read the contents of a dashboard file entry. If an EEx version of the file exists,
read that, else fallback to the provided file name. For example, if the requested
dashboard file is ecto.json, if ecto.json.eex exists, then that will be returned.
This is more so for convenience so that you don't need to write out .eex everywhere
given that all PromEx 1st party dashboards are EEx templates.

 decode_dashboard(dashboard_render)

 This function will decode the JSON dashboard using Jason. If any errors occur during the decoding process,
the struct will be marked as having invalid JSON.

 merge_assigns(dashboard_render, additional_assigns)

 This function will merge in the provided assigns to the struct's assigns. These assigns will
then be used during the render_dashboard/1 call to render any EEx template statements.

 render_dashboard(dashboard_render, prom_ex_module)

 Renders the dashboard. If it is an EEx file then the PromEx module assigns are passed. Else
if it is a raw json file then it is passed through untouched.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %PromEx.DashboardRenderer{
 assigns: keyword() | nil,
 decoded_dashboard: map() | nil,
 error: tuple() | nil,
 file_contents: String.t(),
 file_type: :eex | :json | nil,
 full_path: term(),
 otp_app: term(),
 relative_path: String.t(),
 rendered_file: String.t() | nil,
 valid_file?: boolean(),
 valid_json?: boolean() | nil
}

 Anchor for this section

Functions

 Link to this function

 build(dashboard_otp_app, dashboard_relative_path, metrics_otp_app)

 View Source

 Specs

 build(
 dashboard_otp_app :: atom(),
 dashboard_relative_path :: String.t(),
 metrics_otp_app :: atom()
) :: t()

Read the contents of a dashboard file entry. If an EEx version of the file exists,
read that, else fallback to the provided file name. For example, if the requested
dashboard file is ecto.json, if ecto.json.eex exists, then that will be returned.
This is more so for convenience so that you don't need to write out .eex everywhere
given that all PromEx 1st party dashboards are EEx templates.

 Link to this function

 decode_dashboard(dashboard_render)

 View Source

 Specs

 decode_dashboard(t()) :: t()

This function will decode the JSON dashboard using Jason. If any errors occur during the decoding process,
the struct will be marked as having invalid JSON.

 Link to this function

 merge_assigns(dashboard_render, additional_assigns)

 View Source

 Specs

 merge_assigns(t(), keyword()) :: t()

This function will merge in the provided assigns to the struct's assigns. These assigns will
then be used during the render_dashboard/1 call to render any EEx template statements.

 Link to this function

 render_dashboard(dashboard_render, prom_ex_module)

 View Source

 Specs

 render_dashboard(t(), prom_ex_module :: module()) :: t()

Renders the dashboard. If it is an EEx file then the PromEx module assigns are passed. Else
if it is a raw json file then it is passed through untouched.

 PromEx.DashboardUploader - PromEx v1.4.1

PromEx.DashboardUploader

This GenServer is responsible for uploading the configured PromEx module
dashboards to Grafana. This is a transient process and will terminate after
the dashboards have been successfully uploaded. It requires the name of the
PromEx module as an option so that it can look into the application
config for the appropriate Grafana settings. For example, if the name of the
PromEx module is WebApp.PromEx, then your config should provide the following
settings:
config :web_app, WebApp.PromEx,
 grafana_host: "<YOUR HOST ADDRESS>",
 grafana_auth_token: "<YOUR GRAFANA AUTH TOKEN>"

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Used to start the DashboardUploader process

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link(opts :: keyword()) :: GenServer.on_start()

Used to start the DashboardUploader process

 PromEx.Debug - PromEx v1.4.1

PromEx.Debug

This is a convenience module used for debugging and introspecting
telemetry events. Primarily used to ease the development of
PromEx itself.

 Anchor for this section

 Summary

 Functions

 attach_debugger(telemetry_metric_def)

 Use this function to attach a debugger handler to a certain telemetry event.

 Anchor for this section

Functions

 Link to this function

 attach_debugger(telemetry_metric_def)

 View Source

 Specs

 attach_debugger(PromEx.telemetry_metrics() | list()) ::
 :ok | PromEx.telemetry_metrics()

Use this function to attach a debugger handler to a certain telemetry event.

 PromEx.ETSCronFlusher - PromEx v1.4.1

PromEx.ETSCronFlusher

This module is used to regularly flush ETS of any buffered distribution
type metrics (see https://github.com/beam-telemetry/telemetry_metrics_prometheus_core/blob/main/lib/core.ex#L25-L28)
for more information. At the moment the flush interval is not configurable
but that could change in the future.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 defer_ets_flush(instance)

 This function will cancel the existing cron timer and schedule a new
new. The reason for this being that if metrics scrapes occur regularly,
there is no need to flush via the cron job. Cron ETS flushes should
only occur if the metrics endpoint for whatever reason fails to be
scraped so that ETS is not leaking memory.

 start_link(opts)

 Used to start the PromEx.ETSCronFlusher process.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 defer_ets_flush(instance)

 View Source

 Specs

 defer_ets_flush(instance :: module()) :: :ok

This function will cancel the existing cron timer and schedule a new
new. The reason for this being that if metrics scrapes occur regularly,
there is no need to flush via the cron job. Cron ETS flushes should
only occur if the metrics endpoint for whatever reason fails to be
scraped so that ETS is not leaking memory.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link(opts :: keyword()) :: GenServer.on_start()

Used to start the PromEx.ETSCronFlusher process.

