

 Plug

 v1.13.5

 Table of contents

 	Plug

 	Guides

 	HTTPS

 	Modules

 	Plug

 	Plug.Builder

 	Plug.Conn

 	Plug.HTML

 	Plug.Router

 	Plug.Test

 	Plug.Upload

 	Plug.BasicAuth

 	Plug.CSRFProtection

 	Plug.Head

 	Plug.Logger

 	Plug.MethodOverride

 	Plug.Parsers

 	Plug.RequestId

 	Plug.RewriteOn

 	Plug.SSL

 	Plug.Session

 	Plug.Static

 	Plug.Telemetry

 	Plug.Debugger

 	Plug.ErrorHandler

 	Plug.Exception

 	Plug.Conn.Adapter

 	Plug.Conn.Cookies

 	Plug.Conn.Query

 	Plug.Conn.Status

 	Plug.Conn.Unfetched

 	Plug.Conn.Utils

 	Plug.Parsers.JSON

 	Plug.Parsers.MULTIPART

 	Plug.Parsers.URLENCODED

 	Plug.Session.COOKIE

 	Plug.Session.ETS

 	Plug.Session.Store

 	Plug.BadRequestError

 	Plug.CSRFProtection.InvalidCSRFTokenError

 	Plug.CSRFProtection.InvalidCrossOriginRequestError

 	Plug.Conn.AlreadySentError

 	Plug.Conn.CookieOverflowError

 	Plug.Conn.InvalidHeaderError

 	Plug.Conn.InvalidQueryError

 	Plug.Conn.NotSentError

 	Plug.Conn.WrapperError

 	Plug.Parsers.BadEncodingError

 	Plug.Parsers.ParseError

 	Plug.Parsers.RequestTooLargeError

 	Plug.Parsers.UnsupportedMediaTypeError

 	Plug.Router.InvalidSpecError

 	Plug.Router.MalformedURIError

 	Plug.Static.InvalidPathError

 	Plug.TimeoutError

 	Plug.UploadError

Plug

[image: Build Status]
[image: Inline docs]
Plug is:
	A specification for composing web applications with functions
	Connection adapters for different web servers in the Erlang VM

Documentation for Plug is available online.
Installation
In order to use Plug, you need a webserver and its bindings for Plug. The Cowboy webserver is the most common one, which can be installed by adding plug_cowboy as a dependency to your mix.exs:
def deps do
 [
 {:plug_cowboy, "~> 2.0"}
]
end
Hello world
defmodule MyPlug do
 import Plug.Conn

 def init(options) do
 # initialize options
 options
 end

 def call(conn, _opts) do
 conn
 |> put_resp_content_type("text/plain")
 |> send_resp(200, "Hello world")
 end
end
The snippet above shows a very simple example on how to use Plug. Save that snippet to a file and run it inside the plug application with:
$ iex -S mix
iex> c "path/to/file.ex"
[MyPlug]
iex> {:ok, _} = Plug.Cowboy.http MyPlug, []
{:ok, #PID<...>}

Access http://localhost:4000/ and we are done! For now, we have directly started the server in our terminal but, for production deployments, you likely want to start it in your supervision tree. See the Supervised handlers section next.
Supervised handlers
On a production system, you likely want to start your Plug pipeline under your application's supervision tree. Start a new Elixir project with the --sup flag:
$ mix new my_app --sup

and then update lib/my_app/application.ex as follows:
defmodule MyApp.Application do
 # See https://hexdocs.pm/elixir/Application.html
 # for more information on OTP Applications
 @moduledoc false

 use Application

 def start(_type, _args) do
 # List all child processes to be supervised
 children = [
 {Plug.Cowboy, scheme: :http, plug: MyPlug, options: [port: 4001]}
]

 # See https://hexdocs.pm/elixir/Supervisor.html
 # for other strategies and supported options
 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
Now run mix run --no-halt and it will start your application with a web server running at localhost:4001.
Supported Versions
	Branch	Support
	v1.13	Bug fixes
	v1.12	Security patches only
	v1.11	Security patches only
	v1.10	Security patches only
	v1.9	Security patches only
	v1.8	Security patches only
	v1.7	Unsupported from 01/2022
	v1.6	Unsupported from 01/2022
	v1.5	Unsupported from 03/2021
	v1.4	Unsupported from 12/2018
	v1.3	Unsupported from 12/2018
	v1.2	Unsupported from 06/2018
	v1.1	Unsupported from 01/2018
	v1.0	Unsupported from 05/2017

The Plug.Conn struct
In the hello world example, we defined our first plug. What is a plug after all?
A plug takes two shapes. A function plug receives a connection and a set of options as arguments and returns the connection:
def hello_world_plug(conn, _opts) do
 conn
 |> put_resp_content_type("text/plain")
 |> send_resp(200, "Hello world")
end
A module plug implements an init/1 function to initialize the options and a call/2 function which receives the connection and initialized options and returns the connection:
defmodule MyPlug do
 def init([]), do: false
 def call(conn, _opts), do: conn
end
As per the specification above, a connection is represented by the Plug.Conn struct:
%Plug.Conn{
 host: "www.example.com",
 path_info: ["bar", "baz"],
 ...
}
Data can be read directly from the connection and also pattern matched on. Manipulating the connection often happens with the use of the functions defined in the Plug.Conn module. In our example, both put_resp_content_type/2 and send_resp/3 are defined in Plug.Conn.
Remember that, as everything else in Elixir, a connection is immutable, so every manipulation returns a new copy of the connection:
conn = put_resp_content_type(conn, "text/plain")
conn = send_resp(conn, 200, "ok")
conn
Finally, keep in mind that a connection is a direct interface to the underlying web server. When you call send_resp/3 above, it will immediately send the given status and body back to the client. This makes features like streaming a breeze to work with.
Plug.Router
To write a "router" plug that dispatches based on the path and method of incoming requests, Plug provides Plug.Router:
defmodule MyRouter do
 use Plug.Router

 plug :match
 plug :dispatch

 get "/hello" do
 send_resp(conn, 200, "world")
 end

 forward "/users", to: UsersRouter

 match _ do
 send_resp(conn, 404, "oops")
 end
end
The router is a plug. Not only that: it contains its own plug pipeline too. The example above says that when the router is invoked, it will invoke the :match plug, represented by a local (imported) match/2 function, and then call the :dispatch plug which will execute the matched code.
Plug ships with many plugs that you can add to the router plug pipeline, allowing you to plug something before a route matches or before a route is dispatched to. For example, if you want to add logging to the router, just do:
plug Plug.Logger
plug :match
plug :dispatch
Note Plug.Router compiles all of your routes into a single function and relies on the Erlang VM to optimize the underlying routes into a tree lookup, instead of a linear lookup that would instead match route-per-route. This means route lookups are extremely fast in Plug!
This also means that a catch all match block is recommended to be defined as in the example above, otherwise routing fails with a function clause error (as it would in any regular Elixir function).
Each route needs to return the connection as per the Plug specification. See the Plug.Router docs for more information.
Testing plugs
Plug ships with a Plug.Test module that makes testing your plugs easy. Here is how we can test the router from above (or any other plug):
defmodule MyPlugTest do
 use ExUnit.Case, async: true
 use Plug.Test

 @opts MyRouter.init([])

 test "returns hello world" do
 # Create a test connection
 conn = conn(:get, "/hello")

 # Invoke the plug
 conn = MyRouter.call(conn, @opts)

 # Assert the response and status
 assert conn.state == :sent
 assert conn.status == 200
 assert conn.resp_body == "world"
 end
end
Available plugs
This project aims to ship with different plugs that can be re-used across applications:
	Plug.BasicAuth - provides Basic HTTP authentication;
	Plug.CSRFProtection - adds Cross-Site Request Forgery protection to your application. Typically required if you are using Plug.Session;
	Plug.Head - converts HEAD requests to GET requests;
	Plug.Logger - logs requests;
	Plug.MethodOverride - overrides a request method with one specified in the request parameters;
	Plug.Parsers - responsible for parsing the request body given its content-type;
	Plug.RequestId - sets up a request ID to be used in logs;
	Plug.RewriteOn - rewrite the request's host/port/protocol from x-forwarded-* headers;
	Plug.Session - handles session management and storage;
	Plug.SSL - enforces requests through SSL;
	Plug.Static - serves static files;
	Plug.Telemetry - instruments the plug pipeline with :telemetry events;

You can go into more details about each of them in our docs.
Helper modules
Modules that can be used after you use Plug.Router or Plug.Builder to help development:
	Plug.Debugger - shows a helpful debugging page every time there is a failure in a request;
	Plug.ErrorHandler - allows developers to customize error pages in case of crashes instead of sending a blank one;

Contributing
We welcome everyone to contribute to Plug and help us tackle existing issues!
Use the issue tracker for bug reports or feature requests. Open a pull request when you are ready to contribute. When submitting a pull request you should not update the CHANGELOG.md.
If you are planning to contribute documentation, please check our best practices for writing documentation.
Finally, remember all interactions in our official spaces follow our Code of Conduct.
License
Plug source code is released under Apache License 2.0.
Check LICENSE file for more information.

HTTPS

Plug can serve HTTP over TLS ('HTTPS') through an appropriately configured Adapter. While the exact syntax for defining an HTTPS listener is adapter-specific, Plug does define a common set of TLS configuration options that most adapters support, formally documented as Plug.SSL.configure/1.
This guide describes how to use these parameters to set up an HTTPS server with Plug, and documents some best-practices and potential pitfalls.
Editor's note: The secure transport protocol used by HTTPS is nowadays referred to as TLS. However, the application in the Erlang/OTP standard library that implements it is called :ssl, for historical reasons. In this document we will refer to the protocol as 'TLS' and to the Erlang/OTP implementation as :ssl, and its configuration parameters as :ssl options.

Prerequisites
The prerequisites for running an HTTPS server with Plug include:
	The Erlang/OTP runtime, with OpenSSL bindings; run :crypto.info_lib() in an IEx session to verify
	A Plug Adapter that supports HTTPS, e.g. Plug.Cowboy
	A valid certificate and associated private key

Self-signed Certificate
For testing purposes it may be sufficient to use a self-signed certificate. Such certificates generally result in warnings in browsers and failed connections from other tools, but these can be overridden to enable HTTPS testing. This is especially useful for local testing of HTTP 2, which is only specified over TLS.
Warning: use self-signed certificates only for local testing, and do not mark such test certificates as globally trusted in browsers or operating system!

The Phoenix project includes a Mix task mix phx.gen.cert that generates the necessary files and places them in the application's 'priv' directory. The X509 package can be used as a dev-only dependency to add a similar mix x509.gen.selfsigned task to non-Phoenix projects.
Alternatively, the OpenSSL CLI or other utilities can be used to generate a self-signed certificate. Instructions are widely available online.
CA Issued Certificate
For staging and production it is necessary to obtain a CA-signed certificate from a trusted Certificate Authority, such as Let's Encrypt. Certificates issued by a CA usually come with an additional file containing one or more certificates that make up the 'CA chain'.
For use with Plug the certificates and key should be stored in PEM format, containing Base64-encoded data between 'BEGIN' and 'END' markers. Some useful OpenSSL commands for converting certificates/keys from other formats can be found at the end of this document.
Getting Started
A minimal HTTPS listener, using Plug.Cowboy, might be defined as follows:
Plug.Cowboy.https MyApp.MyPlug, [],
 port: 8443,
 cipher_suite: :strong,
 certfile: "/etc/letsencrypt/live/example.net/cert.pem",
 keyfile: "/etc/letsencrypt/live/example.net/privkey.pem",
 cacertfile: "/etc/letsencrypt/live/example.net/chain.pem"
The cacertfile option is not needed when using a self-signed certificate, or when the file pointed to by certfile contains both the server certificate and all necessary CA chain certificates:
 #...
 certfile: "/etc/letsencrypt/live/example.net/fullchain.pem",
 keyfile: "/etc/letsencrypt/live/example.net/privkey.pem"
It is possible to bundle the certificate files with the application, possibly for packaging into a release. In this case the files must be stored under the application's 'priv' directory. The otp_app option must be set to the name of the OTP application that contains the files, in order to correctly resolve the relative paths:
Plug.Cowboy.https MyApp.MyPlug, [],
 port: 8443,
 cipher_suite: :strong,
 certfile: "priv/cert/selfsigned.pem",
 keyfile: "priv/cert/selfsigned_key.pem",
 otp_app: :my_app
Remember to exclude the files from version control, unless the certificate and key are shared by all developers for testing purposes only. For example, add this line to the '.gitignore' file: priv/**/*.pem.
TLS Protocol Options
In addition to a certificate, an HTTPS server needs a secure TLS protocol configuration. Plug.SSL always sets the following options:
	Set secure_renegotiate: true, to avoid certain types of man-in-the-middle attacks
	Set reuse_sessions: true, for improved handshake performance of recurring connections

Additional options can be set by selecting a predefined profile or by setting :ssl options individually.
Predefined Options
To simplify configuration of TLS defaults Plug provides two preconfigured options: cipher_suite: :strong and cipher_suite: :compatible.
The :strong profile enables AES-GCM ciphers with ECDHE or DHE key exchange, and TLS version 1.2 only. It is intended for typical installations with support for browsers and other modern clients.
The :compatible profile additionally enables AES-CBC ciphers, as well as TLS versions 1.1 and 1.0. Use this configuration to allow connections from older clients, such as older PC or mobile operating systems. Note that RSA key exchange is not enabled by this configuration, due to known weaknesses, so to support clients that do not support ECDHE or DHE it is necessary specify the ciphers explicitly (see below).
In addition, both profiles:
	Configure the server to choose a cipher based on its own preferences rather than the client's (honor_cipher_order set to true); when specifying a custom cipher list, ensure the ciphers are listed in descending order of preference
	Select the 'Prime' (SECP) curves for use in Elliptic Curve Cryptography (ECC)

All these parameters, including the global defaults mentioned above, can be overridden by specifying custom :ssl configuration options.
It is worth noting that the cipher lists and TLS protocol versions selected by the profiles are whitelists. If a new Erlang/OTP release introduces new TLS protocol versions or ciphers that are not included in the profile definition, they would have to be enabled explicitly by overriding the :ciphers and/or :versions options, until such time as they are added to the Plug.SSL profiles.
The ciphers chosen and related configuration are based on OWASP recommendations, with some modifications as described in the Plug.SSL.configure/1 documentation.
Manual Configuration
Please refer to the Erlang/OTP :ssl documentation for details on the supported configuration options.
An example configuration with custom :ssl options might look like this:
Plug.Cowboy.https MyApp.MyPlug, [],
 port: 8443,
 certfile: "/etc/letsencrypt/live/example.net/cert.pem",
 keyfile: "/etc/letsencrypt/live/example.net/privkey.pem",
 cacertfile: "/etc/letsencrypt/live/example.net/chain.pem",
 versions: [:"tlsv1.2", :"tlsv1.1"],
 ciphers: [
 'ECDHE-RSA-AES256-GCM-SHA384',
 'ECDHE-RSA-AES128-GCM-SHA256',
 'DHE-RSA-AES256-GCM-SHA384',
 'DHE-RSA-AES128-GCM-SHA256'
],
 honor_cipher_order: true,
 sni_fun: &MyPlug.ssl_opts_for_hostname/1
HTTP Strict Transport Security (HSTS)
Once a server is configured to support HTTPS it is often a good idea to redirect HTTP requests to HTTPS. To do this, include Plug.SSL in the Plug pipeline.
To prevent downgrade attacks, in which an attacker intercepts a plain HTTP request to the server before the redirect to HTTPS takes place, Plug.SSL by default sets the 'Strict-Transport-Security' (HSTS) header. This informs the browser that the current site must only ever be accessed over HTTPS, even if the user typed or clicked a plain HTTP URL. This only works if the site is reachable on port 443 (see Listening on Port 443, below).
Warning: it is very difficult, if not impossible, to revert the effect of HSTS before the entry stored in the browser expires! Consider using a short :expires value initially, and increasing it to a large value (e.g. 31536000 seconds for 1 year) after testing.

The Strict-Transport-Security header can be disabled altogether by setting hsts: false in the Plug.SSL options.
Encrypted Keys
To protect the private key on disk it is best stored in encrypted PEM format, protected by a password. When configuring a Plug server with an encrypted private key, specify the password using the :password option:
Plug.Cowboy.https MyApp.MyPlug, [],
 port: 8443,
 certfile: "/etc/letsencrypt/live/example.net/cert.pem",
 keyfile: "/etc/letsencrypt/live/example.net/privkey_aes.pem",
 cacertfile: "/etc/letsencrypt/live/example.net/chain.pem",
 password: "SECRET"
To encrypt an existing PEM-encoded RSA key use the OpenSSL CLI: openssl rsa -in privkey.pem -out privkey_aes.pem -aes128. Use ec instead of rsa when using an ECDSA certificate. Don't forget to securely erase the unencrypted copy afterwards! Best practice would be to encrypt the file immediately during initial key generation: please refer to the instructions provided by the CA.
Note: at the time of writing, Erlang/OTP does not support keys encrypted with AES-256. The OpenSSL command in the previous paragraph can also be used to convert an AES-256 encrypted key to AES-128.

