

 Polyn

 v0.6.1

 Table of contents

 	Polyn

 	Changelog

 	Modules

 	OffBroadway.Polyn.Producer

 	Polyn

 	Polyn.Event

 	Polyn.JSONStore

 	Polyn.Migration

 	Polyn.Migration.Migrator

 	Polyn.PullConsumer

 	Polyn.Sandbox

 	Polyn.SchemaStore

 	Polyn.Subscriber

 	Polyn.Testing

 	Polyn.JSONStoreException

 	Polyn.Migration.Exception

 	Polyn.SchemaException

 	Polyn.StreamException

 	Polyn.TestingException

 	Polyn.ValidationException

 	Mix Tasks

 	mix polyn.gen.migration

 	mix polyn.gen.release

 	mix polyn.migrate

Polyn

Polyn is a dead simple service framework designed to be language agnostic while
providing a simple, yet powerful, abstraction layer for building reactive events
based services.
Philosophy
According to Jonas Boner, reactive Microservices require
you to:
	Follow the principle “do one thing, and one thing well” in defining service
boundaries
	Isolate the services
	Ensure services act autonomously
	Embrace asynchronous message passing
	Stay mobile, but addressable
	Design for the required level of consistency

Polyn implements this pattern in a manner that can be applied to multiple programming
languages, such as Ruby, Elixir, or Python, enabling you to build services that can
communicate regardless of the language you use.
Using an event-based microservice architecture is a great way to decouple your services,
create reliability, and scalability. However, there is no standard way to format events
which creates entropy and inconsistency between services, requiring developers to
create different event handling logic for each event type they consume. Polyn
solves this problem by creating and enforcing a consistent event format on both the
producer and consumer-side so all the services in your system can focus their
effort on the data rather than the event format.
Rather than defining its own event schema, Polyn uses the Cloud Events
specification and strictly enforces the event format. This means that you can use Polyn to build services
that can be used by other services, or natively interact with things such as GCP Cloud Functions.
For events that include data Polyn also leverages the JSON Schema
specification to create consistency.
Schema Creation
In order for Polyn to process and validate message schemas you will need to use Polyn CLI to create an schemas codebase. Once your schemas codebase is created you can create and manage your schemas there.
Configuration
Domain
The Cloud Event Spec specifies that every event "SHOULD be prefixed with a reverse-DNS name." This name should be consistent throughout your organization. You
define that domain like this:
config :polyn, :domain, "app.spiff"
Message Source Root
The Cloud Event Spec specifies that every event MUST have a source attribute and recommends it be an absolute URI. Your application must configure the source_root to use for messages produced at the application level. Each message producer can include its own source to append to the source_root if it makes sense.
config :polyn, :source_root, "orders.payments"
NATS Connection
You will need to provide the connection settings for your NATS connection. This will differ in-between environments. More settings options can be seen here
config :polyn, :nats, %{
 name: :gnat,
 connection_settings: [
 %{host: "10.0.0.100", port: 4222},
 %{host: "10.0.0.101", port: 4222},
]
}
Schema Store
In order for Polyn to access schemas for validation you'll need a running Polyn.SchemaStore process. You can add one to your Supervision Tree like this:
 children = [
 {Polyn.SchemaStore, connection_name: :connection_name_or_pid}
]

 opts = [strategy: :one_for_one, name: MySupervisor]
 Supervisor.start_link(children, opts)
Server Migrations
To create a migration you use the mix task mix polyn.gen.migration <name>. If you wanted to create a new stream for user messages you could do the following:
mix polyn.gen.migration create_user_stream

This would add a new migration to your codebase at priv/polyn/migrations/<timestamp>_create_user_stream.exs. The TIMESTAMP is a unique number that identifies the migration. It is usually the timestamp of when the migration was created. The NAME must also be unique and it quickly identifies what the migration does. Inside the generated file you would see a module like this:
defmodule Polyn.Migrations.CreateUserStream do
 import Polyn.Migration