 PromEx.GrafanaClient - PromEx v1.4.1

PromEx.GrafanaClient

This module is used by the Mix tasks that are available in PromEx to update
dashboards in Grafana and also by the PromEx.DashboardUpdater to update
dashboards automatically on application initialization.
Dashboard models:
https://grafana.com/docs/grafana/latest/dashboards/json-model/

 Anchor for this section

 Summary

 Functions

 create_annotation(grafana_conn, tags, message)

 Used to create annotations on dashboard panels

 create_folder(grafana_conn, folder_uid, title)

 Used to create a new folder in Grafana

 get_all_folders(grafana_conn)

 Get all of the folder that exist in Grafana

 get_dashboard(grafana_conn, dashboard_contents)

 Used to get the dashboard definition currently in Grafana for the provided dashboard file.
If the ID does not exist in Grafana an error tuple will be returned.

 get_folder(grafana_conn, folder_id)

 Used to fetch the details regarding a particular folder on Grafana

 update_folder(grafana_conn, folder_uid, new_title, attrs \\ %{})

 Update an existing folder in Grafana

 upload_dashboard(grafana_conn, dashboard_contents, opts \\ [])

 Used to create a new dashboard or update an existing dashboard.

 Anchor for this section

Functions

 Link to this function

 create_annotation(grafana_conn, tags, message)

 View Source

 Specs

 create_annotation(
 grafana_conn :: PromEx.GrafanaClient.Connection.t(),
 tags :: [String.t()],
 message :: String.t()
) :: handler_response()

Used to create annotations on dashboard panels

 Link to this function

 create_folder(grafana_conn, folder_uid, title)

 View Source

 Specs

 create_folder(
 grafana_conn :: PromEx.GrafanaClient.Connection.t(),
 folder_uid :: String.t(),
 title :: String.t()
) :: handler_response()

Used to create a new folder in Grafana

 Link to this function

 get_all_folders(grafana_conn)

 View Source

 Specs

 get_all_folders(grafana_conn :: PromEx.GrafanaClient.Connection.t()) ::
 handler_response()

Get all of the folder that exist in Grafana

 Link to this function

 get_dashboard(grafana_conn, dashboard_contents)

 View Source

 Specs

 get_dashboard(
 grafana_conn :: PromEx.GrafanaClient.Connection.t(),
 dashboard_file_path :: String.t()
) :: handler_response()

Used to get the dashboard definition currently in Grafana for the provided dashboard file.
If the ID does not exist in Grafana an error tuple will be returned.

 Link to this function

 get_folder(grafana_conn, folder_id)

 View Source

 Specs

 get_folder(
 grafana_conn :: PromEx.GrafanaClient.Connection.t(),
 folder_uid :: String.t()
) :: handler_response()

Used to fetch the details regarding a particular folder on Grafana

 Link to this function

 update_folder(grafana_conn, folder_uid, new_title, attrs \\ %{})

 View Source

 Specs

 update_folder(
 grafana_conn :: PromEx.GrafanaClient.Connection.t(),
 folder_uid :: String.t(),
 new_title :: String.t(),
 attrs :: map()
) :: handler_response()

Update an existing folder in Grafana

 Link to this function

 upload_dashboard(grafana_conn, dashboard_contents, opts \\ [])

 View Source

 Specs

 upload_dashboard(
 grafana_conn :: PromEx.GrafanaClient.Connection.t(),
 dashboard_file_path :: String.t(),
 opts :: keyword()
) :: handler_response()

Used to create a new dashboard or update an existing dashboard.

 PromEx.GrafanaClient.Connection - PromEx v1.4.1

PromEx.GrafanaClient.Connection

This struct encapsulates all of the data necessary
to connect to a Grafana instance.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 build(finch_process, map)

 Build a connection struct for connecting to Grafana.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %PromEx.GrafanaClient.Connection{
 authorization: String.t(),
 base_url: String.t(),
 finch_process: module()
}

 Anchor for this section

Functions

 Link to this function

 build(finch_process, map)

 View Source

 Specs

 build(finch_process :: module(), grafana_config :: map()) :: t()

Build a connection struct for connecting to Grafana.

 PromEx.GrafanaClient.DashboardChecker - PromEx v1.4.1

PromEx.GrafanaClient.DashboardChecker

This module is used to validate Grafana dashboard to ensure that
they adhere to certain style and structure requirements.

 PromEx.LifecycleAnnotator - PromEx v1.4.1

PromEx.LifecycleAnnotator

This GenServer is responsible to keeping track of the life cycle
of the application and sending annotation requests to Grafana
when the application starts and when it terminates. It will
include things in the message like:
	Hostname
	OTP app name
	App version
	Git SHA of the last commit (if the GIT_SHA environment variable is present)
	Git author of the last commit (if the GIT_AUTHOR environment variable is present)

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Used to start the PromEx.LifecycleAnnotator process.