Passing DER Binaries
Sometimes it is preferable to not store the private key on disk at all. Instead, the private key might be passed to the application using an environment variable or retrieved from a key store such as Vault.
In such cases it is possible to pass the private key directly, using the :key parameter. For example, assuming an RSA private key is available in the PRIVKEY environment variable in Base64 encoded DER format, the key may be set as follows:
der = System.get_env("PRIVKEY") |> Base.decode64!
Plug.Cowboy.https MyApp.MyPlug, [],
 port: 8443,
 key: {:RSAPrivateKey, der},
 #....
Note that reading environment variables in Mix config files only works when starting the application using Mix, e.g. in a development environment. In production, a different approach is needed for runtime configuration, but this is out of scope for the current document.
The certificate and CA chain can also be specified using DER binaries, using the :cert and :cacerts options, but this is best avoided. The use of PEM files has been tested much more thoroughly with the Erlang/OTP :ssl application, and there have been a number of issues with DER binary certificates in the past.
Custom Diffie-Hellman Parameters
It is recommended to generate a custom set of Diffie-Hellman parameters, to be used for the DHE key exchange. Use the following OpenSSL CLI command to create a dhparam.pem file:
openssl dhparam -out dhparams.pem 4096
On a slow machine (e.g. a cheap VPS) this may take several hours. You may want to run the command on a strong machine and copy the file over to the target server: the file does not need to be kept secret. It is best practice to rotate the file periodically.
Pass the (relative or absolute) path using the :dhfile option:
Plug.Cowboy.https MyApp.MyPlug, [],
 port: 8443,
 cipher_suite: :strong,
 certfile: "priv/cert/selfsigned.pem",
 keyfile: "priv/cert/selfsigned_key.pem",
 dhfile: "priv/cert/dhparams.pem",
 otp_app: :my_app
If no custom parameters are specified, Erlang's :ssl uses its built-in defaults. Since OTP 19 this has been the 2048-bit 'group 14' from RFC3526.
Renewing Certificates
Whenever a certificate is about to expire, when the contents of the certificate have been updated, or when the certificate is 're-keyed', the HTTPS server needs to be updated with the new certificate and/or key.
When using the :certfile and :keyfile parameters to reference PEM files on disk, replacing the certificate and key is as simple as overwriting the files. Erlang's :ssl application periodically reloads any referenced files, with changes taking effect in subsequent handshakes. It may be best to use symbolic links that point to versioned copies of the files, to allow for quick rollback in case of problems.
Note that there is a potential race condition when both the certificate and the key need to be replaced at the same time: if the :ssl application reloads one file before the other file is updated, the partial update can leave the HTTPS server with a mismatched private key. This can be avoiding by placing the private key in the same PEM file as the certificate, and omitting the :keyfile option. This configuration allows atomic updates, and it works because :ssl looks for a private key entry in the :certfile PEM file if no :key or :keyfile option is specified.
While it is possible to update the DER binaries passed in the :cert or :key options (as well as any other TLS protocol parameters) at runtime, this requires knowledge of the internals of the Plug adapter being used, and is therefore beyond the scope of this document.
Listening on Port 443
By default clients expect HTTPS servers to listen on port 443. It is possible to specify a different port in HTTPS URLs, but for public servers it is often preferable to stick to the default. In particular, HSTS requires that the site be reachable on port 443 using HTTPS.
This presents a problem, however: only privileged processes can bind to TCP port numbers under 1024, and it is bad idea to run the application as 'root'.
Leaving aside solutions that rely on external network elements, such as load balancers, there are several solutions on typical Linux servers:
	Deploy a reverse proxy or load balancer process, such as Nginx or HAProxy (see Offloading TLS, below); the proxy listens on port 443 and passes the traffic to the Elixir application running on an unprivileged port
	Create an IPTables rule to forward packets arriving on port 443 to the port on which the Elixir application is running
	Give the Erlang/OTP runtime (that is, the BEAM VM executable) permission to bind to privileged ports using 'setcap', e.g. sudo setcap 'cap_net_bind_service=+ep' /usr/lib/erlang/erts-10.1/bin/beam.smp; update the path as necessary, and remember to run the command again after Erlang upgrades
	Use a tool such as 'authbind' to give an unprivileged user/group permission to bind to specific ports

This is not intended to be an exhaustive list, as this topic is actually a bit beyond the scope of the current document. The issue is a generic one, not specific to Erlang/Elixir, and further explanations can be found online.
Offloading TLS
So far this document has focused on configuring Plug to handle TLS within the application. Some people instead prefer to terminate TLS in a proxy or load balancer deployed in front of the Plug application.
Pros and Cons
Offloading might be done to achieve higher throughput, or to stick to the more widely used OpenSSL implementation of the TLS protocol. The Erlang/OTP implementation depends on OpenSSL for the underlying cryptography, but it implements its own message framing and protocol state machine. While it is not clear that one implementation is inherently more secure than the other, just patching OpenSSL along with everybody else in case of vulnerabilities might give peace of mind, compared to than having to research the implications on the Erlang/OTP implementation.
On the other hand, the proxy solution might not support end-to-end HTTP 2, limiting the benefits of the new protocol. It can also introduce operational complexities and new resource constraints, especially for long-lived connections such as WebSockets.
Plug Configuration Impact
When using TLS offloading it may be necessary to make some configuration changes to the application.
Plug.SSL takes on another important role when using TLS offloading: it can update the :scheme and :port fields in the Plug.Conn struct based on an HTTP header (e.g. 'X-Forwarded-Proto'), to reflect the actual protocol used by the client (HTTP or HTTPS). It is very important that the :scheme field properly reflects the use of HTTPS, even if the connection between the proxy and the application uses plain HTTP, because cookies set by Plug.Session and Plug.Conn.put_resp_cookie/4 by default set the 'secure' cookie flag only if :scheme is set to :https! When relying on this default behaviour it is essential that Plug.SSL is included in the Plug pipeline, that its :rewrite_on option is set correctly, and that the proxy sets the appropriate header.
The :remote_ip field in the Plug.Conn struct by default contains the network peer IP address. Terminating TLS in a separate process or network element typically masks the actual client IP address from the Elixir application. If proxying is done at the HTTP layer, the original client IP address is often inserted into an HTTP header, e.g. 'X-Forwarded-For'. There are Plug packages available to extract the client IP from such a header and update the :remote_ip field.
Warning: ensure that clients cannot spoof their IP address by including this header in their original request, by filtering such headers in the proxy!

For solutions that operate below the HTTP layer, e.g. using HAProxy, the client IP address can sometimes be passed through the 'PROXY protocol'. Extracting this information must be handled by the Plug adapter. Please refer to the Plug adapter documentation for further information.
Converting Certificates and Keys
When certificate and/or key files are not in provided in PEM format they can usually be converted using the OpenSSL CLI. This section describes some common formats and the associated OpenSSL commands to convert to PEM.
From DER to PEM
DER-encoded files contain binary data. Common file extensions are .crt for certificates and .key for keys.
To convert a single DER-encoded certificate to PEM format: openssl x509 -in server.crt -inform der -out cert.pem
To convert an RSA private key from DER to PEM format: openssl rsa -in privkey.der -inform der -out privkey.pem. If the private key is a Elliptic Curve key, for use with an ECDSA certificate, replace rsa with ec. You may want to add the -aes128 argument to produce an encrypted, password protected PEM file.
From PKCS#12 to PEM
The PKCS#12 format is a container format containing one or more certificates and/or encrypted keys. Such files typically have a .p12 extension.
To extract all certificates from a PKCS#12 file to a PEM file: openssl pkcs12 -in server.p12 -nokeys -out fullchain.pem. The resulting file contains all certificates from the input file, typically the server certificate and any CA certificates that make up the CA chain. You can split the file into separate cert.pem and chain.pem files using a text editor, or you can just pass certfile: fullchain.pem to the HTTPS adapter.
To extract a private key from a PKCS#12 file to a PEM file: openssl pkcs12 -in server.p12 -nocerts -nodes -out privkey.pem. You may want to replace the -nodes argument with -aes128 to produce an encrypted, password protected PEM file.

Plug behaviour

The plug specification.
There are two kind of plugs: function plugs and module plugs.
Function plugs
A function plug is any function that receives a connection and a set of
options and returns a connection. Its type signature must be:
(Plug.Conn.t, Plug.opts) :: Plug.Conn.t
Module plugs
A module plug is an extension of the function plug. It is a module that must
export:
	a call/2 function with the signature defined above
	an init/1 function which takes a set of options and initializes it.

The result returned by init/1 is passed as second argument to call/2. Note
that init/1 may be called during compilation and as such it must not return
pids, ports or values that are specific to the runtime.
The API expected by a module plug is defined as a behaviour by the
Plug module (this module).
Examples
Here's an example of a function plug:
def json_header_plug(conn, _opts) do
 Plug.Conn.put_resp_content_type(conn, "application/json")
end
Here's an example of a module plug:
defmodule JSONHeaderPlug do
 import Plug.Conn

 def init(opts) do
 opts
 end

 def call(conn, _opts) do
 put_resp_content_type(conn, "application/json")
 end
end
The Plug pipeline
The Plug.Builder module provides conveniences for building plug
pipelines.

 Anchor for this section

 Summary

 Types

 opts()

 Callbacks

 call(conn, opts)

 init(opts)

 Functions

 forward(conn, new_path, target, opts)

 Forwards requests to another Plug setting the connection to a trailing subpath of the request.

 run(conn, plugs, opts \\ [])

 Run a series of Plugs at runtime.

 Anchor for this section

Types

 Link to this type

 opts()

 View Source

 @type opts() ::
 binary()
 | tuple()
 | atom()
 | integer()
 | float()
 | [opts()]
 | %{optional(opts()) => opts()}
 | MapSet.t()

 Anchor for this section

Callbacks

 Link to this callback

 call(conn, opts)

 View Source

 @callback call(conn :: Plug.Conn.t(), opts()) :: Plug.Conn.t()

 Link to this callback

 init(opts)

 View Source

 @callback init(opts()) :: opts()

 Anchor for this section

Functions

 Link to this function

 forward(conn, new_path, target, opts)

 View Source

 @spec forward(Plug.Conn.t(), [String.t()], atom(), opts()) :: Plug.Conn.t()

Forwards requests to another Plug setting the connection to a trailing subpath of the request.
The path_info on the forwarded connection will only include the trailing segments
of the request path supplied to forward, while conn.script_name will
retain the correct base path for e.g. url generation.

 example

 Example

defmodule Router do
 def init(opts), do: opts

 def call(conn, opts) do
 case conn do
 # Match subdomain
 %{host: "admin." <> _} ->
 AdminRouter.call(conn, opts)

 # Match path on localhost
 %{host: "localhost", path_info: ["admin" | rest]} ->
 Plug.forward(conn, rest, AdminRouter, opts)

 _ ->
 MainRouter.call(conn, opts)
 end
 end
end

 Link to this function

 run(conn, plugs, opts \\ [])

 View Source

 @spec run(
 Plug.Conn.t(),
 [{module(), opts()} | (Plug.Conn.t() -> Plug.Conn.t())],
 Keyword.t()
) ::
 Plug.Conn.t()

Run a series of Plugs at runtime.
The plugs given here can be either a tuple, representing a module plug
and their options, or a simple function that receives a connection and
returns a connection.
If any of the plugs halt, the remaining plugs are not invoked. If the
given connection was already halted, none of the plugs are invoked
either.
While Plug.Builder works at compile-time, this is a straight-forward
alternative that works at runtime.

 examples

 Examples

Plug.run(conn, [{Plug.Head, []}, &IO.inspect/1])

 options

 Options

	:log_on_halt - a log level to be used if a Plug halts

Plug.Builder

Conveniences for building plugs.
You can use this module to build a plug pipeline:
defmodule MyApp do
 use Plug.Builder

 plug Plug.Logger
 plug :hello, upper: true

 # A function from another module can be plugged too, provided it's
 # imported into the current module first.
 import AnotherModule, only: [interesting_plug: 2]
 plug :interesting_plug

 def hello(conn, opts) do
 body = if opts[:upper], do: "WORLD", else: "world"
 send_resp(conn, 200, body)
 end
end
Multiple plugs can be defined with the plug/2 macro, forming a pipeline.
The plugs in the pipeline will be executed in the order they've been added
through the plug/2 macro. In the example above, Plug.Logger will be
called first and then the :hello function plug will be called on the
resulting connection.
Plug.Builder also imports the Plug.Conn module, making functions like
send_resp/3 available.
Options
When used, the following options are accepted by Plug.Builder:
	:init_mode - the environment to initialize the plug's options, one of
:compile or :runtime. Defaults :compile.

	:log_on_halt - accepts the level to log whenever the request is halted

	:copy_opts_to_assign - an atom representing an assign. When supplied,
it will copy the options given to the Plug initialization to the given
connection assign

Plug behaviour
Internally, Plug.Builder implements the Plug behaviour, which means both
the init/1 and call/2 functions are defined.
By implementing the Plug API, Plug.Builder guarantees this module is a plug
and can be handed to a web server or used as part of another pipeline.
Overriding the default Plug API functions
Both the init/1 and call/2 functions defined by Plug.Builder can be
manually overridden. For example, the init/1 function provided by
Plug.Builder returns the options that it receives as an argument, but its
behaviour can be customized:
defmodule PlugWithCustomOptions do
 use Plug.Builder
 plug Plug.Logger

 def init(opts) do
 opts
 end
end
The call/2 function that Plug.Builder provides is used internally to
execute all the plugs listed using the plug macro, so overriding the
call/2 function generally implies using super in order to still call the
plug chain:
defmodule PlugWithCustomCall do
 use Plug.Builder
 plug Plug.Logger
 plug Plug.Head

 def call(conn, opts) do
 conn
 |> super(opts) # calls Plug.Logger and Plug.Head
 |> assign(:called_all_plugs, true)
 end
end
Halting a plug pipeline
A plug pipeline can be halted with Plug.Conn.halt/1. The builder will
prevent further plugs downstream from being invoked and return the current
connection. In the following example, the Plug.Logger plug never gets
called:
defmodule PlugUsingHalt do
 use Plug.Builder

 plug :stopper
 plug Plug.Logger

 def stopper(conn, _opts) do
 halt(conn)
 end
end

 Anchor for this section

 Summary

 Types

 plug()

 Functions

 builder_opts()

 deprecated

 Using builder_opts/0 is deprecated.

 compile(env, pipeline, builder_opts)

 Compiles a plug pipeline.

 plug(plug, opts \\ [])

 A macro that stores a new plug. opts will be passed unchanged to the new
plug.

 Anchor for this section

Types

 Link to this type

 plug()

 View Source

 @type plug() :: module() | atom()

 Anchor for this section

Functions

 Link to this macro

 builder_opts()

 View Source

 (macro)

 This macro is deprecated. Pass :copy_opts_to_assign on "use Plug.Builder".

Using builder_opts/0 is deprecated.
Instead use :copy_opts_to_assign on use Plug.Builder.

 Link to this function

 compile(env, pipeline, builder_opts)

 View Source

 @spec compile(Macro.Env.t(), [{plug(), Plug.opts(), Macro.t()}], Keyword.t()) ::
 {Macro.t(), Macro.t()}

Compiles a plug pipeline.
Each element of the plug pipeline (according to the type signature of this
function) has the form:
{plug_name, options, guards}
Note that this function expects a reversed pipeline (with the last plug that
has to be called coming first in the pipeline).
The function returns a tuple with the first element being a quoted reference
to the connection and the second element being the compiled quoted pipeline.

 examples

 Examples

Plug.Builder.compile(env, [
 {Plug.Logger, [], true}, # no guards, as added by the Plug.Builder.plug/2 macro
 {Plug.Head, [], quote(do: a when is_binary(a))}
], [])

 options

 Options

	:init_mode - the environment to initialize the plug's options, one of
:compile or :runtime. Defaults :compile. It is responsibility of the
caller of this function to mark :compile plugs as compile time dependencies

	:log_on_halt - accepts the level to log whenever the request is halted

 Link to this macro

 plug(plug, opts \\ [])

 View Source

 (macro)

A macro that stores a new plug. opts will be passed unchanged to the new
plug.
This macro doesn't add any guards when adding the new plug to the pipeline;
for more information about adding plugs with guards see compile/3.

 examples

 Examples

plug Plug.Logger # plug module
plug :foo, some_options: true # plug function

Plug.Conn

The Plug connection.
This module defines a struct and the main functions for working with
requests and responses in an HTTP connection.
Note request headers are normalized to lowercase and response
headers are expected to have lowercase keys.
Request fields
These fields contain request information:
	host - the requested host as a binary, example: "www.example.com"
	method - the request method as a binary, example: "GET"
	path_info - the path split into segments, example: ["hello", "world"]
	script_name - the initial portion of the URL's path that corresponds to
the application routing, as segments, example: ["sub","app"]
	request_path - the requested path, example: /trailing/and//double//slashes/
	port - the requested port as an integer, example: 80
	remote_ip - the IP of the client, example: {151, 236, 219, 228}. This field
is meant to be overwritten by plugs that understand e.g. the X-Forwarded-For
header or HAProxy's PROXY protocol. It defaults to peer's IP
	req_headers - the request headers as a list, example: [{"content-type", "text/plain"}].
Note all headers will be downcased
	scheme - the request scheme as an atom, example: :http
	query_string - the request query string as a binary, example: "foo=bar"

Fetchable fields
The request information in these fields is not populated until it is fetched
using the associated fetch_ function. For example, the cookies field uses
fetch_cookies/2.
If you access these fields before fetching them, they will be returned as
Plug.Conn.Unfetched structs.
	cookies- the request cookies with the response cookies
	body_params - the request body params, populated through a Plug.Parsers parser.
	query_params - the request query params, populated through fetch_query_params/2
	path_params - the request path params, populated by routers such as Plug.Router
	params - the request params, the result of merging the :path_params on top of
 :body_params on top of :query_params
	req_cookies - the request cookies (without the response ones)

Response fields
These fields contain response information:
	resp_body - the response body, by default is an empty string. It is set
to nil after the response is sent, except for test connections. The response
charset used defaults to "utf-8".
	resp_cookies - the response cookies with their name and options
	resp_headers - the response headers as a list of tuples, by default cache-control
is set to "max-age=0, private, must-revalidate". Note, response headers
are expected to have lowercase keys.
	status - the response status

Connection fields
	assigns - shared user data as a map
	owner - the Elixir process that owns the connection
	halted - the boolean status on whether the pipeline was halted
	secret_key_base - a secret key used to verify and encrypt cookies.
the field must be set manually whenever one of those features are used.
This data must be kept in the connection and never used directly, always
use Plug.Crypto.KeyGenerator.generate/3 to derive keys from it
	state - the connection state

The connection state is used to track the connection lifecycle. It starts as
:unset but is changed to :set (via resp/3) or :set_chunked
(used only for before_send callbacks by send_chunked/2) or :file
(when invoked via send_file/3). Its final result is :sent, :file or
:chunked depending on the response model.
Private fields
These fields are reserved for libraries/framework usage.
	adapter - holds the adapter information in a tuple
	private - shared library data as a map

Custom status codes
Plug allows status codes to be overridden or added in order to allow new codes
not directly specified by Plug or its adapters. Adding or overriding a status
code is done through the Mix configuration of the :plug application. For
example, to override the existing 404 reason phrase for the 404 status code
("Not Found" by default) and add a new 998 status code, the following config
can be specified:
config :plug, :statuses, %{
 404 => "Actually This Was Found",
 998 => "Not An RFC Status Code"
}
As this configuration is Plug specific, Plug will need to be recompiled for
the changes to take place: this will not happen automatically as dependencies
are not automatically recompiled when their configuration changes. To recompile
Plug:
mix deps.clean --build plug
The atoms that can be used in place of the status code in many functions are
inflected from the reason phrase of the status code. With the above
configuration, the following will all work:
put_status(conn, :not_found) # 404
put_status(conn, :actually_this_was_found) # 404
put_status(conn, :not_an_rfc_status_code) # 998
Even though 404 has been overridden, the :not_found atom can still be used
to set the status to 404 as well as the new atom :actually_this_was_found
inflected from the reason phrase "Actually This Was Found".

