

 Phoenix LiveView

 v0.17.2

 Table of contents

 	Introduction

 	Installation

 	Server-side features

 	Assigns and HEEx templates

 	Error and exception handling

 	Live layouts

 	Live navigation

 	Security considerations of the LiveView model

 	Telemetry

 	Uploads

 	Using Gettext for internationalization

 	Client-side integration

 	Bindings

 	Form bindings

 	DOM patching & temporary assigns

 	JavaScript interoperability

 	External Uploads

 	Modules

 	Phoenix.LiveView

 	Phoenix.LiveView.Controller

 	Phoenix.LiveView.Helpers

 	Phoenix.LiveView.JS

 	Phoenix.LiveView.Router

 	Phoenix.LiveView.Socket

 	Phoenix.LiveViewTest

 	Phoenix.Component

 	Phoenix.LiveComponent

 	Phoenix.LiveComponent.CID

 	Phoenix.LiveViewTest.Element

 	Phoenix.LiveViewTest.Upload

 	Phoenix.LiveViewTest.View

 	Phoenix.LiveView.UploadConfig

 	Phoenix.LiveView.UploadEntry

 	Phoenix.LiveView.Component

 	Phoenix.LiveView.Comprehension

 	Phoenix.LiveView.Engine

 	Phoenix.LiveView.HTMLEngine

 	Phoenix.LiveView.Rendered

Installation
Note: Phoenix v1.5 comes with built-in support for LiveView apps. Just create
your application with mix phx.new my_app --live. If you are using earlier Phoenix
versions or your app already exists, keep on reading.
The instructions below will serve if you are installing the latest stable version
from Hex. To start using LiveView, add one of the following dependencies to your mix.exs
and run mix deps.get.
If installing from Hex, use the latest version from there:
def deps do
 [
 {:phoenix_live_view, "~> 0.17.2"},
 {:floki, ">= 0.30.0", only: :test}
]
end
If you want the latest features, install from GitHub:
def deps do
 [
 {:phoenix_live_view, github: "phoenixframework/phoenix_live_view"},
 {:floki, ">= 0.30.0", only: :test}
]
Once installed, update your endpoint's configuration to include a signing salt.
You can generate a signing salt by running mix phx.gen.secret 32:
config/config.exs

config :my_app, MyAppWeb.Endpoint,
 live_view: [signing_salt: "SECRET_SALT"]
Next, add the following imports to your web file in lib/my_app_web.ex:
lib/my_app_web.ex

def view do
 quote do
 ...
 import Phoenix.LiveView.Helpers
 end
end

def router do
 quote do
 ...
 import Phoenix.LiveView.Router
 end
end
Then add the Phoenix.LiveView.Router.fetch_live_flash/2 plug to your browser pipeline, in place of :fetch_flash:
lib/my_app_web/router.ex

pipeline :browser do
 ...
 plug :fetch_session
- plug :fetch_flash
+ plug :fetch_live_flash
end
Next, expose a new socket for LiveView updates in your app's endpoint module.
lib/my_app_web/endpoint.ex

defmodule MyAppWeb.Endpoint do
 use Phoenix.Endpoint

 # ...

 socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [session: @session_options]]

 # ...
end
Where @session_options are the options given to plug Plug.Session by using a module attribute. If you don't have a @session_options in your endpoint yet, here is how to create one:
	Find plug Plug.Session in your endpoint.ex

 plug Plug.Session
 store: :cookie,
 key: "_my_app_key",
 signing_salt: "somesigningsalt"
	Move the options to a module attribute at the top of your file:

 @session_options [
 store: :cookie,
 key: "_my_app_key",
 signing_salt: "somesigningsalt"
]
	Change the plug Plug.Session to use that attribute:

 plug Plug.Session, @session_options
Finally, ensure you have placed a CSRF meta tag inside the <head> tag in your layout (lib/my_app_web/templates/layout/app.html.*) before app.js is included, like so:
<%= csrf_meta_tag() %>
<script defer type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>
and enable connecting to a LiveView socket in your app.js file.
// assets/js/app.js
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})

// Connect if there are any LiveViews on the page
liveSocket.connect()

// Expose liveSocket on window for web console debug logs and latency simulation:
// >> liveSocket.enableDebug()
// >> liveSocket.enableLatencySim(1000)
// The latency simulator is enabled for the duration of the browser session.
// Call disableLatencySim() to disable:
// >> liveSocket.disableLatencySim()
window.liveSocket = liveSocket
The JavaScript above expects phoenix_live_view to be available as a JavaScript dependency. Let's do that.
npm dependencies
If using npm, you need to add LiveView to your assets/package.json. For a regular project, do:
{
 "dependencies": {
 "phoenix": "file:../deps/phoenix",
 "phoenix_html": "file:../deps/phoenix_html",
 "phoenix_live_view": "file:../deps/phoenix_live_view"
 }
}
However, if you're adding phoenix_live_view to an umbrella project, the dependency paths should be modified appropriately:
{
 "dependencies": {
 "phoenix": "file:../../../deps/phoenix",
 "phoenix_html": "file:../../../deps/phoenix_html",
 "phoenix_live_view": "file:../../../deps/phoenix_live_view"
 }
}
Now run the next commands from your web app root:
npm install --prefix assets

If you had previously installed phoenix_live_view and want to get the
latest javascript, then force an install with:
npm install --force phoenix_live_view --prefix assets

Layouts
LiveView does not use the default app layout. Instead, you typically call put_root_layout in your router to specify a layout that is used by both "regular" views and live views. In your router, do:
pipeline :browser do
 ...
 plug :put_root_layout, {MyAppWeb.LayoutView, :root}
 ...
end
The layout given to put_root_layout must use <%= @inner_content %> instead of <%= render(@view_module, @view_template, assigns) %>. It is typically very barebones, with mostly
<head> and <body> tags. For example:
<!DOCTYPE html>
<html lang="en">
 <head>
 <%= csrf_meta_tag() %>
 <%= live_title_tag assigns[:page_title] || "MyApp" %>
 <link rel="stylesheet" href="<%= Routes.static_path(@conn, "/css/app.css") %>"/>
 <script defer type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>
 </head>
 <body>
 <%= @inner_content %>
 </body>
</html>
Once you have specified a root layout, "app.html.heex" will be rendered within your root layout for all non-LiveViews. You may also optionally define a "live.html.heex" layout to be used across all LiveViews, as we will describe in the next section.
Optionally, you can add a phx-track-static to all script and link elements in your layout that use src and href. This way you can detect when new assets have been deployed by calling static_changed?.
<link phx-track-static rel="stylesheet" href={Routes.static_path(@conn, "/css/app.css")} />
<script phx-track-static defer type="text/javascript" src={Routes.static_path(@conn, "/js/app.js")}></script>
phx.gen.live support
While the above instructions are enough to install LiveView in a Phoenix app, if you want to use the phx.gen.live generators that come as part of Phoenix v1.5, you need to do one more change, as those generators assume your application was created with mix phx.new --live.
The change is to define the live_view and live_component functions in your my_app_web.ex file, while refactoring the view function. At the end, they will look like this:
 def view do
 quote do
 use Phoenix.View,
 root: "lib/<%= lib_web_name %>/templates",
 namespace: <%= web_namespace %>

 # Import convenience functions from controllers
 import Phoenix.Controller,
 only: [get_flash: 1, get_flash: 2, view_module: 1, view_template: 1]

 # Include shared imports and aliases for views
 unquote(view_helpers())
 end
 end

 def live_view do
 quote do
 use Phoenix.LiveView,
 layout: {<%= web_namespace %>.LayoutView, "live.html"}

 unquote(view_helpers())
 end
 end

 def live_component do
 quote do
 use Phoenix.LiveComponent

 unquote(view_helpers())
 end
 end

 defp view_helpers do
 quote do
 # Use all HTML functionality (forms, tags, etc)
 use Phoenix.HTML

 # Import LiveView helpers (live_render, live_component, live_patch, etc)
 import Phoenix.LiveView.Helpers

 # Import basic rendering functionality (render, render_layout, etc)
 import Phoenix.View

 import MyAppWeb.ErrorHelpers
 import MyAppWeb.Gettext
 alias MyAppWeb.Router.Helpers, as: Routes
 end
 end
Note that LiveViews are automatically configured to use a "live.html.heex" layout in this line:
use Phoenix.LiveView,
 layout: {<%= web_namespace %>.LayoutView, "live.html"}
"layouts/root.html.heex" is shared by regular and live views, "app.html.heex" is rendered inside the root layout for regular views, and "live.html.heex" is rendered inside the root layout for LiveViews. "live.html.heex" typically starts out as a copy of "app.html.heex", but using the @socket assign instead of @conn. Check the Live Layouts guide for more information.
Progress animation
If you want to show a progress bar as users perform live actions, we recommend using topbar.
You can either add a copy of topbar to assets/vendor/topbar.js or add it as a npm dependency by calling:
$ npm install --prefix assets --save topbar

Then customize LiveView to use it in your assets/js/app.js, right before the liveSocket.connect() call:
import topbar from "topbar"

// Show progress bar on live navigation and form submits
topbar.config({barColors: {0: "#29d"}, shadowColor: "rgba(0, 0, 0, .3)"})
window.addEventListener("phx:page-loading-start", info => topbar.show())
window.addEventListener("phx:page-loading-stop", info => topbar.hide())
Location for LiveView modules
By convention your LiveView modules and heex templates should be placed in lib/my_app_web/live/ directory.

Assigns and HEEx templates
All of the data in a LiveView is stored in the socket as assigns.
The Phoenix.LiveView.assign/2 and Phoenix.LiveView.assign/3
functions help store those values. Those values can be accessed
in the LiveView as socket.assigns.name but they are accessed
inside LiveView templates as @name.
Phoenix.LiveView's built-in templates are identified by the .heex
extension (HTML EEx) or ~H sigil. You can learn more about them
by checking the docs for Phoenix.LiveView.Helpers.sigil_H/2.
They are an extension of regular .eex templates with additional
features such as:
	validation of HTML
	friendly-syntax for defining HTML components
	minimize the amount of data sent over the wire by splitting static and dynamic parts
	provide change tracking to avoid recomputing parts of the template that did not change

In this section, we are going to cover how LiveView minimizes
the payload over the wire by understanding the interplay between
assigns and templates.
Change tracking
When you first render a .heex template, it will send all of the
static and dynamic parts of the template to the client. Imagine the
following template:
<h1><%= expand_title(@title) %></h1>
It has two static parts, <h1> and </h1> and one dynamic part
made of expand_title(@title). Further rendering of this template
won't resend the static parts and it will only resend the dynamic
part if it changes.
The tracking of changes is done via assigns. If the @title assign
changes, then LiveView will execute expand_title(@title) and send
the new content. If @title is the same, nothing is executed and
nothing is sent.
Change tracking also works when accessing map/struct fields.
Take this template:
<div id={"user_#{@user.id}"}>
 <%= @user.name %>
</div>
If the @user.name changes but @user.id doesn't, then LiveView
will re-render only @user.name and it will not execute or resend @user.id
at all.
The change tracking also works when rendering other templates as
long as they are also .heex templates:
<%= render "child_template.html", assigns %>
Or when using function components:
<.show_name name={@user.name} />
The assign tracking feature also implies that you MUST avoid performing
direct operations in the template. For example, if you perform a database
query in your template:
<%= for user <- Repo.all(User) do %>
 <%= user.name %>
<% end %>
Then Phoenix will never re-render the section above, even if the number of
users in the database changes. Instead, you need to store the users as
assigns in your LiveView before it renders the template:
assign(socket, :users, Repo.all(User))
Generally speaking, data loading should never happen inside the template,
regardless if you are using LiveView or not. The difference is that LiveView
enforces this best practice.
Pitfalls
There are two common pitfalls to keep in mind when using the ~H sigil
or .heex templates inside LiveViews.
When it comes to do/end blocks, change tracking is supported only on blocks
given to Elixir's basic constructs, such as if, case, for, and similar.
If the do/end block is given to a library function or user function, such as
content_tag, change tracking won't work. For example, imagine the following
template that renders a div:
<%= content_tag :div, id: "user_#{@id}" do %>
 <%= @name %>
 <%= @description %>
<% end %>
LiveView knows nothing about content_tag, which means the whole div will
be sent whenever any of the assigns change. Luckily, HEEx templates provide
a nice syntax for building tags, so there is rarely a need to use content_tag
inside .heex templates:
<div id={"user_#{@id}"}>
 <%= @name %>
 <%= @description %>
</div>
The next pitfall is related to variables. Due to the scope of variables,
LiveView has to disable change tracking whenever variables are used in the
template, with the exception of variables introduced by Elixir basic case,
for, and other block constructs. Therefore, you must avoid code like
this in your LiveView templates:
<% some_var = @x + @y %>
<%= some_var %>
Instead, use a function:
<%= sum(@x, @y) %>
Similarly, do not define variables at the top of your render function:
def render(assigns) do
 sum = assigns.x + assigns.y

 ~H"""
 <%= sum %>
 """
end
Instead explicitly precompute the assign in your LiveView, outside of render:
assign(socket, sum: socket.assigns.x + socket.assigns.y)
Generally speaking, avoid accessing variables inside LiveViews, as code that
access variables is always executed on every render. This also applies to the
assigns variable. The exception are variables introduced by Elixir's block
constructs. For example, accessing the post variable defined by the comprehension
below works as expected:
<%= for post <- @posts do %>
 ...
<% end %>
To sum up:
	Avoid passing block expressions to library and custom functions,
instead prefer to use the conveniences in HEEx templates

	Avoid defining local variables, except within Elixir's constructs

Error and exception handling
As with any other Elixir code, exceptions may happen during the LiveView
life-cycle. In this section we will describe how LiveView reacts to errors
at different stages.
Expected scenarios
In this section, we will talk about error cases that you expect to happen
within your application. For example, a user filling in a form with invalid
data is expected. In a LiveView, we typically handle those cases by storing
a change in the LiveView state, which causes the LiveView to be re-rendered
with the error message.
We may also use flash messages for this. For example, imagine you have a
page to manage all "Team members" in an organization. However, if there is
only one member left in the organization, they should not be allowed to
leave. You may want to handle this by using flash messages:
if MyApp.Org.leave(socket.assigns.current_org, member) do
 {:noreply, socket}
else
 {:noreply, put_flash(socket, :error, "last member cannot leave organization")}
end
However, one may argue that, if the last member of an organization cannot
leave it, it may be better to not even show the "Leave" button in the UI
when the organization has only one member.
Given the button does not appear in the UI, triggering the "leave" when
the organization has now only one member is an unexpected scenario. This
means we can probably rewrite the code above to:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave returns false by any chance, it will just raise. Or you can
even provide a leave! function that raises a specific exception:
MyApp.Org.leave!(socket.assigns.current_org, member)
{:noreply, socket}
However, what will happen with a LiveView in case of exceptions?
Let's talk about unexpected scenarios.
Unexpected scenarios
Elixir developers tend to write assertive code. This means that, if we
expect leave to always return true, we can explicitly match on its
result, as we did above:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
If leave fails and returns false, an exception is raised. It is common
for Elixir developers to use exceptions for unexpected scenarios in their
Phoenix applications.
For example, if you are building an application where a user may belong to
one or more organizations, when accessing the organization page, you may want to
check that the user has access to it like this:
organizations_query = Ecto.assoc(socket.assigns.current_user, :organizations)
Repo.get!(organizations_query, params["org_id"])
The code above builds a query that returns all organizations that belongs to
the current user and then validates that the given "org_id" belongs to the
user. If there is no such "org_id" or if the user has no access to it, an
Ecto.NotFoundError exception is raised.
During a regular controller request, this exception will be converted to a
404 exception and rendered as a custom error page, as
detailed here.
To understand how a LiveView reacts to exceptions, we need to consider two
scenarios: exceptions on mount and during any event.
Exceptions on mount
Given the code on mount runs both on the initial disconnected render and the
connected render, an exception on mount will trigger the following events:
Exceptions during disconnected render:
	An exception on mount is caught and converted to an exception page
by Phoenix error views - pretty much like the way it works with controllers

Exceptions during connected render:
	An exception on mount will crash the LiveView process - which will be logged
	Once the client has noticed the crash during mount, it will fully reload the page
	Reloading the page will start a disconnected render, that will cause mount
to be invoked again and most likely raise the same exception. Except this time
it will be caught and converted to an exception page by Phoenix error views

In other words, LiveView will reload the page in case of errors, making it
fail as if LiveView was not involved in the rendering in the first place.
Exceptions on events (handle_info, handle_event, etc)
If the error happens during an event, the LiveView process will crash. The client
will notice the error and remount the LiveView - without reloading the page. This
is enough to update the page and show the user the latest information.
For example, let's say two users try to leave the organization at the same time.
In this case, both of them see the "Leave" button, but our leave function call
will succeed only for one of them:
true = MyApp.Org.leave(socket.assigns.current_org, member)
{:noreply, socket}
When the exception raises, the client will remount the LiveView. Once you remount,
your code will now notice that there is only one user in the organization and
therefore no longer show the "Leave" button. In other words, by remounting,
we often update the state of the page, allowing exceptions to be automatically
handled.
Note that the choice between conditionally checking on the result of the leave
function with an if, or simply asserting it returns true, is completely
up to you. If the likelihood of everyone leaving the organization at the same
time is low, then you may as well treat it as an unexpected scenario. Although
other developers will be more comfortable by explicitly handling those cases.
In both scenarios, LiveView has you covered.

Live layouts
NOTE: Make sure you've read the Assigns and LiveEEx templates
guide before moving forward.
When working with LiveViews, there are usually three layouts to be
considered:
	the root layout - this is a layout used by both LiveView and
regular views. This layout typically contains the <html>
definition alongside the head and body tags. Any content defined
in the root layout will remain the same, even as you live navigate
across LiveViews. All LiveViews defined at the router must have
a root layout. The root layout is typically declared on the
router with put_root_layout and defined as "root.html.heex"
in your MyAppWeb.LayoutView. It may also be given via the
:layout option to the router's live macro.

	the app layout - this is the default application layout which
is not included or used by LiveViews. It defaults to "app.html.heex"
in your MyAppWeb.LayoutView.

	the live layout - this is the layout which wraps a LiveView and
is rendered as part of the LiveView life-cycle. It must be opt-in
by passing the :layout option on use Phoenix.LiveView. It is
typically set to "live.html.heex"in your MyAppWeb.LayoutView.