 def change do
 end
end
Inside the change function you can use the functions available in Polyn.Migration to update the NATS server. You can then run mix polyn.migrate to apply your changes.
Tracking Previously Run Migrations
Polyn uses a shared Key-Value bucket in NATS to avoid re-running migrations. It uses the application's :source_root as the key to determine which list of run migrations belong to which application.
Releases
When using mix release to deploy, mix and Mix Tasks are not available, so you can't use mix polyn.migrate to do your migrations.
Instead you'll need to run mix polyn.gen.release which will add a lib/my_app/release.ex file to your app (if you already have this file it will append to it). The file will look something like this:
defmodule MyApp.Release do
 @app :my_app

 def polyn_migrate do
 load_app()
 {:ok, _apps} = Application.ensure_all_started(:polyn)

 dir = Path.join([:code.priv_dir(@app), "polyn", "migrations"])
 Polyn.Migration.Migrator.run(migrations_dir: dir)
 end

 defp load_app do
 Application.load(@app)
 end
end
You can use the polyn_migrate function from this module to execute migrations in the compiled release like this:
_build/prod/rel/my_app/bin/my_app eval "MyApp.Release.polyn_migrate"
Sometimes multiple OTP apps are part of a single application, so Polyn doesn't assume which app to use for accessing and running migration files. This is why you need to generate the release.ex file yourself and pass in the OTP app you want.
Usage
Publishing Messages
Use Polyn.pub/4 to publish new events to the server
Simple Stream Consumption
If you have use case that doesn't require batching or concurrency you can use Polyn.PullConsumer to receive messages one at a time
Complex Stream Consumption
If you have a complex use case requiring batching or concurrency you should use the
OffBroadway.Polyn.Producer to create a data pipeline for your messages.
Vanilla NATS Subscription
If there are events you want to subscribe to that are more ephemeral or don't need
JetStream functionality you can use the Polyn.Subscriber module to setup a process
to subscribe and handle those events
Request-Reply
You can use Polyn.request/4 to a do a psuedo-synchronous request. You can subscribe to an event using a Polyn.Subscriber and reply using Polyn.reply/5. Both your request and your reply will need schema definitions and will be validated against them.
Testing
Add the following to your config/test.exs
config :polyn, :sandbox, true
In your test_helper.ex add the following:
Polyn.Sandbox.start_link()
In tests that interact with Polyn add
import Polyn.Testing

setup :setup_polyn
Test Isolation
Following the test setup instructions replaces most Polyn calls to NATS with mocks. Rather than hitting a real nats-server, the mocks will create an isolated sandbox for each test to ensure that message passing in one test is not affecting any other test. This will help prevent flaky tests and race conditions. It also makes concurrent testing possible. The tests will also all share the same schema store so that schemas aren't fetched from the nats-server repeatedly.
Despite mocking some NATS functionality you will still need a running nats-server for your testing.
When the tests start it will load all your schemas. The tests themselves will also use the running server to verify
stream and consumer configuration information. This hybrid mocking approach is intended to give isolation and reliability while also ensuring correct integration.
Nested Processes
Polyn.Testing associates each test process with its own NATS mock. To allow other processes that will call Polyn functions to use the same NATS mock as the rest of the test use the Polyn.Sandbox.allow/2 function. If you don't have access to the pid or name of a process that is using Polyn you will need to make your file async: false.
Observability
Tracing
Polyn uses OpenTelemetry to create distributed traces that will connect sent and received events in different services. Your application will need the opentelemetry package installed to collect the trace information.
Installation
If available in Hex, the package can be installed
by adding polyn to your list of dependencies in mix.exs:
def deps do
 [
 {:polyn, "~> 0.1.0"}
]
end
Optional Broadway Dependency
To use the OffBroadway.Polyn.Producer you'll also need to add a Broadway as a
dependency
Documentation
Documentation can be generated with ExDoc
and published on HexDocs. Once published, the docs can
be found at https://hexdocs.pm/polyn.