 Anchor for this section

 Summary

 Types

 adapter()

 assigns()

 body()

 cookies()

 halted()

 headers()

 host()

 int_status()

 method()

 owner()

 params()

 port_number()

 query_param()

 query_params()

 query_string()

 req_cookies()

 resp_cookies()

 scheme()

 secret_key_base()

 segments()

 state()

 status()

 t()

 Functions

 assign(conn, key, value)

 Assigns a value to a key in the connection.

 chunk(conn, chunk)

 Sends a chunk as part of a chunked response.

 clear_session(conn)

 Clears the entire session.

 configure_session(conn, opts)

 Configures the session.

 delete_req_header(conn, key)

 Deletes a request header if present.

 delete_resp_cookie(conn, key, opts \\ [])

 Deletes a response cookie.

 delete_resp_header(conn, key)

 Deletes a response header if present.

 delete_session(conn, key)

 Deletes key from session.

 fetch_cookies(conn, opts \\ [])

 Fetches cookies from the request headers.

 fetch_query_params(conn, opts \\ [])

 Fetches query parameters from the query string.

 fetch_session(conn, opts \\ [])

 Fetches the session from the session store. Will also fetch cookies.

 get_http_protocol(conn)

 Returns the HTTP protocol and version.

 get_peer_data(conn)

 Returns the request peer data if one is present.

 get_req_header(conn, key)

 Returns the values of the request header specified by key.

 get_resp_header(conn, key)

 Returns the values of the response header specified by key.

 get_session(conn)

 Returns the whole session.

 get_session(conn, key)

 Returns session value for the given key. If key
is not set, nil is returned.

 halt(conn)

 Halts the Plug pipeline by preventing further plugs downstream from being
invoked. See the docs for Plug.Builder for more information on halting a
Plug pipeline.

 inform!(conn, status, headers \\ [])

 Sends an information response to a client but raises if the adapter does not support inform.

 inform(conn, status, headers \\ [])

 Sends an informational response to the client.

 merge_assigns(conn, keyword)

 Assigns multiple values to keys in the connection.

 merge_private(conn, keyword)

 Assigns multiple private keys and values in the connection.

 merge_resp_headers(conn, headers)

 Merges a series of response headers into the connection.

 prepend_resp_headers(conn, headers)

 Prepends the list of headers to the connection response headers.

 push!(conn, path, headers \\ [])

 Pushes a resource to the client but raises if the adapter
does not support server push.

 push(conn, path, headers \\ [])

 Pushes a resource to the client.

 put_private(conn, key, value)

 Assigns a new private key and value in the connection.

 put_req_header(conn, key, value)

 Adds a new request header (key) if not present, otherwise replaces the
previous value of that header with value.

 put_resp_content_type(conn, content_type, charset \\ "utf-8")

 Sets the value of the "content-type" response header taking into account the
charset.

 put_resp_cookie(conn, key, value, opts \\ [])

 Puts a response cookie in the connection.

 put_resp_header(conn, key, value)

 Adds a new response header (key) if not present, otherwise replaces the
previous value of that header with value.

 put_session(conn, key, value)

 Puts the specified value in the session for the given key.

 put_status(conn, status)

 Stores the given status code in the connection.

 read_body(conn, opts \\ [])

 Reads the request body.

 read_part_body(conn, opts)

 Reads the body of a multipart request.

 read_part_headers(conn, opts \\ [])

 Reads the headers of a multipart request.

 register_before_send(conn, callback)

 Registers a callback to be invoked before the response is sent.

 request_url(conn)

 Returns the full request URL.

 resp(conn, status, body)

 Sets the response to the given status and body.

 send_chunked(conn, status)

 Sends the response headers as a chunked response.

 send_file(conn, status, file, offset \\ 0, length \\ :all)

 Sends a file as the response body with the given status
and optionally starting at the given offset until the given length.

 send_resp(conn)

 Sends a response to the client.

 send_resp(conn, status, body)

 Sends a response with the given status and body.

 update_req_header(conn, key, initial, fun)

 Updates a request header if present, otherwise it sets it to an initial
value.

 update_resp_header(conn, key, initial, fun)

 Updates a response header if present, otherwise it sets it to an initial
value.

 Anchor for this section

Types

 Link to this type

 adapter()

 View Source

 @type adapter() :: {module(), term()}

 Link to this type

 assigns()

 View Source

 @type assigns() :: %{optional(atom()) => any()}

 Link to this type

 body()

 View Source

 @type body() :: iodata()

 Link to this type

 cookies()

 View Source

 @type cookies() :: %{optional(binary()) => term()}

 Link to this type

 halted()

 View Source

 @type halted() :: boolean()

 Link to this type

 headers()

 View Source

 @type headers() :: [{binary(), binary()}]

 Link to this type

 host()

 View Source

 @type host() :: binary()

 Link to this type

 int_status()

 View Source

 @type int_status() :: non_neg_integer() | nil

 Link to this type

 method()

 View Source

 @type method() :: binary()

 Link to this type

 owner()

 View Source

 @type owner() :: pid()

 Link to this type

 params()

 View Source

 @type params() :: %{optional(binary()) => term()}

 Link to this type

 port_number()

 View Source

 @type port_number() :: :inet.port_number()

 Link to this type

 query_param()

 View Source

 @type query_param() ::
 binary() | %{optional(binary()) => query_param()} | [query_param()]

 Link to this type

 query_params()

 View Source

 @type query_params() :: %{optional(binary()) => query_param()}

 Link to this type

 query_string()

 View Source

 @type query_string() :: String.t()

 Link to this type

 req_cookies()

 View Source

 @type req_cookies() :: %{optional(binary()) => binary()}

 Link to this type

 resp_cookies()

 View Source

 @type resp_cookies() :: %{optional(binary()) => map()}

 Link to this type

 scheme()

 View Source

 @type scheme() :: :http | :https

 Link to this type

 secret_key_base()

 View Source

 @type secret_key_base() :: binary() | nil

 Link to this type

 segments()

 View Source

 @type segments() :: [binary()]

 Link to this type

 state()

 View Source

 @type state() :: :unset | :set | :set_chunked | :set_file | :file | :chunked | :sent

 Link to this type

 status()

 View Source

 @type status() :: atom() | int_status()

 Link to this type

 t()

 View Source

 @type t() :: %Plug.Conn{
 adapter: adapter(),
 assigns: assigns(),
 body_params: params() | Plug.Conn.Unfetched.t(),
 cookies: cookies() | Plug.Conn.Unfetched.t(),
 halted: halted(),
 host: host(),
 method: method(),
 owner: owner(),
 params: params() | Plug.Conn.Unfetched.t(),
 path_info: segments(),
 path_params: query_params(),
 port: :inet.port_number(),
 private: assigns(),
 query_params: query_params() | Plug.Conn.Unfetched.t(),
 query_string: query_string(),
 remote_ip: :inet.ip_address(),
 req_cookies: req_cookies() | Plug.Conn.Unfetched.t(),
 req_headers: headers(),
 request_path: binary(),
 resp_body: body() | nil,
 resp_cookies: resp_cookies(),
 resp_headers: headers(),
 scheme: scheme(),
 script_name: segments(),
 secret_key_base: secret_key_base(),
 state: state(),
 status: int_status()
}

 Anchor for this section

Functions

 Link to this function

 assign(conn, key, value)

 View Source

 @spec assign(t(), atom(), term()) :: t()

Assigns a value to a key in the connection.
The "assigns" storage is meant to be used to store values in the connection
so that other plugs in your plug pipeline can access them. The assigns storage
is a map.

 examples

 Examples

iex> conn.assigns[:hello]
nil
iex> conn = assign(conn, :hello, :world)
iex> conn.assigns[:hello]
:world

 Link to this function

 chunk(conn, chunk)

 View Source

 @spec chunk(t(), body()) :: {:ok, t()} | {:error, term()} | no_return()

Sends a chunk as part of a chunked response.
It expects a connection with state :chunked as set by
send_chunked/2. It returns {:ok, conn} in case of success,
otherwise {:error, reason}.
To stream data use Enum.reduce_while/3 instead of Enum.into/2.
Enum.reduce_while/3 allows aborting the execution if chunk/2 fails to
deliver the chunk of data.

 example

 Example

Enum.reduce_while(~w(each chunk as a word), conn, fn (chunk, conn) ->
 case Plug.Conn.chunk(conn, chunk) do
 {:ok, conn} ->
 {:cont, conn}
 {:error, :closed} ->
 {:halt, conn}
 end
end)

 Link to this function

 clear_session(conn)

 View Source

 @spec clear_session(t()) :: t()

Clears the entire session.
This function removes every key from the session, clearing the session.
Note that, even if clear_session/1 is used, the session is still sent to the
client. If the session should be effectively dropped, configure_session/2
should be used with the :drop option set to true.

 Link to this function

 configure_session(conn, opts)

 View Source

 @spec configure_session(t(), Keyword.t()) :: t()

Configures the session.

 options

 Options

	:renew - When true, generates a new session id for the cookie
	:drop - When true, drops the session, a session cookie will not be included in the
response
	:ignore - When true, ignores all changes made to the session in this request cycle

 examples

 Examples

configure_session(conn, renew: true)

 Link to this function

 delete_req_header(conn, key)

 View Source

 @spec delete_req_header(t(), binary()) :: t()

Deletes a request header if present.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.

 examples

 Examples

Plug.Conn.delete_req_header(conn, "content-type")

 Link to this function

 delete_resp_cookie(conn, key, opts \\ [])

 View Source

 @spec delete_resp_cookie(t(), binary(), Keyword.t()) :: t()

Deletes a response cookie.
Deleting a cookie requires the same options as to when the cookie was put.
Check put_resp_cookie/4 for more information.

 Link to this function

 delete_resp_header(conn, key)

 View Source

 @spec delete_resp_header(t(), binary()) :: t()

Deletes a response header if present.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.

 examples

 Examples

Plug.Conn.delete_resp_header(conn, "content-type")

 Link to this function

 delete_session(conn, key)

 View Source

 @spec delete_session(t(), String.t() | atom()) :: t()

Deletes key from session.
The key can be a string or an atom, where atoms are
automatically converted to strings.

 Link to this function

 fetch_cookies(conn, opts \\ [])

 View Source

 @spec fetch_cookies(t(), Keyword.t()) :: t()

Fetches cookies from the request headers.

 options

 Options

	:signed - a list of one or more cookies that are signed and must
be verified accordingly

	:encrypted - a list of one or more cookies that are encrypted and
must be decrypted accordingly

See put_resp_cookie/4 for more information.

 Link to this function

 fetch_query_params(conn, opts \\ [])

 View Source

 @spec fetch_query_params(t(), Keyword.t()) :: t()

Fetches query parameters from the query string.
Params are decoded as "x-www-form-urlencoded" in which key/value pairs
are separated by & and keys are separated from values by =.
This function does not fetch parameters from the body. To fetch
parameters from the body, use the Plug.Parsers plug.

 options

 Options

	:length - the maximum query string length. Defaults to 1_000_000 bytes.
Keep in mind the webserver you are using may have a more strict limit. For
example, for the Cowboy webserver, please read.

	:validate_utf8 - boolean that tells whether or not to validate the keys and
values of the decoded query string are UTF-8 encoded. Defaults to true.

 Link to this function

 fetch_session(conn, opts \\ [])

 View Source

 @spec fetch_session(t(), Keyword.t()) :: t()

Fetches the session from the session store. Will also fetch cookies.

 Link to this function

 get_http_protocol(conn)

 View Source

 @spec get_http_protocol(t()) :: Plug.Conn.Adapter.http_protocol()

Returns the HTTP protocol and version.

 examples

 Examples

iex> get_http_protocol(conn)
:"HTTP/1.1"

 Link to this function

 get_peer_data(conn)

 View Source

 @spec get_peer_data(t()) :: Plug.Conn.Adapter.peer_data()

Returns the request peer data if one is present.

 Link to this function

 get_req_header(conn, key)

 View Source

 @spec get_req_header(t(), binary()) :: [binary()]

Returns the values of the request header specified by key.

 examples

 Examples

iex> get_req_header(conn, "accept")
["application/json"]

 Link to this function

 get_resp_header(conn, key)

 View Source

 @spec get_resp_header(t(), binary()) :: [binary()]

Returns the values of the response header specified by key.

 examples

 Examples

iex> conn = %{conn | resp_headers: [{"content-type", "text/plain"}]}
iex> get_resp_header(conn, "content-type")
["text/plain"]

 Link to this function

 get_session(conn)

 View Source

 @spec get_session(t()) :: %{optional(String.t()) => any()}

Returns the whole session.
Although get_session/2 and put_session/3 allow atom keys,
they are always normalized to strings. So this function always
returns a map with string keys.
Raises if the session was not yet fetched.

 Link to this function

 get_session(conn, key)

 View Source

 @spec get_session(t(), String.t() | atom()) :: any()

Returns session value for the given key. If key
is not set, nil is returned.
The key can be a string or an atom, where atoms are
automatically converted to strings.

 Link to this function

 halt(conn)

 View Source

 @spec halt(t()) :: t()

Halts the Plug pipeline by preventing further plugs downstream from being
invoked. See the docs for Plug.Builder for more information on halting a
Plug pipeline.

 Link to this function

 inform!(conn, status, headers \\ [])

 View Source

 @spec inform!(t(), status(), Keyword.t()) :: t()

Sends an information response to a client but raises if the adapter does not support inform.
See inform/1 for more information.

 Link to this function

 inform(conn, status, headers \\ [])

 View Source

 @spec inform(t(), status(), Keyword.t()) :: t()

Sends an informational response to the client.
An informational response, such as an early hint, must happen prior to a response
being sent. If an informational request is attempted after a response is sent then
a Plug.Conn.AlreadySentError will be raised. Only status codes from 100-199 are valid.
To use inform for early hints send one or more informs with a status of 103.
If the adapter does not support informational responses then this is a noop.
Most HTTP/1.1 clients do not properly support informational responses but some
proxies require it to support server push for HTTP/2. You can call
get_http_protocol/1 to retrieve the protocol and version.

 Link to this function

 merge_assigns(conn, keyword)

 View Source

 @spec merge_assigns(t(), Keyword.t()) :: t()

Assigns multiple values to keys in the connection.
Equivalent to multiple calls to assign/3.

 examples

 Examples

iex> conn.assigns[:hello]
nil
iex> conn = merge_assigns(conn, hello: :world)
iex> conn.assigns[:hello]
:world

 Link to this function

 merge_private(conn, keyword)

 View Source

 @spec merge_private(t(), Keyword.t()) :: t()

Assigns multiple private keys and values in the connection.
Equivalent to multiple put_private/3 calls.

 examples

 Examples

iex> conn.private[:my_plug_hello]
nil
iex> conn = merge_private(conn, my_plug_hello: :world)
iex> conn.private[:my_plug_hello]
:world

 Link to this function

 merge_resp_headers(conn, headers)

 View Source

 @spec merge_resp_headers(t(), Enum.t()) :: t()

Merges a series of response headers into the connection.
It is recommended for header keys to be in lowercase, to avoid sending
duplicate keys in a request.
Additionally, responses with mixed-case headers served over HTTP/2 are not
considered valid by common clients, resulting in dropped responses.
As a convenience, when using the Plug.Adapters.Conn.Test adapter, any
headers that aren't lowercase will raise a Plug.Conn.InvalidHeaderError.

 example

 Example

Plug.Conn.merge_resp_headers(conn, [{"content-type", "text/plain"}, {"X-1337", "5P34K"}])

 Link to this function

 prepend_resp_headers(conn, headers)

 View Source

 @spec prepend_resp_headers(t(), headers()) :: t()

Prepends the list of headers to the connection response headers.
Similar to put_resp_header this functions adds a new response header
(key) but rather then replacing the existing one it prepends another header
with the same key.
It is recommended for header keys to be in lowercase, to avoid sending
duplicate keys in a request.
Additionally, responses with mixed-case headers served over HTTP/2 are not
considered valid by common clients, resulting in dropped responses.
As a convenience, when using the Plug.Adapters.Conn.Test adapter, any
headers that aren't lowercase will raise a Plug.Conn.InvalidHeaderError.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.
Raises a Plug.Conn.InvalidHeaderError if the header value contains control
feed (\r) or newline (\n) characters.

 examples

 Examples

Plug.Conn.prepend_resp_headers(conn, [{"content-type", "application/json"}])

 Link to this function

 push!(conn, path, headers \\ [])

 View Source

 @spec push!(t(), String.t(), Keyword.t()) :: t()

Pushes a resource to the client but raises if the adapter
does not support server push.