Overall, those layouts are found in templates/layout with the
following names:
* root.html.heex
* app.html.heex
* live.html.heex
Note: if you are using earlier Phoenix versions, those layouts
may use .eex and .leex extensions instead of .heex, but
we have since then normalized on the latter.

All layouts must call <%= @inner_content %> to inject the
content rendered by the layout.
The "root" layout is shared by both "app" and "live" layouts.
It is rendered only on the initial request and therefore it
has access to the @conn assign. The root layout must be defined
in your router:
plug :put_root_layout, {MyAppWeb.LayoutView, :root}
The "app" and "live" layouts are often small and similar to each
other, but the "app" layout uses the @conn and is used as part
of the regular request life-cycle. The "live" layout is part of
the LiveView and therefore has direct access to the @socket.
For example, you can define a new live.html.heex layout with
dynamic content. You must use @inner_content where the output
of the actual template will be placed at:
<p><%= live_flash(@flash, :notice) %></p>
<p><%= live_flash(@flash, :error) %></p>
<%= @inner_content %>
To use the live layout, update your LiveView to pass the :layout
option to use Phoenix.LiveView:
use Phoenix.LiveView, layout: {MyAppWeb.LayoutView, "live.html"}
If you are using Phoenix v1.5, the layout is automatically set
when generating apps with the mix phx.new --live flag.
The :layout option on use does not apply to LiveViews rendered
within other LiveViews. If you want to render child live views or
opt-in to a layout, use :layout as an option in mount:
 def mount(_params, _session, socket) do
 socket = assign(socket, new_message_count: 0)
 {:ok, socket, layout: {MyAppWeb.LayoutView, "live.html"}}
 end
Note: The live layout is always wrapped by the LiveView's :container tag.
Updating the HTML document title
Because the root layout from the Plug pipeline is rendered outside of
LiveView, the contents cannot be dynamically changed. The one exception
is the <title> of the HTML document. Phoenix LiveView special cases
the @page_title assign to allow dynamically updating the title of the
page, which is useful when using live navigation, or annotating the browser
tab with a notification. For example, to update the user's notification
count in the browser's title bar, first set the page_title assign on
mount:
 def mount(_params, _session, socket) do
 socket = assign(socket, page_title: "Latest Posts")
 {:ok, socket}
 end
Then access @page_title in the root layout:
<title><%= @page_title %></title>
You can also use Phoenix.LiveView.Helpers.live_title_tag/2 to support
adding automatic prefix and suffix to the page title when rendered and
on subsequent updates:
<%= live_title_tag assigns[:page_title] || "Welcome", prefix: "MyApp – " %>
Although the root layout is not updated by LiveView, by simply assigning
to page_title, LiveView knows you want the title to be updated:
def handle_info({:new_messages, count}, socket) do
 {:noreply, assign(socket, page_title: "Latest Posts (#{count} new)")}
end
Note: If you find yourself needing to dynamically patch other parts of the
base layout, such as injecting new scripts or styles into the <head> during
live navigation, then a regular, non-live, page navigation should be used
instead. Assigning the @page_title updates the document.title directly,
and therefore cannot be used to update any other part of the base layout.

Live navigation
LiveView provides functionality to allow page navigation using the
browser's pushState API.
With live navigation, the page is updated without a full page reload.
You can trigger live navigation in two ways:
	From the client - this is done by replacing Phoenix.HTML.Link.link/2
by Phoenix.LiveView.Helpers.live_patch/2 or
Phoenix.LiveView.Helpers.live_redirect/2

	From the server - this is done by replacing Phoenix.Controller.redirect/2 calls
by Phoenix.LiveView.push_patch/2 or Phoenix.LiveView.push_redirect/2.

For example, in a template you may write:
<%= live_patch "next", to: Routes.live_path(@socket, MyLive, @page + 1) %>
or in a LiveView:
{:noreply, push_patch(socket, to: Routes.live_path(socket, MyLive, page + 1))}
The "patch" operations must be used when you want to navigate to the
current LiveView, simply updating the URL and the current parameters,
without mounting a new LiveView. When patch is used, the
handle_params/3 callback is
invoked and the minimal set of changes are sent to the client.
See the next section for more information.
The "redirect" operations must be used when you want to dismount the
current LiveView and mount a new one. In those cases, an Ajax request
is made to fetch the necessary information about the new LiveView,
which is mounted in place of the current one within the current layout.
While redirecting, a phx-loading class is added to the LiveView,
which can be used to indicate to the user a new page is being loaded.
At the end of the day, regardless if you invoke link/2,
live_patch/2,
and live_redirect/2 from the client,
or redirect/2,
push_patch/2,
and push_redirect/2 from the server,
the user will end-up on the same page. The difference between those is mostly
the amount of data sent over the wire:
	link/2 and
redirect/2 do full page reloads

	live_redirect/2 and
push_redirect/2 mounts a new LiveView while
keeping the current layout

	live_patch/2 and
push_patch/2 updates the current LiveView
and sends only the minimal diff while also maintaining the scroll position

An easy rule of thumb is to stick with
live_redirect/2 and
push_redirect/2 and use the patch
helpers only in the cases where you want to minimize the
amount of data sent when navigating within the same LiveView (for example,
if you want to change the sorting of a table while also updating the URL).
handle_params/3
The handle_params/3 callback is invoked
after mount/3 and before the initial render.
It is also invoked every time live_patch/2
or push_patch/2 are used.
It receives the request parameters as first argument, the url as second,
and the socket as third.
For example, imagine you have a UserTable LiveView to show all users in
the system and you define it in the router as:
live "/users", UserTable
Now to add live sorting, you could do:
<%= live_patch "Sort by name", to: Routes.live_path(@socket, UserTable, %{sort_by: "name"}) %>
When clicked, since we are navigating to the current LiveView,
handle_params/3 will be invoked.
Remember you should never trust the received params, so you must use the callback to
validate the user input and change the state accordingly:
def handle_params(params, _uri, socket) do
 socket =
 case params["sort_by"] do
 sort_by when sort_by in ~w(name company) -> assign(socket, sort_by: sort)
 _ -> socket
 end

 {:noreply, load_users(socket)}
end
As with other handle_* callbacks, changes to the state inside
handle_params/3 will trigger a server render.
Note the parameters given to handle_params/3
are the same as the ones given to mount/3.
So how do you decide which callback to use to load data?
Generally speaking, data should always be loaded on mount/3,
since mount/3 is invoked once per LiveView life-cycle.
Only the params you expect to be changed via
live_patch/2 or
push_patch/2 must be loaded on
handle_params/3.
For example, imagine you have a blog. The URL for a single post is:
"/blog/posts/:post_id". In the post page, you have comments and they are paginated.
You use live_patch/2 to update the shown
comments every time the user paginates, updating the URL to "/blog/posts/:post_id?page=X".
In this example, you will access "post_id" on mount/3 and
the page of comments on handle_params/3.
Furthermore, it is very important to not access the same parameters on both
mount/3 and
handle_params/3.
For example, do NOT do this:
def mount(%{"post_id" => post_id}, session, socket) do
 # do something with post_id
end

def handle_params(%{"post_id" => post_id, "page" => page}, url, socket) do
 # do something with post_id and page
end
If you do that, because mount/3 is called once and
handle_params/3 multiple times, the "post_id"
read on mount can get out of sync with the one in
handle_params/3.
So once a parameter is read on mount, it should not be read elsewhere. Instead, do this:
def mount(%{"post_id" => post_id}, session, socket) do
 # do something with post_id
end

def handle_params(%{"sort_by" => sort_by}, url, socket) do
 post_id = socket.assigns.post.id
 # do something with sort_by
end
Replace page address
LiveView also allows the current browser URL to be replaced. This is useful when you
want certain events to change the URL but without polluting the browser's history.
This can be done by passing the replace: true option to any of the navigation helpers.
Multiple LiveViews in the same page
LiveView allows you to have multiple LiveViews in the same page by calling
Phoenix.LiveView.Helpers.live_render/3 in your templates. However, only
the LiveViews defined directly in your router can use the "Live Navigation"
functionality described here. This is important because LiveViews work
closely with your router, guaranteeing you can only navigate to known
routes.

Security considerations of the LiveView model
LiveView begins its life-cycle as a regular HTTP request. Then a stateful
connection is established. Both the HTTP request and the stateful connection
receives the client data via parameters and session.
This means that any session validation must happen both in the HTTP request
(plug pipeline) and the stateful connection (LiveView mount).
Authentication vs authorization
When speaking about security, there are two terms commonly used:
authentication and authorization. Authentication is about identifying
a user. Authorization is about telling if a user has access to a certain
resource or feature in the system.
In a regular web application, once a user is authenticated, for example by
entering his email and password, or by using a third-party service such as
Google, Twitter, or Facebook, a token identifying the user is stored in the
session, which is a cookie (a key-value pair) stored in the user's browser.
Every time there is a request, we read the value from the session, and, if
valid, we fetch the user stored in the session from the database. The session
is automatically validated by Phoenix and tools like mix phx.gen.auth can
generate the building blocks of an authentication system for you.
Once the user is authenticated, they may perform many actions on the page,
and some of those actions require specific permissions. This is called
authorization and the specific rules often change per application.
In a regular web application, we perform authentication and authorization
checks on every request. In LiveView, we should also run those exact same
checks, always. Once the user is authenticated, we typically validate the
sessions on the mount callback. Authorization rules generally happen on
mount (for instance, is the user allowed to see this page?) and also on
handle_event (is the user allowed to delete this item?).
Mounting considerations
If you perform user authentication and confirmation on every HTTP request
via Plugs, such as this:
plug :ensure_user_authenticated
plug :ensure_user_confirmed
Then the mount/3 callback of your LiveView
should execute those same verifications:
def mount(params, %{"user_id" => user_id} = _session, socket) do
 socket = assign(socket, current_user: Accounts.get_user!(user_id))

 socket =
 if socket.assigns.current_user.confirmed_at do
 socket
 else
 redirect(socket, to: "/login")
 end

 {:ok, socket}
end
LiveView v0.16 includes the on_mount (Phoenix.LiveView.on_mount/1) hook,
which allows you to encapsulate this logic and execute it on every mount,
as you would with plug:
defmodule MyAppWeb.UserLiveAuth do
 import Phoenix.LiveView

 def mount(params, %{"user_id" => user_id} = _session, socket) do
 socket = assign_new(socket, :current_user, fn ->
 Accounts.get_user!(user_id)
 end)

 if socket.assigns.current_user.confirmed_at do
 {:cont, socket}
 else
 {:halt, redirect(socket, to: "/login")}
 end
 end
end
and then use it on all relevant LiveViews:
defmodule MyAppWeb.PageLive do
 use Phoenix.LiveView
 on_mount MyAppWeb.UserLiveAuth

 ...
end
Note in the snippet above we used assign_new/3.
This is a convenience to avoid fetching the current_user multiple times across
LiveViews.
Events considerations
Every time the user performs an action on your system, you should verify if the user
is authorized to do so, regardless if you are using LiveViews or not. For example,
imagine a user can see all projects in a web application, but they may not have
permission to delete any of them. At the UI level, you handle this accordingly
by not showing the delete button in the projects listing, but a savvy user can
directly talk to the server and request a deletion anyway. For this reason, you
must always verify permissions on the server.
In LiveView, most actions are handled by the handle_event callback. Therefore,
you typically authorize the user within those callbacks. In the scenario just
described, one might implement this:
on_mount MyAppWeb.UserLiveAuth

def mount(_params, session, socket) do
 {:ok, load_projects(socket)}
end

def handle_event("delete_project", %{"project_id" => project_id}, socket) do
 Project.delete!(socket.assigns.current_user, project_id)
 {:noreply, update(socket, :projects, &Enum.reject(&1, fn p -> p.id == project_id end)}
end

defp load_projects(socket) do
 projects = Project.all_projects(socket.assigns.current_user)
 assign(socket, projects: projects)
end
First, we used on_mount to authenticate the user based on the data stored in
the session. Then we load all projects based on the authenticated user. Now,
whenever there is a request to delete a project, we still pass the current user
as argument to the Project context, so it verifies if the user is allowed to
delete it or not. In case it cannot delete, it is fine to just raise an exception.
After all, users are not meant to trigger this code path anyway (unless they are
fiddling with something they are not supposed to!).
Disconnecting all instances of a live user
So far, the security model between LiveView and regular web applications have
been remarkably similar. After all, we must always authenticate and authorize
every user. The main difference between them happens on logout or when revoking
access.
Because LiveView is a permanent connection between client and server, if a user
is logged out, or removed from the system, this change won't reflect on the
LiveView part unless the user reloads the page.
Luckily, it is possible to address this by setting a live_socket_id in the
session. For example, when logging in a user, you could do:
conn
|> put_session(:current_user_id, user.id)
|> put_session(:live_socket_id, "users_socket:#{user.id}")
Now all LiveView sockets will be identified and listen to the given live_socket_id.
You can then disconnect all live users identified by said ID by broadcasting on
the topic:
MyAppWeb.Endpoint.broadcast("users_socket:#{user.id}", "disconnect", %{})
Note: If you use mix phx.gen.auth to generate your authentication system,
lines to that effect are already present in the generated code. The generated
code uses a user_token instead of referring to the user_id.

Once a LiveView is disconnected, the client will attempt to reestablish
the connection and re-execute the mount/3
callback. In this case, if the user is no longer logged in or it no longer has
access to the current resource, mount/3 will fail and the user will be
redirected.
This is the same mechanism provided by Phoenix.Channels. Therefore, if
your application uses both channels and LiveViews, you can use the same
technique to disconnect any stateful connection.
live_session and live_redirect
LiveView supports live redirect, which allows users to navigate between
pages over the LiveView connection. Whenever there is a live_redirect,
a new LiveView will be mounted, skipping the regular HTTP requests and
without going through the plug pipeline.
However, if you want to draw stronger boundaries between parts of your
application, you can also use Phoenix.LiveView.Router.live_session/2
to group your live routes. This can be handy because you can only
live_redirect between LiveViews in the same live_session.
For example, imagine you need to authenticate two distinct types of users.
Your regular users login via email and password, and you have an admin
dashboard that uses http auth. You can specify different live_sessions
for each authentication flow:
live_session :default do
 scope "/" do
 pipe_through [:authenticate_user]
 get ...
 live ...
 end
end

live_session :admin do
 scope "/admin" do
 pipe_through [:http_auth_admin]
 get ...
 live ...
 end
end
Now every time you try to navigate to an admin panel, and out of it,
a regular page navigation will happen and a brand new live connection
will be established.
Once again, it is worth remembering that LiveViews require their own
security checks, so we use pipe_through above to protect the regular
routes (get, post, etc.) and the LiveViews should run their own checks
using on_mount hooks.
live_session can also be used to enforce each LiveView group has
a different root layout, since layouts are not updated between live
redirects:
live_session :default, root_layout: {LayoutView, "app.html"} do
 ...
end

live_session :admin, root_layout: {LayoutView, "admin.html"} do
 ...
end
Finally, you can even combine live_session with on_mount. Instead
of declaring on_mount on every LiveView, you can declare it at the
router level and it will enforce it on all LiveViews under it:
live_session :default, on_mount: MyAppWeb.UserLiveAuth do
 scope "/" do
 pipe_through [:authenticate_user]
 live ...
 end
end

live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 scope "/admin" do
 pipe_through [:authenticate_admin]
 live ...
 end
end
Each live route under the :default live_session will invoke
the MyAppWeb.UserLiveAuth hook on mount. This module was defined
earlier in this guide. We will also pipe regular web requests through
:authenticate_user, which must execute the same checks as
MyAppWeb.UserLiveAuth, but tailored to plug.
Similarly, the :admin live_session has its own authentication
flow, powered by MyAppWeb.AdminLiveAuth. It also defines a plug
equivalent named :authenticate_admin, which will be used by any
regular request. If there are no regular web requests defined under
a live session, then the pipe_through checks are not necessary.
Declaring the on_mount on live_session is exactly the same as
declaring it in each LiveView inside the live_session. It will be
executed every time a LiveView is mounted, even after live_redirects.
The important to keep in mind is:
	If you have both LiveViews and regular web requests, then you
must always authorize and authenticate your LiveViews (using
on mount hooks) and your web requests (using plugs)

	All actions (events) must also be explicitly authorized by
checking permissions. Those permissions are often domain/business
specific, and typically happen in your context modules

	live_session can be used to draw boundaries between groups of
LiveViews. While you could use live_session to draw lines between
different authorization rules, doing so would lead to frequent page
reloads. For this reason, we typically use live_session to enforce
different authentication requirements or whenever you need to
change root layouts

Telemetry
LiveView currently exposes the following telemetry events:
	[:phoenix, :live_view, :mount, :start] - Dispatched by a Phoenix.LiveView
immediately before mount/3 is invoked.
	Measurement:%{system_time: System.monotonic_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map
}

	[:phoenix, :live_view, :mount, :stop] - Dispatched by a Phoenix.LiveView
when the mount/3 callback completes successfully.
	Measurement:%{duration: native_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params | :not_mounted_at_router,
 session: map
}

	[:phoenix, :live_view, :mount, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the mount/3 callback.
	Measurement: %{duration: native_time}
	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params | :not_mounted_at_router,
 session: map
}

	[:phoenix, :live_view, :handle_params, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_params/3 is invoked.
	Measurement:%{system_time: System.monotonic_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :stop] - Dispatched by a Phoenix.LiveView
when the handle_params/3 callback completes successfully.
	Measurement:%{duration: native_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_params, :exception] - Dispatched by a Phoenix.LiveView
when the when an exception is raised in the handle_params/3 callback.
	Measurement:%{duration: native_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 params: unsigned_params,
 uri: String.t()
}

	[:phoenix, :live_view, :handle_event, :start] - Dispatched by a Phoenix.LiveView
immediately before handle_event/3 is invoked.
	Measurement:%{system_time: System.monotonic_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :stop] - Dispatched by a Phoenix.LiveView
when the handle_event/3 callback completes successfully.
	Measurement:%{duration: native_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_view, :handle_event, :exception] - Dispatched by a Phoenix.LiveView
when an exception is raised in the handle_event/3 callback.
	Measurement:%{duration: native_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :start] - Dispatched by a Phoenix.LiveComponent
immediately before handle_event/3 is invoked.
	Measurement:%{system_time: System.monotonic_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :stop] - Dispatched by a Phoenix.LiveComponent
when the handle_event/3 callback completes successfully.
	Measurement:%{duration: native_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

	[:phoenix, :live_component, :handle_event, :exception] - Dispatched by a Phoenix.LiveComponent
when an exception is raised in the handle_event/3 callback.
	Measurement:%{duration: native_time}

	Metadata:%{
 socket: Phoenix.LiveView.Socket.t,
 kind: atom,
 reason: term,
 component: atom,
 event: String.t(),
 params: unsigned_params
}

Uploads
LiveView supports interactive file uploads with progress for
both direct to server uploads as well as direct-to-cloud
external uploads on the client.
Built-in Features
	Accept specification - Define accepted file types, max
number of entries, max file size, etc. When the client
selects file(s), the file metadata is automatically
validated against the specification. See
Phoenix.LiveView.allow_upload/3.