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link(opts :: keyword()) :: GenServer.on_start()

Used to start the PromEx.LifecycleAnnotator process.

 PromEx.ManualMetricsManager - PromEx v1.4.1

PromEx.ManualMetricsManager

This GenServer is responsible to keeping track of all the manual
metrics from your configured plugins. It will fetch metrics initially
when starting (either immediately or after a configured delay). At that
point if you would like to refresh your metrics data points call the
refresh_metrics/1 function.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 refresh_metrics(prom_ex_module)

 This function calls into the GenServer and refreshes all of the configured
manual metrics data points.

 start_link(opts)

 Used to start the PromEx.ManualMetricsManager process

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 refresh_metrics(prom_ex_module)

 View Source

 Specs

 refresh_metrics(prom_ex_module :: module()) :: :ok

This function calls into the GenServer and refreshes all of the configured
manual metrics data points.

 Link to this function

 start_link(opts)

 View Source

 Specs

 start_link(opts :: keyword()) :: GenServer.on_start()

Used to start the PromEx.ManualMetricsManager process

 PromEx.MetricTypes.Event - PromEx v1.4.1

PromEx.MetricTypes.Event

This struct defines the fields necessary to export a group of
standard metrics from a plugin.

 Anchor for this section

 Summary

 Types

 t()

 	group_name: A unique identifier for the collection of metrics.
	metrics: A list of Telemetry Metrics structs that define the metrics.

 Functions

 build(group_name, metrics)

 Create a struct that encompasses a group of event based metrics. The group_name should be unique and should follow
the following convention: <APPLICATION>_<SHORT DESCRIPTION>_event_metrics. For example, Phoenix HTTP related metrics
have a group_name of: :phoenix_http_event_metrics

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %PromEx.MetricTypes.Event{
 group_name: atom(),
 metrics: [PromEx.telemetry_metrics()]
}

	group_name: A unique identifier for the collection of metrics.
	metrics: A list of Telemetry Metrics structs that define the metrics.

 Anchor for this section

Functions

 Link to this function

 build(group_name, metrics)

 View Source

 Specs

 build(group_name :: atom(), metrics :: [PromEx.telemetry_metrics()]) :: t()

Create a struct that encompasses a group of event based metrics. The group_name should be unique and should follow
the following convention: <APPLICATION>_<SHORT DESCRIPTION>_event_metrics. For example, Phoenix HTTP related metrics
have a group_name of: :phoenix_http_event_metrics

 PromEx.MetricTypes.Manual - PromEx v1.4.1

PromEx.MetricTypes.Manual

This struct defines the fields necessary to export a group
of manually collected metric sources from a plugin.

 Anchor for this section

 Summary

 Types

 t()

 	group_name: A unique identifier for the collection of metrics.
	measurements_mfa: An MFA tuple that defines what function will be
executed that will emit Telemetry events.
	metrics: A list of Telemetry Metrics structs that define the metrics.

 Functions

 build(group_name, measurements_mfa, metrics)

 Create a struct that encompasses a group of manually triggered metrics. The group_name should be unique and should follow
the following convention: <APPLICATION>_<SHORT DESCRIPTION>_manual_metrics. For example, Application related info metrics
have a group_name of: :application_versions_manual_metrics

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %PromEx.MetricTypes.Manual{
 group_name: atom(),
 measurements_mfa: PromEx.measurements_mfa(),
 metrics: [PromEx.telemetry_metrics()]
}

	group_name: A unique identifier for the collection of metrics.
	measurements_mfa: An MFA tuple that defines what function will be
executed that will emit Telemetry events.
	metrics: A list of Telemetry Metrics structs that define the metrics.

 Anchor for this section

Functions

 Link to this function

 build(group_name, measurements_mfa, metrics)

 View Source

 Specs

 build(
 group_name :: atom(),
 measurements_mfa :: PromEx.measurements_mfa(),
 metrics :: [PromEx.telemetry_metrics()]
) :: t()

Create a struct that encompasses a group of manually triggered metrics. The group_name should be unique and should follow
the following convention: <APPLICATION>_<SHORT DESCRIPTION>_manual_metrics. For example, Application related info metrics
have a group_name of: :application_versions_manual_metrics

 PromEx.MetricTypes.Polling - PromEx v1.4.1

PromEx.MetricTypes.Polling

This struct defines the fields necessary to export a group
of pollable metric sources from a plugin.

 Anchor for this section

 Summary

 Types

 t()

 	group_name: A unique identifier for the collection of metrics.
	measurements_mfa: An MFA tuple that defines what function will be
executed that will emit Telemetry events.
	metrics: A list of Telemetry Metrics structs that define the metrics.
	poll_rate: An integer representing the millisecond between metrics samples.