Changelog

0.6.1
	Adds mix polyn.gen.release task for working with mix release.

0.6.0
	Adds JetStream migration tooling with mix polyn.migrate

OffBroadway.Polyn.Producer

A Broadway Producer for Polyn.
The word Producer here is confusing because the word is overloaded.
In this module Producer refers to GenStage data
pipelines where a :producer is the stage that receives demand for data and sends it to a :consumer.
This module doesn't "produce" new events that get added to the NATS server for other services to consume.
Rather it consumes existing events from a NATS Stream and passes them to GenStage :consumer modules
in one application.
Usage
This module wraps OffBroadway.Jetstream.Producer and will validate that any messages coming through
are valid events and conform to the schema for the event. Use the OffBroadway.Jetstream.Producer documentation
to learn how to use it. One difference is that you will use OffBroadway.Polyn.Producer
in your :module configuration instead of the Jetstream one. Invalid messages will send an ACKTERM
to the NATS server so that they aren't sent again. They will be marked as failed and removed from the pipeline.
Valid messages that come in a batch with an invalid message will send a NACK response before an error
is raised so that the NATS server will know they were received but need to be sent again
Another key difference that Polyn adds is that the :consumer_name will be taken care of for you
by using the passed type and configured :source_root. You can pass in a :source to :module
to get a more specific :consumer_name.
You can pass in :stream_name to :module to use a stream_name not derived from the type
Example
defmodule MyBroadway do
 use Broadway

 def start_link(_opts) do
 Broadway.start_link(
 __MODULE__,
 name: MyBroadway,
 producer: [
 module: {
 OffBroadway.Polyn.Producer,
 connection_name: :gnat,
 type: "user.created.v1"
 },
 concurrency: 10
],
 processors: [
 default: [concurrency: 10]
],
 batchers: [
 example: [
 concurrency: 5,
 batch_size: 10,
 batch_timeout: 2_000
]
]
)
 end

 def handle_message(_processor_name, message, _context) do
 message
 |> Message.update_data(&process_data/1)
 |> Message.put_batcher(:example)
 end
end

Polyn

Polyn is a dead simple service framework designed to be language agnostic while
providing a simple, yet powerful, abstraction layer for building reactive events
based services.

 Anchor for this section

 Summary

 Types

 polyn_options()

 Options you can pass to most Polyn module functions

 pub_options()

 Options for publishing events. See Gnat.pub/4 for more info

 req_options()

 Options for publishing events. See Gnat.request/4 for more info

 Functions

 pub(conn, event_type, data, opts \\ [])

 Publish an event to the message bus. Will validate the data against an existing schema
added by Polyn CLI.

 reply(conn, reply_to, event_type, data, opts \\ [])

 Reply to an event you've subscribed to that included a reply_to option.

 request(conn, event_type, data, opts \\ [])

 Issue a request in a psuedo-synchronous fashion. Requests still require an event be defined in
the schema store. The event you send and receive will both be validated

 Anchor for this section

Types

 Link to this type

 polyn_options()

 View Source

 @type polyn_options() :: {:store_name, binary()} | {:source, binary()}

Options you can pass to most Polyn module functions
	:source - The source of the event. By default will be the domain combined with the
source_root

 Link to this type

 pub_options()

 View Source

 @type pub_options() ::
 polyn_options() | {:headers, Gnat.headers()} | {:reply_to, binary()}

Options for publishing events. See Gnat.pub/4 for more info
	:headers - Headers to include in the message
	:reply_to - Subject to send a response to

 Link to this type

 req_options()

 View Source

 @type req_options() ::
 polyn_options()
 | {:headers, Gnat.headers()}
 | {:receive_timeout, non_neg_integer()}

Options for publishing events. See Gnat.request/4 for more info
	:headers - Headers to include in the message
	:receive_timeout - How long to wait for a response

 Anchor for this section

Functions

 Link to this function

 pub(conn, event_type, data, opts \\ [])

 View Source

 @spec pub(
 conn :: Gnat.t(),
 event_type :: binary(),
 data :: any(),
 opts :: [pub_options()]
) :: :ok

Publish an event to the message bus. Will validate the data against an existing schema
added by Polyn CLI.

 options

 Options

	:source - The source of the event. By default will be the domain combined with the
source_root
	See Gnat.pub/4 for other options

 examples

 Examples

iex>Polyn.pub(:gnat, "user.created.v1", %{name: "Mary"})
:ok
iex>Polyn.pub(:gnat, "user.created.v1", %{name: "Mary"}, source: "admin")
:ok

 Link to this function

 reply(conn, reply_to, event_type, data, opts \\ [])

 View Source

 @spec reply(
 conn :: Gnat.t(),
 reply_to :: binary(),
 event_type :: binary(),
 data :: any(),
 opts :: [pub_options()]
) :: :ok