	Reactive entries - Uploads are populated in an
@uploads assign in the socket. Entries automatically
respond to progress, errors, cancellation, etc.

	Drag and drop - Use the phx-drop-target attribute to
enable. See Phoenix.LiveView.Helpers.live_file_input/2.

Allow uploads
You enable an upload, typically on mount, via allow_upload/3:
@impl Phoenix.LiveView
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
end
That's it for now! We will come back to the LiveView to
implement some form- and upload-related callbacks later, but
most of the functionality around uploads takes place in the
template.
Render reactive elements
Use the Phoenix.LiveView.Helpers.live_file_input/2 file
input generator to render a file input for the upload:
lib/my_app_web/live/upload_live.html.heex

<form id="upload-form" phx-submit="save" phx-change="validate">
 <%= live_file_input @uploads.avatar %>
 <button type="submit">Upload</button>
</form>
Important: You must bind phx-submit and phx-change on the form.

Note that while live_file_input/2
allows you to set additional attributes on the file input,
many attributes such as id, accept, and multiple will
be set automatically based on the allow_upload/3 spec.
Reactive updates to the template will occur as the end-user
interacts with the file input.
Upload entries
Uploads are populated in an @uploads assign in the socket.
Each allowed upload contains a list of entries,
irrespective of the :max_entries value in the
allow_upload/3 spec. These entry structs contain all the
information about an upload, including progress, client file
info, errors, etc.
Let's look at an annotated example:
lib/my_app_web/live/upload_live.html.heex

<%# use phx-drop-target with the upload ref to enable file drag and drop %>
<section phx-drop-target={@uploads.avatar.ref}>

<%# render each avatar entry %>
<%= for entry <- @uploads.avatar.entries do %>
 <article class="upload-entry">

 <figure>
 <%# Phoenix.LiveView.Helpers.live_img_preview/2 renders a client-side preview %>
 <%= live_img_preview entry %>
 <figcaption><%= entry.client_name %></figcaption>
 </figure>

 <%# entry.progress will update automatically for in-flight entries %>
 <progress value={entry.progress} max="100"> <%= entry.progress %>% </progress>

 <%# a regular click event whose handler will invoke Phoenix.LiveView.cancel_upload/3 %>
 <button phx-click="cancel-upload" phx-value-ref={entry.ref} aria-label="cancel">×</button>

 <%# Phoenix.LiveView.Helpers.upload_errors/2 returns a list of error atoms %>
 <%= for err <- upload_errors(@uploads.avatar, entry) do %>
 <p class="alert alert-danger"><%= error_to_string(err) %></p>
 <% end %>

 </article>
<% end %>

</section>
The section element in the example acts as the
phx-drop-target for the :avatar upload. Users can interact
with the file input or they can drop files over the element
to add new entries.
Upload entries are created when a file is added to the form
input and each will exist until it has been consumed,
following a successfully completed upload.
Entry validation
Validation occurs automatically based on any conditions
that were specified in allow_upload/3 however, as
mentioned previously you are required to bind phx-change
on the form in order for the validation to be performed.
Therefore you must implement at least a minimal callback:
@impl Phoenix.LiveView
def handle_event("validate", _params, socket) do
 {:noreply, socket}
end
Entries for files that do not match the allow_upload/3
spec will contain errors. Use
Phoenix.LiveView.Helpers.upload_errors/2 and your own
helper function to render a friendly error message:
def error_to_string(:too_large), do: "Too large"
def error_to_string(:too_many_files), do: "You have selected too many files"
def error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
Cancel an entry
Upload entries may also be canceled, either programmatically
or as a result of a user action. For instance, to handle the
click event in the template above, you could do the following:
@impl Phoenix.LiveView
def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
end
Consume uploaded entries
When the end-user submits a form containing a live_file_input/2,
the JavaScript client first uploads the file(s) before
invoking the callback for the form's phx-submit event.
Within the callback for the phx-submit event, you invoke
the Phoenix.LiveView.consume_uploaded_entries/3 function
to process the completed uploads, persisting the relevant
upload data alongside the form data:
@impl Phoenix.LiveView
def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join([:code.priv_dir(:my_app), "static", "uploads", Path.basename(path)])
 File.cp!(path, dest)
 Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
end
Note: While client metadata cannot be trusted, max file
size validations are enforced as each chunk is received
when performing direct to server uploads.

For more information on implementing client-side,
direct-to-cloud uploads, see the External Uploads guide.
Appendix A: UploadLive
A complete example of the LiveView from this guide:
lib/my_app_web/live/upload_live.ex
defmodule MyAppWeb.UploadLive do
 use MyAppWeb, :live_view

 @impl Phoenix.LiveView
 def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: ~w(.jpg .jpeg), max_entries: 2)}
 end

 @impl Phoenix.LiveView
 def handle_event("validate", _params, socket) do
 {:noreply, socket}
 end

 @impl Phoenix.LiveView
 def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
 end

 @impl Phoenix.LiveView
 def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join([:code.priv_dir(:my_app), "static", "uploads", Path.basename(path)])
 File.cp!(path, dest)
 Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")
 end)

 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
 end

 defp error_to_string(:too_large), do: "Too large"
 defp error_to_string(:too_many_files), do: "You have selected too many files"
 defp error_to_string(:not_accepted), do: "You have selected an unacceptable file type"
end

Using Gettext for internationalization
For internationalization with gettext,
the locale used within your Plug pipeline can be stored in the Plug session and
restored within your LiveView mount. For example, after user signs in or preference
changes, you can write the locale to the session:
def put_user_session(conn, current_user) do
 locale = get_locale_for_user(current_user)
 Gettext.put_locale(MyApp.Gettext, locale)

 conn
 |> put_session(:user_id, current_user.id)
 |> put_session(:locale, locale)
end
Then in your LiveView mount/3, you can restore the locale:
def mount(_params, %{"locale" => locale}, socket) do
 Gettext.put_locale(MyApp.Gettext, locale)
 {:ok, socket}
end

Bindings
Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end
	Binding	Attributes
	Params	phx-value-*
	Click Events	phx-click, phx-click-away
	Form Events	phx-change, phx-submit, phx-feedback-for, phx-disable-with, phx-trigger-action, phx-auto-recover
	Focus/Blur Events	phx-blur, phx-focus, phx-window-blur, phx-window-focus
	Key Events	phx-keydown, phx-keyup, phx-window-keydown, phx-window-keyup, phx-key
	DOM Patching	phx-update, phx-remove
	JS Interop	phx-hook
	Rate Limiting	phx-debounce, phx-throttle
	Static tracking	phx-track-static
	Loading states	phx-page-loading

Click Events
The phx-click binding is used to send click events to the server.
When any client event, such as a phx-click click is pushed, the value
sent to the server will be chosen with the following priority:
	The :value specified in Phoenix.LiveView.JS.push/3, such as:
<div phx-click={JS.push("inc", value: %{myvar1: @val1})}>

	Any number of optional phx-value- prefixed attributes, such as:
<div phx-click="inc" phx-value-myvar1="val1" phx-value-myvar2="val2">
will send the following map of params to the server:
def handle_event("inc", %{"myvar1" => "val1", "myvar2" => "val2"}, socket) do
If the phx-value- prefix is used, the server payload will also contain a "value"
if the element's value attribute exists.

	When receiving a map on the server, the payload will also include user defined metadata
of the client event, or an empty map if none is set. For example, the following LiveSocket
client option would send the coordinates and altKey information for all clicks:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 click: (e, el) => {
 return {
 altKey: e.altKey,
 clientX: e.clientX,
 clientY: e.clientY
 }
 }
 }
})

The phx-click-away event is fired when a click event happens outside of the element.
This is useful for hiding toggled containers like drop-downs.
The phx-capture-click event is just like phx-click, but instead of the click event
being dispatched to the closest phx-click element as it bubbles up through the DOM, the event
is dispatched as it propagates from the top of the DOM tree down to the target element. This is
useful when wanting to bind click events without receiving bubbled events from child UI elements.
Since capturing happens before bubbling, this can also be important for preparing or preventing
behaviour that will be applied during the bubbling phase.
Focus and Blur Events
Focus and blur events may be bound to DOM elements that emit
such events, using the phx-blur, and phx-focus bindings, for example:
<input name="email" phx-focus="myfocus" phx-blur="myblur"/>
To detect when the page itself has received focus or blur,
phx-window-focus and phx-window-blur may be specified. These window
level events may also be necessary if the element in consideration
(most often a div with no tabindex) cannot receive focus. Like other
bindings, phx-value-* can be provided on the bound element, and those
values will be sent as part of the payload. For example:
<div class="container"
 phx-window-focus="page-active"
 phx-window-blur="page-inactive"
 phx-value-page="123">
 ...
</div>
The following window-level bindings are supported:
	phx-window-focus
	phx-window-blur
	phx-window-keydown
	phx-window-keyup

Key Events
The onkeydown, and onkeyup events are supported via the phx-keydown,
and phx-keyup bindings. Each binding supports a phx-key attribute, which triggers
the event for the specific key press. If no phx-key is provided, the event is triggered
for any key press. When pushed, the value sent to the server will contain the "key"
that was pressed, plus any user-defined metadata. For example, pressing the
Escape key looks like this:
%{"key" => "Escape"}
To capture additional user-defined metadata, the metadata option for keydown events
may be provided to the LiveSocket constructor. For example:
let liveSocket = new LiveSocket("/live", Socket, {
 params: {_csrf_token: csrfToken},
 metadata: {
 keydown: (e, el) => {
 return {
 key: e.key,
 metaKey: e.metaKey,
 repeat: e.repeat
 }
 }
 }
})
To determine which key has been pressed you should use key value. The
available options can be found on
MDN
or via the Key Event Viewer.
By default, the bound element will be the event listener, but a
window-level binding may be provided via phx-window-keydown or phx-window-keyup,
for example:
def render(assigns) do
 ~H"""
 <div id="thermostat" phx-window-keyup="update_temp">
 Current temperature: <%= @temperature %>
 </div>
 """
end

def handle_event("update_temp", %{"key" => "ArrowUp"}, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", %{"key" => "ArrowDown"}, socket) do
 {:ok, new_temp} = Thermostat.dec_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end

def handle_event("update_temp", _key, socket) do
 {:noreply, socket}
end
Rate limiting events with Debounce and Throttle
All events can be rate-limited on the client by using the
phx-debounce and phx-throttle bindings, with the following behavior:
	phx-debounce - Accepts either an integer timeout value (in milliseconds),
or "blur". When an integer is provided, emitting the event is delayed by
the specified milliseconds. When "blur" is provided, emitting the event is
delayed until the field is blurred by the user. Debouncing is typically used for
input elements.

	phx-throttle - Accepts an integer timeout value to throttle the event in milliseconds.
Unlike debounce, throttle will immediately emit the event, then rate limit it at once
per provided timeout. Throttling is typically used to rate limit clicks, mouse and
keyboard actions.

For example, to avoid validating an email until the field is blurred, while validating
the username at most every 2 seconds after a user changes the field:
<form phx-change="validate" phx-submit="save">
 <input type="text" name="user[email]" phx-debounce="blur"/>
 <input type="text" name="user[username]" phx-debounce="2000"/>
</form>
And to rate limit a volume up click to once every second:
<button phx-click="volume_up" phx-throttle="1000">+</button>
Likewise, you may throttle held-down keydown:
<div phx-window-keydown="keydown" phx-throttle="500">
 ...
</div>
Unless held-down keys are required, a better approach is generally to use
phx-keyup bindings which only trigger on key up, thereby being self-limiting.
However, phx-keydown is useful for games and other use cases where a constant
press on a key is desired. In such cases, throttle should always be used.
Debounce and Throttle special behavior
The following specialized behavior is performed for forms and keydown bindings:
	When a phx-submit, or a phx-change for a different input is triggered,
any current debounce or throttle timers are reset for existing inputs.

	A phx-keydown binding is only throttled for key repeats. Unique keypresses
back-to-back will dispatch the pressed key events.

JS Commands
LiveView bindings support a JavaScript command interface via the Phoenix.LiveView.JS module, which allows you to specify utility operations that execute on the client when firing phx- binding events, such as phx-click, phx-change, etc. Commands compose together to allow you to push events, add classes to elements, transition elements in and out, and more.
See the Phoenix.LiveView.JS documentation for full usage.
For a small example of what's possible, imagine you want to show and hide a modal on the page without needing to make the round trip to the server to render the content:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.show(to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.hide(to: "#modal", transition: "fade-out")}>
 hide modal
</button>

<button phx-click={JS.toggle(to: "#modal", in: "fade-in", out: "fade-out")}>
 toggle modal
</button>
Or if your UI library relies on classes to perform the showing or hiding:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.add_class("show", to: "#modal", transition: "fade-in")}>
 show modal
</button>

<button phx-click={JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
Commands compose together. For example, you can push an event to the server and
immediately hide the modal on the client:
<div id="modal" class="modal">
 My Modal
</div>

<button phx-click={JS.push("modal-closed") |> JS.remove_class("show", to: "#modal", transition: "fade-out")}>
 hide modal
</button>
It is also useful to extract commands into their own functions:
alias Phoenix.LiveView.JS

def hide_modal(js \\ %JS{}, selector) do
 js
 |> JS.push("modal-closed")
 |> JS.remove_class("show", to: selector, transition: "fade-out")
end
<button phx-click={hide_modal("#modal")}>hide modal</button>
The Phoenix.LiveView.JS.push/3 command is particularly powerful in allowing you to customize the event being pushed to the server. For example, imagine you start with a familiar phx-click which pushes a mesasge to the server when clicked:
<button phx-click="clicked">click</button>
Now imagine you want to customize what happens when the "clicked" event is pushed, such as which component should be targetted, which element should receive css loading state classes, etc. This can be accomplished with options on the JS push command. For example:
<button phx-click={JS.push("clicked", target: @myself, loading: ".container")}>click</button>
See Phoenix.LiveView.JS.push/3 for all supported options.
LiveView Specific Events
The lv: event prefix supports LiveView specific features that are handled
by LiveView without calling the user's handle_event/3 callbacks. Today,
the following events are supported:
	lv:clear-flash – clears the flash when sent to the server. If a
phx-value-key is provided, the specific key will be removed from the flash.

For example:
<p class="alert" phx-click="lv:clear-flash" phx-value-key="info">
 <%= live_flash(@flash, :info) %>
</p>

Form bindings
A note about form helpers
LiveView works with the existing Phoenix.HTML form helpers.
If you want to use helpers such as text_input/2,
etc. be sure to use Phoenix.HTML at the top of your LiveView.
If your application was generated with Phoenix v1.6, then mix phx.new
automatically uses Phoenix.HTML when you use MyAppWeb, :live_view or
use MyAppWeb, :live_component in your modules.
Using the generated :live_view and :live_component helpers will also
import MyAppWeb.ErrorHelpers, a generated module where error_tag/2
resides (usually located at lib/my_app_web/views/error_helpers.ex).
Since ErrorHelpers is generated into your app, it is yours
to modify – you may add additional helper functions here, such
as those recommended when rendering feedback for
upload_errors/1,2.
Form Events
To handle form changes and submissions, use the phx-change and phx-submit
events. In general, it is preferred to handle input changes at the form level,
where all form fields are passed to the LiveView's callback given any
single input change. For example, to handle real-time form validation and
saving, your template would use both phx_change and phx_submit bindings:
<.form let={f} for={@changeset} phx-change="validate" phx-submit="save">
 <%= label f, :username %>
 <%= text_input f, :username %>
 <%= error_tag f, :username %>

 <%= label f, :email %>
 <%= text_input f, :email %>
 <%= error_tag f, :email %>

 <%= submit "Save" %>
</.form>
Next, your LiveView picks up the events in handle_event callbacks:
def render(assigns) ...

def mount(_params, _session, socket) do
 {:ok, assign(socket, %{changeset: Accounts.change_user(%User{})})}
end

def handle_event("validate", %{"user" => params}, socket) do
 changeset =
 %User{}
 |> Accounts.change_user(params)
 |> Map.put(:action, :insert)

 {:noreply, assign(socket, changeset: changeset)}
end

def handle_event("save", %{"user" => user_params}, socket) do
 case Accounts.create_user(user_params) do
 {:ok, user} ->
 {:noreply,
 socket
 |> put_flash(:info, "user created")
 |> redirect(to: Routes.user_path(MyAppWeb.Endpoint, MyAppWeb.User.ShowView, user))}