 Functions

 build(group_name, poll_rate, measurements_mfa, metrics)

 Create a struct that encompasses a group of polling type metrics. The group_name should be unique and should follow
the following convention: <APPLICATION>_<SHORT DESCRIPTION>_manual_metrics. For example, BEAM related memory metrics
have a group_name of: :beam_memory_polling_events

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %PromEx.MetricTypes.Polling{
 group_name: atom(),
 measurements_mfa: PromEx.measurements_mfa(),
 metrics: [PromEx.telemetry_metrics()],
 poll_rate: pos_integer()
}

	group_name: A unique identifier for the collection of metrics.
	measurements_mfa: An MFA tuple that defines what function will be
executed that will emit Telemetry events.
	metrics: A list of Telemetry Metrics structs that define the metrics.
	poll_rate: An integer representing the millisecond between metrics samples.

 Anchor for this section

Functions

 Link to this function

 build(group_name, poll_rate, measurements_mfa, metrics)

 View Source

 Specs

 build(
 group_name :: atom(),
 poll_rate :: pos_integer(),
 measurements_mfa :: PromEx.measurements_mfa(),
 metrics :: [PromEx.telemetry_metrics()]
) :: t()

Create a struct that encompasses a group of polling type metrics. The group_name should be unique and should follow
the following convention: <APPLICATION>_<SHORT DESCRIPTION>_manual_metrics. For example, BEAM related memory metrics
have a group_name of: :beam_memory_polling_events

 PromEx.MetricsServer.Plug - PromEx v1.4.1

PromEx.MetricsServer.Plug

This plug is used to serve metrics when PromEx is run in a
standalone server configuration. This plug supports the
following options:
	:path - The route that should expose the metrics (default is "/metrics")
	:prom_ex_module - The PromEx module that this plug will expose

 PromEx.Plug - PromEx v1.4.1

PromEx.Plug

Use this plug in your Endpoint file to expose your metrics. The following options are supported by this plug:
	:prom_ex_module - The PromEx module whose metrics will be published through this particular plug
	:path - The path through which your metrics can be accessed (default is "/metrics")

If you need to have some sort of access control around your metrics endpoint, I would suggest looking at another
library that I maintain called Unplug(https://hex.pm/packages/unplug). Using Unplug, you can skip over this plug
if some sort of requirement is not fulfilled. For example, if you wanted to configure the metrics endpoint to
only be accessible if the request has an Authorization header that matches a configured environment variable you
could do something like so using Unplug:
defmodule MyApp.UnplugPredicates.SecureMetricsEndpoint do
 @behaviour Unplug.Predicate

 @impl true
 def call(conn, env_var) do
 auth_header = Plug.Conn.get_req_header(conn, "authorization")

 System.get_env(env_var) == auth_header
 end
end
Which can then be used in your endpoint.ex file like so:
plug Unplug,
 if: {MyApp.UnplugPredicates.SecureMetricsEndpoint, "PROMETHEUS_AUTH_SECRET"},
 do: {PromEx.Plug, prom_ex_module: MyApp.PromEx}
The reason that this functionality is not part of PromEx itself is that how you chose to configure the visibility
of the metrics route is entirely up to the user and so it felt as though this plug would be over complicated by
having to support application config, environment variables, etc. And given that Unplug exists for this purpose,
it is the recommended tool for the job.

 PromEx.Plugin - PromEx v1.4.1

PromEx.Plugin behaviour

This module defines the behaviour that PromEx plugins need to implement
in order to be properly loaded by PromEx on application start. As a convenience, this
module can also be used as a macro to automatically import all of the necessary utility
functions for writing plugins and also providing default implementations of behaviour
functions that you may not be implementing.

 Anchor for this section

 Summary

 Callbacks

 event_metrics(keyword)

 The event_metrics/1 callback returns the configured event based metrics that the
plugin exposes. If the plugin does not expose any event style metrics, there is a
default implementation of this function that returns an empty list. In other words,
if your plugin does not expose any event style metrics, there is no action needed
on your part.

 manual_metrics(keyword)

 The manual_metrics/1 callback returns the configured manual based metrics that the
plugin exposes. If the plugin does not expose any manual style metrics, there is a
default implementation of this function that returns an empty list. In other words,
if your plugin does not expose any manual style metrics, there is no action needed
on your part.

 polling_metrics(keyword)

 The polling_metrics/1 callback returns the configured polling based metrics that the
plugin exposes. If the plugin does not expose any polling style metrics, there is a
default implementation of this function that returns an empty list. In other words,
if your plugin does not expose any polling style metrics, there is no action needed
on your part.

 Anchor for this section

Callbacks

 Link to this callback

 event_metrics(keyword)

 View Source

 Specs

 event_metrics(keyword()) ::
 [PromEx.MetricTypes.Event.t()] | PromEx.MetricTypes.Event.t()

The event_metrics/1 callback returns the configured event based metrics that the
plugin exposes. If the plugin does not expose any event style metrics, there is a
default implementation of this function that returns an empty list. In other words,
if your plugin does not expose any event style metrics, there is no action needed
on your part.
This function is expected to either return a single PromEx.Plugins.Event struct
or a list of PromEx.Plugins.Event structs.