Reply to an event you've subscribed to that included a reply_to option.

 options

 Options

	:source - The source of the event. By default will be the domain combined with the
source_root
	See Gnat.pub/4 for other options

 examples

 Examples

iex>Polyn.reply(:gnat, "INBOX.me", "user.created.v1", %{name: "Mary"})
:ok
iex>Polyn.reply(:gnat, "INBOX.me", "user.created.v1", %{name: "Mary"}, source: "admin")
:ok

 Link to this function

 request(conn, event_type, data, opts \\ [])

 View Source

 @spec request(
 conn :: Gnat.t(),
 event_type :: binary(),
 data :: any(),
 opts :: [req_options()]
) :: {:ok, Gnat.message()} | {:error, :timeout}

Issue a request in a psuedo-synchronous fashion. Requests still require an event be defined in
the schema store. The event you send and receive will both be validated

 options

 Options

	:source - The source of the event. By default will be the domain combined with the
source_root
	See Gnat.request/4 for other options

 examples

 Examples

iex>Polyn.request(:gnat, "user.created.v1", %{name: "Mary"})
{:ok, %{body: %Event{}}}
iex>Polyn.request(:gnat, "user.created.v1", %{name: "Mary"}, source: "admin")
{:ok, %{body: %Event{}}}

Polyn.Event

The Event structure used throughout Polyn.

 Anchor for this section

 Summary

 Types

 t()

 The Event structure used throughout Polyn.

 Functions

 full_source()

 full_source(source)

 Get the Event source prefixed with reverse domain name

 full_type(type)

 Get the Event type prefixed with reverse domain name

 new(fields)

 Create a new Polyn.Event

 new_event_id()

 Generate a new event id

 new_timestamp()

 Generate a new timestamp for the event

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Polyn.Event{
 data: any(),
 datacontenttype: String.t(),
 dataschema: String.t(),
 id: String.t(),
 polyndata: map(),
 source: String.t(),
 specversion: String.t(),
 time: String.t(),
 type: String.t()
}

The Event structure used throughout Polyn.
	id - Identifies the event.
	specversion - The version of the CloudEvents specification which the event uses.
	type - Describes the type of event related to the originating occurrence.
	data - The event payload.
	dataschema - Identifies the schema that data adheres to.
	datacontenttype - Content type of the data value. Must adhere to RFC 2046 format.
	source - Identifies the context in which an event happened.
	time - Timestamp of when the occurrence happened. Must adhere to RFC 3339.
	polyndata - Information about the client that produced the event and additional data

 Anchor for this section

Functions

 Link to this function

 full_source()

 View Source

 @spec full_source() :: binary()

 Link to this function

 full_source(source)

 View Source

 @spec full_source(source :: binary() | nil) :: binary()

Get the Event source prefixed with reverse domain name

 Link to this function

 full_type(type)

 View Source

 @spec full_type(type :: binary()) :: binary()

Get the Event type prefixed with reverse domain name

 Link to this function

 new(fields)

 View Source

 @spec new(fields :: keyword()) :: t()

 @spec new(fields :: map()) :: t()

Create a new Polyn.Event

 Link to this function

 new_event_id()

 View Source

Generate a new event id

 Link to this function

 new_timestamp()

 View Source

Generate a new timestamp for the event

Polyn.JSONStore

A process for loading and accessing key value data from the NATS server.

 Anchor for this section

 Summary

 Types

 option()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Start a new Store process

 Anchor for this section

Types

 Link to this type

 option()

 View Source

 @type option() ::
 {:connection_name, Gnat.t()}
 | {:store_name, binary()}
 | {:contents, map()}
 | {:retry_interval, pos_integer()}
 | GenServer.option()

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

 @spec start_link(opts :: [option()]) :: GenServer.on_start()

Start a new Store process

 examples

 Examples

iex>Polyn.Jetstream.JSONStore.start_link(connection_name: :gnat)
:ok

Polyn.Migration

Functions for making changes to a NATS server

 Anchor for this section

 Summary

 Functions

 create_consumer(opts)

 Creates a new Consumer for a stream. Options are what's available on
Jetstream.API.Consumer.t().
Note: Consumers can't be updated after they are created. You must delete and
recreate it instead.