 {:error, %Ecto.Changeset{} = changeset} ->
 {:noreply, assign(socket, changeset: changeset)}
 end
end
The validate callback simply updates the changeset based on all form input
values, then assigns the new changeset to the socket. If the changeset
changes, such as generating new errors, render/1
is invoked and the form is re-rendered.
Likewise for phx-submit bindings, the same callback is invoked and
persistence is attempted. On success, a :noreply tuple is returned and the
socket is annotated for redirect with Phoenix.LiveView.redirect/2 to
the new user page, otherwise the socket assigns are updated with the errored
changeset to be re-rendered for the client.
phx-feedback-for
For proper form error tag updates, the error tag must specify which
input it belongs to. This is accomplished with the phx-feedback-for attribute,
which specifies the name (or id, for backwards compatibility) of the input it belongs to.
Failing to add the phx-feedback-for attribute will result in displaying error
messages for form fields that the user has not changed yet (e.g. required
fields further down on the page).
For example, your MyAppWeb.ErrorHelpers may use this function:
def error_tag(form, field) do
 form.errors
 |> Keyword.get_values(field)
 |> Enum.map(fn error ->
 content_tag(:span, translate_error(error),
 class: "invalid-feedback",
 phx_feedback_for: input_name(form, field)
)
 end)
end
Now, any DOM container with the phx-feedback-for attribute will receive a
phx-no-feedback class in cases where the form fields has yet to receive
user input/focus. The following css rules are generated in new projects
to hide the errors:
.phx-no-feedback.invalid-feedback, .phx-no-feedback .invalid-feedback {
 display: none;
}
Number inputs
Number inputs are a special case in LiveView forms. On programmatic updates,
some browsers will clear invalid inputs. So LiveView will not send change events
from the client when an input is invalid, instead allowing the browser's native
validation UI to drive user interaction. Once the input becomes valid, change and
submit events will be sent normally.
<input type="number">
This is known to have a plethora of problems including accessibility, large numbers
are converted to exponential notation, and scrolling can accidentally increase or
decrease the number.
One alternative is the inputmode attribute, which may serve your application's needs
and users much better. According to Can I Use?,
the following is supported by 86% of the global market (as of Sep 2021):
<input type="text" inputmode="numeric" pattern="[0-9]*">
Password inputs
Password inputs are also special cased in Phoenix.HTML. For security reasons,
password field values are not reused when rendering a password input tag. This
requires explicitly setting the :value in your markup, for example:
<%= password_input f, :password, value: input_value(f, :password) %>
<%= password_input f, :password_confirmation, value: input_value(f, :password_confirmation) %>
<%= error_tag f, :password %>
<%= error_tag f, :password_confirmation %>
File inputs
LiveView forms support reactive file inputs,
including drag and drop support via the phx-drop-target
attribute:
<div class="container" phx-drop-target={@uploads.avatar.ref}>
 ...
 <%= live_file_input @uploads.avatar %>
</div>
See Phoenix.LiveView.Helpers.live_file_input/2 for more.
Submitting the form action over HTTP
The phx-trigger-action attribute can be added to a form to trigger a standard
form submit on DOM patch to the URL specified in the form's standard action
attribute. This is useful to perform pre-final validation of a LiveView form
submit before posting to a controller route for operations that require
Plug session mutation. For example, in your LiveView template you can
annotate the phx-trigger-action with a boolean assign:
<.form let={f} for={@changeset}
 action={Routes.reset_password_path(@socket, :create)}
 phx-submit="save",
 phx-trigger-action={@trigger_submit}>
Then in your LiveView, you can toggle the assign to trigger the form with the current
fields on next render:
def handle_event("save", params, socket) do
 case validate_change_password(socket.assigns.user, params) do
 {:ok, changeset} ->
 {:noreply, assign(socket, changeset: changeset, trigger_submit: true)}

 {:error, changeset} ->
 {:noreply, assign(socket, changeset: changeset)}
 end
end
Once phx-trigger-action is true, LiveView disconnects and then submits the form.
Recovery following crashes or disconnects
By default, all forms marked with phx-change will recover input values
automatically after the user has reconnected or the LiveView has remounted
after a crash. This is achieved by the client triggering the same phx-change
to the server as soon as the mount has been completed.
Note: if you want to see form recovery working in development, please
make sure to disable live reloading in development by commenting out the
LiveReload plug in your endpoint.ex file or by setting code_reloader: false
in your config/dev.exs. Otherwise live reloading may cause the current page
to be reloaded whenever you restart the server, which will discard all form
state.
For most use cases, this is all you need and form recovery will happen
without consideration. In some cases, where forms are built step-by-step in a
stateful fashion, it may require extra recovery handling on the server outside
of your existing phx-change callback code. To enable specialized recovery,
provide a phx-auto-recover binding on the form to specify a different event
to trigger for recovery, which will receive the form params as usual. For example,
imagine a LiveView wizard form where the form is stateful and built based on what
step the user is on and by prior selections:
<form phx-change="validate_wizard_step" phx-auto-recover="recover_wizard">
On the server, the "validate_wizard_step" event is only concerned with the
current client form data, but the server maintains the entire state of the wizard.
To recover in this scenario, you can specify a recovery event, such as "recover_wizard"
above, which would wire up to the following server callbacks in your LiveView:
def handle_event("validate_wizard_step", params, socket) do
 # regular validations for current step
 {:noreply, socket}
end

def handle_event("recover_wizard", params, socket) do
 # rebuild state based on client input data up to the current step
 {:noreply, socket}
end
To forgo automatic form recovery, set phx-auto-recover="ignore".
JavaScript client specifics
The JavaScript client is always the source of truth for current input values.
For any given input with focus, LiveView will never overwrite the input's current
value, even if it deviates from the server's rendered updates. This works well
for updates where major side effects are not expected, such as form validation
errors, or additive UX around the user's input values as they fill out a form.
For these use cases, the phx-change input does not concern itself with disabling
input editing while an event to the server is in flight. When a phx-change event
is sent to the server, the input tag and parent form tag receive the
phx-change-loading css class, then the payload is pushed to the server with a
"_target" param in the root payload containing the keyspace of the input name
which triggered the change event.
For example, if the following input triggered a change event:
<input name="user[username]"/>
The server's handle_event/3 would receive a payload:
%{"_target" => ["user", "username"], "user" => %{"username" => "Name"}}
The phx-submit event is used for form submissions where major side effects
typically happen, such as rendering new containers, calling an external
service, or redirecting to a new page.
On submission of a form bound with a phx-submit event:
	The form's inputs are set to readonly
	Any submit button on the form is disabled
	The form receives the "phx-submit-loading" class

On completion of server processing of the phx-submit event:
	The submitted form is reactivated and loses the "phx-submit-loading" class
	The last input with focus is restored (unless another input has received focus)
	Updates are patched to the DOM as usual

To handle latent events, any HTML tag can be annotated with
phx-disable-with, which swaps the element's innerText with the provided
value during event submission. For example, the following code would change
the "Save" button to "Saving...", and restore it to "Save" on acknowledgment:
<button type="submit" phx-disable-with="Saving...">Save</button>
You may also take advantage of LiveView's CSS loading state classes to
swap out your form content while the form is submitting. For example,
with the following rules in your app.css:
.while-submitting { display: none; }
.inputs { display: block; }

.phx-submit-loading {
 .while-submitting { display: block; }
 .inputs { display: none; }
}
You can show and hide content with the following markup:
<form phx-change="update">
 <div class="while-submitting">Please wait while we save our content...</div>
 <div class="inputs">
 <input type="text" name="text" value="<%= @text %>">
 </div>
</form>
Additionally, we strongly recommend including a unique HTML "id" attribute on the form.
When DOM siblings change, elements without an ID will be replaced rather than moved,
which can cause issues such as form fields losing focus.

DOM patching & temporary assigns
A container can be marked with phx-update, allowing the DOM patch
operations to avoid updating or removing portions of the LiveView, or to append
or prepend the updates rather than replacing the existing contents. This
is useful for client-side interop with existing libraries that do their
own DOM operations. The following phx-update values are supported:
	replace - the default operation. Replaces the element with the contents
	ignore - ignores updates to the DOM regardless of new content changes
	append - append the new DOM contents instead of replacing
	prepend - prepend the new DOM contents instead of replacing

When using phx-update, a unique DOM ID must always be set in the
container. If using "append" or "prepend", a DOM ID must also be set
for each child. When appending or prepending elements containing an
ID already present in the container, LiveView will replace the existing
element with the new content instead appending or prepending a new
element.
The "ignore" behaviour is frequently used when you need to integrate
with another JS library. Note only the element contents are ignored,
its attributes can still be updated.
The "append" and "prepend" feature is often used with "Temporary assigns"
to work with large amounts of data. Let's learn more.
To react to elements being removed from the DOM, the phx-remove binding
may be specified, which can contain a Phoenix.LiveView.JS command to execute.
Note: The phx-remove command is only executed for the removed parent element.
It does not cascade to children.
Temporary assigns
By default, all LiveView assigns are stateful, which enables change
tracking and stateful interactions. In some cases, it's useful to mark
assigns as temporary, meaning they will be reset to a default value after
each update. This allows otherwise large but infrequently updated values
to be discarded after the client has been patched.
Imagine you want to implement a chat application with LiveView. You
could render each message like this:
<%= for message <- @messages do %>
 <p><%= message.username %>: <%= message.text %></p>
<% end %>
Every time there is a new message, you would append it to the @messages
assign and re-render all messages.
As you may suspect, keeping the whole chat conversation in memory
and resending it on every update would be too expensive, even with
LiveView smart change tracking. By using temporary assigns and phx-update,
we don't need to keep any messages in memory, and send messages to be
appended to the UI only when there are new ones.
To do so, the first step is to mark which assigns are temporary and
what values they should be reset to on mount:
def mount(_params, _session, socket) do
 socket = assign(socket, :messages, load_last_20_messages())
 {:ok, socket, temporary_assigns: [messages: []]}
end
On mount we also load the initial number of messages we want to
send. After the initial render, the initial batch of messages will
be reset back to an empty list.
Now, whenever there are one or more new messages, we will assign
only the new messages to @messages:
socket = assign(socket, :messages, new_messages)
In the template, we want to wrap all of the messages in a container
and tag this content with phx-update. Remember, we must add an ID
to the container as well as to each child:
<div id="chat-messages" phx-update="append">
 <%= for message <- @messages do %>
 <p id={message.id}>
 <%= message.username %>: <%= message.text %>
 </p>
 <% end %>
</div>
When the client receives new messages, it now knows to append to the
old content rather than replace it.
You can also update the direction of messages. Suppose there is an edit to a message
that is being sent to your LiveView like this:
def handle_info({:update_message, message}, socket) do
 {:noreply, update(socket, :messages, fn messages -> [message | messages] end)}
end
You can add it to the list like you do with new messages. LiveView is aware that this
message was rendered on the client, even though the message itself is discarded on the
server after it is rendered.
LiveView uses DOM ids to check if a message is rendered before or not. If an id is
rendered before, the DOM element is updated rather than appending or prepending a new node.
Also, the order of elements is not changed. You can use it to show edited messages, show likes, or
anything that would require an update to a rendered message.
Pitfall: temporary assigns to reset or control UI state
Temporary assigns are useful when you want to render some data and
then discard it so LiveView no longer needs to keep it in memory.
For this reason, a temporary assign is not re-rendered until it is
set again. This means that temporary assigns should not be used to
reset or control UI state. Let's see an example.
Imagine you want to show an error message when the input is less than
3 chars. You can write this code:
 def render(assigns) do
 ~H"""
 <%= if @too_short do %>
 Input too short...
 <% end %>

 Searched for: <%= @search %>
 <form><input phx-change="search" name="term" /></form>
 """
 end

 def mount(_params, _session, socket) do
 {:ok,
 assign(socket, too_short: false, search: ""),
 temporary_assigns: [too_short: false]}
 end

 def handle_event("search", %{"term" => term}, socket) do
 # do not search if user provides less then 3 chars
 if String.length(term) >= 3 do
 {:noreply, assign(socket, search: term)}
 else
 {:noreply, assign(socket, too_short: true, search: term)}
 end
 end
The idea here is that, while the term is less than 3 characters,
we will set @too_short to true and show an error message in the
UI accordingly. We also set @too_short as a temporary assign,
so that it resets to false after every render.
However, once a temporary assign resets to its original value,
it won't be re-rendered, unless we explicitly assign it to something
else. This means that the LiveView will never re-render the
if block and we will continue to show "Input too short..." even
after the input has 3 or more characters.
The mistake here is using :temporary_assigns to reset or control
UI state, while :temporary_assigns should rather be used when we
don't have (or don't want to keep) certain data around. The fix is
to set too_short: false on the if branch, making sure it is
reset whenever the search input changes.

JavaScript interoperability
As seen earlier, you start by instantiating a single LiveSocket to enable LiveView
client/server interaction, for example:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
All options are passed directly to the Phoenix.Socket constructor,
except for the following LiveView specific options:
	bindingPrefix - the prefix to use for phoenix bindings. Defaults "phx-"
	params - the connect_params to pass to the view's mount callback. May be
a literal object or closure returning an object. When a closure is provided,
the function receives the view's element.
	hooks – a reference to a user-defined hooks namespace, containing client
callbacks for server/client interop. See the Client hooks
section below for details.
	uploaders – a reference to a user-defined uploaders namespace, containing
client callbacks for client-side direct-to-cloud uploads. See the
External Uploads guide for details.

Debugging Client Events
To aid debugging on the client when troubleshooting issues, the enableDebug()
and disableDebug() functions are exposed on the LiveSocket JavaScript instance.
Calling enableDebug() turns on debug logging which includes LiveView life-cycle and
payload events as they come and go from client to server. In practice, you can expose
your instance on window for quick access in the browser's web console, for example:
// app.js
let liveSocket = new LiveSocket(...)
liveSocket.connect()
window.liveSocket = liveSocket

// in the browser's web console
>> liveSocket.enableDebug()
The debug state uses the browser's built-in sessionStorage, so it will remain in effect
for as long as your browser session lasts.
Simulating Latency
Proper handling of latency is critical for good UX. LiveView's CSS loading states allow
the client to provide user feedback while awaiting a server response. In development,
near zero latency on localhost does not allow latency to be easily represented or tested,
so LiveView includes a latency simulator with the JavaScript client to ensure your
application provides a pleasant experience. Like the enableDebug() function above,
the LiveSocket instance includes enableLatencySim(milliseconds) and disableLatencySim()
functions which apply throughout the current browser session. The enableLatencySim function
accepts an integer in milliseconds for the round-trip-time to the server. For example:
// app.js
let liveSocket = new LiveSocket(...)
liveSocket.connect()
window.liveSocket = liveSocket

// in the browser's web console
>> liveSocket.enableLatencySim(1000)
[Log] latency simulator enabled for the duration of this browser session.
 Call disableLatencySim() to disable
Loading state and errors
By default, the following classes are applied to the LiveView's parent
container:
	"phx-connected" - applied when the view has connected to the server
	"phx-loading" - applied when the view is not connected to the server
	"phx-error" - applied when an error occurs on the server. Note, this
class will be applied in conjunction with "phx-loading" if connection
to the server is lost.

All phx- event bindings apply their own css classes when pushed. For example
the following markup:
<button phx-click="clicked" phx-window-keydown="key">...</button>
On click, would receive the phx-click-loading class, and on keydown would receive
the phx-keydown-loading class. The css loading classes are maintained until an
acknowledgement is received on the client for the pushed event.
In the case of forms, when a phx-change is sent to the server, the input element
which emitted the change receives the phx-change-loading class, along with the
parent form tag. The following events receive css loading classes:
	phx-click - phx-click-loading
	phx-change - phx-change-loading
	phx-submit - phx-submit-loading
	phx-focus - phx-focus-loading
	phx-blur - phx-blur-loading
	phx-window-keydown - phx-keydown-loading
	phx-window-keyup - phx-keyup-loading

For live page navigation via live_redirect and live_patch, as well as form
submits via phx-submit, the JavaScript events "phx:page-loading-start" and
"phx:page-loading-stop" are dispatched on window. Additionally, any phx-
event may dispatch page loading events by annotating the DOM element with
phx-page-loading. This is useful for showing main page loading status, for example:
// app.js
import topbar from "topbar"
window.addEventListener("phx:page-loading-start", info => topbar.show())
window.addEventListener("phx:page-loading-stop", info => topbar.hide())
Within the callback, info.detail will be an object that contains a kind
key, with a value that depends on the triggering event:
	"redirect" - the event was triggered by a redirect
	"patch" - the event was triggered by a patch
	"initial" - the event was triggered by initial page load
	"element" - the event was triggered by a phx- bound element, such as phx-click

For all kinds of page loading events, all but "element" will receive an additional to
key in the info metadata pointing to the href associated with the page load.
In the case of an "element" page loading event, the info will contain a
"target" key containing the DOM element which triggered the page loading
state.
Triggering phx form events with JavaScript
Often it is desirable to trigger an event on a DOM element without explicit
user interaction on the element. For example, a custom form element such as a
date picker or custom select input which utilizes a hidden input element to
store the selected state.
In these cases, the event functions on the DOM API can be used, for example
to trigger a phx-change event:
document.getElementById("my-select").dispatchEvent(
 new Event("input", {bubbles: true})
)
When using a client hook, this.el can be used to determine the element as
outlined in the "Client hooks" documentation.
It is also possible to trigger a phx-submit using a "submit" event:
document.getElementById("my-form").dispatchEvent(
 new Event("submit", {bubbles: true})
)
Client hooks
To handle custom client-side JavaScript when an element is added, updated,
or removed by the server, a hook object may be provided with the following
life-cycle callbacks:
	mounted - the element has been added to the DOM and its server
LiveView has finished mounting
	beforeUpdate - the element is about to be updated in the DOM.
Note: any call here must be synchronous as the operation cannot
be deferred or cancelled.
	updated - the element has been updated in the DOM by the server
	destroyed - the element has been removed from the page, either
by a parent update, or by the parent being removed entirely
	disconnected - the element's parent LiveView has disconnected from the server
	reconnected - the element's parent LiveView has reconnected to the server

The above life-cycle callbacks have in-scope access to the following attributes:
	el - attribute referencing the bound DOM node
	pushEvent(event, payload, (reply, ref) => ...) - method to push an event from the client to the LiveView server
	pushEventTo(selectorOrTarget, event, payload, (reply, ref) => ...) - method to push targeted events from the client
to LiveViews and LiveComponents. It sends the event to the LiveComponent or LiveView the selectorOrTarget is
defined in, where it's value can be either a query selector or an actual DOM element. If the query selector returns
more than one element it will send the event to all of them, even if all the elements are in the same LiveComponent
or LiveView.
	handleEvent(event, (payload) => ...) - method to handle an event pushed from the server
	upload(name, files) - method to inject a list of file-like objects into an uploader.
	uploadTo(selectorOrTarget, name, files) - method to inject a list of file-like objects into an uploader.
The hook will send the files to the uploader with name defined by allow_upload/3
on the server-side. Dispatching new uploads triggers an input change event which will be sent to the
LiveComponent or LiveView the selectorOrTarget is defined in, where it's value can be either a query selector or an
actual DOM element. If the query selector returns more than one live file input, an error will be logged.