 Link to this callback

 manual_metrics(keyword)

 View Source

 Specs

 manual_metrics(keyword()) ::
 [PromEx.MetricTypes.Manual.t()] | PromEx.MetricTypes.Manual.t()

The manual_metrics/1 callback returns the configured manual based metrics that the
plugin exposes. If the plugin does not expose any manual style metrics, there is a
default implementation of this function that returns an empty list. In other words,
if your plugin does not expose any manual style metrics, there is no action needed
on your part.
This function is expected to either return a single PromEx.Plugins.Manual struct
or a list of PromEx.Plugins.Manual structs.

 Link to this callback

 polling_metrics(keyword)

 View Source

 Specs

 polling_metrics(keyword()) ::
 [PromEx.MetricTypes.Polling.t()] | PromEx.MetricTypes.Polling.t()

The polling_metrics/1 callback returns the configured polling based metrics that the
plugin exposes. If the plugin does not expose any polling style metrics, there is a
default implementation of this function that returns an empty list. In other words,
if your plugin does not expose any polling style metrics, there is no action needed
on your part.
This function is expected to either return a single PromEx.Plugins.Polling struct
or a list of PromEx.Plugins.Polling structs.

 PromEx.Plugins.Absinthe - PromEx v1.4.1

PromEx.Plugins.Absinthe

This plugin captures metrics emitted by Absinthe. Specifically, it captures timings and metrics
around execution times, query complexity, and subscription timings. In order to get complexity
metrics you'll need to make sure that you have :analyze_complexity enabled in
Absinthe.Plug. This plugin can
generate a large amount of Prometheus series, so it is suggested that you use the
ignored_entrypoints and only_entrypoints (TODO: coming soon) options to prune down the
resulting metrics if needed.
This plugin supports the following options:
	ignored_entrypoints: This option is OPTIONAL and is used to filter out Absinthe GraphQL
schema entrypoints that you do not want to track metrics for. For example, if you don't want
metrics on the :__schema entrypoint (used for GraphQL schema introspection), you would set
a value of [:__schema]. This is applicable to queries, mutations, and subscriptions.

	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :absinthe]. If this changes you will also want to set absinthe_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
absinthe_metric_prefix is {otp_app}_prom_ex_absinthe.

This plugin exposes the following metric groups:
	:absinthe_execute_event_metrics
	:absinthe_subscription_event_metrics

To use plugin in your application, add the following to your PromEx module:
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 {PromEx.Plugins.Absinthe, ignored_entrypoints: [:__schema]}
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "absinthe.json"}
]
 end
end

 PromEx.Plugins.Application - PromEx v1.4.1

PromEx.Plugins.Application

This plugin captures metrics regarding your application, and its dependencies. Specifically,
it captures the versions of your application and the application dependencies and also
how many modules each dependency is bringing into the project.
This plugin supports the following options:
	otp_app: This is a REQUIRED option and is the name of you application in snake case (e.g. :my_cool_app).

	deps: This option is OPTIONAL and defines what dependencies the plugin should track. A value of :all
means that PromEx will fetch details on all application dependencies. A list of dependency names like
[:phoenix, :ecto, :unplug] means that PromEx will only fetch details regarding those dependencies.

	git_sha_mfa: This option is OPTIONAL and defines an MFA that will be called in order to fetch the
application's Git SHA at the time of deployment. By default, an Application Plugin function will be called
and will attempt to read the GIT_SHA environment variable to populate the value.

	git_author_mfa: This option is OPTIONAL and defines an MFA that will be called in order to fetch the
application's last Git commit author at the time of deployment. By default, an Application Plugin function
will be called and will attempt to read the GIT_AUTHOR environment variable to populate the value.

	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :application]. If this changes you will also want to set application_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
application_metric_prefix is {otp_app}_prom_ex_application.

This plugin exposes the following metric groups:
	:application_versions_manual_metrics

To use plugin in your application, add the following to your application supervision tree:
def start(_type, _args) do
 children = [
 ...
 {
 PromEx,
 plugins: [
 {PromEx.Plugins.Application, [otp_app: :my_cool_app]},
 ...
],
 delay_manual_start: :no_delay
 }
]

 opts = [strategy: :one_for_one, name: WebApp.Supervisor]
 Supervisor.start_link(children, opts)
end
This plugin exposes manual metrics so be sure to configure the PromEx :delay_manual_start as required.

 PromEx.Plugins.Beam - PromEx v1.4.1

PromEx.Plugins.Beam

Telemetry metrics for the BEAM.
This plugin captures metrics regarding the Erlang Virtual Machine (i.e the BEAM). Specifically, it captures metrics
regarding the CPU topology, system limits, VM feature support, scheduler information, memory utilization, distribution
traffic, and other internal metrics.
This plugin supports the following options:
	poll_rate: This is option is OPTIONAL and is the rate at which poll metrics are refreshed (default is 5 seconds).

	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :beam]. If this changes you will also want to set beam_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
beam_metric_prefix is {otp_app}_prom_ex_beam.