 create_stream(opts)

 Creates a new Stream for storing messages. Options are what's available on
Jetstream.API.Stream.t()

 delete_consumer(opts)

 Deletes a consumer from a stream. Consumers can have the same name for different
streams so you must supply the stream name.

 delete_stream(stream_name)

 Deletes a Stream for storing messages.

 update_stream(opts)

 Updates a Stream for storing messages. Options are what's available on
Jetstream.API.Stream.t(). The :name is required and must be an already
created Stream

 Anchor for this section

Functions

 Link to this function

 create_consumer(opts)

 View Source

 @spec create_consumer(consumer_options :: keyword()) :: :ok

Creates a new Consumer for a stream. Options are what's available on
Jetstream.API.Consumer.t().
Note: Consumers can't be updated after they are created. You must delete and
recreate it instead.

 examples

 Examples

iex>create_consumer(durable_name: "test_consumer", stream_name: "test_stream")
:ok

 Link to this function

 create_stream(opts)

 View Source

 @spec create_stream(stream_options :: keyword()) :: :ok

Creates a new Stream for storing messages. Options are what's available on
Jetstream.API.Stream.t()

 examples

 Examples

iex>create_stream(name: "test_stream", subjects: ["test_subject"])
:ok

 Link to this function

 delete_consumer(opts)

 View Source

 @spec delete_consumer(consumer_options :: keyword()) :: :ok

Deletes a consumer from a stream. Consumers can have the same name for different
streams so you must supply the stream name.

 examples

 Examples

iex>delete_consumer(durable_name: "test_consumer", stream_name: "test_stream")
:ok

 Link to this function

 delete_stream(stream_name)

 View Source

 @spec delete_stream(stream_name :: binary()) :: :ok

Deletes a Stream for storing messages.

 examples

 Examples

iex>delete_stream("test_stream")
:ok

 Link to this function

 update_stream(opts)

 View Source

 @spec update_stream(stream_options :: keyword()) :: :ok

Updates a Stream for storing messages. Options are what's available on
Jetstream.API.Stream.t(). The :name is required and must be an already
created Stream

 examples

 Examples

iex>update_stream(name: "test_stream", description: "my test stream")
:ok

Polyn.Migration.Migrator

Manages the creation and updating of streams and consumers that
an application owns

 Anchor for this section

 Summary

 Types

 t()

 	:migrations_dir - Location of migration files
	:running_migration_id - The timestamp/id of the migration file being run. Taken from the beginning of the file name
	:migration_bucket_info - The Stream info for the migration KV bucket
	:runner - Process for keeping commands to run
	:migration_files - The file names of migration files
	:migration_modules - A list of tuples with the migration id and module code
	:already_run_migrations - Migrations we've determined have already been executed on the server
	:commands - list of tuples with {migration_id, command_name, command_options}

 Functions

 migrations_dir()

 Path of migration files

 new(opts \\ [])

 run(opts \\ [])

 Entry point for starting migrations

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Polyn.Migration.Migrator{
 already_run_migrations: [binary()],
 commands: [{integer(), atom(), any()}],
 migration_bucket_info: Jetstream.API.Stream.info() | nil,
 migration_files: [binary()],
 migration_modules: [{integer(), module()}],
 migrations_dir: binary(),
 runner: pid() | nil,
 running_migration_id: non_neg_integer() | nil
}

	:migrations_dir - Location of migration files
	:running_migration_id - The timestamp/id of the migration file being run. Taken from the beginning of the file name
	:migration_bucket_info - The Stream info for the migration KV bucket
	:runner - Process for keeping commands to run
	:migration_files - The file names of migration files
	:migration_modules - A list of tuples with the migration id and module code
	:already_run_migrations - Migrations we've determined have already been executed on the server
	:commands - list of tuples with {migration_id, command_name, command_options}

 Anchor for this section

Functions

 Link to this function

 migrations_dir()

 View Source

Path of migration files

 Link to this function

 new(opts \\ [])

 View Source

 Link to this function

 run(opts \\ [])