 Link to this function

 push(conn, path, headers \\ [])

 View Source

 @spec push(t(), String.t(), Keyword.t()) :: t()

Pushes a resource to the client.
Server pushes must happen prior to a response being sent. If a server
push is attempted after a response is sent then a Plug.Conn.AlreadySentError
will be raised.
If the adapter does not support server push then this is a noop.
Note that certain browsers (such as Google Chrome) will not accept a pushed
resource if your certificate is not trusted. In the case of Chrome this means
a valid cert with a SAN. See https://www.chromestatus.com/feature/4981025180483584

 Link to this function

 put_private(conn, key, value)

 View Source

 @spec put_private(t(), atom(), term()) :: t()

Assigns a new private key and value in the connection.
This storage is meant to be used by libraries and frameworks to avoid writing
to the user storage (the :assigns field). It is recommended for
libraries/frameworks to prefix the keys with the library name.
For example, if a plug called my_plug needs to store a :hello
key, it would store it as :my_plug_hello:
iex> conn.private[:my_plug_hello]
nil
iex> conn = put_private(conn, :my_plug_hello, :world)
iex> conn.private[:my_plug_hello]
:world

 Link to this function

 put_req_header(conn, key, value)

 View Source

 @spec put_req_header(t(), binary(), binary()) :: t()

Adds a new request header (key) if not present, otherwise replaces the
previous value of that header with value.
Because header keys are case-insensitive in both HTTP/1.1 and HTTP/2,
it is recommended for header keys to be in lowercase, to avoid sending
duplicate keys in a request.
Additionally, requests with mixed-case headers served over HTTP/2 are not
considered valid by common clients, resulting in dropped requests.
As a convenience, when using the Plug.Adapters.Conn.Test adapter, any
headers that aren't lowercase will raise a Plug.Conn.InvalidHeaderError.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.

 examples

 Examples

Plug.Conn.put_req_header(conn, "accept", "application/json")

 Link to this function

 put_resp_content_type(conn, content_type, charset \\ "utf-8")

 View Source

 @spec put_resp_content_type(t(), binary(), binary() | nil) :: t()

Sets the value of the "content-type" response header taking into account the
charset.
If charset is nil, the value of the "content-type" response header won't
specify a charset.

 examples

 Examples

iex> conn = put_resp_content_type(conn, "application/json")
iex> get_resp_header(conn, "content-type")
["application/json; charset=utf-8"]

 Link to this function

 put_resp_cookie(conn, key, value, opts \\ [])

 View Source

 @spec put_resp_cookie(t(), binary(), any(), Keyword.t()) :: t()

Puts a response cookie in the connection.
If the :sign or :encrypt flag are given, then the cookie
value can be any term.
If the cookie is not signed nor encrypted, then the value must be a binary.
Note the value is not automatically escaped. Therefore if you want to store
values with non-alphanumeric characters, you must either sign or encrypt
the cookie or consider explicitly escaping the cookie value by using a
function such as Base.encode64(value, padding: false) when writing and
Base.decode64(encoded, padding: false) when reading the cookie.
It is important for padding to be disabled since = is not a valid
character in cookie values.

 signing-and-encrypting-cookies

 Signing and encrypting cookies

This function allows you to automatically sign and encrypt cookies.
When signing or encryption is enabled, then any Elixir value can be
stored in the cookie (except anonymous functions for security reasons).
Once a value is signed or encrypted, you must also call fetch_cookies/2
with the name of the cookies that are either signed or encrypted.
To sign, you would do:
put_resp_cookie(conn, "my-cookie", %{user_id: user.id}, sign: true)
and then:
fetch_cookies(conn, signed: ~w(my-cookie))
To encrypt, you would do:
put_resp_cookie(conn, "my-cookie", %{user_id: user.id}, encrypt: true)
and then:
fetch_cookies(conn, encrypted: ~w(my-cookie))
By default a signed or encrypted cookie is only valid for a day, unless
a :max_age is specified.
The signing and encryption keys are derived from the connection's
secret_key_base using a salt that is built by appending "_cookie" to
the cookie name. Care should be taken not to derive other keys using
this value as the salt. Similarly do not use the same cookie name to
store different values with distinct purposes.

 options

 Options

	:domain - the domain the cookie applies to
	:max_age - the cookie max-age, in seconds. Providing a value for this
option will set both the max-age and expires cookie attributes.
	:path - the path the cookie applies to
	:http_only - when false, the cookie is accessible beyond HTTP
	:secure - if the cookie must be sent only over https. Defaults
to true when the connection is HTTPS
	:extra - string to append to cookie. Use this to take advantage of
non-standard cookie attributes.
	:sign - when true, signs the cookie
	:encrypt - when true, encrypts the cookie
	:same_site - set the cookie SameSite attribute to a string value.
If no string value is set, the attribute is omitted.

 Link to this function

 put_resp_header(conn, key, value)

 View Source

 @spec put_resp_header(t(), binary(), binary()) :: t()

Adds a new response header (key) if not present, otherwise replaces the
previous value of that header with value.
Because header keys are case-insensitive in both HTTP/1.1 and HTTP/2,
it is recommended for header keys to be in lowercase, to avoid sending
duplicate keys in a request.
Additionally, responses with mixed-case headers served over HTTP/2 are not
considered valid by common clients, resulting in dropped responses.
As a convenience, when using the Plug.Adapters.Conn.Test adapter, any
headers that aren't lowercase will raise a Plug.Conn.InvalidHeaderError.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.
Raises a Plug.Conn.InvalidHeaderError if the header value contains control
feed (\r) or newline (\n) characters.

 examples

 Examples

Plug.Conn.put_resp_header(conn, "content-type", "application/json")

 Link to this function

 put_session(conn, key, value)

 View Source

 @spec put_session(t(), String.t() | atom(), any()) :: t()

Puts the specified value in the session for the given key.
The key can be a string or an atom, where atoms are
automatically converted to strings. Can only be invoked
on unsent conns. Will raise otherwise.

 Link to this function

 put_status(conn, status)

 View Source

 @spec put_status(t(), status()) :: t()

Stores the given status code in the connection.
The status code can be nil, an integer, or an atom. The list of allowed
atoms is available in Plug.Conn.Status.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.

 examples

 Examples

Plug.Conn.put_status(conn, :not_found)
Plug.Conn.put_status(conn, 200)

 Link to this function

 read_body(conn, opts \\ [])

 View Source

 @spec read_body(t(), Keyword.t()) ::
 {:ok, binary(), t()} | {:more, binary(), t()} | {:error, term()}

Reads the request body.
This function reads a chunk of the request body up to a given length (specified
by the :length option). If there is more data to be read, then
{:more, partial_body, conn} is returned. Otherwise {:ok, body, conn} is
returned. In case of an error reading the socket, {:error, reason} is
returned as per :gen_tcp.recv/2.
Like all functions in this module, the conn returned by read_body must
be passed to the next stage of your pipeline and should not be ignored.
In order to, for instance, support slower clients you can tune the
:read_length and :read_timeout options. These specify how much time should
be allowed to pass for each read from the underlying socket.
Because the request body can be of any size, reading the body will only
work once, as Plug will not cache the result of these operations. If you
need to access the body multiple times, it is your responsibility to store
it. Finally keep in mind some plugs like Plug.Parsers may read the body,
so the body may be unavailable after being accessed by such plugs.
This function is able to handle both chunked and identity transfer-encoding
by default.

 options

 Options

	:length - sets the maximum number of bytes to read from the body on
every call, defaults to 8_000_000 bytes
	:read_length - sets the amount of bytes to read at one time from the
underlying socket to fill the chunk, defaults to 1_000_000 bytes
	:read_timeout - sets the timeout for each socket read, defaults to
15_000 milliseconds

The values above are not meant to be exact. For example, setting the
length to 8_000_000 may end up reading some hundred bytes more from
the socket until we halt.

 examples

 Examples

{:ok, body, conn} = Plug.Conn.read_body(conn, length: 1_000_000)

 Link to this function

 read_part_body(conn, opts)

 View Source

 @spec read_part_body(t(), Keyword.t()) ::
 {:ok, binary(), t()} | {:more, binary(), t()} | {:done, t()}

Reads the body of a multipart request.
Returns {:ok, body, conn} if all body has been read,
{:more, binary, conn} otherwise, and {:done, conn}
if there is no more body.
It accepts the same options as read_body/2.

 Link to this function

 read_part_headers(conn, opts \\ [])

 View Source

 @spec read_part_headers(t(), Keyword.t()) :: {:ok, headers(), t()} | {:done, t()}

Reads the headers of a multipart request.
It returns {:ok, headers, conn} with the headers or
{:done, conn} if there are no more parts.
Once read_part_headers/2 is invoked, you may call
read_part_body/2 to read the body associated to the headers.
If read_part_headers/2 is called instead, the body is automatically
skipped until the next part headers.

 options

 Options

	:length - sets the maximum number of bytes to read from the body for
each chunk, defaults to 64_000 bytes
	:read_length - sets the amount of bytes to read at one time from the
underlying socket to fill the chunk, defaults to 64_000 bytes
	:read_timeout - sets the timeout for each socket read, defaults to
5_000 milliseconds

 Link to this function

 register_before_send(conn, callback)

 View Source

 @spec register_before_send(t(), (t() -> t())) :: t()

Registers a callback to be invoked before the response is sent.
Callbacks are invoked in the reverse order they are defined (callbacks
defined first are invoked last).

 examples

 Examples

To log the status of response being sent:
require Logger

Plug.Conn.register_before_send(conn, fn conn ->
 Logger.info("Sent a #{conn.status} response")
 conn
end)

 Link to this function

 request_url(conn)

 View Source

Returns the full request URL.

 Link to this function

 resp(conn, status, body)

 View Source

 @spec resp(t(), status(), body()) :: t()

Sets the response to the given status and body.
It sets the connection state to :set (if not already :set)
and raises Plug.Conn.AlreadySentError if it was already :sent.
If you also want to send the response, use send_resp/1 after this
or use send_resp/3.
The status can be an integer, an atom, or nil. See Plug.Conn.Status
for more information.

 examples

 Examples

Plug.Conn.resp(conn, 404, "Not found")

 Link to this function

 send_chunked(conn, status)

 View Source

 @spec send_chunked(t(), status()) :: t() | no_return()

Sends the response headers as a chunked response.
It expects a connection that has not been :sent yet and sets its
state to :chunked afterwards. Otherwise, raises Plug.Conn.AlreadySentError.
After send_chunked/2 is called, chunks can be sent to the client via
the chunk/2 function.
HTTP/2 does not support chunking and will instead stream the response without a
transfer encoding. When using HTTP/1.1, the Cowboy adapter will stream the response
instead of emitting chunks if the content-length header has been set before calling
send_chunked/2.

 Link to this function

 send_file(conn, status, file, offset \\ 0, length \\ :all)

 View Source

 @spec send_file(
 t(),
 status(),
 filename :: binary(),
 offset :: integer(),
 length :: integer() | :all
) ::
 t() | no_return()

Sends a file as the response body with the given status
and optionally starting at the given offset until the given length.
If available, the file is sent directly over the socket using
the operating system sendfile operation.
It expects a connection that has not been :sent yet and sets its
state to :file afterwards. Otherwise raises Plug.Conn.AlreadySentError.

 examples

 Examples

Plug.Conn.send_file(conn, 200, "README.md")

 Link to this function

 send_resp(conn)

 View Source

 @spec send_resp(t()) :: t() | no_return()

Sends a response to the client.
It expects the connection state to be :set, otherwise raises an
ArgumentError for :unset connections or a Plug.Conn.AlreadySentError for
already :sent connections.
At the end sets the connection state to :sent.
Note that this function does not halt the connection, so if
subsequent plugs try to send another response, it will error out.
Use halt/1 after this function if you want to halt the plug pipeline.

 examples

 Examples

conn
|> Plug.Conn.resp(404, "Not found")
|> Plug.Conn.send_resp()

 Link to this function

 send_resp(conn, status, body)

 View Source

 @spec send_resp(t(), status(), body()) :: t() | no_return()

Sends a response with the given status and body.
This is equivalent to setting the status and the body and then
calling send_resp/1.
Note that this function does not halt the connection, so if
subsequent plugs try to send another response, it will error out.
Use halt/1 after this function if you want to halt the plug pipeline.

 examples

 Examples

Plug.Conn.send_resp(conn, 404, "Not found")

 Link to this function

 update_req_header(conn, key, initial, fun)

 View Source

 @spec update_req_header(t(), binary(), binary(), (binary() -> binary())) :: t()

Updates a request header if present, otherwise it sets it to an initial
value.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.
Only the first value of the header key is updated if present.

 examples

 Examples

Plug.Conn.update_req_header(
 conn,
 "accept",
 "application/json; charset=utf-8",
 &(&1 <> "; charset=utf-8")
)

 Link to this function

 update_resp_header(conn, key, initial, fun)

 View Source

 @spec update_resp_header(t(), binary(), binary(), (binary() -> binary())) :: t()

Updates a response header if present, otherwise it sets it to an initial
value.
Raises a Plug.Conn.AlreadySentError if the connection has already been
:sent or :chunked.
Only the first value of the header key is updated if present.

 examples

 Examples

Plug.Conn.update_resp_header(
 conn,
 "content-type",
 "application/json; charset=utf-8",
 &(&1 <> "; charset=utf-8")
)

Plug.HTML

Conveniences for generating HTML.

 Anchor for this section

 Summary

 Functions

 html_escape(data)

 Escapes the given HTML to string.

 html_escape_to_iodata(data)

 Escapes the given HTML to iodata.

 Anchor for this section

Functions

 Link to this function

 html_escape(data)

 View Source

 @spec html_escape(String.t()) :: String.t()

Escapes the given HTML to string.
iex> Plug.HTML.html_escape("foo")
"foo"

iex> Plug.HTML.html_escape("<foo>")
"<foo>"

iex> Plug.HTML.html_escape("quotes: \" & \'")
"quotes: " & '"

 Link to this function

 html_escape_to_iodata(data)

 View Source

 @spec html_escape_to_iodata(String.t()) :: iodata()

Escapes the given HTML to iodata.
iex> Plug.HTML.html_escape_to_iodata("foo")
"foo"

iex> Plug.HTML.html_escape_to_iodata("<foo>")
[[[] | "<"], "foo" | ">"]

iex> Plug.HTML.html_escape_to_iodata("quotes: \" & \'")
[[[[], "quotes: " | """], " " | "&"], " " | "'"]

Plug.Router

A DSL to define a routing algorithm that works with Plug.
It provides a set of macros to generate routes. For example:
defmodule AppRouter do
 use Plug.Router

 plug :match
 plug :dispatch

 get "/hello" do
 send_resp(conn, 200, "world")
 end

 match _ do
 send_resp(conn, 404, "oops")
 end
end
Each route receives a conn variable containing a Plug.Conn
struct and it needs to return a connection, as per the Plug spec.
A catch-all match is recommended to be defined as in the example
above, otherwise routing fails with a function clause error.
The router is itself a plug, which means it can be invoked as:
AppRouter.call(conn, AppRouter.init([]))
Each Plug.Router has a plug pipeline, defined by Plug.Builder,
and by default it requires two plugs: :match and :dispatch.
:match is responsible for finding a matching route which is
then forwarded to :dispatch. This means users can easily hook
into the router mechanism and add behaviour before match, before
dispatch, or after both. See the Plug.Builder module for more
information.
Routes
get "/hello" do
 send_resp(conn, 200, "world")
end
In the example above, a request will only match if it is a GET
request and the route is "/hello". The supported HTTP methods are
get, post, put, patch, delete and options.
A route can also specify parameters which will then be available
in the function body:
get "/hello/:name" do
 send_resp(conn, 200, "hello #{name}")
end
This means the name can also be used in guards:
get "/hello/:name" when name in ~w(foo bar) do
 send_resp(conn, 200, "hello #{name}")
end
The :name parameter will also be available in the function body as
conn.params["name"] and conn.path_params["name"].
The identifier always starts with : and must be followed by letters,
numbers, and underscores, like any Elixir variable. It is possible for
identifiers to be either prefixed or suffixed by other words. For example,
you can include a suffix such as a dot delimited file extension:
get "/hello/:name.json" do
 send_resp(conn, 200, "hello #{name}")
end
The above will match /hello/foo.json but not /hello/foo.
Other delimiters such as -, @ may be used to denote suffixes.
Routes allow for globbing which will match the remaining parts
of a route. A glob match is done with the * character followed
by the variable name. Typically you prefix the variable name with
underscore to discard it:
get "/hello/*_rest" do
 send_resp(conn, 200, "matches all routes starting with /hello")
end
But you can also assign the glob to any variable. The contents will
always be a list:
get "/hello/*glob" do
 send_resp(conn, 200, "route after /hello: #{inspect glob}")
end
Opposite to :identifiers, globs do not allow prefix nor suffix
matches.
Finally, a general match function is also supported:
match "/hello" do
 send_resp(conn, 200, "world")
end
A match will match any route regardless of the HTTP method.
Check match/3 for more information on how route compilation
works and a list of supported options.
Parameter Parsing
Handling request data can be done through the
Plug.Parsers plug. It
provides support for parsing URL-encoded, form-data, and JSON data as well as
providing a behaviour that others parsers can adopt.
Here is an example of Plug.Parsers can be used in a Plug.Router router to
parse the JSON-encoded body of a POST request:
defmodule AppRouter do
 use Plug.Router

 plug :match

 plug Plug.Parsers,
 parsers: [:json],
 pass: ["application/json"],
 json_decoder: Jason

 plug :dispatch

 post "/hello" do
 IO.inspect conn.body_params # Prints JSON POST body
 send_resp(conn, 200, "Success!")
 end
end
It is important that Plug.Parsers is placed before the :dispatch plug in
the pipeline, otherwise the matched clause route will not receive the parsed
body in its Plug.Conn argument when dispatched.
Plug.Parsers can also be plugged between :match and :dispatch (like in
the example above): this means that Plug.Parsers will run only if there is a
matching route. This can be useful to perform actions such as authentication
before parsing the body, which should only be parsed if a route matches
afterwards.
Error handling
In case something goes wrong in a request, the router by default
will crash, without returning any response to the client. This
behaviour can be configured in two ways, by using two different
modules:
	Plug.ErrorHandler - allows the developer to customize exactly
which page is sent to the client via the handle_errors/2 function;

	Plug.Debugger - automatically shows debugging and request information
about the failure. This module is recommended to be used only in a
development environment.

Here is an example of how both modules could be used in an application:
defmodule AppRouter do
 use Plug.Router

 if Mix.env == :dev do
 use Plug.Debugger
 end

 use Plug.ErrorHandler

 plug :match
 plug :dispatch

 get "/hello" do
 send_resp(conn, 200, "world")
 end

 defp handle_errors(conn, %{kind: _kind, reason: _reason, stack: _stack}) do
 send_resp(conn, conn.status, "Something went wrong")
 end
end
Passing data between routes and plugs
It is also possible to assign data to the Plug.Conn that will
be available to any plug invoked after the :match plug.
This is very useful if you want a matched route to customize how
later plugs will behave.
You can use :assigns (which contains user data) or :private
(which contains library/framework data) for this. For example:
get "/hello", assigns: %{an_option: :a_value} do
 send_resp(conn, 200, "world")
end
In the example above, conn.assigns[:an_option] will be available
to all plugs invoked after :match. Such plugs can read from
conn.assigns (or conn.private) to configure their behaviour
based on the matched route.
use options
All of the options given to use Plug.Router are forwarded to
Plug.Builder. See the Plug.Builder module for more information.
Telemetry
The router emits the following telemetry events:
	[:plug, :router_dispatch, :start] - dispatched before dispatching to a matched route
	Measurement: %{system_time: System.system_time}
	Metadata: %{telemetry_span_context: term(), conn: Plug.Conn.t, route: binary, router: module}

	[:plug, :router_dispatch, :exception] - dispatched after exceptions on dispatching a route
	Measurement: %{duration: native_time}
	Metadata: %{telemetry_span_context: term(), conn: Plug.Conn.t, route: binary, router: module, kind: :throw | :error | :exit, reason: term(), stacktrace: list()}

	[:plug, :router_dispatch, :stop] - dispatched after successfully dispatching a matched route
	Measurement: %{duration: native_time}
	Metadata: %{telemetry_span_context: term(), conn: Plug.Conn.t, route: binary, router: module}

 Anchor for this section

 Summary

 Functions

 delete(path, options, contents \\ [])

 Dispatches to the path only if the request is a DELETE request.
See match/3 for more examples.

 forward(path, options)

 Forwards requests to another Plug. The path_info of the forwarded
connection will exclude the portion of the path specified in the
call to forward. If the path contains any parameters, those will
be available in the target Plug in conn.params and conn.path_params.

 get(path, options, contents \\ [])

 Dispatches to the path only if the request is a GET request.
See match/3 for more examples.

 head(path, options, contents \\ [])

 Dispatches to the path only if the request is a HEAD request.
See match/3 for more examples.

 match(path, options, contents \\ [])

 Main API to define routes.

 match_path(conn)

 Returns the path of the route that the request was matched to.

 options(path, options, contents \\ [])

 Dispatches to the path only if the request is an OPTIONS request.
See match/3 for more examples.

 patch(path, options, contents \\ [])

 Dispatches to the path only if the request is a PATCH request.
See match/3 for more examples.

 post(path, options, contents \\ [])

 Dispatches to the path only if the request is a POST request.
See match/3 for more examples.

 put(path, options, contents \\ [])

 Dispatches to the path only if the request is a PUT request.
See match/3 for more examples.