This plugin exposes the following metric groups:
	:beam_memory_polling_metrics
	:beam_internal_polling_metrics
	:beam_cpu_topology_manual_metrics
	:beam_system_limits_manual_metrics
	:beam_system_info_manual_metrics
	:beam_scheduler_manual_metrics

To use plugin in your application, add the following to your PromEx module:
defmodule MyApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 PromEx.Plugins.Beam
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "beam.json"}
]
 end
end
This plugin exposes manual metrics so be sure to configure the PromEx :delay_manual_start as necessary.

 PromEx.Plugins.Ecto - PromEx v1.4.1

PromEx.Plugins.Ecto

This plugin captures metrics emitted by Ecto. Be sure that your PromEx module is listed before your Repo module
in your supervision tree so that the Ecto init events are not missed. If you miss those events the dashboard
variable dropdowns for the repo value will be broken.
This plugin supports the following options:
	otp_app: This is an OPTIONAL option and is the name of you application in snake case (e.g. :my_cool_app). By
default the otp_app set for the prom_ex module that this plugin is defined in is used.

	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :ecto]. If this changes you will also want to set ecto_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
ecto_metric_prefix is {otp_app}_prom_ex_ecto.

	repos: This is an OPTIONAL option and is a list with the full module name of your Ecto Repos (e.g [MyApp.Repo]).
 If you do not provide this value, PromEx will attempt to resolve your Repo modules via the
 :ecto_repos configuration on your OTP app.

This plugin exposes the following metric groups:
	:ecto_init_event_metrics
	:ecto_query_event_metrics

To use plugin in your application, add the following to your PromEx module plugins/0 function:
def plugins do
 [
 ...

 {PromEx.Plugins.Ecto, otp_app: :web_app, repos: [WebApp.Repo]}
]
end

 PromEx.Plugins.Oban - PromEx v1.4.1

PromEx.Plugins.Oban

This plugin captures metrics emitted by Oban. Specifically, it captures metrics from job events, producer events,
and also from internal polling jobs to monitor queue sizes
This plugin supports the following options:
	oban_supervisors: This is an OPTIONAL option and it allows you to specify what Oban instances should have their events
tracked. By default the only Oban instance that will have its events tracked is the default Oban instance. As a result, by
default this option has a value of [Oban]. If you would like to track other named Oban instances, or perhaps your default
and only Oban instance has a different name, you can pass in your own list of Oban instances (e.g. [Oban, Oban.PrivateJobs]).

	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :oban]. If this changes you will also want to set oban_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
oban_metric_prefix is {otp_app}_prom_ex_oban.

	poll_rate: This option is OPTIONAL and is the rate at which poll metrics are refreshed (default is 5 seconds).

This plugin exposes the following metric groups:
	:oban_init_event_metrics
	:oban_job_event_metrics
	:oban_producer_event_metrics
	:oban_circuit_event_metrics
	:oban_queue_poll_metrics

To use plugin in your application, add the following to your PromEx module:
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 {PromEx.Plugins.Oban, oban_supervisors: [Oban, Oban.AnotherSupervisor], poll_rate: 10_000}
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "oban.json"}
]
 end
end

 Anchor for this section

 Summary

 Functions

 oban_circuit_breaker_event_metrics(metric_prefix, keep_function_filter)

 Anchor for this section

Functions

 Link to this function

 oban_circuit_breaker_event_metrics(metric_prefix, keep_function_filter)

 View Source

 PromEx.Plugins.Phoenix - PromEx v1.4.1

PromEx.Plugins.Phoenix

This plugin captures metrics emitted by Phoenix. Specifically, it captures HTTP request metrics and
Phoenix channel metrics.
Plugin options
This plugin supports the following options:
	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :phoenix]. If this changes you will also want to set phoenix_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
phoenix_metric_prefix is {otp_app}_prom_ex_phoenix.

Single Endpoint/Router
	endpoint: Required This is the full module name of your Phoenix Endpoint (e.g MyAppWeb.Endpoint).

	router: Required This is the full module name of your Phoenix Router (e.g MyAppWeb.Router).

	event_prefix: Optional, allows you to set the event prefix for the Telemetry events.

	endpoint: This is a REQUIRED option and is the full module name of your Phoenix Endpoint (e.g MyAppWeb.Endpoint).

	event_prefix: This option is OPTIONAL and allows you to set the event prefix for the Telemetry events. This
value should align with what you pass to Plug.Telemetry in your endpoint.ex file (see the plug docs
for more information https://hexdocs.pm/plug/Plug.Telemetry.html)
This value should align with what you pass to Plug.Telemetry in your endpoint.ex file (see the plug docs for more information https://hexdocs.pm/plug/Plug.Telemetry.html)

	additional_routes: Optional This option allows you to specify route path labels for applications routes
not defined in your Router module.
For example, if you want to track telemetry events for a plug in your
endpoint.ex file, you can provide a keyword list with the structure [some-route: ~r(/some-path)] and any
time that the route is called and the plug handles the call, the path label for this particular Prometheus metric
will be set to some-route. You can pass in either a regular expression or a string to match the incoming
request.