For example, the markup for a controlled input for phone-number formatting could be written
like this:
<input type="text" name="user[phone_number]" id="user-phone-number" phx-hook="PhoneNumber" />
Then a hook callback object could be defined and passed to the socket:
let Hooks = {}
Hooks.PhoneNumber = {
 mounted() {
 this.el.addEventListener("input", e => {
 let match = this.el.value.replace(/\D/g, "").match(/^(\d{3})(\d{3})(\d{4})$/)
 if(match) {
 this.el.value = `${match[1]}-${match[2]}-${match[3]}`
 }
 })
 }
}

let liveSocket = new LiveSocket("/live", Socket, {hooks: Hooks, ...})
...
Note: when using phx-hook, a unique DOM ID must always be set.
For integration with client-side libraries which require a broader access to full
DOM management, the LiveSocket constructor accepts a dom option with an
onBeforeElUpdated callback. The fromEl and toEl DOM nodes are passed to the
function just before the DOM patch operations occurs in LiveView. This allows external
libraries to (re)initialize DOM elements or copy attributes as necessary as LiveView
performs its own patch operations. The update operation cannot be cancelled or deferred,
and the return value is ignored. For example, the following option could be used to add
Alpine.js support to your project:
let liveSocket = new LiveSocket("/live", Socket, {
 ...,
 dom: {
 onBeforeElUpdated(from, to){
 if(from._x_dataStack){ window.Alpine.clone(from, to) }
 }
 },
})
Client-server communication
A hook can push events to the LiveView by using the pushEvent function and receive a
reply from the server via a {:reply, map, socket} return value. The reply payload will be
passed to the optional pushEvent response callback.
Communication with the hook from the server can be done by reading data attributes on the
hook element or by using Phoenix.LiveView.push_event/3 on the server and handleEvent on the client.
For example, to implement infinite scrolling, one can pass the current page using data attributes:
<div id="infinite-scroll" phx-hook="InfiniteScroll" data-page="<%= @page %>">
And then in the client:
Hooks.InfiniteScroll = {
 page() { return this.el.dataset.page },
 mounted(){
 this.pending = this.page()
 window.addEventListener("scroll", e => {
 if(this.pending == this.page() && scrollAt() > 90){
 this.pending = this.page() + 1
 this.pushEvent("load-more", {})
 }
 })
 },
 updated(){ this.pending = this.page() }
}
However, the data attribute approach is not a good approach if you need to frequently push data to the client. To push out-of-band events to the client, for example to render charting points, one could do:
<div id="chart" phx-hook="Chart">
{:noreply, push_event(socket, "points", %{points: new_points})}
And then on the client:
Hooks.Chart = {
 mounted(){
 this.handleEvent("points", ({points}) => MyChartLib.addPoints(points))
 }
}
Note: events pushed from the server via push_event are global and will be dispatched
to all active hooks on the client who are handling that event. Events may also be handled
outside a hook with a window event listener, by listening to the event name prefixed by
the phx: namespace. For exmaple:
window.addEventListener("phx:my-pushed-event", e => {
 console.log("got my-pushed-event from server with data", e.detail)
})
Note: In case a LiveView pushes events and renders content, handleEvent callbacks are invoked after the page is updated. Therefore, if the LiveView redirects at the same time it pushes events, callbacks won't be invoked on the old page's elements. Callbacks would be invoked on the redirected page's newly mounted hook elements.
Executing JS Commands
The Phoenix.LiveView.JS commands execute when phx- bindings are triggered, such as phx-click, or phx-change bindings. Custom scripts may also execute a command by using the execJS function of the LiveSocket instance. For example, imagine the following template where you want to highlight an existing element from the server to draw the user's attention:
<div id={"item-#{item.id}"} class="item" data-handle-highlight={JS.transition("highlight")}>
 <%= item.title %>
</div>
Next, the server can issue a highlight using the standard push_event:
def handle_info({:item_updated, item}, socket) do
 {:ok, push_event(socket, "highlight", %{id: item.id})}
end
Finally, a window event listener can listen for the event and conditionally
execute the highlight command if the element matches:
let liveSocket = new LiveSocket(...)
window.addEventListener(`phx:highlight`, (e) => {
 document.querySelectorAll(`[data-handle-highlight]`).forEach(el => {
 if(el.id == e.detail.id){
 liveSocket.execJS(el, el.getAttribute("data-handle-highlight"))
 }
 })
})

External Uploads
This guide continues from the configuration started in the
server Uploads guide.

Uploads to external cloud providers, such as Amazon S3,
Google Cloud, etc., can be achieved by using the
:external option in allow_upload/3.
You provide a 2-arity function to allow the server to
generate metadata for each upload entry, which is passed to
a user-specified JavaScript function on the client.
Typically when your function is invoked, you will generate a
pre-signed URL, specific to your cloud storage provider, that
will provide temporary access for the end-user to upload data
directly to your cloud storage.
Chunked HTTP Uploads
For any service that supports large file
uploads via chunked HTTP requests with Content-Range
headers, you can use the UpChunk JS library by Mux to do all
the hard work of uploading the file.
You only need to wire the UpChunk instance to the LiveView
UploadEntry callbacks, and LiveView will take care of the rest.
Install UpChunk by
saving its contents
to assets/vendor/upchunk.js or by installing it with npm:
$ npm install --prefix assets --save @mux/upchunk

Configure your uploader on Phoenix.LiveView.mount/3:
def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: :any, max_entries: 3, external: &presign_upload/2)}
end
Supply the :external option to
Phoenix.LiveView.allow_upload/3. It requires a 2-arity
function that generates a signed URL where the client will
push the bytes for the upload entry.
For example, if you were using a context that provided a
start_session
function, you might write something like this:
defp presign_upload(entry, socket) do
 {:ok, %{"Location" => link}} =
 SomeTube.start_session(%{
 "uploadType" => "resumable",
 "x-upload-content-length" => entry.client_size
 })

 {:ok, %{uploader: "UpChunk", entrypoint: link}, socket}
end
Finally, on the client-side, we use UpChunk to create an
upload from the temporary URL generated on the server and
attach listeners for its events to the entry's callbacks:
import * as UpChunk from "@mux/upchunk"

let Uploaders = {}

Uploaders.UpChunk = function(entries, onViewError){
 entries.forEach(entry => {
 // create the upload session with UpChunk
 let { file, meta: { entrypoint } } = entry
 let upload = UpChunk.createUpload({ endpoint: entrypoint, file })

 // stop uploading in the event of a view error
 onViewError(() => upload.pause())

 // upload error triggers LiveView error
 upload.on("error", (e) => entry.error(e.detail.message))

 // notify progress events to LiveView
 upload.on("progress", (e) => {
 if(e.detail < 100){ entry.progress(e.detail) }
 })

 // success completes the UploadEntry
 upload.on("success", () => entry.progress(100))
 })
}

// Don't forget to assign Uploaders to the liveSocket
let liveSocket = new LiveSocket("/live", Socket, {
 uploaders: Uploaders,
 params: {_csrf_token: csrfToken}
})
Direct to S3
In order to enforce all of your file constraints when
uploading to S3, it is necessary to perform a multipart form
POST with your file data.
This guide assumes an existing S3 bucket with the correct CORS configuration
which allows uploading directly to the bucket.
An example CORS config is:
[
 {
 "AllowedHeaders": ["*"],
 "AllowedMethods": ["PUT", "POST"],
 "AllowedOrigins": [your_domain_or_*_here],
 "ExposeHeaders": []
 }
]
More information on configuring CORS for S3 buckets is available at:
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ManageCorsUsing.html
The following example uses a zero-dependency module
called SimpleS3Upload
written by Chris McCord to generate pre-signed URLs for S3.

def mount(_params, _session, socket) do
 {:ok,
 socket
 |> assign(:uploaded_files, [])
 |> allow_upload(:avatar, accept: :any, max_entries: 3, external: &presign_upload/2)}
end

defp presign_upload(entry, socket) do
 uploads = socket.assigns.uploads
 bucket = "phx-upload-example"
 key = "public/#{entry.client_name}"

 config = %{
 region: "us-east-1",
 access_key_id: System.fetch_env!("AWS_ACCESS_KEY_ID"),
 secret_access_key: System.fetch_env!("AWS_SECRET_ACCESS_KEY")
 }

 {:ok, fields} =
 SimpleS3Upload.sign_form_upload(config, bucket,
 key: key,
 content_type: entry.client_type,
 max_file_size: uploads.avatar.max_file_size,
 expires_in: :timer.hours(1)
)

 meta = %{uploader: "S3", key: key, url: "http://#{bucket}.s3-#{config.region}.amazonaws.com", fields: fields}
 {:ok, meta, socket}
end
Here, we implemented a presign_upload/2 function, which we
passed as a captured anonymous function to :external. Next,
we generate a pre-signed URL for the upload. Lastly, we return
our :ok result, with a payload of metadata for the client,
along with our unchanged socket. The metadata must contain
the :uploader key, specifying the name of the JavaScript
client-side uploader, in this case "S3".
To complete the flow, we can implement our S3 client
uploader and tell the LiveSocket where to find it:
let Uploaders = {}

Uploaders.S3 = function(entries, onViewError){
 entries.forEach(entry => {
 let formData = new FormData()
 let {url, fields} = entry.meta
 Object.entries(fields).forEach(([key, val]) => formData.append(key, val))
 formData.append("file", entry.file)
 let xhr = new XMLHttpRequest()
 onViewError(() => xhr.abort())
 xhr.onload = () => xhr.status === 204 ? entry.progress(100) : entry.error()
 xhr.onerror = () => entry.error()
 xhr.upload.addEventListener("progress", (event) => {
 if(event.lengthComputable){
 let percent = Math.round((event.loaded / event.total) * 100)
 if(percent < 100){ entry.progress(percent) }
 }
 })

 xhr.open("POST", url, true)
 xhr.send(formData)
 })
}

let liveSocket = new LiveSocket("/live", Socket, {
 uploaders: Uploaders,
 params: {_csrf_token: csrfToken}
})
We define an Uploaders.S3 function, which receives our entries. It then
performs an AJAX request for each entry, using the entry.progress() and
entry.error(). functions to report upload events back to the LiveView.
Lastly, we pass the uploaders namespace to the LiveSocket constructor
to tell phoenix where to find the uploaders returned within the external
metadata.

Phoenix.LiveView behaviour

LiveView provides rich, real-time user experiences with
server-rendered HTML.
The LiveView programming model is declarative: instead of
saying "once event X happens, change Y on the page",
events in LiveView are regular messages which may cause
changes to its state. Once the state changes, LiveView will
re-render the relevant parts of its HTML template and push it
to the browser, which updates itself in the most efficient
manner. This means developers write LiveView templates as
any other server-rendered HTML and LiveView does the hard
work of tracking changes and sending the relevant diffs to
the browser.
At the end of the day, a LiveView is nothing more than a
process that receives events as messages and updates its
state. The state itself is nothing more than functional
and immutable Elixir data structures. The events are either
internal application messages (usually emitted by Phoenix.PubSub)
or sent by the client/browser.
LiveView is first rendered statically as part of regular
HTTP requests, which provides quick times for "First Meaningful
Paint", in addition to helping search and indexing engines.
Then a persistent connection is established between client and
server. This allows LiveView applications to react faster to user
events as there is less work to be done and less data to be sent
compared to stateless requests that have to authenticate, decode, load,
and encode data on every request. The flipside is that LiveView
uses more memory on the server compared to stateless requests.
Use cases
There are many use cases where LiveView is an excellent
fit right now:
	Handling of user interaction and inputs, buttons, and
forms - such as input validation, dynamic forms,
autocomplete, etc;

	Events and updates pushed by server - such as
notifications, dashboards, etc;

	Page and data navigation - such as navigating between
pages, pagination, etc can be built with LiveView
using the excellent live navigation feature set.
This reduces the amount of data sent over the wire,
gives developers full control over the LiveView
life-cycle, while controlling how the browser
tracks those changes in state;

There are also use cases which are a bad fit for LiveView:
	Animations - animations, menus, and general UI events
that do not need the server in the first place are a
bad fit for LiveView. Those can be achieved without
LiveView in multiple ways, such as with CSS and CSS
transitions, using LiveView hooks, or even integrating
with UI toolkits designed for this purpose, such as
Bootstrap, Alpine.JS, and similar.

Life-cycle
A LiveView begins as a regular HTTP request and HTML response,
and then upgrades to a stateful view on client connect,
guaranteeing a regular HTML page even if JavaScript is disabled.
Any time a stateful view changes or updates its socket assigns, it is
automatically re-rendered and the updates are pushed to the client.
You begin by rendering a LiveView typically from your router.
When LiveView is first rendered, the mount/3 callback is invoked
with the current params, the current session and the LiveView socket.
As in a regular request, params contains public data that can be
modified by the user. The session always contains private data set
by the application itself. The mount/3 callback wires up socket
assigns necessary for rendering the view. After mounting, render/1
is invoked and the HTML is sent as a regular HTML response to the
client.
After rendering the static page, LiveView connects from the client
to the server where stateful views are spawned to push rendered updates
to the browser, and receive client events via phx- bindings. Just like
the first rendering, mount/3 is invoked with params, session,
and socket state, where mount assigns values for rendering. However
in the connected client case, a LiveView process is spawned on
the server, pushes the result of render/1 to the client and
continues on for the duration of the connection. If at any point
during the stateful life-cycle a crash is encountered, or the client
connection drops, the client gracefully reconnects to the server,
calling mount/3 once again.
Example
Before writing your first example, make sure that Phoenix LiveView
is properly installed. If you are just getting started, this can
be easily done by running mix phx.new my_app --live. The phx.new
command with the --live flag will create a new project with
LiveView installed and configured. Otherwise, please follow the steps
in the installation guide before continuing.
A LiveView is a simple module that requires two callbacks: mount/3
and render/1:
defmodule MyAppWeb.ThermostatLive do
 # If you generated an app with mix phx.new --live,
 # the line below would be: use MyAppWeb, :live_view
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Current temperature: <%= @temperature %>
 """
 end

 def mount(_params, %{"current_user_id" => user_id}, socket) do
 temperature = Thermostat.get_user_reading(user_id)
 {:ok, assign(socket, :temperature, temperature)}
 end
end
The render/1 callback receives the socket.assigns and is responsible
for returning rendered content. We use the ~H sigil to define a HEEx
template, which stands for HTML+EEx. They are an extension of Elixir's
builtin EEx templates, with support for HTML validation, syntax-based
components, smart change tracking, and more. You can learn more about
the template syntax in Phoenix.LiveView.Helpers.sigil_H/2.
Next, decide where you want to use your LiveView.
You can serve the LiveView directly from your router (recommended):
defmodule MyAppWeb.Router do
 use Phoenix.Router
 import Phoenix.LiveView.Router

 scope "/", MyAppWeb do
 live "/thermostat", ThermostatLive
 end
end
Note: the above assumes there is plug :put_root_layout call
in your router that configures the LiveView layout. This call is
automatically included by mix phx.new --live and described in
the installation guide. If you don't want to configure a root layout,
you must pass layout: {MyAppWeb.LayoutView, "app.html"} as an
option to the Phoenix.LiveView.Router.live/3 macro above.
Alternatively, you can live_render from any template. In your view:
import Phoenix.LiveView.Helpers
Then in your template:
<h1>Temperature Control</h1>
<%= live_render(@conn, MyAppWeb.ThermostatLive) %>
When a LiveView is rendered, all of the data currently stored in the
connection session (see Plug.Conn.get_session/1) will be given to
the LiveView.
It is also possible to pass additional session information to the LiveView
through a :session option:
In the router
live "/thermostat", ThermostatLive, session: %{"extra_token" => "foo"}

In a view
<%= live_render(@conn, MyAppWeb.ThermostatLive, session: %{"extra_token" => "foo"}) %>
Notice the :session uses string keys as a reminder that session data
is serialized and sent to the client. So you should always keep the data
in the session to a minimum. For example, instead of storing a User struct,
you should store the "user_id" and load the User when the LiveView mounts.
Once the LiveView is rendered, a regular HTML response is sent. In your
app.js file, you should find the following:
import {Socket} from "phoenix"
import {LiveSocket} from "phoenix_live_view"

let csrfToken = document.querySelector("meta[name='csrf-token']").getAttribute("content")
let liveSocket = new LiveSocket("/live", Socket, {params: {_csrf_token: csrfToken}})
liveSocket.connect()
After the client connects, mount/3 will be invoked inside a spawned
LiveView process. At this point, you can use connected?/1 to
conditionally perform stateful work, such as subscribing to pubsub topics,
sending messages, etc. For example, you can periodically update a LiveView
with a timer:
defmodule DemoWeb.ThermostatLive do
 use Phoenix.LiveView
 ...

 def mount(_params, %{"current_user_id" => user_id}, socket) do
 if connected?(socket), do: Process.send_after(self(), :update, 30000)

 case Thermostat.get_user_reading(user_id) do
 {:ok, temperature} ->
 {:ok, assign(socket, temperature: temperature, user_id: user_id)}