 Anchor for this section

Functions

 Link to this macro

 delete(path, options, contents \\ [])

 View Source

 (macro)

Dispatches to the path only if the request is a DELETE request.
See match/3 for more examples.

 Link to this macro

 forward(path, options)

 View Source

 (macro)

Forwards requests to another Plug. The path_info of the forwarded
connection will exclude the portion of the path specified in the
call to forward. If the path contains any parameters, those will
be available in the target Plug in conn.params and conn.path_params.

 options

 Options

forward accepts the following options:
	:to - a Plug the requests will be forwarded to.
	:init_opts - the options for the target Plug. It is the preferred
mechanism for passing options to the target Plug.
	:host - a string representing the host or subdomain, exactly like in
match/3.
	:private - values for conn.private, exactly like in match/3.
	:assigns - values for conn.assigns, exactly like in match/3.

If :init_opts is undefined, then all remaining options are passed
to the target plug.

 examples

 Examples

forward "/users", to: UserRouter
Assuming the above code, a request to /users/sign_in will be forwarded to
the UserRouter plug, which will receive what it will see as a request to
/sign_in.
forward "/foo/:bar/qux", to: FooPlug
Here, a request to /foo/BAZ/qux will be forwarded to the FooPlug
plug, which will receive what it will see as a request to /,
and conn.params["bar"] will be set to "BAZ".
Some other examples:
forward "/foo/bar", to: :foo_bar_plug, host: "foobar."
forward "/baz", to: BazPlug, init_opts: [plug_specific_option: true]

 Link to this macro

 get(path, options, contents \\ [])

 View Source

 (macro)

Dispatches to the path only if the request is a GET request.
See match/3 for more examples.

 Link to this macro

 head(path, options, contents \\ [])

 View Source

 (macro)

Dispatches to the path only if the request is a HEAD request.
See match/3 for more examples.

 Link to this macro

 match(path, options, contents \\ [])

 View Source

 (macro)

Main API to define routes.
It accepts an expression representing the path and many options
allowing the match to be configured.
The route can dispatch either to a function body or a Plug module.

 examples

 Examples

match "/foo/bar", via: :get do
 send_resp(conn, 200, "hello world")
end

match "/baz", to: MyPlug, init_opts: [an_option: :a_value]

 options

 Options

match/3 and the other route macros accept the following options:
	:host - the host which the route should match. Defaults to nil,
meaning no host match, but can be a string like "example.com" or a
string ending with ".", like "subdomain." for a subdomain match.

	:private - assigns values to conn.private for use in the match

	:assigns - assigns values to conn.assigns for use in the match

	:via - matches the route against some specific HTTP method(s) specified
as an atom, like :get or :put, or a list, like [:get, :post].

	:do - contains the implementation to be invoked in case
the route matches.

	:to - a Plug that will be called in case the route matches.

	:init_opts - the options for the target Plug given by :to.

A route should specify only one of :do or :to options.

 Link to this function

 match_path(conn)

 View Source

 @spec match_path(Plug.Conn.t()) :: String.t()

Returns the path of the route that the request was matched to.

 Link to this macro

 options(path, options, contents \\ [])

 View Source

 (macro)

Dispatches to the path only if the request is an OPTIONS request.
See match/3 for more examples.

 Link to this macro

 patch(path, options, contents \\ [])

 View Source

 (macro)

Dispatches to the path only if the request is a PATCH request.
See match/3 for more examples.

 Link to this macro

 post(path, options, contents \\ [])

 View Source

 (macro)

Dispatches to the path only if the request is a POST request.
See match/3 for more examples.

 Link to this macro

 put(path, options, contents \\ [])

 View Source

 (macro)

Dispatches to the path only if the request is a PUT request.
See match/3 for more examples.

Plug.Test

Conveniences for testing plugs.
This module can be used in your test cases, like this:
use ExUnit.Case, async: true
use Plug.Test
Using this module will:
	import all the functions from this module
	import all the functions from the Plug.Conn module

By default, Plug tests checks for invalid header keys, e.g. header keys which
include uppercase letters, and raises a Plug.Conn.InvalidHeaderError when
it finds one. To disable it, set :validate_header_keys_during_test to
false on the app config.
config :plug, :validate_header_keys_during_test, false

 Anchor for this section

 Summary

 Functions

 conn(method, path, params_or_body \\ nil)

 Creates a test connection.

 delete_req_cookie(conn, key)

 Deletes a request cookie.

 init_test_session(conn, session)

 Initializes the session with the given contents.

 put_http_protocol(conn, http_protocol)

 Puts the HTTP protocol.

 put_peer_data(conn, peer_data)

 Puts the peer data.

 put_req_cookie(conn, key, value)

 Puts a request cookie.

 recycle_cookies(new_conn, old_conn)

 Moves cookies from a connection into a new connection for subsequent requests.

 sent_informs(conn)

 Returns the informational requests that have been sent.

 sent_pushes(conn)

 Returns the assets that have been pushed.

 sent_resp(conn)

 Returns the sent response.

 Anchor for this section

Functions

 Link to this function

 conn(method, path, params_or_body \\ nil)

 View Source

 @spec conn(String.Chars.t(), binary(), params()) :: Plug.Conn.t()

Creates a test connection.
The request method and path are required arguments. method may be any
value that implements to_string/1 and it will be properly converted and
normalized (e.g., :get or "post").
The path is commonly the request path with optional query string but it may
also be a complete URI. When a URI is given, the host and schema will be used
as part of the request too.
The params_or_body field must be one of:
	nil - meaning there is no body;
	a binary - containing a request body. For such cases, :headers
must be given as option with a content-type;
	a map or list - containing the parameters which will automatically
set the content-type to multipart. The map or list may contain
other lists or maps and all entries will be normalized to string
keys;

 examples

 Examples

conn(:get, "/foo?bar=10")
conn(:get, "/foo", %{bar: 10})
conn(:post, "/")
conn("patch", "/", "") |> put_req_header("content-type", "application/json")

 Link to this function

 delete_req_cookie(conn, key)

 View Source

 @spec delete_req_cookie(Plug.Conn.t(), binary()) :: Plug.Conn.t()

Deletes a request cookie.

 Link to this function

 init_test_session(conn, session)

 View Source

 @spec init_test_session(Plug.Conn.t(), %{optional(String.t() | atom()) => any()}) ::
 Plug.Conn.t()

Initializes the session with the given contents.
If the session has already been initialized, the new contents will be merged
with the previous ones.

 Link to this function

 put_http_protocol(conn, http_protocol)

 View Source

Puts the HTTP protocol.

 Link to this function

 put_peer_data(conn, peer_data)

 View Source

Puts the peer data.

 Link to this function

 put_req_cookie(conn, key, value)

 View Source

 @spec put_req_cookie(Plug.Conn.t(), binary(), binary()) :: Plug.Conn.t()

Puts a request cookie.

 Link to this function

 recycle_cookies(new_conn, old_conn)

 View Source

 @spec recycle_cookies(Plug.Conn.t(), Plug.Conn.t()) :: Plug.Conn.t()

Moves cookies from a connection into a new connection for subsequent requests.
This function copies the cookie information in old_conn into new_conn,
emulating multiple requests done by clients where cookies are always passed
forward, and returns the new version of new_conn.

 Link to this function

 sent_informs(conn)

 View Source

Returns the informational requests that have been sent.
This function depends on gathering the messages sent by the test adapter when
informational messages, such as an early hint, are sent. Calling this
function will clear the informational request messages from the inbox for the
process. To assert on multiple informs, the result of the function should be
stored in a variable.

 examples

 Examples

conn = conn(:get, "/foo", "bar=10")
informs = Plug.Test.sent_informs(conn)
assert {"/static/application.css", [{"accept", "text/css"}]} in informs
assert {"/static/application.js", [{"accept", "application/javascript"}]} in informs

 Link to this function

 sent_pushes(conn)

 View Source

Returns the assets that have been pushed.
This function depends on gathering the messages sent by the test adapter
when assets are pushed. Calling this function will clear the pushed message
from the inbox for the process. To assert on multiple pushes, the result
of the function should be stored in a variable.

 examples

 Examples

conn = conn(:get, "/foo?bar=10")
pushes = Plug.Test.sent_pushes(conn)
assert {"/static/application.css", [{"accept", "text/css"}]} in pushes
assert {"/static/application.js", [{"accept", "application/javascript"}]} in pushes

 Link to this function

 sent_resp(conn)

 View Source

Returns the sent response.
This function is useful when the code being invoked crashes and
there is a need to verify a particular response was sent, even with
the crash. It returns a tuple with {status, headers, body}.

Plug.Upload

A server (a GenServer specifically) that manages uploaded files.
Uploaded files are stored in a temporary directory
and removed from that directory after the process that
requested the file dies.
During the request, files are represented with
a Plug.Upload struct that contains three fields:
	:path - the path to the uploaded file on the filesystem
	:content_type - the content type of the uploaded file
	:filename - the filename of the uploaded file given in the request

Note: as mentioned in the documentation for Plug.Parsers, the :plug
application has to be started in order to upload files and use the
Plug.Upload module.
Security
The :content_type and :filename fields in the Plug.Upload struct are
client-controlled. These values should be validated, via file content
inspection or similar, before being trusted.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 give_away(upload, to_pid, from_pid \\ self())

 Assign ownership of the given upload file to another process.

 random_file!(prefix)

 Requests a random file to be created in the upload directory
with the given prefix. Raises on failure.

 random_file(prefix)

 Requests a random file to be created in the upload directory
with the given prefix.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Plug.Upload{
 content_type: binary() | nil,
 filename: binary(),
 path: Path.t()
}

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 give_away(upload, to_pid, from_pid \\ self())

 View Source

 @spec give_away(t() | binary(), pid(), pid()) :: :ok | {:error, :unknown_path}

Assign ownership of the given upload file to another process.
Useful if you want to do some work on an uploaded file in another process
since it means that the file will survive the end of the request.

 Link to this function

 random_file!(prefix)

 View Source

 @spec random_file!(binary()) :: binary() | no_return()

Requests a random file to be created in the upload directory
with the given prefix. Raises on failure.

 Link to this function

 random_file(prefix)

 View Source

 @spec random_file(binary()) ::
 {:ok, binary()}
 | {:too_many_attempts, binary(), pos_integer()}
 | {:no_tmp, [binary()]}

Requests a random file to be created in the upload directory
with the given prefix.

Plug.BasicAuth

Functionality for providing Basic HTTP authentication.
It is recommended to only use this module in production
if SSL is enabled and enforced. See Plug.SSL for more
information.
Compile-time usage
If you have a single username and password, you can use
the basic_auth/2 plug:
import Plug.BasicAuth
plug :basic_auth, username: "hello", password: "secret"
Or if you would rather put those in a config file:
lib/your_app.ex
import Plug.BasicAuth
plug :basic_auth, Application.compile_env(:my_app, :basic_auth)

config/config.exs
config :my_app, :basic_auth, username: "hello", password: "secret"
Once the user first accesses the page, the request will be denied
with reason 401 and the request is halted. The browser will then
prompt the user for username and password. If they match, then the
request succeeds.
Both approaches shown above rely on static configuration. Let's see
alternatives.
Runtime-time usage
As any other Plug, we can use the basic_auth at runtime by simply
wrapping it in a function:
plug :auth

defp auth(conn, opts) do
 username = System.fetch_env!("AUTH_USERNAME")
 password = System.fetch_env!("AUTH_PASSWORD")
 Plug.BasicAuth.basic_auth(conn, username: username, password: password)
end
This approach is useful when both username and password are specified
upfront and available at runtime. However, you may also want to compute
a different password for each different user. In those cases, we can use
the low-level API.
Low-level usage
If you want to provide your own authentication logic on top of Basic HTTP
auth, you can use the low-level functions. As an example, we define :auth
plug that extracts username and password from the request headers, compares
them against the database, and either assigns a :current_user on success
or responds with an error on failure.
plug :auth

defp auth(conn, _opts) do
 with {user, pass} <- Plug.BasicAuth.parse_basic_auth(conn),
 %User{} = user <- MyApp.Accounts.find_by_username_and_password(user, pass) do
 assign(conn, :current_user, user)
 else
 _ -> conn |> Plug.BasicAuth.request_basic_auth() |> halt()
 end
end
Keep in mind that:
	The supplied user and pass may be empty strings;

	If you are comparing the username and password with existing strings,
do not use ==/2. Use Plug.Crypto.secure_compare/2 instead.

 Anchor for this section

 Summary

 Functions

 basic_auth(conn, options \\ [])

 Higher level usage of Basic HTTP auth.

 encode_basic_auth(user, pass)

 Encodes a basic authentication header.

 parse_basic_auth(conn)

 Parses the request username and password from Basic HTTP auth.

 request_basic_auth(conn, options \\ [])

 Requests basic authentication from the client.

 Anchor for this section

Functions

 Link to this function

 basic_auth(conn, options \\ [])

 View Source

Higher level usage of Basic HTTP auth.
See the module docs for examples.

 options

 Options

	:username - the expected username
	:password - the expected password
	:realm - the authentication realm. The value is not fully
sanitized, so do not accept user input as the realm and use
strings with only alphanumeric characters and space

 Link to this function

 encode_basic_auth(user, pass)

 View Source

Encodes a basic authentication header.
This can be used during tests:
put_req_header(conn, "authorization", encode_basic_auth("hello", "world"))

 Link to this function

 parse_basic_auth(conn)

 View Source

Parses the request username and password from Basic HTTP auth.
It returns either {user, pass} or :error. Note the username
and password may be empty strings. When comparing the username
and password with the expected values, be sure to use
Plug.Crypto.secure_compare/2.
See the module docs for examples.

 Link to this function

 request_basic_auth(conn, options \\ [])

 View Source

Requests basic authentication from the client.
It sets the response to status 401 with "Unauthorized" as body.
The response is not sent though (nor the connection is halted),
allowing developers to further customize it.

 options

 Options

	:realm - the authentication realm. The value is not fully
sanitized, so do not accept user input as the realm and use
strings with only alphanumeric characters and space

Plug.CSRFProtection

Plug to protect from cross-site request forgery.
For this plug to work, it expects a session to have been
previously fetched. It will then compare the token stored
in the session with the one sent by the request to determine
the validity of the request. For an invalid request the action
taken is based on the :with option.
The token may be sent by the request either via the params
with key "_csrf_token" or a header with name "x-csrf-token".
GET requests are not protected, as they should not have any
side-effect or change your application state. JavaScript
requests are an exception: by using a script tag, external
websites can embed server-side generated JavaScript, which
can leak information. For this reason, this plug also forbids
any GET JavaScript request that is not XHR (or AJAX).
Note that it is recommended to enable CSRFProtection whenever
a session is used, even for JSON requests. For example, Chrome
had a bug that allowed POST requests to be triggered with
arbitrary content-type, making JSON exploitable. More info:
https://bugs.chromium.org/p/chromium/issues/detail?id=490015
Finally, we recommend developers to invoke delete_csrf_token/0
every time after they log a user in, to avoid CSRF fixation
attacks.
Token generation
This plug won't generate tokens automatically. Instead, tokens
will be generated only when required by calling get_csrf_token/0.
In case you are generating the token for certain specific URL,
you should use get_csrf_token_for/1 as that will avoid tokens
from being leaked to other applications.
Once a token is generated, it is cached in the process dictionary.
The CSRF token is usually generated inside forms which may be
isolated from Plug.Conn. Storing them in the process dictionary
allows them to be generated as a side-effect only when necessary,
becoming one of those rare situations where using the process
dictionary is useful.
Cross-host protection
If you are sending data to a full URI, such as //subdomain.host.com/path
or //external.com/path, instead of a simple path such as /path, you may
want to consider using get_csrf_token_for/1, as that will encode the host
in the CSRF token. Once received, Plug will only consider the CSRF token to
be valid if the host encoded in the token is the same as the one in
conn.host.
Therefore, if you get a warning that the host does not match, it is either
because someone is attempting to steal CSRF tokens or because you have a
misconfigured host configuration.
For example, if you are running your application behind a proxy, the browser
will send a request to the proxy with www.example.com but the proxy will
request you using an internal IP. In such cases, it is common for proxies
to attach information such as "x-forwarded-host" that contains the original
host.
This may also happen on redirects. If you have a POST request to foo.example.com
that redirects to bar.example.com with status 307, the token will contain a
different host than the one in the request.
You can pass the :allow_hosts option to control any host that you may want
to allow. The values in :allow_hosts may either be a full host name or a
host suffix. For example: ["www.example.com", ".subdomain.example.com"]
will allow the exact host of "www.example.com" and any host that ends with
".subdomain.example.com".
Options
	:session_key - the name of the key in session to store the token under
	:allow_hosts - a list with hosts to allow on cross-host tokens
	:with - should be one of :exception or :clear_session. Defaults to
:exception.	:exception - for invalid requests, this plug will raise
Plug.CSRFProtection.InvalidCSRFTokenError.
	:clear_session - for invalid requests, this plug will set an empty
session for only this request. Also any changes to the session during this
request will be ignored.

Disabling
You may disable this plug by doing
Plug.Conn.put_private(conn, :plug_skip_csrf_protection, true). This was made
available for disabling Plug.CSRFProtection in tests and not for dynamically
skipping Plug.CSRFProtection in production code. If you want specific routes to
skip Plug.CSRFProtection, then use a different stack of plugs for that route that
does not include Plug.CSRFProtection.
Examples
plug Plug.Session, ...
plug :fetch_session
plug Plug.CSRFProtection

 Anchor for this section

 Summary

 Functions

 delete_csrf_token()

 Deletes the CSRF token from the process dictionary.

 dump_state()

 Dump CSRF state from the process dictionary.

 dump_state_from_session(session_token)

 Dumps the CSRF state from the session token.

 get_csrf_token()

 Gets the CSRF token.

 get_csrf_token_for(url)

 Gets the CSRF token for the associated URL (as a string or a URI struct).

 load_state(secret_key_base, csrf_state)

 Load CSRF state into the process dictionary.

 valid_state_and_csrf_token?(state, csrf_token)

 Validates the csrf_token against the state.