e.g
{
 PromEx.Plugins.Phoenix,
 endpoint: MyApp.Endpoint,
 router: MyAppWeb.Public.Router,
 event_prefix: [:admin, :endpoint]
}
Multiple Endpoints/Router
	endpoints: This accepts a list of per Phoenix Endpoint options {endpoint_name, endpoint_opts}
	endpoint_name: Required This is the full module name of your Phoenix Endpoint (e.g MyAppWeb.Endpoint).
	endpoint_opts: Per endpoint plugin options:	:routers: Required List of routers modules for the endpoint, the HTTP metrics will be augmented with controller/action/path information from the routers.
	:event_prefix: Optional Allows you to set the event prefix for the Telemetry events. This
value should align with what you pass to Plug.Telemetry in the corresponding endpoint module (see the plug docs
for more information https://hexdocs.pm/plug/Plug.Telemetry.html)
	:additional_routes: This option allows you to specify route path labels for applications routes
not defined in your Router modules for the corresponding endpoint.

e.g
{
 PromEx.Plugins.Phoenix,
 endpoints: [
 {MyApp.Endpoint, routers: [MyAppWeb.Public.Router]},
 {MyApp.Endpoint2, routers: [MyAppWeb.Admin.Router], event_prefix: [:admin, :endpoint]}
]
}

Metric Groups
This plugin exposes the following metric groups:
	:phoenix_http_event_metrics
	:phoenix_channel_event_metrics
	:phoenix_socket_event_metrics
	:phoenix_endpoint_manual_metrics

Usage
To use plugin in your application, add the following to your PromEx module:
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 {
 PromEx.Plugins.Phoenix,
 endpoint: MyApp.Endpoint,
 router: MyAppWeb.Public.Router
 }
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "phoenix.json"}
]
 end
end
When working with multiple Phoenix routers use the endpoints option instead:
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 {
 PromEx.Plugins.Phoenix,
 endpoints: [
 {MyApp.Endpoint, routers: [MyAppWeb.Public.Router]},
 {MyApp.Endpoint2, routers: [MyAppWeb.Admin.Router], event_prefix: [:admin, :endpoint]}
]
 }
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "phoenix.json"}
]
 end
end

 PromEx.Plugins.PhoenixLiveView - PromEx v1.4.1

PromEx.Plugins.PhoenixLiveView

This plugin captures metrics emitted by PhoenixLiveView. Specifically, it captures events related to the
mount, handle_event, and handle_params callbacks for live views and live components.
This plugin supports the following options:
	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :phoenix_live_view]. If this changes you will also want to set
phoenix_live_view_metric_prefix in your dashboard_assigns to the snakecase version of your
prefix, the default phoenix_live_view_metric_prefix is {otp_app}_prom_ex_phoenix_live_view.

This plugin exposes the following metric groups:
	:phoenix_live_view_event_metrics
	:phoenix_live_view_component_event_metrics

To use plugin in your application, add the following to your PromEx module:
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 PromEx.Plugins.PhoenixLiveView
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "phoenix_live_view.json"}
]
 end
end

 PromEx.Plugins.PlugCowboy - PromEx v1.4.1

PromEx.Plugins.PlugCowboy

This plugin captures HTTP request metrics emitted by Plug.Cowboy.
This plugin exposes the following metric group:
	:plug_cowboy_http_event_metrics

Plugin options
	routers: Required This is a list with the full module names of your Routers (e.g MyAppWeb.Router).
Phoenix and Plug routers are supported. When the Phoenix dependency is present in your project, a list of Phoenix Routers is expected. Otherwise a list of Plug.Router modules must be provided
	event_prefix: Optional, allows you to set the event prefix for the Telemetry events.
	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :plug_cowboy]. If this changes you will also want to set plug_cowboy_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
plug_cowboy_metric_prefix is {otp_app}_prom_ex_plug_cowboy.

To use plugin in your application, add the following to your PromEx module:
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 {PromEx.Plugins.PlugCowboy, routers: [MyApp.Router]}
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "plug_cowboy.json"}
]
 end
end
To ignore certain paths, pass a list of routes using the :ignore_routes option
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 {PromEx.Plugins.PlugCowboy, routers: [MyApp.Router], ignore_routes: ["/metrics"]}
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "plug_cowboy.json"}
]
 end
end

 PromEx.Plugins.PlugRouter - PromEx v1.4.1

PromEx.Plugins.PlugRouter

This plugin captures HTTP request metrics emitted by Plug.Router and Plug.Telemetry.
This plugin is heavily inspired on plugin Plug.Cowboy, and exposes the following metric group:
	:plug_router_http_event_metrics