 {:error, _reason} ->
 {:ok, redirect(socket, to: "/error")}
 end
 end

 def handle_info(:update, socket) do
 Process.send_after(self(), :update, 30000)
 {:ok, temperature} = Thermostat.get_reading(socket.assigns.user_id)
 {:noreply, assign(socket, :temperature, temperature)}
 end
end
We used connected?(socket) on mount to send our view a message every 30s if
the socket is in a connected state. We receive the :update message in the
handle_info/2 callback, just like in an Elixir GenServer, and update our
socket assigns. Whenever a socket's assigns change, render/1 is automatically
invoked, and the updates are sent to the client.
Colocating templates
In the examples above, we have placed the template directly inside the
LiveView:
defmodule MyAppWeb.ThermostatLive do
 use Phoenix.LiveView

 def render(assigns) do
 ~H"""
 Current temperature: <%= @temperature %>
 """
 end
For larger templates, you can place them in a file in the same directory
and same name as the LiveView. For example, if the file above is placed
at lib/my_app_web/live/thermostat_live.ex, you can also remove the
render/1 definition above and instead put the template code at
lib/my_app_web/live/thermostat_live.html.heex.
Alternatively, you can keep the render/1 callback but delegate to an
existing Phoenix.View module in your application. For example:
defmodule MyAppWeb.ThermostatLive do
 use Phoenix.LiveView

 def render(assigns) do
 Phoenix.View.render(MyAppWeb.PageView, "page.html", assigns)
 end
end
In all cases, each assign in the template will be accessible as @assign.
You can learn more about assigns and HEEx templates in their own guide.
Bindings
Phoenix supports DOM element bindings for client-server interaction. For
example, to react to a click on a button, you would render the element:
<button phx-click="inc_temperature">+</button>
Then on the server, all LiveView bindings are handled with the handle_event/3
callback, for example:
def handle_event("inc_temperature", _value, socket) do
 {:ok, new_temp} = Thermostat.inc_temperature(socket.assigns.id)
 {:noreply, assign(socket, :temperature, new_temp)}
end
	Binding	Attributes
	Params	phx-value-*
	Click Events	phx-click, phx-click-away
	Focus/Blur Events	phx-blur, phx-focus, phx-window-blur, phx-window-focus
	Key Events	phx-keydown, phx-keyup, phx-window-keydown, phx-window-keyup, phx-key
	Form Events	phx-change, phx-submit, phx-feedback-for, phx-disable-with, phx-trigger-action, phx-auto-recover
	Rate Limiting	phx-debounce, phx-throttle
	DOM Patching	phx-update
	JS Interop	phx-hook

Compartmentalize state, markup, and events in LiveView
LiveView supports two extension mechanisms: function components, provided by
HEEx templates, and stateful components.
Function components are any function that receives an assigns map, similar
to render(assigns) in our LiveView, and returns a ~H template. For example:
def weather_greeting(assigns) do
 ~H"""
 <div title="My div" class={@class}>
 <p>Hello <%= @name %></p>
 <MyApp.Weather.city name="Kraków"/>
 </div>
 """
end
You can learn more about function components in the Phoenix.Component
module. At the end of the day, they are useful mechanism to reuse markup
in your LiveViews.
However, sometimes you need to compartmentalize or reuse more than markup.
Perhaps you want to move part of the state or part of the events in your
LiveView to a separate module. For these cases, LiveView provides
Phoenix.LiveComponent, which are rendered using
live_component/1:
<.live_component module={UserComponent} id={user.id} user={user} />
Components have their own mount/3 and handle_event/3 callbacks, as
well as their own state with change tracking support. Components are also
lightweight as they "run" in the same process as the parent LiveView.
However, this means an error in a component would cause the whole view to
fail to render. See Phoenix.LiveComponent for a complete rundown on components.
Finally, if you want complete isolation between parts of a LiveView, you can
always render a LiveView inside another LiveView by calling
live_render/3. This child LiveView
runs in a separate process than the parent, with its own callbacks. If a child
LiveView crashes, it won't affect the parent. If the parent crashes, all children
are terminated.
When rendering a child LiveView, the :id option is required to uniquely
identify the child. A child LiveView will only ever be rendered and mounted
a single time, provided its ID remains unchanged.
Given that a LiveView runs on its own process, it is an excellent tool for creating
completely isolated UI elements, but it is a slightly expensive abstraction if
all you want is to compartmentalize markup or events (or both).
To sum it up:
	use Phoenix.Component to compartmentalize/reuse markup
	use Phoenix.LiveComponent to compartmentalize state, markup, and events
	use nested Phoenix.LiveView to compartmentalize state, markup, events, and error isolation

Endpoint configuration
LiveView accepts the following configuration in your endpoint under
the :live_view key:
	:signing_salt (required) - the salt used to sign data sent
to the client

	:hibernate_after (optional) - the idle time in milliseconds allowed in
the LiveView before compressing its own memory and state.
Defaults to 15000ms (15 seconds)

Guides
LiveView has many guides to help you on your journey.
Server-side
These guides focus on server-side functionality:
	Assigns and HEEx templates
	Error and exception handling
	Live Layouts
	Live Navigation
	Security considerations of the LiveView model
	Telemetry
	Uploads
	Using Gettext for internationalization

Client-side
These guides focus on LiveView bindings and client-side integration:
	Bindings
	Form bindings
	DOM patching and temporary assigns
	JavaScript interoperability
	Uploads (External)

 Anchor for this section

 Summary

 Types

 unsigned_params()

 Callbacks

 handle_call(msg, {}, socket)

 handle_cast(msg, socket)

 handle_event(event, unsigned_params, socket)

 handle_info(msg, socket)

 handle_params(unsigned_params, uri, socket)

 mount(arg1, session, socket)

 The LiveView entry-point.

 render(assigns)

 terminate(reason, socket)

 Functions

 __using__(opts)

 Uses LiveView in the current module to mark it a LiveView.

 allow_upload(socket, name, options)

 Allows an upload for the provided name.

 assign(socket_or_assigns, keyword_or_map)

 Adds key-value pairs to assigns.

 assign(socket_or_assigns, key, value)

 Adds a key-value pair to socket_or_assigns.

 assign_new(socket_or_assigns, key, fun)

 Assigns the given key with value from fun into socket_or_assigns if
one does not yet exist.

 attach_hook(socket, name, stage, fun)

 Attaches the given fun by name for the lifecycle stage into socket.

 cancel_upload(socket, name, entry_ref)

 Cancels an upload for the given entry.

 changed?(socket_or_assigns, key)

 Checks if the given key changed in socket_or_assigns.

 clear_flash(socket)

 Clears the flash.

 clear_flash(socket, key)

 Clears a key from the flash.

 connected?(socket)

 Returns true if the socket is connected.

 consume_uploaded_entries(socket, name, func)

 Consumes the uploaded entries.

 consume_uploaded_entry(socket, entry, func)

 Consumes an individual uploaded entry.

 detach_hook(socket, name, stage)

 Detaches a hook with the given name from the lifecycle stage.

 disallow_upload(socket, name)

 Revokes a previously allowed upload from allow_upload/3.

 get_connect_info(socket)

 Accesses the connect info from the socket to use on connected mount.

 get_connect_params(socket)

 Accesses the connect params sent by the client for use on connected mount.

 on_mount(mod_or_mod_arg)

 Declares a module callback to be invoked on the LiveView's mount.

 push_event(socket, event, payload)

 Pushes an event to the client to be consumed by hooks.

 push_patch(socket, opts)

 Annotates the socket for navigation within the current LiveView.

 push_redirect(socket, opts)

 Annotates the socket for navigation to another LiveView.

 put_flash(socket, kind, msg)

 Adds a flash message to the socket to be displayed.

 redirect(socket, arg2)

 Annotates the socket for redirect to a destination path.

 send_update(pid \\ self(), module, assigns)

 Asynchronously updates a Phoenix.LiveComponent with new assigns.

 send_update_after(pid \\ self(), module, assigns, time_in_milliseconds)

 Similar to send_update/3 but the update will be delayed according to the given time_in_milliseconds.

 static_changed?(socket)

 Returns true if the socket is connected and the tracked static assets have changed.

 transport_pid(socket)

 Returns the transport pid of the socket.

 update(socket_or_assigns, key, fun)

 Updates an existing key with fun in the given socket_or_assigns.

 uploaded_entries(socket, name)

 Returns the completed and in progress entries for the upload.

 Anchor for this section

Types

 Link to this type

 unsigned_params()

 View Source

 Specs

 unsigned_params() :: map()

 Anchor for this section

Callbacks

 Link to this callback

 handle_call(msg, {}, socket)

 View Source

 (optional)

 Specs

 handle_call(
 msg :: term(),
 {pid(), reference()},
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:noreply, Phoenix.LiveView.Socket.t()}
 | {:reply, term(), Phoenix.LiveView.Socket.t()}

 Link to this callback

 handle_cast(msg, socket)

 View Source

 (optional)

 Specs

 handle_cast(msg :: term(), socket :: Phoenix.LiveView.Socket.t()) ::
 {:noreply, Phoenix.LiveView.Socket.t()}

 Link to this callback

 handle_event(event, unsigned_params, socket)

 View Source

 (optional)

 Specs

 handle_event(
 event :: binary(),
 unsigned_params(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:noreply, Phoenix.LiveView.Socket.t()}
 | {:reply, map(), Phoenix.LiveView.Socket.t()}

 Link to this callback

 handle_info(msg, socket)

 View Source

 (optional)

 Specs

 handle_info(msg :: term(), socket :: Phoenix.LiveView.Socket.t()) ::
 {:noreply, Phoenix.LiveView.Socket.t()}

 Link to this callback

 handle_params(unsigned_params, uri, socket)

 View Source

 (optional)

 Specs

 handle_params(
 unsigned_params(),
 uri :: String.t(),
 socket :: Phoenix.LiveView.Socket.t()
) :: {:noreply, Phoenix.LiveView.Socket.t()}

 Link to this callback

 mount(arg1, session, socket)

 View Source

 (optional)

 Specs

 mount(
 unsigned_params() | :not_mounted_at_router,
 session :: map(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:ok, Phoenix.LiveView.Socket.t()}
 | {:ok, Phoenix.LiveView.Socket.t(), keyword()}

The LiveView entry-point.
For each LiveView in the root of a template, mount/3 is invoked twice:
once to do the initial page load and again to establish the live socket.
It expects three arguments:
	params - a map of string keys which contain public information that
can be set by the user. The map contains the query params as well as any
router path parameter. If the LiveView was not mounted at the router,
this argument is the atom :not_mounted_at_router
	session - the connection session
	socket - the LiveView socket

It must return either {:ok, socket} or {:ok, socket, options}, where
options is one of:
	:temporary_assigns - a keyword list of assigns that are temporary
and must be reset to their value after every render. Note that once
the value is reset, it won't be re-rendered again until it is explicitly
assigned

	:layout - the optional layout to be used by the LiveView

 Link to this callback

 render(assigns)

 View Source

 Specs

 render(assigns :: Phoenix.LiveView.Socket.assigns()) ::
 Phoenix.LiveView.Rendered.t()

 Link to this callback

 terminate(reason, socket)

 View Source

 (optional)

 Specs

 terminate(reason, socket :: Phoenix.LiveView.Socket.t()) :: term()
when reason: :normal | :shutdown | {:shutdown, :left | :closed | term()}

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Uses LiveView in the current module to mark it a LiveView.
use Phoenix.LiveView,
 namespace: MyAppWeb,
 container: {:tr, class: "colorized"},
 layout: {MyAppWeb.LayoutView, "live.html"}

 Options

	:namespace - configures the namespace the LiveView is in
	:container - configures the container the LiveView will be wrapped in
	:layout - configures the layout the LiveView will be rendered in

 Link to this function

 allow_upload(socket, name, options)

 View Source

Allows an upload for the provided name.

 Options

	:accept - Required. A list of unique file type specifiers or the
atom :any to allow any kind of file. For example, [".jpeg"], :any, etc.

	:max_entries - The maximum number of selected files to allow per
file input. Defaults to 1.

	:max_file_size - The maximum file size in bytes to allow to be uploaded.
Defaults 8MB. For example, 12_000_000.

	:chunk_size - The chunk size in bytes to send when uploading.
Defaults 64_000.

	:chunk_timeout - The time in milliseconds to wait before closing the
upload channel when a new chunk has not been received. Defaults 10_000.

	:external - The 2-arity function for generating metadata for external
client uploaders. See the Uploads section for example usage.

	:progress - The optional 3-arity function for receiving progress events

	:auto_upload - Instructs the client to upload the file automatically
on file selection instead of waiting for form submits. Default false.

Raises when a previously allowed upload under the same name is still active.

 Examples

allow_upload(socket, :avatar, accept: ~w(.jpg .jpeg), max_entries: 2)
allow_upload(socket, :avatar, accept: :any)
For consuming files automatically as they are uploaded, you can pair auto_upload: true with
a custom progress function to consume the entries as they are completed. For example:
allow_upload(socket, :avatar, accept: :any, progress: &handle_progress/3, auto_upload: true)

defp handle_progress(:avatar, entry, socket) do
 if entry.done? do
 uploaded_file =
 consume_uploaded_entry(socket, entry, fn %{} = meta ->
 ...
 end)

 {:noreply, put_flash(socket, :info, "file #{uploaded_file.name} uploaded")}
 else
 {:noreply, socket}
 end
end

 Link to this function

 assign(socket_or_assigns, keyword_or_map)

 View Source

Adds key-value pairs to assigns.
The first argument is either a LiveView socket or an
assigns map from function components.
A keyword list or a map of assigns must be given as argument
to be merged into existing assigns.

 Examples

iex> assign(socket, name: "Elixir", logo: "💧")
iex> assign(socket, %{name: "Elixir"})

 Link to this function

 assign(socket_or_assigns, key, value)

 View Source

Adds a key-value pair to socket_or_assigns.
The first argument is either a LiveView socket or an
assigns map from function components.

 Examples

iex> assign(socket, :name, "Elixir")

 Link to this function

 assign_new(socket_or_assigns, key, fun)

 View Source

Assigns the given key with value from fun into socket_or_assigns if
one does not yet exist.
The first argument is either a LiveView socket or an assigns map from
function components.
Useful for lazily assigning values and referencing parent assigns.

 Referencing parent assigns

When a LiveView is mounted in a disconnected state, the Plug.Conn assigns
will be available for reference via assign_new/3, allowing assigns to
be shared for the initial HTTP request. The Plug.Conn assigns will not be
available during the connected mount. Likewise, nested LiveView children have
access to their parent's assigns on mount using assign_new/3, which allows
assigns to be shared down the nested LiveView tree.

 Examples

controller
conn
|> assign(:current_user, user)
|> LiveView.Controller.live_render(MyLive, session: %{"user_id" => user.id})

LiveView mount
def mount(_params, %{"user_id" => user_id}, socket) do
 {:ok, assign_new(socket, :current_user, fn -> Accounts.get_user!(user_id) end)}
end

 Link to this function

 attach_hook(socket, name, stage, fun)

 View Source

Attaches the given fun by name for the lifecycle stage into socket.
Note: This function is for server-side lifecycle callbacks.
For client-side hooks, see the
JS Interop guide.

Hooks provide a mechanism to tap into key stages of the LiveView
lifecycle in order to bind/update assigns, intercept events,
patches, and regular messages when necessary, and to inject
common functionality. Hooks may be attached to any of the following
lifecycle stages: :mount (via on_mount/1), :handle_params,
:handle_event, and :handle_info.

 Return Values

Lifecycle hooks take place immediately before a given lifecycle
callback is invoked on the LiveView. A hook may return {:halt, socket}
to halt the reduction, otherwise it must return {:cont, socket} so
the operation may continue until all hooks have been invoked for
the current stage.

 Halting the lifecycle

Note that halting from a hook will halt the entire lifecycle stage.
This means that when a hook returns {:halt, socket} then the
LiveView callback will not be invoked. This has some
implications.

 Implications for plugin authors

When defining a plugin that matches on specific callbacks, you must
define a catch-all clause, as your hook will be invoked even for events
you may not be interested on.

 Implications for end-users

Allowing a hook to halt the invocation of the callback means that you can
attach hooks to intercept specific events before detaching themselves,
while allowing other events to continue normally.

 Examples

def mount(_params, _session, socket) do
 socket =
 attach_hook(socket, :my_hook, :handle_event, fn
 "very-special-event", _params, socket ->
 # Handle the very special event and then detach the hook
 {:halt, detach_hook(socket, :my_hook, :handle_event)}

 _event, _params, socket ->
 {:cont, socket}
 end)

 {:ok, socket}
end

 Link to this function

 cancel_upload(socket, name, entry_ref)

 View Source

Cancels an upload for the given entry.

 Examples

<%= for entry <- @uploads.avatar.entries do %>
 ...
 <button phx-click="cancel-upload" phx-value-ref="<%= entry.ref %>">cancel</button>
<% end %>

def handle_event("cancel-upload", %{"ref" => ref}, socket) do
 {:noreply, cancel_upload(socket, :avatar, ref)}
end

 Link to this function

 changed?(socket_or_assigns, key)

 View Source

Checks if the given key changed in socket_or_assigns.
The first argument is either a LiveView socket or an
assigns map from function components.

 Examples

iex> changed?(socket, :count)

 Link to this function

 clear_flash(socket)

 View Source

Clears the flash.

 Examples

iex> clear_flash(socket)

 Link to this function

 clear_flash(socket, key)

 View Source

Clears a key from the flash.

 Examples

iex> clear_flash(socket, :info)

 Link to this function

 connected?(socket)

 View Source

Returns true if the socket is connected.
Useful for checking the connectivity status when mounting the view.
For example, on initial page render, the view is mounted statically,
rendered, and the HTML is sent to the client. Once the client
connects to the server, a LiveView is then spawned and mounted
statefully within a process. Use connected?/1 to conditionally
perform stateful work, such as subscribing to pubsub topics,
sending messages, etc.

 Examples

defmodule DemoWeb.ClockLive do
 use Phoenix.LiveView
 ...
 def mount(_params, _session, socket) do
 if connected?(socket), do: :timer.send_interval(1000, self(), :tick)

 {:ok, assign(socket, date: :calendar.local_time())}
 end

 def handle_info(:tick, socket) do
 {:noreply, assign(socket, date: :calendar.local_time())}
 end
end

 Link to this function

 consume_uploaded_entries(socket, name, func)

 View Source

Consumes the uploaded entries.
Raises when there are still entries in progress.
Typically called when submitting a form to handle the
uploaded entries alongside the form data. For form submissions,
it is guaranteed that all entries have completed before the submit event
is invoked. Once entries are consumed, they are removed from the upload.

 Examples

def handle_event("save", _params, socket) do
 uploaded_files =
 consume_uploaded_entries(socket, :avatar, fn %{path: path}, _entry ->
 dest = Path.join("priv/static/uploads", Path.basename(path))
 File.cp!(path, dest)
 Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")
 end)
 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}
end

 Link to this function

 consume_uploaded_entry(socket, entry, func)

 View Source

Consumes an individual uploaded entry.
Raises when the entry is still in progress.
Typically called when submitting a form to handle the
uploaded entries alongside the form data. Once entries are consumed,
they are removed from the upload.
This is a lower-level feature than consume_uploaded_entries/3 and useful
for scenarios where you want to consume entries as they are individually completed.