 Anchor for this section

Functions

 Link to this function

 delete_csrf_token()

 View Source

Deletes the CSRF token from the process dictionary.
This will force the token to be deleted once the response is sent.
If you want to refresh the CSRF state, you can call get_csrf_token/0
after delete_csrf_token/0 to ensure a new token is generated.

 Link to this function

 dump_state()

 View Source

Dump CSRF state from the process dictionary.
This allows it to be loaded in another process.
See load_state/2 for more information.

 Link to this function

 dump_state_from_session(session_token)

 View Source

Dumps the CSRF state from the session token.
It expects the value of get_session(conn, "_csrf_token")
as input. It returns nil if the given token is not valid.

 Link to this function

 get_csrf_token()

 View Source

Gets the CSRF token.
Generates a token and stores it in the process
dictionary if one does not exist.

 Link to this function

 get_csrf_token_for(url)

 View Source

Gets the CSRF token for the associated URL (as a string or a URI struct).
If the URL has a host, a CSRF token that is tied to that
host will be generated. If it is a relative path URL, a
simple token emitted with get_csrf_token/0 will be used.

 Link to this function

 load_state(secret_key_base, csrf_state)

 View Source

Load CSRF state into the process dictionary.
This can be used to load CSRF state into another process.
See dump_state/0 and dump_state_from_session/2 for dumping it.

 examples

 Examples

To dump the state from the current process and load into another one:
csrf_state = Plug.CSRFProtection.dump_state()
secret_key_base = conn.secret_key_base

Task.async(fn ->
 Plug.CSRFProtection.load_state(secret_key_base, csrf_state)
end)
If you have a session but the CSRF state was not loaded into the
current process, you can dump the state from the session:
csrf_state = Plug.CSRFProtection.dump_state_from_session(session["_csrf_token"])

Task.async(fn ->
 Plug.CSRFProtection.load_state(secret_key_base, csrf_state)
end)

 Link to this function

 valid_state_and_csrf_token?(state, csrf_token)

 View Source

Validates the csrf_token against the state.
This is the mechanism used by the Plug itself to match the token
received in the request (via headers or parameters) with the state
(typically stored in the session).

Plug.Head

A Plug to convert HEAD requests to GET requests.
Examples
Plug.Head.call(conn, [])

Plug.Logger

A plug for logging basic request information in the format:
GET /index.html
Sent 200 in 572ms
To use it, just plug it into the desired module.
plug Plug.Logger, log: :debug
Options
	:log - The log level at which this plug should log its request info.
Default is :info.
The list of supported levels
is available in the Logger documentation.

Plug.MethodOverride

This plug overrides the request's POST method with the method defined in
the _method request parameter.
The POST method can be overridden only by these HTTP methods:
	PUT
	PATCH
	DELETE

This plug expects the body parameters to be already parsed and
fetched. Those can be fetched with Plug.Parsers.
This plug doesn't accept any options.
Examples
Plug.MethodOverride.call(conn, [])

Plug.Parsers behaviour

A plug for parsing the request body.
It invokes a list of :parsers, which are activated based on the
request content-type. Custom parsers are also supported by defining
a module that implements the behaviour defined by this module.
Once a connection goes through this plug, it will have :body_params
set to the map of params parsed by one of the parsers listed in
:parsers and :params set to the result of merging the :body_params
and :query_params. In case :query_params have not yet been parsed,
Plug.Conn.fetch_query_params/2 is automatically invoked.
This plug will raise Plug.Parsers.UnsupportedMediaTypeError by default if
the request cannot be parsed by any of the given types and the MIME type has
not been explicitly accepted with the :pass option.
Plug.Parsers.RequestTooLargeError will be raised if the request goes over
the given limit. The default length is 8MB and it can be customized by passing
the :length option to the Plug. :read_timeout and :read_length, as
described by Plug.Conn.read_body/2, are also supported.
Parsers may raise a Plug.Parsers.ParseError if the request has a malformed
body.
This plug only parses the body if the request method is one of the following:
	POST
	PUT
	PATCH
	DELETE

For requests with a different request method, this plug will only fetch the
query params.
Options
	:parsers - a list of modules or atoms of built-in parsers to be
invoked for parsing. These modules need to implement the behaviour
outlined in this module.

	:pass - an optional list of MIME type strings that are allowed
to pass through. Any mime not handled by a parser and not explicitly
listed in :pass will raise UnsupportedMediaTypeError. For example:
	["*/*"] - never raises
	["text/html", "application/*"] - doesn't raise for those values
	[] - always raises (default)

	:query_string_length - the maximum allowed size for query strings

	:validate_utf8 - boolean that tells whether or not we want to
 validate that parsed binaries are utf8 strings.

	:body_reader - an optional replacement (or wrapper) for
Plug.Conn.read_body/2 to provide a function that gives access to the
raw body before it is parsed and discarded. It is in the standard format
of {Module, :function, [args]} (MFA) and defaults to
{Plug.Conn, :read_body, []}. Note that this option is not used by
Plug.Parsers.MULTIPART which relies instead on other functions defined
in Plug.Conn.

All other options given to this Plug are forwarded to the parsers.
Examples
plug Plug.Parsers,
 parsers: [:urlencoded, :multipart],
 pass: ["text/*"]
Any other option given to Plug.Parsers is forwarded to the underlying
parsers. Therefore, you can use a JSON parser and pass the :json_decoder
option at the root:
plug Plug.Parsers,
 parsers: [:urlencoded, :json],
 json_decoder: Jason
Or directly to the parser itself:
plug Plug.Parsers,
 parsers: [:urlencoded, {:json, json_decoder: Jason}]
It is also possible to pass the :json_decoder as a {module, function, args} tuple,
useful for passing options to the JSON decoder:
plug Plug.Parsers,
 parsers: [:json],
 json_decoder: {Jason, :decode!, [[floats: :decimals]]}
A common set of shared options given to Plug.Parsers is :length,
:read_length and :read_timeout, which customizes the maximum
request length you want to accept. For example, to support file
uploads, you can do:
plug Plug.Parsers,
 parsers: [:url_encoded, :multipart],
 length: 20_000_000
However, the above will increase the maximum length of all request
types. If you want to increase the limit only for multipart requests
(which is typically the ones used for file uploads), you can do:
plug Plug.Parsers,
 parsers: [
 :url_encoded,
 {:multipart, length: 20_000_000} # Increase to 20MB max upload
]
Built-in parsers
Plug ships with the following parsers:
	Plug.Parsers.URLENCODED - parses application/x-www-form-urlencoded
requests (can be used as :urlencoded as well in the :parsers option)
	Plug.Parsers.MULTIPART - parses multipart/form-data and
multipart/mixed requests (can be used as :multipart as well in the
:parsers option)
	Plug.Parsers.JSON - parses application/json requests with the given
:json_decoder (can be used as :json as well in the :parsers option)

File handling
If a file is uploaded via any of the parsers, Plug will
stream the uploaded contents to a file in a temporary directory in order to
avoid loading the whole file into memory. For such, the :plug application
needs to be started in order for file uploads to work. More details on how the
uploaded file is handled can be found in the documentation for Plug.Upload.
When a file is uploaded, the request parameter that identifies that file will
be a Plug.Upload struct with information about the uploaded file (e.g.
filename and content type) and about where the file is stored.
The temporary directory where files are streamed to can be customized by
setting the PLUG_TMPDIR environment variable on the host system. If
PLUG_TMPDIR isn't set, Plug will look at some environment
variables which usually hold the value of the system's temporary directory
(like TMPDIR or TMP). If no value is found in any of those variables,
/tmp is used as a default.
Custom body reader
Sometimes you may want to customize how a parser reads the body from the
connection. For example, you may want to cache the body to perform verification
later, such as HTTP Signature Verification. This can be achieved with a custom
body reader that would read the body and store it in the connection, such as:
defmodule CacheBodyReader do
 def read_body(conn, opts) do
 {:ok, body, conn} = Plug.Conn.read_body(conn, opts)
 conn = update_in(conn.assigns[:raw_body], &[body | (&1 || [])])
 {:ok, body, conn}
 end
end
which could then be set as:
plug Plug.Parsers,
 parsers: [:urlencoded, :json],
 pass: ["text/*"],
 body_reader: {CacheBodyReader, :read_body, []},
 json_decoder: Jason

 Anchor for this section

 Summary

 Callbacks

 init(opts)

 parse(
 conn,
 type,
 subtype,
 params,
 opts
)

 Attempts to parse the connection's request body given the content-type type,
subtype, and its parameters.

 Anchor for this section

Callbacks

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: Keyword.t()) :: Plug.opts()

 Link to this callback

 parse(
 conn,
 type,
 subtype,
 params,
 opts
)

 View Source

 @callback parse(
 conn :: Plug.Conn.t(),
 type :: binary(),
 subtype :: binary(),
 params :: Plug.Conn.Utils.params(),
 opts :: Plug.opts()
) ::
 {:ok, Plug.Conn.params(), Plug.Conn.t()}
 | {:error, :too_large, Plug.Conn.t()}
 | {:next, Plug.Conn.t()}

Attempts to parse the connection's request body given the content-type type,
subtype, and its parameters.
The arguments are:
	the Plug.Conn connection
	type, the content-type type (e.g., "x-sample" for the
"x-sample/json" content-type)
	subtype, the content-type subtype (e.g., "json" for the
"x-sample/json" content-type)
	params, the content-type parameters (e.g., %{"foo" => "bar"}
for the "text/plain; foo=bar" content-type)

This function should return:
	{:ok, body_params, conn} if the parser is able to handle the given
content-type; body_params should be a map
	{:next, conn} if the next parser should be invoked
	{:error, :too_large, conn} if the request goes over the given limit

Plug.RequestId

A plug for generating a unique request id for each request.
The generated request id will be in the format "uq8hs30oafhj5vve8ji5pmp7mtopc08f".
If a request id already exists as the "x-request-id" HTTP request header,
then that value will be used assuming it is between 20 and 200 characters.
If it is not, a new request id will be generated.
The request id is added to the Logger metadata as :request_id and the response as
the "x-request-id" HTTP header. To see the request id in your log output,
configure your logger backends to include the :request_id metadata:
config :logger, :console, metadata: [:request_id]
It is recommended to include this metadata configuration in your production
configuration file.
You can also access the request_id programmatically by calling
Logger.metadata[:request_id]. Do not access it via the request header, as
the request header value has not been validated and it may not always be
present.
To use this plug, just plug it into the desired module:
plug Plug.RequestId
Options
	:http_header - The name of the HTTP request header to check for
existing request ids. This is also the HTTP response header that will be
set with the request id. Default value is "x-request-id"
plug Plug.RequestId, http_header: "custom-request-id"

Plug.RewriteOn

A plug to rewrite the request's host/port/protocol from x-forwarded-* headers.
If your Plug application is behind a proxy that handles HTTPS, you may
need to tell Plug to parse the proper protocol from the x-forwarded-*
header.
plug Plug.RewriteOn, [:x_forwarded_host, :x_forwarded_port, :x_forwarded_proto]
The supported values are:
	:x_forwarded_host - to override the host based on on the "x-forwarded-host" header
	:x_forwarded_port - to override the port based on on the "x-forwarded-port" header
	:x_forwarded_proto - to override the protocol based on on the "x-forwarded-proto" header

Since rewriting the scheme based on x-forwarded-* headers can open up
security vulnerabilities, only use this plug if:
	your app is behind a proxy
	your proxy strips the given x-forwarded-* headers from all incoming requests
	your proxy sets the x-forwarded-* headers and sends it to Plug

Plug.SSL

A plug to force SSL connections and enable HSTS.
If the scheme of a request is https, it'll add a strict-transport-security
header to enable HTTP Strict Transport Security by default.
Otherwise, the request will be redirected to a corresponding location
with the https scheme by setting the location header of the response.
The status code will be 301 if the method of conn is GET or HEAD,
or 307 in other situations.
Besides being a Plug, this module also provides conveniences for configuring
SSL. See configure/1.
x-forwarded-*
If your Plug application is behind a proxy that handles HTTPS, you may
need to tell Plug to parse the proper protocol from the x-forwarded-*
header. This can be done using the :rewrite_on option:
plug Plug.SSL, rewrite_on: [:x_forwarded_host, :x_forwarded_port, :x_forwarded_proto]
For further details refer to Plug.RewriteOn.
Plug Options
	:rewrite_on - rewrites the given connection information based on the given headers
	:hsts - a boolean on enabling HSTS or not, defaults to true
	:expires - seconds to expires for HSTS, defaults to 31_536_000 (1 year)
	:preload - a boolean to request inclusion on the HSTS preload list
(for full set of required flags, see: Chromium HSTS submission site),
defaults to false
	:subdomains - a boolean on including subdomains or not in HSTS,
defaults to false
	:exclude - exclude the given hosts from redirecting to the https
scheme. Defaults to ["localhost"]. It may be set to a list of binaries
or a tuple {module, function, args}.
	:host - a new host to redirect to if the request's scheme is http,
defaults to conn.host. It may be set to a binary or a tuple
{module, function, args} that will be invoked on demand
	:log - The log level at which this plug should log its request info.
Default is :info. Can be false to disable logging.

Port
It is not possible to directly configure the port in Plug.SSL because
HSTS expects the port to be 443 for SSL. If you are not using HSTS and
want to redirect to HTTPS on another port, you can sneak it alongside
the host, for example: host: "example.com:443".
Excluded hosts tuple
Tuple {module, function, args} can be passed to be invoked each time
the plug is checking whether to redirect host. Provided function needs
to receive at least one argument (host).
For example, you may define it as:
plug Plug.SSL,
 rewrite_on: [:x_forwarded_proto],
 exclude: {__MODULE__, :excluded_host?, []}
where:
def excluded_host?(host) do
 # Custom logic
end

 Anchor for this section

 Summary

 Functions

 configure(options)

 Configures and validates the options given to the :ssl application.

 Anchor for this section

Functions

 Link to this function

 configure(options)

 View Source

 @spec configure(Keyword.t()) :: {:ok, Keyword.t()} | {:error, String.t()}

Configures and validates the options given to the :ssl application.
This function is often called internally by adapters, such as Cowboy,
to validate and set reasonable defaults for SSL handling. Therefore
Plug users are not expected to invoke it directly, rather you pass
the relevant SSL options to your adapter which then invokes this.

 options

 Options

This function accepts all options defined
in Erlang/OTP :ssl documentation.
Besides the options from :ssl, this function adds on extra option:
	:cipher_suite - it may be :strong or :compatible,
as outlined in the following section

Furthermore, it sets the following defaults:
	secure_renegotiate: true - to avoid certain types of man-in-the-middle attacks
	reuse_sessions: true - for improved handshake performance of recurring connections

For a complete guide on HTTPS and best pratices, see our Plug HTTPS Guide.

 cipher-suites

 Cipher Suites

To simplify configuration of TLS defaults, this function provides two preconfigured
options: cipher_suite: :strong and cipher_suite: :compatible. The Ciphers
chosen and related configuration come from the OWASP Cipher String Cheat
Sheet
We've made two modifications to the suggested config from the OWASP recommendations.
First we include ECDSA certificates which are excluded from their configuration.
Second we have changed the order of the ciphers to deprioritize DHE because of
performance implications noted within the OWASP post itself. As the article notes
"...the TLS handshake with DHE hinders the CPU about 2.4 times more than ECDHE".
The Strong cipher suite only supports tlsv1.2. Ciphers were based on the OWASP
Group A+ and includes support for RSA or ECDSA certificates. The intention of this
configuration is to provide as secure as possible defaults knowing that it will not
be fully compatible with older browsers and operating systems.
The Compatible cipher suite supports tlsv1, tlsv1.1 and tlsv1.2. Ciphers were
based on the OWASP Group B and includes support for RSA or ECDSA certificates. The
intention of this configuration is to provide as secure as possible defaults that
still maintain support for older browsers and Android versions 4.3 and earlier
For both suites we've specified certificate curves secp256r1, ecp384r1 and secp521r1.
Since OWASP doesn't prescribe curves we've based the selection on Mozilla's
recommendations
The cipher suites were last updated on 2018-JUN-14.

Plug.Session

A plug to handle session cookies and session stores.
The session is accessed via functions on Plug.Conn. Cookies and
session have to be fetched with Plug.Conn.fetch_session/1 before the
session can be accessed.
The session is also lazy. Once configured, a cookie header with the
session will only be sent to the client if something is written to the
session in the first place.
When using Plug.Session, also consider using Plug.CSRFProtection
to avoid Cross Site Request Forgery attacks.
Session stores
See Plug.Session.Store for the specification session stores are required to
implement.
Plug ships with the following session stores:
	Plug.Session.ETS
	Plug.Session.COOKIE

Options
	:store - session store module (required);
	:key - session cookie key (required);
	:domain - see Plug.Conn.put_resp_cookie/4;
	:max_age - see Plug.Conn.put_resp_cookie/4;
	:path - see Plug.Conn.put_resp_cookie/4;
	:secure - see Plug.Conn.put_resp_cookie/4;
	:http_only - see Plug.Conn.put_resp_cookie/4;
	:same_site - see Plug.Conn.put_resp_cookie/4;
	:extra - see Plug.Conn.put_resp_cookie/4;

Additional options can be given to the session store, see the store's
documentation for the options it accepts.
Examples
plug Plug.Session, store: :ets, key: "_my_app_session", table: :session

Plug.Static

A plug for serving static assets.
It requires two options:
	:at - the request path to reach for static assets.
It must be a string.

	:from - the file system path to read static assets from.
It can be either: a string containing a file system path, an
atom representing the application name (where assets will
be served from priv/static), a tuple containing the
application name and the directory to serve assets from (besides
priv/static), or an MFA tuple.

The preferred form is to use :from with an atom or tuple, since
it will make your application independent from the starting directory.
For example, if you pass:
plug Plug.Static, from: "priv/app/path"
Plug.Static will be unable to serve assets if you build releases
or if you change the current directory. Instead do:
plug Plug.Static, from: {:app_name, "priv/app/path"}
If a static asset cannot be found, Plug.Static simply forwards
the connection to the rest of the pipeline.
Cache mechanisms
Plug.Static uses etags for HTTP caching. This means browsers/clients
should cache assets on the first request and validate the cache on
following requests, not downloading the static asset once again if it
has not changed. The cache-control for etags is specified by the
cache_control_for_etags option and defaults to "public".
However, Plug.Static also supports direct cache control by using
versioned query strings. If the request query string starts with
"?vsn=", Plug.Static assumes the application is versioning assets
and does not set the ETag header, meaning the cache behaviour will
be specified solely by the cache_control_for_vsn_requests config,
which defaults to "public, max-age=31536000".
Options
	:encodings - list of 2-ary tuples where first value is value of
the Accept-Encoding header and second is extension of the file to
be served if given encoding is accepted by client. Entries will be tested
in order in list, so entries higher in list will be preferred. Defaults
to: [].
In addition to setting this value directly it supports 2 additional
options for compatibility reasons:
	:brotli - will append {"br", ".br"} to the encodings list.
	:gzip - will append {"gzip", ".gz"} to the encodings list.