Plugin options
	routers: Required This is a list with the full module names of your Routers (e.g MyAppWeb.Router).
Metrics produced by routers not in this list will be discarded.
	event_prefix: Required, allows you to set the event prefix defined in your Plug.Telemetry configuration:

defmodule WebApp.Router do
 use Plug.Router

 plug PromEx.Plug, prom_ex_module: WebApp.PromEx, path: "/metrics"
 plug Plug.Telemetry, event_prefix: [:webapp, :router]
 ...
end
With the above configuration, this plugin will subscribe to [:webapp, :router, :stop] telemetry events
produced by Plug.Telemetry. These events will be fired before the response is actually sent, therefore this
plugin will be able to export response body size metrics, since the Plug.Conn struct in the metadata of the
telemetry measurement still contains the response body.
However, Plug.Telemetry does not use :telemetry.span/3, which means the :stop event might not always be fired
(eg. if the process handling the request crashes). For this reason, this PromEx plugin also subscribes to
[:plug, :router_dispatch, :exception] telemetry events fired by Plug.Router, which are fired within a
:telemetry.span/3 call.
Unfortunately, we cannot safely rely on [:plug, :router_dispatch, :stop] events produced by Plug.Router since
these are fired after the response is sent (as opposed to Plug.Telemetry :stop events). As a consequence,
the response body is no longer available in the Plug.Conn struct attached to the telemetry measurement metadata.
	metric_prefix: This option is OPTIONAL and is used to override the default metric prefix of
[otp_app, :prom_ex, :plug_router]. If this changes you will also want to set plug_router_metric_prefix
in your dashboard_assigns to the snakecase version of your prefix, the default
plug_router_metric_prefix is {otp_app}_prom_ex_plug_router.
	ignore_routes: This option is OPTIONAL and is used to ignore certain paths.

To use plugin in your application, add the following to your PromEx module:
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 alias PromEx.Plugins

 @impl true
 def plugins do
 [
 ...
 {Plugins.PlugRouter,
 event_prefix: [:webapp, :router], metric_prefix: [:prom_ex, :router], routers: [WebApp.Router]}
]
 end

 @impl true
 def dashboard_assigns do
 [
 datasource_id: "...",
 plug_router_metric_prefix: "prom_ex_router"
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "plug_router.json"}
]
 end
end
To ignore certain paths, pass a list of routes using the :ignore_routes option
defmodule WebApp.PromEx do
 use PromEx, otp_app: :web_app

 @impl true
 def plugins do
 [
 ...
 {PromEx.Plugins.PlugRouter,
 event_prefix: [:webapp, :router], metric_prefix: [:prom_ex, :router], routers: [WebApp.Router],
 ignore_routes: ["/metrics"]}
]
 end

 @impl true
 def dashboards do
 [
 ...
 {:prom_ex, "plug_router.json"}
]
 end
end

 mix prom_ex.dashboard.export - PromEx v1.4.1

mix prom_ex.dashboard.export

This will render a PromEx dashboard either to STDOUT or to a file depending on
the CLI arguments that are provided.
The following CLI flags are supported:
-d, --dashboard The name of the dashboard that you would like to export from PromEx.
 For example, if you would like to export the Ecto dashboard, provide
 the value `ecto.json`.

-m, --module The PromEx module which will be used to render the dashboards.
 This is needed to fetch any relevant assigns from the
 `c:PromEx.dashboard_assigns/0` callback

-s, --stdout A boolean flag denoting that the rendered dashboard should be output
 to STDOUT.

-f, --file_path If you would like the write the generated JSON dashboard definition
 to a file, you can provide a relative file path in the project's
 `priv` directory.

-a, --assign Any additional assigns you would like to pass to the dashboard for
 rendering. You are able to pass multiple assigns by passing multiple
 --assign arguments. For example: `--assign some=thing --assign another=thing`.

 mix prom_ex.dashboard.lint - PromEx v1.4.1

mix prom_ex.dashboard.lint

This will lint Grafana dashboards to ensure that PromEx dashboards
meeting certain requirements.

 mix prom_ex.dashboard.publish - PromEx v1.4.1

mix prom_ex.dashboard.publish

This mix task will publish dashboards to Grafana for a PromEx module. It is
recommended that you use the functionality that is part of the PromEx supervision
tree in order to upload dashboards as opposed to this, given that mix may not
always be available (like in a mix release). This is more so a convenience for
testing and validating dashboards without starting the whole application.
The following CLI flags are supported:
-m, --module The PromEx module which will be used to render the dashboards.
 This is needed to fetch any relevant assigns from the
 `c:PromEx.dashboard_assigns/0` callback and to get the Grafana
 configuration from app config.

-t, --timeout The timeout value defines how long the mix task will wait while
 uploading dashboards.

 mix prom_ex.gen.config - PromEx v1.4.1

mix prom_ex.gen.config

This Mix Task generates a PromEx config module in your project. This config
file acts as a starting point with instructions on how to set up PromEx
in your application, some default PromEx metrics plugins, and their
accompanying dashboards.
The following CLI flags are supported:
-d, --datasource The datasource that the dashboards will be reading from to populate
 their time series data. This `datasource` value should align with
 what is configured in Grafana from the Prometheus instance's
 `datasource_id`.

-o, --otp_app The OTP application that PromEx is being installed in. This
 should be provided as the snake case atom (minus the leading
 colon). For example, if the `:app` value in your `mix.exs` file
 is `:my_cool_app`, this argument should be provided as `my_cool_app`.
 By default PromEx will read your `mix.exs` file to determine the OTP
 application value so this is an OPTIONAL argument.

OEBPS/dist/app-db64fcdc429a9b460caa.js