 View Source

 @spec run(opts :: [{:migrations_dir, binary()}]) :: :ok

Entry point for starting migrations

Polyn.PullConsumer behaviour

Use Polyn.PullConsumer to connect and process messages from an existing NATS Consumer
that was setup with Polyn CLI. This module is a
wrapper around Jetstream.PullConsumer that does schema validation with the received messages.
A key difference that Polyn adds is that the :consumer_name will be taken care of for you
by using the passed type and configured :source_root. You can pass :source to start_link/3
to get a more specific :consumer_name. This type of Consumer is meant for simple use cases that
don't involve concurrency or batching.
Example
defmodule MyApp.PullConsumer do
 use Polyn.PullConsumer

 def start_link(arg) do
 Polyn.PullConsumer.start_link(__MODULE__, arg,
 connection_name: :gnat,
 type: "user.created.v1")
 end

 @impl true
 def init(_arg) do
 {:ok, nil}
 end

 @impl true
 def handle_message(message, state) do
 # Do some processing with the message.
 {:ack, state}
 end
end

 Anchor for this section

 Summary

 Types

 option()

 Options for starting a Polyn.PullConsumer

 Callbacks

 handle_message(event, message, state)

 Invoked to synchronously process a message pulled by the consumer.
Depending on the value it returns, the acknowledgement is or is not sent.
Polyn will deserialize the message body into a Polyn.Event struct and use
that as the first argument, followed by the original message, follwed by the state.

 init(init_arg)

 Invoked when the server is started. start_link/3 or start/3 will block until it returns.

 Functions

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 close(consumer)

 Closes the pull consumer and stops underlying process.

 start(module, init_arg, opts \\ [])

 Starts a Jetstream.PullConsumer process without links (outside of a supervision tree).

 start_link(module, init_arg, opts \\ [])

 Starts a pull consumer linked to the current process with the given function.

 Anchor for this section

Types

 Link to this type

 option()

 View Source

 @type option() ::
 {:type, binary()}
 | {:source, binary()}
 | {:connection_name, Gnat.t()}
 | {:stream_name, binary()}
 | GenServer.option()

Options for starting a Polyn.PullConsumer
	:type - Required. The event type to consume
	:connection_name - Required. The Gnat connection identifier
	:source - Optional. More specific name for the consumer to add to the :source_root
	:stream_name - Optional. Choose a specific stream name not derived from the type
	All other options will be assumed to be GenServer options

 Anchor for this section

Callbacks

 Link to this callback

 handle_message(event, message, state)

 View Source

 @callback handle_message(
 event :: Polyn.Event.t(),
 message :: Jetstream.message(),
 state :: term()
) :: {ack_action, new_state}
when ack_action: :ack | :nack | :term | :noreply, new_state: term()

Invoked to synchronously process a message pulled by the consumer.
Depending on the value it returns, the acknowledgement is or is not sent.
Polyn will deserialize the message body into a Polyn.Event struct and use
that as the first argument, followed by the original message, follwed by the state.

 ack-actions

 ACK actions

See Jetstream.PullConsumer.handle_message/2 for available options

 example

 Example

def handle_message(event, _message, state) do
 IO.inspect(event)
 {:ack, state}
end

 Link to this callback

 init(init_arg)

 View Source

 @callback init(init_arg :: term()) ::
 {:ok, state :: term()} | :ignore | {:stop, reason :: any()}

Invoked when the server is started. start_link/3 or start/3 will block until it returns.
init_arg is the argument term (second argument) passed to start_link/3.
See Connection.init/1 for more details.

 Anchor for this section

Functions

 Link to this function

 child_spec(arg)

 View Source

 @spec child_spec(arg :: GenServer.options()) :: Supervisor.child_spec()

Returns a specification to start this module under a supervisor.
See the "Child specification" section in the Supervisor module for more detailed
information.

 Link to this function

 close(consumer)

 View Source

 @spec close(consumer :: Jetstream.PullConsumer.consumer()) :: :ok

Closes the pull consumer and stops underlying process.

 example

 Example

{:ok, consumer} =
 PullConsumer.start_link(ExamplePullConsumer, %{initial_arg: "foo"},
 connection_name: :gnat,
 type: "user.updated.v1",
 stream: "TEST_STREAM",
)

:ok = PullConsumer.close(consumer)

 Link to this function

 start(module, init_arg, opts \\ [])

 View Source

 @spec start(module(), init_arg :: term(), options :: [option()]) ::
 GenServer.on_start()

Starts a Jetstream.PullConsumer process without links (outside of a supervision tree).
See start_link/3 for more information.