Additional options will be added in the above order (Brotli takes
preference over Gzip) to reflect older behaviour which was set due
to fact that Brotli in general provides better compression ratio than
Gzip.

	:cache_control_for_etags - sets the cache header for requests
that use etags. Defaults to "public".

	:etag_generation - specify a {module, function, args} to be used
to generate an etag. The path of the resource will be passed to
the function, as well as the args. If this option is not supplied,
etags will be generated based off of file size and modification time.
Note it is recommended for the etag value to be quoted,
which Plug won't do automatically.

	:cache_control_for_vsn_requests - sets the cache header for
requests starting with "?vsn=" in the query string. Defaults to
"public, max-age=31536000".

	:only - filters which requests to serve. This is useful to avoid
file system access on every request when this plug is mounted
at "/". For example, if only: ["images", "favicon.ico"] is
specified, only files in the "images" directory and the
"favicon.ico" file will be served by Plug.Static.
Note that Plug.Static matches these filters against request
uri and not against the filesystem. When requesting
a file with name containing non-ascii or special characters,
you should use urlencoded form. For example, you should write
only: ["file%20name"] instead of only: ["file name"].
Defaults to nil (no filtering).

	:only_matching - a relaxed version of :only that will
serve any request as long as one of the given values matches the
given path. For example, only_matching: ["images", "favicon"]
will match any request that starts at "images" or "favicon",
be it "/images/foo.png", "/images-high/foo.png", "/favicon.ico"
or "/favicon-high.ico". Such matches are useful when serving
digested files at the root. Defaults to nil (no filtering).

	:headers - other headers to be set when serving static assets. Specify either
an enum of key-value pairs or a {module, function, args} to return an enum. The
conn will be passed to the function, as well as the args.

	:content_types - custom MIME type mapping. As a map with filename as key
and content type as value. For example:
content_types: %{"apple-app-site-association" => "application/json"}.

Examples
This plug can be mounted in a Plug.Builder pipeline as follows:
defmodule MyPlug do
 use Plug.Builder

 plug Plug.Static,
 at: "/public",
 from: :my_app,
 only: ~w(images robots.txt)
 plug :not_found

 def not_found(conn, _) do
 send_resp(conn, 404, "not found")
 end
end

Plug.Telemetry

A plug to instrument the pipeline with :telemetry events.
When plugged, the event prefix is a required option:
plug Plug.Telemetry, event_prefix: [:my, :plug]
In the example above, two events will be emitted:
	[:my, :plug, :start] - emitted when the plug is invoked.
The event carries the system_time as measurement. The metadata
is the whole Plug.Conn under the :conn key and any leftover
options given to the plug under :options.

	[:my, :plug, :stop] - emitted right before the request is sent.
The event carries a single measurement, :duration, which is the
monotonic time difference between the stop and start events.
It has the same metadata as the start event, except the connection
has been updated.

Note this plug measures the time between its invocation until a response
is sent. The :stop event is not guaranteed to be emitted in all error
cases, so this Plug cannot be used as a Telemetry span.
Time unit
The :duration measurements are presented in the :native time unit.
You can read more about it in the docs for System.convert_time_unit/3.
Example
defmodule InstrumentedPlug do
 use Plug.Router

 plug :match
 plug Plug.Telemetry, event_prefix: [:my, :plug]
 plug Plug.Parsers, parsers: [:urlencoded, :multipart]
 plug :dispatch

 get "/" do
 send_resp(conn, 200, "Hello, world!")
 end
end
In this example, the stop event's duration includes the time
it takes to parse the request, dispatch it to the correct handler,
and execute the handler. The events are not emitted for requests
not matching any handlers, since the plug is placed after the match plug.

Plug.Debugger

A module (not a plug) for debugging in development.
This module is commonly used within a Plug.Builder or a Plug.Router
and it wraps the call/2 function.
Notice Plug.Debugger does not catch errors, as errors should still
propagate so that the Elixir process finishes with the proper reason.
This module does not perform any logging either, as all logging is done
by the web server handler.
Note: If this module is used with Plug.ErrorHandler, only one of
them will effectively handle errors. For this reason, it is recommended
that Plug.Debugger is used before Plug.ErrorHandler and only in
particular environments, like :dev.
In case of an error, the rendered page drops the content-security-policy
header before rendering the error to ensure that the error is displayed
correctly.
Examples
defmodule MyApp do
 use Plug.Builder

 if Mix.env == :dev do
 use Plug.Debugger, otp_app: :my_app
 end

 plug :boom

 def boom(conn, _) do
 # Error raised here will be caught and displayed in a debug page
 # complete with a stacktrace and other helpful info.
 raise "oops"
 end
end
Options
	:otp_app - the OTP application that is using Plug. This option is used
to filter stacktraces that belong only to the given application.
	:style - custom styles (see below)
	:banner - the optional MFA ({module, function, args}) which receives
exception details and returns banner contents to appear at the top of
the page. May be any string, including markup.

Custom styles
You may pass a :style option to customize the look of the HTML page.
use Plug.Debugger, style:
 [primary: "#c0392b", logo: "data:image/png;base64,..."]
The following keys are available:
	:primary - primary color
	:accent - accent color
	:logo - logo URI, or nil to disable

The :logo is preferred to be a base64-encoded data URI so not to make any
external requests, though external URLs (eg, https://...) are supported.
Custom Banners
You may pass an MFA ({module, function, args}) to be invoked when an
error is rendered which provides a custom banner at the top of the
debugger page. The function receives the following arguments, with the
passed args concatenated at the end:
[conn, status, kind, reason, stacktrace]
For example, the following :banner option:
use Plug.Debugger, banner: {MyModule, :debug_banner, []}
would invoke the function:
MyModule.debug_banner(conn, status, kind, reason, stacktrace)
Links to the text editor
If a PLUG_EDITOR environment variable is set, Plug.Debugger will
use it to generate links to your text editor. The variable should be
set with __FILE__ and __LINE__ placeholders which will be correctly
replaced. For example (with the TextMate editor):
txmt://open/?url=file://__FILE__&line=__LINE__
Or, using Visual Studio Code:
vscode://file/__FILE__:__LINE__

Plug.ErrorHandler behaviour

A module to be used in your existing plugs in order to provide
error handling.
defmodule AppRouter do
 use Plug.Router
 use Plug.ErrorHandler

 plug :match
 plug :dispatch

 get "/hello" do
 send_resp(conn, 200, "world")
 end

 @impl Plug.ErrorHandler
 def handle_errors(conn, %{kind: _kind, reason: _reason, stack: _stack}) do
 send_resp(conn, conn.status, "Something went wrong")
 end
end
Once this module is used, a callback named handle_errors/2 should
be defined in your plug. This callback will receive the connection
already updated with a proper status code for the given exception.
The second argument is a map containing:
	the exception kind (:throw, :error or :exit),
	the reason (an exception for errors or a term for others)
	the stacktrace

After the callback is invoked, the error is re-raised.
It is advised to do as little work as possible when handling errors
and avoid accessing data like parameters and session, as the parsing
of those is what could have led the error to trigger in the first place.
Also notice that these pages are going to be shown in production. If
you are looking for error handling to help during development, consider
using Plug.Debugger.
Note: If this module is used with Plug.Debugger, it must be used
after Plug.Debugger.

 Anchor for this section

 Summary

 Callbacks

 handle_errors(t, map)

 Handle errors from plugs.

 Anchor for this section

Callbacks

 Link to this callback

 handle_errors(t, map)

 View Source

 @callback handle_errors(Plug.Conn.t(), %{
 kind: :error | :throw | :exit,
 reason: Exception.t() | term(),
 stack: Exception.stacktrace()
}) :: no_return()

Handle errors from plugs.
Called when an exception is raised during the processing of a plug.

Plug.Exception protocol

A protocol that extends exceptions to be status-code aware.
By default, it looks for an implementation of the protocol,
otherwise checks if the exception has the :plug_status field
or simply returns 500.

 Anchor for this section

 Summary

 Types

 action()

 t()

 Functions

 actions(exception)

 Receives an exception and returns the possible actions that could be triggered for that error.
Should return a list of actions in the following structure

 status(exception)

 Receives an exception and returns its HTTP status code.

 Anchor for this section

Types

 Link to this type

 action()

 View Source

 @type action() :: %{label: String.t(), handler: {module(), atom(), list()}}

 Link to this type

 t()

 View Source

 @type t() :: term()

 Anchor for this section

Functions

 Link to this function

 actions(exception)

 View Source

 @spec actions(t()) :: [action()]

Receives an exception and returns the possible actions that could be triggered for that error.
Should return a list of actions in the following structure:
%{
 label: "Text that will be displayed in the button",
 handler: {Module, :function, [args]}
}
Where:
	label a string/binary that names this action
	handler a MFArgs that will be executed when this action is triggered

It will be rendered in the Plug.Debugger generated error page as buttons showing the label
that upon pressing executes the MFArgs defined in the handler.

 examples

 Examples

defimpl Plug.Exception, for: ActionableExample do
 def actions(_), do: [%{label: "Print HI", handler: {IO, :puts, ["Hi!"]}}]
end

 Link to this function

 status(exception)

 View Source

 @spec status(t()) :: Plug.Conn.status()

Receives an exception and returns its HTTP status code.

Plug.Conn.Adapter behaviour

Specification of the connection adapter API implemented by webservers.

 Anchor for this section

 Summary

 Types

 http_protocol()

 payload()

 peer_data()

 Callbacks

 chunk(payload, body)

 Sends a chunk in the chunked response.

 get_http_protocol(payload)

 Returns the HTTP protocol and its version.

 get_peer_data(payload)

 Returns peer information such as the address, port and ssl cert.

 inform(payload, status, headers)

 Send an informational response to the client.

 push(payload, path, headers)

 Push a resource to the client.

 read_req_body(payload, options)

 Reads the request body.

 send_chunked(payload, status, headers)

 Sends the given status, headers as the beginning of
a chunked response to the client.

 send_file(
 payload,
 status,
 headers,
 file,
 offset,
 length
)

 Sends the given status, headers and file as a response
back to the client.

 send_resp(
 payload,
 status,
 headers,
 body
)

 Sends the given status, headers and body as a response
back to the client.

 Functions

 conn(adapter, method, uri, remote_ip, req_headers)

 Function used by adapters to create a new connection.

 Anchor for this section

Types

 Link to this type

 http_protocol()

 View Source

 @type http_protocol() :: :"HTTP/1" | :"HTTP/1.1" | :"HTTP/2" | atom()

 Link to this type

 payload()

 View Source

 @type payload() :: term()

 Link to this type

 peer_data()

 View Source

 @type peer_data() :: %{
 address: :inet.ip_address(),
 port: :inet.port_number(),
 ssl_cert: binary() | nil
}

 Anchor for this section

Callbacks

 Link to this callback

 chunk(payload, body)

 View Source

 @callback chunk(payload(), body :: Plug.Conn.body()) ::
 :ok | {:ok, sent_body :: binary(), payload()} | {:error, term()}

Sends a chunk in the chunked response.
If the request has method "HEAD", the adapter should
not send the response to the client.
Webservers are advised to return :ok and not modify
any further state for each chunk. However, the test
implementation returns the actual body and payload so
it can be used during testing.

 Link to this callback

 get_http_protocol(payload)

 View Source

 @callback get_http_protocol(payload()) :: http_protocol()

Returns the HTTP protocol and its version.

 Link to this callback

 get_peer_data(payload)

 View Source

 @callback get_peer_data(payload()) :: peer_data()

Returns peer information such as the address, port and ssl cert.

 Link to this callback

 inform(payload, status, headers)

 View Source

 @callback inform(payload(), status :: Plug.Conn.status(), headers :: Keyword.t()) ::
 :ok | {:error, term()}

Send an informational response to the client.
If the adapter does not support inform, then {:error, :not_supported}
should be returned.

 Link to this callback

 push(payload, path, headers)

 View Source

 @callback push(payload(), path :: String.t(), headers :: Keyword.t()) ::
 :ok | {:error, term()}

Push a resource to the client.
If the adapter does not support server push then {:error, :not_supported}
should be returned.

 Link to this callback

 read_req_body(payload, options)

 View Source

 @callback read_req_body(payload(), options :: Keyword.t()) ::
 {:ok, data :: binary(), payload()}
 | {:more, data :: binary(), payload()}
 | {:error, term()}

Reads the request body.
Read the docs in Plug.Conn.read_body/2 for the supported
options and expected behaviour.

 Link to this callback

 send_chunked(payload, status, headers)

 View Source

 @callback send_chunked(
 payload(),
 status :: Plug.Conn.status(),
 headers :: Plug.Conn.headers()
) ::
 {:ok, sent_body :: binary() | nil, payload()}

Sends the given status, headers as the beginning of
a chunked response to the client.
Webservers are advised to return nil as the sent_body,
as the body can no longer be manipulated. However, the
test implementation returns the actual body so it can
be used during testing.

 Link to this callback

 send_file(
 payload,
 status,
 headers,
 file,
 offset,
 length
)

 View Source

 @callback send_file(
 payload(),
 status :: Plug.Conn.status(),
 headers :: Plug.Conn.headers(),
 file :: binary(),
 offset :: integer(),
 length :: integer() | :all
) :: {:ok, sent_body :: binary() | nil, payload()}

Sends the given status, headers and file as a response
back to the client.
If the request has method "HEAD", the adapter should
not send the response to the client.
Webservers are advised to return nil as the sent_body,
as the body can no longer be manipulated. However, the
test implementation returns the actual body so it can
be used during testing.

 Link to this callback

 send_resp(
 payload,
 status,
 headers,
 body
)

 View Source

 @callback send_resp(
 payload(),
 status :: Plug.Conn.status(),
 headers :: Plug.Conn.headers(),
 body :: Plug.Conn.body()
) :: {:ok, sent_body :: binary() | nil, payload()}

Sends the given status, headers and body as a response
back to the client.
If the request has method "HEAD", the adapter should
not send the response to the client.
Webservers are advised to return nil as the sent_body,
as the body can no longer be manipulated. However, the
test implementation returns the actual body so it can
be used during testing.

 Anchor for this section

Functions

 Link to this function

 conn(adapter, method, uri, remote_ip, req_headers)

 View Source

Function used by adapters to create a new connection.

Plug.Conn.Cookies

Conveniences for encoding and decoding cookies.

 Anchor for this section

 Summary

 Functions

 decode(cookie)

 Decodes the given cookies as given in either a request or response header.

 encode(key, opts \\ %{})

 Encodes the given cookies as expected in a response header.

 Anchor for this section

Functions

 Link to this function

 decode(cookie)

 View Source

Decodes the given cookies as given in either a request or response header.
If a cookie is invalid, it is automatically discarded from the result.

 examples

 Examples

iex> decode("key1=value1;key2=value2")
%{"key1" => "value1", "key2" => "value2"}

 Link to this function

 encode(key, opts \\ %{})

 View Source

Encodes the given cookies as expected in a response header.

Plug.Conn.Query

Conveniences for decoding and encoding url encoded queries.
Plug allows a developer to build query strings that map to
Elixir structures in order to make manipulation of such structures
easier on the server side. Here are some examples:
iex> decode("foo=bar")["foo"]
"bar"
If a value is given more than once, the last value takes precedence:
iex> decode("foo=bar&foo=baz")["foo"]
"baz"
Nested structures can be created via [key]:
iex> decode("foo[bar]=baz")["foo"]["bar"]
"baz"
Lists are created with []:
iex> decode("foo[]=bar&foo[]=baz")["foo"]
["bar", "baz"]
Keys without values are treated as empty strings,
according to https://url.spec.whatwg.org/#application/x-www-form-urlencoded:
iex> decode("foo")["foo"]
""
Maps can be encoded:
iex> encode(%{foo: "bar", baz: "bat"})
"baz=bat&foo=bar"
Encoding keyword lists preserves the order of the fields:
iex> encode([foo: "bar", baz: "bat"])
"foo=bar&baz=bat"
When encoding keyword lists with duplicate keys, the key that comes first
takes precedence:
iex> encode([foo: "bar", foo: "bat"])
"foo=bar"
Encoding named lists:
iex> encode(%{foo: ["bar", "baz"]})
"foo[]=bar&foo[]=baz"
Encoding nested structures:
iex> encode(%{foo: %{bar: "baz"}})
"foo[bar]=baz"

 Anchor for this section

 Summary

 Functions

 decode(query, initial \\ %{}, invalid_exception \\ Plug.Conn.InvalidQueryError, validate_utf8 \\ true)

 Decodes the given binary.

 decode_pair(arg, acc)

 Decodes the given tuple and stores it in the accumulator.

 encode(kv, encoder \\ &to_string/1)

 Encodes the given map or list of tuples.

 Anchor for this section

Functions

 Link to this function

 decode(query, initial \\ %{}, invalid_exception \\ Plug.Conn.InvalidQueryError, validate_utf8 \\ true)

 View Source

Decodes the given binary.
The binary is assumed to be encoded in "x-www-form-urlencoded" format.
The format is decoded and then validated for proper UTF-8 encoding.

 Link to this function

 decode_pair(arg, acc)

 View Source

Decodes the given tuple and stores it in the accumulator.
It parses the key and stores the value into the current
accumulator. The keys and values are not assumed to be
encoded in "x-www-form-urlencoded".
Parameter lists are added to the accumulator in reverse
order, so be sure to pass the parameters in reverse order.

 Link to this function

 encode(kv, encoder \\ &to_string/1)

 View Source

Encodes the given map or list of tuples.

Plug.Conn.Status

Conveniences for working with status codes.