 Examples

def handle_event("save", _params, socket) do
 case uploaded_entries(socket, :avatar) do
 {[_|_] = entries, []} ->
 uploaded_files = for entry <- entries do
 consume_uploaded_entry(socket, entry, fn %{path: path} ->
 dest = Path.join("priv/static/uploads", Path.basename(path))
 File.cp!(path, dest)
 Routes.static_path(socket, "/uploads/#{Path.basename(dest)}")
 end)
 end
 {:noreply, update(socket, :uploaded_files, &(&1 ++ uploaded_files))}

 _ ->
 {:noreply, socket}
 end
end

 Link to this function

 detach_hook(socket, name, stage)

 View Source

Detaches a hook with the given name from the lifecycle stage.
Note: This function is for server-side lifecycle callbacks.
For client-side hooks, see the
JS Interop guide.

If no hook is found, this function is a no-op.

 Examples

def handle_event(_, socket) do
 {:noreply, detach_hook(socket, :hook_that_was_attached, :handle_event)}
end

 Link to this function

 disallow_upload(socket, name)

 View Source

Revokes a previously allowed upload from allow_upload/3.

 Examples

disallow_upload(socket, :avatar)

 Link to this function

 get_connect_info(socket)

 View Source

Accesses the connect info from the socket to use on connected mount.
Connect info are only sent when the client connects to the server and
only remain available during mount. nil is returned when called in a
disconnected state and a RuntimeError is raised if called after mount.

 Examples

First, when invoking the LiveView socket, you need to declare the
connect_info you want to receive. Typically, it includes at least
the session but it may include other keys, such as :peer_data.
See Phoenix.Endpoint.socket/3:
socket "/live", Phoenix.LiveView.Socket,
 websocket: [connect_info: [:peer_data, session: @session_options]]
Those values can now be accessed on the connected mount as
get_connect_info/1:
def mount(_params, _session, socket) do
 if info = get_connect_info(socket) do
 {:ok, assign(socket, ip: info.peer_data.address)}
 else
 {:ok, assign(socket, ip: nil)}
 end
end

 Link to this function

 get_connect_params(socket)

 View Source

Accesses the connect params sent by the client for use on connected mount.
Connect params are only sent when the client connects to the server and
only remain available during mount. nil is returned when called in a
disconnected state and a RuntimeError is raised if called after mount.

 Reserved params

The following params have special meaning in LiveView:
	"_csrf_token" - the CSRF Token which must be explicitly set by the user
when connecting
	"_mounts" - the number of times the current LiveView is mounted.
It is 0 on first mount, then increases on each reconnect. It resets
when navigating away from the current LiveView or on errors
	"_track_static" - set automatically with a list of all href/src from
tags with the phx-track-static annotation in them. If there are no
such tags, nothing is sent

 Examples

def mount(_params, _session, socket) do
 {:ok, assign(socket, width: get_connect_params(socket)["width"] || @width)}
end

 Link to this macro

 on_mount(mod_or_mod_arg)

 View Source

 (macro)

Declares a module callback to be invoked on the LiveView's mount.
The function within the given module, which must be named on_mount,
will be invoked before both disconnected and connected mounts. The hook
has the option to either halt or continue the mounting process as usual.
If you wish to redirect the LiveView, you must halt, otherwise an error
will be raised.
Tip: if you need to define multiple on_mount callbacks, avoid defining
multiple modules. Instead, pass a tuple and use pattern matching to handle
different cases:
def on_mount(:admin, _params, _session, _socket) do
 {:cont, socket}
end

def on_mount(:user, _params, _session, _socket) do
 {:cont, socket}
end
And then invoke it as:
on_mount {MyAppWeb.SomeHook, :admin}
on_mount {MyAppWeb.SomeHook, :user}
Registering on_mount hooks can be useful to perform authentication
as well as add custom behaviour to other callbacks via attach_hook/4.

 Examples

The following is an example of attaching a hook via
Phoenix.LiveView.Router.live_session/3:
lib/my_app_web/live/init_assigns.ex
defmodule MyAppWeb.InitAssigns do
 @moduledoc """
 Ensures common `assigns` are applied to all LiveViews attaching this hook.
 """
 import Phoenix.LiveView

 def on_mount(:default, _params, _session, socket) do
 {:cont, assign(socket, :page_title, "DemoWeb")}
 end

 def on_mount(:user, _params, _session, socket) do
 end

 def on_mount(:admin, _params, _session, socket) do
 end
end

lib/my_app_web/router.ex
defmodule MyAppWeb.Router do
 use MyAppWeb, :router

 # pipelines, plugs, etc.

 live_session :default, on_mount: MyAppWeb.InitAssigns do
 scope "/", MyAppWeb do
 pipe_through :browser
 live "/", PageLive, :index
 end

 live_session :authenticated, on_mount: {MyAppWeb.InitAssigns, :user} do
 scope "/", MyAppWeb do
 pipe_through [:browser, :require_user]
 live "/profile", UserLive.Profile, :index
 end
 end

 live_session :admins, on_mount: {MyAppWeb.InitAssigns, :admin} do
 scope "/admin", MyAppWeb.Admin do
 pipe_through [:browser, :require_user, :require_admin]
 live "/", AdminLive.Index, :index
 end
 end
end

 Link to this function

 push_event(socket, event, payload)

 View Source

Pushes an event to the client to be consumed by hooks.
Note: events will be dispatched to all active hooks on the client who are
handling the given event. Scoped events can be achieved by namespacing
your event names.

 Examples

{:noreply, push_event(socket, "scores", %{points: 100, user: "josé"})}

 Link to this function

 push_patch(socket, opts)

 View Source

Annotates the socket for navigation within the current LiveView.
When navigating to the current LiveView, handle_params/3 is
immediately invoked to handle the change of params and URL state.
Then the new state is pushed to the client, without reloading the
whole page while also maintaining the current scroll position.
For live redirects to another LiveView, use push_redirect/2.

 Options

	:to - the required path to link to. It must always be a local path
	:replace - the flag to replace the current history or push a new state.
Defaults false.

 Examples

{:noreply, push_patch(socket, to: "/")}
{:noreply, push_patch(socket, to: "/", replace: true)}

 Link to this function

 push_redirect(socket, opts)

 View Source

Annotates the socket for navigation to another LiveView.
The current LiveView will be shutdown and a new one will be mounted
in its place, without reloading the whole page. This can
also be used to remount the same LiveView, in case you want to start
fresh. If you want to navigate to the same LiveView without remounting
it, use push_patch/2 instead.

 Options

	:to - the required path to link to. It must always be a local path
	:replace - the flag to replace the current history or push a new state.
Defaults false.

 Examples

{:noreply, push_redirect(socket, to: "/")}
{:noreply, push_redirect(socket, to: "/", replace: true)}

 Link to this function

 put_flash(socket, kind, msg)

 View Source

Adds a flash message to the socket to be displayed.
Note: While you can use put_flash/3 inside a Phoenix.LiveComponent,
components have their own @flash assigns. The @flash assign
in a component is only copied to its parent LiveView if the component
calls push_redirect/2 or push_patch/2.
Note: You must also place the Phoenix.LiveView.Router.fetch_live_flash/2
plug in your browser's pipeline in place of fetch_flash for LiveView flash
messages be supported, for example:
import Phoenix.LiveView.Router

pipeline :browser do
 ...
 plug :fetch_live_flash
end

 Examples

iex> put_flash(socket, :info, "It worked!")
iex> put_flash(socket, :error, "You can't access that page")

 Link to this function

 redirect(socket, arg2)

 View Source

Annotates the socket for redirect to a destination path.
Note: LiveView redirects rely on instructing client
to perform a window.location update on the provided
redirect location. The whole page will be reloaded and
all state will be discarded.

 Options

	:to - the path to redirect to. It must always be a local path
	:external - an external path to redirect to

 Link to this function

 send_update(pid \\ self(), module, assigns)

 View Source

Asynchronously updates a Phoenix.LiveComponent with new assigns.
The :id that identifies the component must be passed as part of the
assigns and it will be used to identify the live components to be updated.
The pid argument is optional and it defaults to the current process,
which means the update instruction will be sent to a component running
on the same LiveView. If the current process is not a LiveView or you
want to send updates to a live component running on another LiveView,
you should explicitly pass the LiveView's pid instead.
When the component receives the update, first the optional
preload/1 then
update/2 is invoked with the new assigns.
If update/2 is not defined
all assigns are simply merged into the socket.
While a component may always be updated from the parent by updating some
parent assigns which will re-render the child, thus invoking
update/2 on the child component,
send_update/3 is useful for updating a component that entirely manages its
own state, as well as messaging between components mounted in the same
LiveView.

 Examples

def handle_event("cancel-order", _, socket) do
 ...
 send_update(Cart, id: "cart", status: "cancelled")
 {:noreply, socket}
end

def handle_event("cancel-order-asynchronously", _, socket) do
 ...
 pid = self()

 Task.async(fn ->
 # Do something asynchronously
 send_update(pid, Cart, id: "cart", status: "cancelled")
 end)

 {:noreply, socket}
end

 Link to this function

 send_update_after(pid \\ self(), module, assigns, time_in_milliseconds)

 View Source

Similar to send_update/3 but the update will be delayed according to the given time_in_milliseconds.

 Examples

def handle_event("cancel-order", _, socket) do
 ...
 send_update_after(Cart, [id: "cart", status: "cancelled"], 3000)
 {:noreply, socket}
end

def handle_event("cancel-order-asynchronously", _, socket) do
 ...
 pid = self()

 Task.async(fn ->
 # Do something asynchronously
 send_update_after(pid, Cart, [id: "cart", status: "cancelled"], 3000)
 end)

 {:noreply, socket}
end

 Link to this function

 static_changed?(socket)

 View Source

Returns true if the socket is connected and the tracked static assets have changed.
This function is useful to detect if the client is running on an outdated
version of the marked static files. It works by comparing the static paths
sent by the client with the one on the server.
Note: this functionality requires Phoenix v1.5.2 or later.
To use this functionality, the first step is to annotate which static files
you want to be tracked by LiveView, with the phx-track-static. For example:
<link phx-track-static rel="stylesheet" href="<%= Routes.static_path(@conn, "/css/app.css") %>"/>
<script defer phx-track-static type="text/javascript" src="<%= Routes.static_path(@conn, "/js/app.js") %>"></script>
Now, whenever LiveView connects to the server, it will send a copy src
or href attributes of all tracked statics and compare those values with
the latest entries computed by mix phx.digest in the server.
The tracked statics on the client will match the ones on the server the
huge majority of times. However, if there is a new deployment, those values
may differ. You can use this function to detect those cases and show a
banner to the user, asking them to reload the page. To do so, first set the
assign on mount:
def mount(params, session, socket) do
 {:ok, assign(socket, static_changed?: static_changed?(socket))}
end
And then in your views:
<%= if @static_changed? do %>
 <div id="reload-static">
 The app has been updated. Click here to reload.
 </div>
<% end %>
If you prefer, you can also send a JavaScript script that immediately
reloads the page.
Note: only set phx-track-static on your own assets. For example, do
not set it in external JavaScript files:
<script defer phx-track-static type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js"></script>
Because you don't actually serve the file above, LiveView will interpret
the static above as missing, and this function will return true.

 Link to this function

 transport_pid(socket)

 View Source

Returns the transport pid of the socket.
Raises ArgumentError if the socket is not connected.

 Examples

iex> transport_pid(socket)
#PID<0.107.0>

 Link to this function

 update(socket_or_assigns, key, fun)

 View Source

Updates an existing key with fun in the given socket_or_assigns.
The first argument is either a LiveView socket or an
assigns map from function components.
The update function receives the current key's value and
returns the updated value. Raises if the key does not exist.

 Examples

iex> update(socket, :count, fn count -> count + 1 end)
iex> update(socket, :count, &(&1 + 1))

 Link to this function

 uploaded_entries(socket, name)

 View Source

Returns the completed and in progress entries for the upload.

 Examples

case uploaded_entries(socket, :photos) do
 {[_ | _] = completed, []} ->
 # all entries are completed

 {[], [_ | _] = in_progress} ->
 # all entries are still in progress
end

Phoenix.LiveView.Controller

Helpers for rendering LiveViews from a controller.

 Anchor for this section

 Summary

 Functions

 live_render(conn, view, opts \\ [])

 Renders a live view from a Plug request and sends an HTML response.

 Anchor for this section

Functions

 Link to this function

 live_render(conn, view, opts \\ [])

 View Source

Renders a live view from a Plug request and sends an HTML response.
Before rendering, the @live_module assign will be added to the
connection assigns for reference.

 Options

See Phoenix.LiveView.Helpers.live_render/3 for all supported options.

 Examples

defmodule ThermostatController do
 use MyAppWeb, :controller

 # "use MyAppWeb, :controller" should import Phoenix.LiveView.Controller.
 # If it does not, you can either import it there or uncomment the line below:
 # import Phoenix.LiveView.Controller

 def show(conn, %{"id" => thermostat_id}) do
 live_render(conn, ThermostatLive, session: %{
 "thermostat_id" => id,
 "current_user_id" => get_session(conn, :user_id)
 })
 end
end

Phoenix.LiveView.Helpers

A collection of helpers to be imported into your views.

 Anchor for this section

 Summary

 Functions

 assigns_to_attributes(assigns, exclude \\ [])

 Filters the assigns as a list of keywords for use in dynamic tag attributes.

 component(func, assigns \\ [])

 Renders a component defined by the given function.

 form(assigns)

 Renders a form function component.

 live_component(assigns)

 A function component for rendering Phoenix.LiveComponent
within a parent LiveView.

 live_component(component, assigns, do_block \\ [])

 deprecated

 Deprecated API for rendering LiveComponent.

 live_file_input(conf, opts \\ [])

 Builds a file input tag for a LiveView upload.

 live_flash(other, key)

 Returns the flash message from the LiveView flash assign.

 live_img_preview(entry, opts \\ [])

 Generates an image preview on the client for a selected file.

 live_patch(text, opts)

 Generates a link that will patch the current LiveView.

 live_redirect(text, opts)

 Generates a link that will redirect to a new LiveView of the same live session.

 live_render(conn_or_socket, view, opts \\ [])

 Renders a LiveView within an originating plug request or
within a parent LiveView.

 live_title_tag(title, opts \\ [])

 Renders a title tag with automatic prefix/suffix on @page_title updates.

 render_block(inner_block, argument \\ [])

 deprecated

 Renders the @inner_block assign of a component with the given argument.

 render_slot(slot, argument \\ nil)

 Renders a slot entry with the given optional argument.

 sigil_H(arg, list)

 Provides ~H sigil with HTML-safe and HTML-aware syntax inside source files.

 sigil_L(arg, list)

 deprecated

 Provides ~L sigil with HTML safe Live EEx syntax inside source files.

 slot(name, list)

 Defines a slot's inner block.

 upload_errors(conf)

 Returns the entry errors for an upload.

 upload_errors(conf, entry)

 Returns the entry errors for an upload.

 Anchor for this section

Functions

 Link to this function

 assigns_to_attributes(assigns, exclude \\ [])

 View Source

Filters the assigns as a list of keywords for use in dynamic tag attributes.
Useful for transforming caller assigns into dynamic attributes while
stripping reserved keys from the result.

 Examples

Imagine the following my_link component which allows a caller
to pass a new_window assign, along with any other attributes they
would like to add to the element, such as class, data attributes, etc:
<.my_link href="/" id={@id} new_window={true} class="my-class">Home</.my_link>
We could support the dynamic attributes with the following component:
def my_link(assigns) do
 target = if assigns[:new_window], do: "_blank", else: false
 extra = assigns_to_attributes(assigns, [:new_window])

 assigns =
 assigns
 |> Phoenix.LiveView.assign(:target, target)
 |> Phoenix.LiveView.assign(:extra, extra)

 ~H"""

 <%= render_slot(@inner_block) %>

 """
end
The optional second argument to assigns_to_attributes takes a list of keys to exclude
which will typically be the keys reserved by the component itself which either
do not belong in the markup, or are already handled explicitly by the component.

 Link to this function

 component(func, assigns \\ [])

 View Source

Renders a component defined by the given function.
This function is rarely invoked directly by users. Instead, it is used by ~H
to render Phoenix.Components. For example, the following:
<MyApp.Weather.city name="Kraków" />
It the same as:
<%= component(&MyApp.Weather.city/1, name: "Kraków") %>

 Link to this function

 form(assigns)

 View Source

Renders a form function component.
This function is built on top of Phoenix.HTML.Form.form_for/4. For
more information about options and how to build inputs, see
Phoenix.HTML.Form.

 Options

The :for assign is the form's source data and the optional :action
assign can be provided for the form's action. Additionally accepts
the same options as Phoenix.HTML.Form.form_for/4 as optional assigns:
	:as - the server side parameter in which all params for this
form will be collected (i.e. as: :user_params would mean all fields
for this form will be accessed as conn.params.user_params server
side). Automatically inflected when a changeset is given.

	:method - the HTTP method. If the method is not "get" nor "post",
an input tag with name _method is generated along-side the form tag.
Defaults to "post".

	:multipart - when true, sets enctype to "multipart/form-data".
Required when uploading files

	:csrf_token - for "post" requests, the form tag will automatically
include an input tag with name _csrf_token. When set to false, this
is disabled

	:errors - use this to manually pass a keyword list of errors to the form
(for example from conn.assigns[:errors]). This option is only used when a
connection is used as the form source and it will make the errors available
under f.errors

	:id - the ID of the form attribute. If an ID is given, all form inputs
will also be prefixed by the given ID

All further assigns will be passed to the form tag.

 Examples

<.form let={f} for={@changeset}>
 <%= text_input f, :name %>
</.form>

<.form let={user_form} for={@changeset} as="user" multipart {@extra}>
 <%= text_input user_form, :name %>
</.form>

 Link to this function

 live_component(assigns)

 View Source

A function component for rendering Phoenix.LiveComponent
within a parent LiveView.
While LiveViews can be nested, each LiveView starts its
own process. A LiveComponent provides similar functionality
to LiveView, except they run in the same process as the
LiveView, with its own encapsulated state. That's why they
are called stateful components.
See Phoenix.LiveComponent for more information.