 Link to this function

 start_link(module, init_arg, opts \\ [])

 View Source

 @spec start_link(module(), init_arg :: term(), options :: [option()]) ::
 GenServer.on_start()

Starts a pull consumer linked to the current process with the given function.
This is often used to start the pull consumer as part of a supervision tree.
Once the server is started, the init/1 function of the given module is called with
init_arg as its argument to initialize the server. To ensure a synchronized start-up procedure,
this function does not return until init/1 has returned.
See GenServer.start_link/3 for more details.

 example

 Example

{:ok, consumer} =
 Polyn.PullConsumer.start_link(ExamplePullConsumer, %{initial_arg: "foo"},
 connection_name: :gnat,
 type: "user.updated.v1",
 stream: "TEST_STREAM",
)

Polyn.Sandbox

Sandbox environment for mocking NATS and keeping tests isolated
Add the following to your test_helper.ex
Polyn.Sandbox.start_link()
Nested Processes
Polyn.Testing associates each test process with its own NATS mock.
To allow other processes that will call Polyn functions to use the same
NATS mock as the rest of the test use the Polyn.Sandbox.allow/2 function.
If you don't have access to the pid or name of a process that is using Polyn
you will need to make your file async: false.

 Anchor for this section

 Summary

 Functions

 allow(test_pid, other_pid)

 Allow a child process, that is not the test process, to access the running
MockNats server. You cannot allow the same process on multiple tests.

 child_spec(arg)

 Returns a specification to start this module under a supervisor.

 get!(pid)

 Get the nats server for a given pid

 get_async_mode()

 Get the async mode of the Sandbox. Defaults to false

 set_async_mode(mode)

 Make the sandbox async false or true

 setup_test(test_pid, nats_pid)

 Setup a test with a mock nats server association

 start_link(initial_value)

 Start the Sandbox

 state()

 Get the full state

 teardown_test(test_pid)

 Remove the nats server assocation when a test is finished

 Anchor for this section

Functions

 Link to this function

 allow(test_pid, other_pid)

 View Source

 @spec allow(test_pid :: pid(), other_pid :: pid()) :: :ok

Allow a child process, that is not the test process, to access the running
MockNats server. You cannot allow the same process on multiple tests.

 examples

 Examples

iex>Polyn.Sandbox.allow(self(), Process.whereis(:foo))
:ok

 Link to this function

 child_spec(arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get!(pid)

 View Source

 @spec get!(pid()) :: pid()

Get the nats server for a given pid

 Link to this function

 get_async_mode()

 View Source

 @spec get_async_mode() :: boolean()

Get the async mode of the Sandbox. Defaults to false

 Link to this function

 set_async_mode(mode)

 View Source

 @spec set_async_mode(mode :: boolean()) :: :ok

Make the sandbox async false or true

 Link to this function

 setup_test(test_pid, nats_pid)

 View Source

 @spec setup_test(test_pid :: pid(), nats_pid :: pid()) :: :ok

Setup a test with a mock nats server association

 Link to this function

 start_link(initial_value)

 View Source

 @spec start_link(any()) :: Agent.on_start()

Start the Sandbox

 Link to this function

 state()

 View Source

 @spec state() :: map()

Get the full state

 Link to this function

 teardown_test(test_pid)

 View Source

 @spec teardown_test(test_pid :: pid()) :: :ok

Remove the nats server assocation when a test is finished

Polyn.SchemaStore

A SchemaStore for loading and accessing schemas from the NATS server that were
created via Polyn CLI.
You will need this running, likely in your application supervision tree, in order for
Polyn to access schemas
Examples
```elixir
children = [
  {Polyn.SchemaStore, connection_name: :connection_name_or_pid}
]

opts = [strategy: :one_for_one, name: MySupervisor]
Supervisor.start_link(children, opts)
```


 Anchor for this section

 Summary

 Types

 option()

 Functions

 child_spec(opts)

 process_name(store_name)

 See Polyn.JSONStore.process_name/1.

 start_link(opts)

 Start a new SchemaStore process

 store_name(opts \\ [])

 Get a configured store name or the default

 Anchor for this section

Types

 Link to this type

 option()

 View Source

 @type option() :: Polyn.JSONStore.option() | {:schemas, map()}

 Anchor for this section

Functions

 Link to this function

 child_spec(opts)

 View Source

 Link to this function

 process_name(store_name)

 View Source

See Polyn.JSONStore.process_name/1.