 Anchor for this section

 Summary

 Functions

 code(integer_or_atom)

 Returns the status code given an integer or a known atom.

 reason_atom(code)

 Returns the atom for given integer.

 reason_phrase(integer)

 Anchor for this section

Functions

 Link to this function

 code(integer_or_atom)

 View Source

 @spec code(integer() | atom()) :: integer()

Returns the status code given an integer or a known atom.

 known-status-codes

 Known status codes

The following status codes can be given as atoms with their
respective value shown next:
	:continue - 100
	:switching_protocols - 101
	:processing - 102
	:early_hints - 103
	:ok - 200
	:created - 201
	:accepted - 202
	:non_authoritative_information - 203
	:no_content - 204
	:reset_content - 205
	:partial_content - 206
	:multi_status - 207
	:already_reported - 208
	:im_used - 226
	:multiple_choices - 300
	:moved_permanently - 301
	:found - 302
	:see_other - 303
	:not_modified - 304
	:use_proxy - 305
	:switch_proxy - 306
	:temporary_redirect - 307
	:permanent_redirect - 308
	:bad_request - 400
	:unauthorized - 401
	:payment_required - 402
	:forbidden - 403
	:not_found - 404
	:method_not_allowed - 405
	:not_acceptable - 406
	:proxy_authentication_required - 407
	:request_timeout - 408
	:conflict - 409
	:gone - 410
	:length_required - 411
	:precondition_failed - 412
	:request_entity_too_large - 413
	:request_uri_too_long - 414
	:unsupported_media_type - 415
	:requested_range_not_satisfiable - 416
	:expectation_failed - 417
	:im_a_teapot - 418
	:misdirected_request - 421
	:unprocessable_entity - 422
	:locked - 423
	:failed_dependency - 424
	:too_early - 425
	:upgrade_required - 426
	:precondition_required - 428
	:too_many_requests - 429
	:request_header_fields_too_large - 431
	:unavailable_for_legal_reasons - 451
	:internal_server_error - 500
	:not_implemented - 501
	:bad_gateway - 502
	:service_unavailable - 503
	:gateway_timeout - 504
	:http_version_not_supported - 505
	:variant_also_negotiates - 506
	:insufficient_storage - 507
	:loop_detected - 508
	:not_extended - 510
	:network_authentication_required - 511

 Link to this function

 reason_atom(code)

 View Source

 @spec reason_atom(integer()) :: atom()

Returns the atom for given integer.
See code/1 for the mapping.

 Link to this function

 reason_phrase(integer)

 View Source

 @spec reason_phrase(integer()) :: String.t()

Plug.Conn.Unfetched

A struct used as default on unfetched fields.
The :aspect key of the struct specifies what field is still unfetched.
Examples
unfetched = %Plug.Conn.Unfetched{aspect: :cookies}

 Anchor for this section

 Summary

 Types

 t()

 Functions

 fetch(map, key)

 Callback implementation for Access.fetch/2.

 get(map, key, value)

 get_and_update(map, key, fun)

 Callback implementation for Access.get_and_update/3.

 pop(map, key)

 Callback implementation for Access.pop/2.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Plug.Conn.Unfetched{aspect: atom()}

 Anchor for this section

Functions

 Link to this function

 fetch(map, key)

 View Source

Callback implementation for Access.fetch/2.

 Link to this function

 get(map, key, value)

 View Source

 Link to this function

 get_and_update(map, key, fun)

 View Source

Callback implementation for Access.get_and_update/3.

 Link to this function

 pop(map, key)

 View Source

Callback implementation for Access.pop/2.

Plug.Conn.Utils

Utilities for working with connection data

 Anchor for this section

 Summary

 Types

 params()

 Functions

 content_type(binary)

 Parses content type (without wildcards).

 list(binary)

 Parses a comma-separated list of header values.

 media_type(binary)

 Parses media types (with wildcards).

 params(t)

 Parses headers parameters.

 token(token)

 Parses a value as defined in RFC-1341.

 validate_utf8!(binary, exception, context)

 Validates the given binary is valid UTF-8.

 Anchor for this section

Types

 Link to this type

 params()

 View Source

 @type params() :: %{optional(binary()) => binary()}

 Anchor for this section

Functions

 Link to this function

 content_type(binary)

 View Source

 @spec content_type(binary()) ::
 {:ok, type :: binary(), subtype :: binary(), params()} | :error

Parses content type (without wildcards).
It is similar to media_type/1 except wildcards are
not accepted in the type nor in the subtype.

 examples

 Examples

iex> content_type "x-sample/json; charset=utf-8"
{:ok, "x-sample", "json", %{"charset" => "utf-8"}}

iex> content_type "x-sample/json ; charset=utf-8 ; foo=bar"
{:ok, "x-sample", "json", %{"charset" => "utf-8", "foo" => "bar"}}

iex> content_type "\r\n text/plain;\r\n charset=utf-8\r\n"
{:ok, "text", "plain", %{"charset" => "utf-8"}}

iex> content_type "text/plain"
{:ok, "text", "plain", %{}}

iex> content_type "x/*"
:error

iex> content_type "*/*"
:error

 Link to this function

 list(binary)

 View Source

 @spec list(binary()) :: [binary()]

Parses a comma-separated list of header values.

 examples

 Examples

iex> list("foo, bar")
["foo", "bar"]

iex> list("foobar")
["foobar"]

iex> list("")
[]

iex> list("empties, , are,, filtered")
["empties", "are", "filtered"]

 Link to this function

 media_type(binary)

 View Source

 @spec media_type(binary()) ::
 {:ok, type :: binary(), subtype :: binary(), params()} | :error

Parses media types (with wildcards).
Type and subtype are case insensitive while the
sensitiveness of params depends on their keys and
therefore are not handled by this parser.
Returns:
	{:ok, type, subtype, map_of_params} if everything goes fine
	:error if the media type isn't valid

 examples

 Examples

iex> media_type "text/plain"
{:ok, "text", "plain", %{}}

iex> media_type "APPLICATION/vnd.ms-data+XML"
{:ok, "application", "vnd.ms-data+xml", %{}}

iex> media_type "text/*; q=1.0"
{:ok, "text", "*", %{"q" => "1.0"}}

iex> media_type "*/*; q=1.0"
{:ok, "*", "*", %{"q" => "1.0"}}

iex> media_type "x y"
:error

iex> media_type "*/html"
:error

iex> media_type "/"
:error

iex> media_type "x/y z"
:error

 Link to this function

 params(t)

 View Source

 @spec params(binary()) :: params()

Parses headers parameters.
Keys are case insensitive and downcased,
invalid key-value pairs are discarded.

 examples

 Examples

iex> params("foo=bar")
%{"foo" => "bar"}

iex> params(" foo=bar ")
%{"foo" => "bar"}

iex> params("FOO=bar")
%{"foo" => "bar"}

iex> params("Foo=bar; baz=BOING")
%{"foo" => "bar", "baz" => "BOING"}

iex> params("foo=BAR ; wat")
%{"foo" => "BAR"}

iex> params("foo=\"bar\"; baz=\"boing\"")
%{"foo" => "bar", "baz" => "boing"}

iex> params("foo=\"bar;\"; baz=\"boing\"")
%{"foo" => "bar;", "baz" => "boing"}

iex> params("=")
%{}

iex> params(";")
%{}

 Link to this function

 token(token)

 View Source

 @spec token(binary()) :: binary() | false

Parses a value as defined in RFC-1341.
For convenience, trims whitespace at the end of the token.
Returns false if the token is invalid.

 examples

 Examples

iex> token("foo")
"foo"

iex> token("foo-bar")
"foo-bar"

iex> token("<foo>")
false

iex> token(~s["<foo>"])
"<foo>"

iex> token(~S["<f\oo>\"<b\ar>"])
"<foo>\"<bar>"

iex> token(~s["])
false

iex> token("foo ")
"foo"

iex> token("foo bar")
false

iex> token("")
false

iex> token(" ")
""

 Link to this function

 validate_utf8!(binary, exception, context)

 View Source

 @spec validate_utf8!(binary(), module(), binary()) :: :ok | no_return()

Validates the given binary is valid UTF-8.

Plug.Parsers.JSON

Parses JSON request body.
JSON documents that aren't maps (arrays, strings, numbers, etc) are parsed
into a "_json" key to allow proper param merging.
An empty request body is parsed as an empty map.
Options
All options supported by Plug.Conn.read_body/2 are also supported here.
They are repeated here for convenience:
	:length - sets the maximum number of bytes to read from the request,
defaults to 8_000_000 bytes
	:read_length - sets the amount of bytes to read at one time from the
underlying socket to fill the chunk, defaults to 1_000_000 bytes
	:read_timeout - sets the timeout for each socket read, defaults to
15_000ms

So by default, Plug.Parsers will read 1_000_000 bytes at a time from the
socket with an overall limit of 8_000_000 bytes.

Plug.Parsers.MULTIPART

Parses multipart request body.
Options
All options supported by Plug.Conn.read_body/2 are also supported here.
They are repeated here for convenience:
	:length - sets the maximum number of bytes to read from the request,
defaults to 8_000_000 bytes

	:read_length - sets the amount of bytes to read at one time from the
underlying socket to fill the chunk, defaults to 1_000_000 bytes

	:read_timeout - sets the timeout for each socket read, defaults to
15_000ms

So by default, Plug.Parsers will read 1_000_000 bytes at a time from the
socket with an overall limit of 8_000_000 bytes.
Besides the options supported by Plug.Conn.read_body/2, the multipart parser
also checks for:
	:headers - containing the same :length, :read_length
and :read_timeout options which are used explicitly for parsing multipart
headers

	:validate_utf8 - specifies whether multipart body parts should be validated
as utf8 binaries. Defaults to true

	:multipart_to_params - a MFA that receives the multipart headers and the
connection and it must return a tuple of {:ok, params, conn}

Multipart to params
Once all multiparts are collected, they must be converted to params and this
can be customize with a MFA. The default implementation of this function
is equivalent to:
def multipart_to_params(parts, conn) do
 params =
 for {name, _headers, body} <- parts,
 name != nil,
 reduce: %{} do
 acc -> Plug.Conn.Query.decode_pair({name, body}, acc)
 end

 {:ok, params, conn}
end
As you can notice, it discards all multiparts without a name. If you want
to keep the unnamed parts, you can store all of them under a known prefix,
such as:
def multipart_to_params(parts, conn) do
 params =
 for {name, _headers, body} <- parts, reduce: %{} do
 acc -> Plug.Conn.Query.decode_pair({name || "_parts[]", body}, acc)
 end

 {:ok, params, conn}
end
Dynamic configuration
If you need to dynamically configure how Plug.Parsers.MULTIPART behave,
for example, based on the connection or another system parameter, one option
is to create your own parser that wraps it:
defmodule MyMultipart do
 @multipart Plug.Parsers.MULTIPART

 def init(opts) do
 opts
 end

 def parse(conn, "multipart", subtype, headers, opts) do
 limit = [limit: System.fetch_env!("UPLOAD_LIMIT")]
 opts = @multipart.init([limit: limit] ++ opts)
 @multipart.parse(conn, "multipart", subtype, headers, opts)
 end

 def parse(conn, _type, _subtype, _headers, _opts) do
 {:next, conn}
 end
end

Plug.Parsers.URLENCODED

Parses urlencoded request body.
Options
All options supported by Plug.Conn.read_body/2 are also supported here.
They are repeated here for convenience:
	:length - sets the maximum number of bytes to read from the request,
defaults to 1_000_000 bytes
	:read_length - sets the amount of bytes to read at one time from the
underlying socket to fill the chunk, defaults to 1_000_000 bytes
	:read_timeout - sets the timeout for each socket read, defaults to
15_000ms

So by default, Plug.Parsers will read 1_000_000 bytes at a time from the
socket with an overall limit of 8_000_000 bytes.

Plug.Session.COOKIE

Stores the session in a cookie.
This cookie store is based on Plug.Crypto.MessageVerifier
and Plug.Crypto.MessageEncryptor which encrypts and signs
each cookie to ensure they can't be read nor tampered with.
Since this store uses crypto features, it requires you to
set the :secret_key_base field in your connection. This
can be easily achieved with a plug:
plug :put_secret_key_base

def put_secret_key_base(conn, _) do
 put_in conn.secret_key_base, "-- LONG STRING WITH AT LEAST 64 BYTES --"
end
Options
	:secret_key_base - the secret key base to built the cookie
signing/encryption on top of. If one is given on initialization,
the cookie store can precompute all relevant values at compilation
time. Otherwise, the value is taken from conn.secret_key_base
and cached.

	:encryption_salt - a salt used with conn.secret_key_base to generate
a key for encrypting/decrypting a cookie, can be either a binary or
an MFA returning a binary;

	:signing_salt - a salt used with conn.secret_key_base to generate a
key for signing/verifying a cookie, can be either a binary or
an MFA returning a binary;

	:key_iterations - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 1000;

	:key_length - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to 32;

	:key_digest - option passed to Plug.Crypto.KeyGenerator
when generating the encryption and signing keys. Defaults to :sha256;

	:serializer - cookie serializer module that defines encode/1 and
decode/1 returning an {:ok, value} tuple. Defaults to
:external_term_format.

	:log - Log level to use when the cookie cannot be decoded.
Defaults to :debug, can be set to false to disable it.

	:rotating_options - additional list of options to use when decrypting and
verifying the cookie. These options are used only when the cookie could not
be decoded using primary options and are fetched on init so they cannot be
changed in runtime. Defaults to [].

Examples
plug Plug.Session, store: :cookie,
 key: "_my_app_session",
 encryption_salt: "cookie store encryption salt",
 signing_salt: "cookie store signing salt",
 key_length: 64,
 log: :debug

Plug.Session.ETS

Stores the session in an in-memory ETS table.
This store does not create the ETS table; it expects that an
existing named table with public properties is passed as an
argument.
We don't recommend using this store in production as every
session will be stored in ETS and never cleaned until you
create a task responsible for cleaning up old entries.
Also, since the store is in-memory, it means sessions are
not shared between servers. If you deploy to more than one
machine, using this store is again not recommended.
This store, however, can be used as an example for creating
custom storages, based on Redis, Memcached, or a database
itself.
Options
	:table - ETS table name (required)

For more information on ETS tables, visit the Erlang documentation at
http://www.erlang.org/doc/man/ets.html.
Storage
The data is stored in ETS in the following format:
{sid :: String.t, data :: map, timestamp :: :erlang.timestamp}
The timestamp is updated whenever there is a read or write to the
table and it may be used to detect if a session is still active.
Examples
Create an ETS table when the application starts
:ets.new(:session, [:named_table, :public, read_concurrency: true])

Use the session plug with the table name
plug Plug.Session, store: :ets, key: "sid", table: :session

Plug.Session.Store behaviour

Specification for session stores.

 Anchor for this section

 Summary

 Types

 cookie()

 The cookie value that will be sent in cookie headers. This value should be
base64 encoded to avoid security issues.

 session()

 The session contents, the final data to be stored after it has been built
with Plug.Conn.put_session/3 and the other session manipulating functions.

 sid()

 The internal reference to the session in the store.

 Callbacks

 delete(conn, sid, opts)

 Removes the session associated with given session id from the store.

 get(conn, cookie, opts)

 Parses the given cookie.

 init(opts)

 Initializes the store.

 put(conn, sid, any, opts)

 Stores the session associated with given session id.

 Functions

 get(store)

 Gets the store name from an atom or a module.

 Anchor for this section

Types

 Link to this type

 cookie()

 View Source

 @type cookie() :: binary()

The cookie value that will be sent in cookie headers. This value should be
base64 encoded to avoid security issues.

 Link to this type

 session()

 View Source

 @type session() :: map()

The session contents, the final data to be stored after it has been built
with Plug.Conn.put_session/3 and the other session manipulating functions.

 Link to this type

 sid()

 View Source

 @type sid() :: term() | nil

The internal reference to the session in the store.

 Anchor for this section

Callbacks

 Link to this callback

 delete(conn, sid, opts)

 View Source

 @callback delete(conn :: Plug.Conn.t(), sid(), opts :: Plug.opts()) :: :ok

Removes the session associated with given session id from the store.

 Link to this callback

 get(conn, cookie, opts)

 View Source

 @callback get(conn :: Plug.Conn.t(), cookie(), opts :: Plug.opts()) :: {sid(), session()}

Parses the given cookie.
Returns a session id and the session contents. The session id is any
value that can be used to identify the session by the store.
The session id may be nil in case the cookie does not identify any
value in the store. The session contents must be a map.

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: Plug.opts()) :: Plug.opts()

Initializes the store.
The options returned from this function will be given
to get/3, put/4 and delete/3.

 Link to this callback

 put(conn, sid, any, opts)

 View Source

 @callback put(conn :: Plug.Conn.t(), sid(), any(), opts :: Plug.opts()) :: cookie()

Stores the session associated with given session id.
If nil is given as id, a new session id should be
generated and returned.

 Anchor for this section

Functions

 Link to this function

 get(store)

 View Source

Gets the store name from an atom or a module.
iex> Plug.Session.Store.get(CustomStore)
CustomStore

iex> Plug.Session.Store.get(:cookie)
Plug.Session.COOKIE

Plug.BadRequestError exception

The request will not be processed due to a client error.

Plug.CSRFProtection.InvalidCSRFTokenError exception

Error raised when CSRF token is invalid.

Plug.CSRFProtection.InvalidCrossOriginRequestError exception

Error raised when non-XHR requests are used for Javascript responses.

Plug.Conn.AlreadySentError exception

Error raised when trying to modify or send an already sent response

Plug.Conn.CookieOverflowError exception

Error raised when the cookie exceeds the maximum size of 4096 bytes.

Plug.Conn.InvalidHeaderError exception

Error raised when trying to send a header that has errors, for example:
	the header key contains uppercase chars
	the header value contains newlines \n

Plug.Conn.InvalidQueryError exception

Raised when the request string is malformed, for example:
	the query has bad utf-8 encoding
	the query fails to www-form decode

Plug.Conn.NotSentError exception

Error raised when no response is sent in a request

Plug.Conn.WrapperError exception

Wraps the connection in an error which is meant
to be handled upper in the stack.
Used by both Plug.Debugger and Plug.ErrorHandler.

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 reraise(reason)

 Reraises an error or a wrapped one.

 reraise(conn, kind, reason)

 deprecated

 reraise(conn, kind, reason, stack)

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

 Link to this function

 reraise(reason)

 View Source

Reraises an error or a wrapped one.

 Link to this function

 reraise(conn, kind, reason)

 View Source

 This function is deprecated. Use reraise/1 or reraise/4 instead.

 Link to this function

 reraise(conn, kind, reason, stack)

 View Source

Plug.Parsers.BadEncodingError exception

Raised when the request body contains bad encoding.

Plug.Parsers.ParseError exception

Error raised when the request body is malformed.

 Anchor for this section

 Summary

 Functions

 message(map)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(map)

 View Source

Callback implementation for Exception.message/1.

Plug.Parsers.RequestTooLargeError exception

Error raised when the request is too large.

Plug.Parsers.UnsupportedMediaTypeError exception

Error raised when the request body cannot be parsed.

 Anchor for this section

 Summary

 Functions

 message(exception)

 Callback implementation for Exception.message/1.

 Anchor for this section

Functions

 Link to this function

 message(exception)

 View Source

Callback implementation for Exception.message/1.

Plug.Router.InvalidSpecError exception

Plug.Router.MalformedURIError exception

Plug.Static.InvalidPathError exception

Plug.TimeoutError exception

Timeout while waiting for the request.

Plug.UploadError exception

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