 Link to this function

 start_link(opts)

 View Source

 @spec start_link(opts :: [option()]) :: GenServer.on_start()

Start a new SchemaStore process

 examples

 Examples

iex>Polyn.SchemaStore.start_link(connection_name: :gnat)
:ok

 Link to this function

 store_name(opts \\ [])

 View Source

 @spec store_name(opts :: [{:name, binary()}]) :: binary()

Get a configured store name or the default

Polyn.Subscriber behaviour

A GenServer wrapper to use when working with vanilla NATS subscriptions outside of JetStream.
This process will hang around and listen for messages to come in and then trigger a handle_message/3 callback
defmodule MySubscriber do
 use Polyn.Subscriber

 def start_link(init_args) do
 Polyn.Subscriber.start_link(__MODULE__, init_args,
 connection_name: :gnat,
 event: "user.created.v1")
 end

 def init(_arg) do
 {:ok, nil}
 end

 def handle_message(event, message, state) do
 # Do something cool with the event
 {:noreply, state}
 end
end

 Anchor for this section

 Summary

 Types

 start_options()

 Callbacks

 handle_message(event, msg, state)

 Called when the subscribed event is published. Return the same values as you would for a
Genserver.handle_info/2 callback

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(module, init_args, options)

 Options
	:connection_name - Required, The pid or name of Gnat connection
	:event - Required, The name of the event to subscribe to
	:queue_group - a string that identifies which queue group you want to join

Any other passed options will be assumed to be GenServer options

 Anchor for this section

Types

 Link to this type

 start_options()

 View Source

 @type start_options() ::
 GenServer.option() | {:connection_name, Gnat.t()} | {:event, binary()}

 Anchor for this section

Callbacks

 Link to this callback

 handle_message(event, msg, state)

 View Source

 @callback handle_message(event :: Polyn.Event.t(), msg :: Gnat.message(), state :: any()) ::
 {:noreply, new_state}
 | {:noreply, new_state, timeout() | :hibernate | {:continue, term()}}
 | {:stop, reason :: term(), new_state}
when new_state: term()

Called when the subscribed event is published. Return the same values as you would for a
Genserver.handle_info/2 callback

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(module, init_args, options)

 View Source

 @spec start_link(module(), init_args :: any(), options :: [start_options()]) ::
 GenServer.on_start()

 options

 Options

	:connection_name - Required, The pid or name of Gnat connection
	:event - Required, The name of the event to subscribe to
	:queue_group - a string that identifies which queue group you want to join

Any other passed options will be assumed to be GenServer options

Polyn.Testing

Use this module to create isolated NATS environments for each test.
Add the following to your test file
import Polyn.Testing

setup :setup_polyn

 Anchor for this section

 Summary

 Functions

 setup_polyn(context)

 Intended to be a ExUnit setup function that will create an isolated NATS environment
for each test

 Anchor for this section

Functions

 Link to this function

 setup_polyn(context)

 View Source

Intended to be a ExUnit setup function that will create an isolated NATS environment
for each test

Polyn.JSONStoreException exception

Error raised when there are problems with accessing a key value store

Polyn.Migration.Exception exception

Exception when changing running migrations for streams and consumers

Polyn.SchemaException exception

Error raised when schemas are not found where they are expected to be

Polyn.StreamException exception

Error raised when there are problems with a stream or it's not found

Polyn.TestingException exception

Error raised when test things are not setup right

Polyn.ValidationException exception

Error raised when Event data is invalid

mix polyn.gen.migration

Use mix polyn.gen.migration <name> to generate a new migration module for your application
The <name> argument should be the snake_cased name representing the change the migration will make.
The generated migration filename will be prefixed with the current timestamp in UTC which is used for versioning and ordering.

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix polyn.gen.release

Use mix polyn.gen.release to generate a new polyn release module for your application

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

mix polyn.migrate

Use mix polyn.migrate to make configuration changes to your NATS server.

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