 Examples

.live_component requires the component :module and its
:id to be given:
<.live_component module={MyApp.WeatherComponent} id="thermostat" city="Kraków" />
The :id is used to identify this LiveComponent throughout the
LiveView lifecycle. Note the :id won't necessarily be used as the
DOM ID. That's up to the component.

 Link to this macro

 live_component(component, assigns, do_block \\ [])

 View Source

 (macro)

 This macro is deprecated. Use .live_component (live_component/1) instead.

Deprecated API for rendering LiveComponent.

 Upgrading

In order to migrate from <%= live_component ... %> to <.live_component>,
you must first:
	Migrate from ~L sigil and .leex templates to
~H sigil and .heex templates

	Then instead of:
 <%= live_component MyModule, id: "hello" do %>
 ...
 <% end %>
You should do:
 <.live_component module={MyModule} id="hello">
 ...
 </.live_component>

	If your component is using render_block/2, replace
it by render_slot/2

 Link to this function

 live_file_input(conf, opts \\ [])

 View Source

Builds a file input tag for a LiveView upload.
Options may be passed through to the tag builder for custom attributes.

 Drag and Drop

Drag and drop is supported by annotating the droppable container with a phx-drop-target
attribute pointing to the DOM ID of the file input. By default, the file input ID is the
upload ref, so the following markup is all that is required for drag and drop support:
<div class="container" phx-drop-target="<%= @uploads.avatar.ref %>">
 ...
 <%= live_file_input @uploads.avatar %>
</div>

 Examples

<%= live_file_input @uploads.avatar %>

 Link to this function

 live_flash(other, key)

 View Source

Returns the flash message from the LiveView flash assign.

 Examples

<p class="alert alert-info"><%= live_flash(@flash, :info) %></p>
<p class="alert alert-danger"><%= live_flash(@flash, :error) %></p>

 Link to this function

 live_img_preview(entry, opts \\ [])

 View Source

Generates an image preview on the client for a selected file.

 Examples

<%= for entry <- @uploads.avatar.entries do %>
 <%= live_img_preview entry, width: 75 %>
<% end %>

 Link to this function

 live_patch(text, opts)

 View Source

Generates a link that will patch the current LiveView.
When navigating to the current LiveView,
Phoenix.LiveView.handle_params/3 is
immediately invoked to handle the change of params and URL state.
Then the new state is pushed to the client, without reloading the
whole page while also maintaining the current scroll position.
For live redirects to another LiveView, use live_redirect/2.

 Options

	:to - the required path to link to.
	:replace - the flag to replace the current history or push a new state.
Defaults false.

All other options are forwarded to the anchor tag.

 Examples

<%= live_patch "home", to: Routes.page_path(@socket, :index) %>
<%= live_patch "next", to: Routes.live_path(@socket, MyLive, @page + 1) %>
<%= live_patch to: Routes.live_path(@socket, MyLive, dir: :asc), replace: false do %>
 Sort By Price
<% end %>

 Link to this function

 live_redirect(text, opts)

 View Source

Generates a link that will redirect to a new LiveView of the same live session.
The current LiveView will be shut down and a new one will be mounted
in its place, without reloading the whole page. This can
also be used to remount the same LiveView, in case you want to start
fresh. If you want to navigate to the same LiveView without remounting
it, use live_patch/2 instead.
Note: The live redirects are only supported between two LiveViews defined
under the same live session. See Phoenix.LiveView.Router.live_session/3 for
more details.

 Options

	:to - the required path to link to.
	:replace - the flag to replace the current history or push a new state.
Defaults false.

All other options are forwarded to the anchor tag.

 Examples

<%= live_redirect "home", to: Routes.page_path(@socket, :index) %>
<%= live_redirect "next", to: Routes.live_path(@socket, MyLive, @page + 1) %>
<%= live_redirect to: Routes.live_path(@socket, MyLive, dir: :asc), replace: false do %>
 Sort By Price
<% end %>

 Link to this function

 live_render(conn_or_socket, view, opts \\ [])

 View Source

Renders a LiveView within an originating plug request or
within a parent LiveView.

 Options

	:session - the map of extra session data to be serialized
and sent to the client. Note that all session data currently in
the connection is automatically available in LiveViews. You
can use this option to provide extra data. Also note that the keys
in the session are strings keys, as a reminder that data has
to be serialized first.
	:container - an optional tuple for the HTML tag and DOM
attributes to be used for the LiveView container. For example:
{:li, style: "color: blue;"}. By default it uses the module
definition container. See the "Containers" section below for more
information.
	:id - both the DOM ID and the ID to uniquely identify a LiveView.
An :id is automatically generated when rendering root LiveViews
but it is a required option when rendering a child LiveView.
	:router - an optional router that enables this LiveView to
perform live navigation. Only a single LiveView in a page may
have the :router set. LiveViews defined at the router with
the live macro automatically have the :router option set.

 Examples

within eex template
<%= live_render(@conn, MyApp.ThermostatLive) %>

within leex template
<%= live_render(@socket, MyApp.ThermostatLive, id: "thermostat") %>

 Containers

When a LiveView is rendered, its contents are wrapped in a container.
By default, said container is a div tag with a handful of LiveView
specific attributes.
The container can be customized in different ways:
	You can change the default container on use Phoenix.LiveView:
use Phoenix.LiveView, container: {:tr, id: "foo-bar"}

	You can override the container tag and pass extra attributes when
calling live_render (as well as on your live call in your router):
live_render socket, MyLiveView, container: {:tr, class: "highlight"}

 Link to this function

 live_title_tag(title, opts \\ [])

 View Source

Renders a title tag with automatic prefix/suffix on @page_title updates.

 Examples

<%= live_title_tag assigns[:page_title] || "Welcome", prefix: "MyApp – " %>

<%= live_title_tag assigns[:page_title] || "Welcome", suffix: " – MyApp" %>

 Link to this macro

 render_block(inner_block, argument \\ [])

 View Source

 (macro)

 This macro is deprecated. Use render_slot/2 instead.

Renders the @inner_block assign of a component with the given argument.
<%= render_block(@inner_block, value: @value)
This function is deprecated for function components. Use render_slot/2
instead.

 Link to this macro

 render_slot(slot, argument \\ nil)

 View Source

 (macro)

Renders a slot entry with the given optional argument.
<%= render_slot(@inner_block, @form) %>
If multiple slot entries are defined for the same slot,
render_slot/2 will automatically render all entries,
merging their contents. In case you want to use the entries'
attributes, you need to iterate over the list to access each
slot individually.
For example, imagine a table component:
<.table rows={@users}>
 <:col let={user} label="Name">
 <%= user.name %>
 </:col>

 <:col let={user} label="Address">
 <%= user.address %>
 </:col>
</.table>
At the top level, we pass the rows as an assign and we define
a :col slot for each column we want in the table. Each
column also has a label, which we are going to use in the
table header.
Inside the component, you can render the table with headers,
rows, and columns:
def table(assigns) do
 ~H"""
 <table>
 <th>
 <%= for col <- @col do %>
 <td><%= col.label %></td>
 <% end >
 </th>
 <%= for row <- @rows do %>
 <tr>
 <%= for col <- @col do %>
 <td><%= render_slot(col, row) %></td>
 <% end %>
 </tr>
 <% end %>
 </table>
 """
end

 Link to this macro

 sigil_H(arg, list)

 View Source

 (macro)

Provides ~H sigil with HTML-safe and HTML-aware syntax inside source files.
Note: HEEx requires Elixir >= 1.12.0 in order to provide accurate
file:line:column information in error messages. Earlier Elixir versions will
work but will show inaccurate error messages.

HEEx is a HTML-aware and component-friendly extension of EEx that provides:
	Built-in handling of HTML attributes
	An HTML-like notation for injecting function components
	Compile-time validation of the structure of the template
	The ability to minimize the amount of data sent over the wire

 Example

~H"""
<div title="My div" class={@class}>
 <p>Hello <%= @name %></p>
 <MyApp.Weather.city name="Kraków"/>
</div>
"""

 Syntax

HEEx is built on top of Embedded Elixir (EEx), a templating syntax that uses
<%= ... %> for interpolating results. In this section, we are going to cover the
basic constructs in HEEx templates as well as its syntax extensions.

 Interpolation

Both HEEx and EEx templates use <%= ... %> for interpolating code inside the body
of HTML tags:
<p>Hello, <%= @name %></p>
Similarly, conditionals and other block Elixir constructs are supported:
<%= if @show_greeting? do %>
 <p>Hello, <%= @name %></p>
<% end %>
Note we don't include the equal sign = in the closing <% end %> tag
(because the closing tag does not output anything).
There is one important difference between HEEx and Elixir's builtin EEx.
HEEx uses a specific annotation for interpolating HTML tags and attributes.
Let's check it out.

 HEEx extension: Defining attributes

Since HEEx must parse and validate the HTML structure, code interpolation using
<%= ... %> and <% ... %> are restricted to the body (inner content) of the
HTML/component nodes and it cannot be applied within tags.
For instance, the following syntax is invalid:
<div class="<%= @class %>">
 ...
</div>
Instead do:
<div class={@class}>
 ...
</div>
You can put any Elixir expression between { ... }. For example, if you want
to set classes, where some are static and others are dynamic, you can using
string interpolation:
<div class={"btn btn-#{@type}"}>
 ...
</div>
For multiple dynamic attributes, you can use the same notation but without
assigning the expression to any specific attribute.
<div {@dynamic_attrs}>
 ...
</div>
The expression inside {...} must be either a keyword list or a map containing
the key-value pairs representing the dynamic attributes.

 HEEx extension: Defining function components

Function components are stateless components implemented as pure functions
with the help of the Phoenix.Component module. They can be either local
(same module) or remote (external module).
HEEx allows invoking these function components directly in the template
using an HTML-like notation. For example, a remote function:
<MyApp.Weather.city name="Kraków"/>
A local function can be invoked with a leading dot:
<.city name="Kraków"/>
where the component could be defined as follows:
defmodule MyApp.Weather do
 use Phoenix.Component

 def city(assigns) do
 ~H"""
 The chosen city is: <%= @name %>.
 """
 end

 def country(assigns) do
 ~H"""
 The chosen country is: <%= @name %>.
 """
 end
end
It is typically best to group related functions into a single module, as
opposed to having many modules with a single render/1 function. Function
components support other important features, such as slots. You can learn
more about components in Phoenix.Component.

 Link to this macro

 sigil_L(arg, list)

 View Source

 (macro)

 This macro is deprecated. Use ~H instead.

Provides ~L sigil with HTML safe Live EEx syntax inside source files.
iex> ~L"""
...> Hello <%= "world" %>
...> """
{:safe, ["Hello ", "world", "\n"]}

 Link to this macro

 slot(name, list)

 View Source

 (macro)

Defines a slot's inner block.
This macro is mostly used by HTML engines that provides
a slot implementation and rarely called directly.
If you're using HEEx templates, you should use its higher
level <:slot> notation instead. See Phoenix.Component
for more information.

 Link to this function

 upload_errors(conf)

 View Source

Returns the entry errors for an upload.
The following errors may be returned:
	:too_many_files - The number of selected files exceeds the :max_entries constraint

 Examples

def error_to_string(:too_many_files), do: "You have selected too many files"

<%= for err <- upload_errors(@uploads.avatar) do %>
 <div class="alert alert-danger">
 <%= error_to_string(err) %>
 </div>
<% end %>

 Link to this function

 upload_errors(conf, entry)

 View Source

Returns the entry errors for an upload.
The following errors may be returned:
	:too_large - The entry exceeds the :max_file_size constraint
	:not_accepted - The entry does not match the :accept MIME types

 Examples

def error_to_string(:too_large), do: "Too large"
def error_to_string(:not_accepted), do: "You have selected an unacceptable file type"

<%= for entry <- @uploads.avatar.entries do %>
 <%= for err <- upload_errors(@uploads.avatar, entry) do %>
 <div class="alert alert-danger">
 <%= error_to_string(err) %>
 </div>
 <% end %>
<% end %>

Phoenix.LiveView.JS

Provides commands for executing JavaScript utility operations on the client.
JS commands support a variety of utility operations for common client-side
needs, such as adding classing, showing or hiding content, and transitioning
in and out with animations. While these operations can be accomplished via
client-side hooks, JS commands are DOM patch aware, so operations applied
by the JS APIs will stick to elements across patches from the server.
In addition to purely client-side utilities, the JS command incluces a
rich push API, for extending the default phx- binding pushes with
options to customize targets, loading states, and additional payload values.
Enhanced Push Events
The push/3 command allows you to extend the built-in pushed event handling
when a phx- event is pushed to the server. For example, you may wish to
target a specific component, specify additional payload values to include
with the event, apply loading states to external elements, etc. For example,
given this basic phx-click event:
<div phx-click="inc">+</div>
Imagine you need to target your current component, and apply a loading state
to the parent container while the client awaits the server acknowledgement:
alias Phoenix.LiveView.JS

<div phx-click={JS.push("inc", loading: ".thermo", target: @myself)}>+</div>
Push commands also compose with all other utilities. For example, to add
a class when pushing:
<div phx-click={
 JS.push("inc", loading: ".thermo", target: @myself)
 |> JS.add_class(".warmer", to: ".thermo")
}>+</div>
Client Utility Commands
The following utilities are included:
	add_class - Add classes to elements, with optional transitions
	remove_class - Remove classes from elements, with optional transitions
	show - Show elements, with optional transitions
	hide - Hide elements, with optional transitions
	toggle - Shows or hides elements based on visiblity, with optional transitions
	transition - Apply a temporary transition to elements for animations
	dispatch - Dispatch a DOM event to elements

For example, the following modal component can be shown or hidden on the
client without a trip to the server:
alias Phoenix.LiveView.JS

def hide_modal(js \\ %JS{}) do
 js
 |> JS.hide(transition: "fade-out", to: "#modal")
 |> JS.hide(transition: "fade-out-scale", to: "#modal-content")
end

def modal(assigns) do
 ~H"""
 <div id="modal" class="phx-modal" phx-remove={hide_modal()}>
 <div
 id="modal-content"
 class="phx-modal-content"
 phx-click-away={hide_modal()}
 phx-window-keydown={hide_modal()}
 phx-key="escape"
 >
 <button class="phx-modal-close" phx-click={hide_modal()}>✖</button>
 <p><%= @text %></p>
 </div>
 </div>
 """
end

 Anchor for this section

 Summary

 Functions

 add_class(names)

 Adds classes to elements.

 add_class(js, names)

 add_class(js, names, opts)

 dispatch(cmd \\ %JS{}, event, opts)

 Dispatches an event to the DOM.

 hide(opts \\ [])

 Hides elements.

 hide(cmd, opts)

 push(event)

 Pushes an event to the server.

 push(event, opts)

 push(cmd, event, opts)

 remove_class(names)

 Removes classes from elements.

 remove_class(js, names)

 remove_class(js, names, opts)

 show(opts \\ [])

 Shows elements.

 show(cmd, opts)

 toggle(opts \\ [])

 Toggles elements.

 toggle(cmd, opts)

 transition(names)

 Transitions elements.

 transition(names, opts)

 transition(cmd, names, opts)

 Anchor for this section

Functions

 Link to this function

 add_class(names)

 View Source

Adds classes to elements.

 Options

	:to - The optional DOM selector to add classes to.
defaults to the interacted element.
	:transition - The string of classes to apply before adding classes.
	:time - The time to apply the transition from :transition.
Defaults 200

 Examples

<div id="item">My Item</div>
<button phx-click={JS.add_class("highlight underline", to: "#item")}>
 highlight!
</button>

 Link to this function

 add_class(js, names)

 View Source

 Link to this function

 add_class(js, names, opts)

 View Source

 Link to this function

 dispatch(cmd \\ %JS{}, event, opts)

 View Source

Dispatches an event to the DOM.
	event - The string event name to dispatch.

 Options

	:to - The optional DOM selector to dispatch the event to.
defaults to the interacted element.
	:detail - The optional detail map to dispatch along
with the client event. The details will be available in the
event.detail attribute for event listeners.

 Examples

window.addEventListener("click", e => console.log("clicked!", e.detail))

<button phx-click={JS.dispatch("click", to: ".nav")}>Click me!</button>

 Link to this function

 hide(opts \\ [])

 View Source

Hides elements.

 Options

	:to - The optional DOM selector to hide.
defaults to the interacted element.
	:transition - The string of classes to apply before hiding.
	:time - The time to apply the transition from :transition.
Defaults 200

 Examples

<div id="item">My Item</div>

<button phx-click={JS.hide(to: "#item")}>
 hide!
</button>

<button phx-click={JS.hide(to: "#item", transition: "fade-out-scale")}>
 hide fancy!
</button>

 Link to this function

 hide(cmd, opts)

 View Source

 Link to this function

 push(event)

 View Source

Pushes an event to the server.

 Options

	:target - The selector or component ID to push to
	:loading - The selector to apply the phx loading classes to
	:page_loading - Boolean to trigger the phx:page-loading-start and
phx:page-loading-stop events for this push. Default false
	:value - The map of values to send to the server

 Examples

<button phx-click={JS.push("clicked")}>click me!</button>
<button phx-click={JS.push("clicked", value: %{id: @id})}>click me!</button>
<button phx-click={JS.push("clicked", page_loading: true)}>click me!</button>

 Link to this function

 push(event, opts)

 View Source

 Link to this function

 push(cmd, event, opts)

 View Source

 Link to this function

 remove_class(names)

 View Source

Removes classes from elements.

 Options

	:to - The optional DOM selector to remove classes from.
defaults to the interacted element.
	:transition - The string of classes to apply before removing classes.
	:time - The time to apply the transition from :transition.
Defaults 200

 Examples

<div id="item">My Item</div>
<button phx-click={JS.remove_class("highlight underline", to: "#item")}>
 remove highlight!
</button>

 Link to this function

 remove_class(js, names)

 View Source

 Link to this function

 remove_class(js, names, opts)

 View Source

 Link to this function

 show(opts \\ [])

 View Source

Shows elements.

 Options

	:to - The optional DOM selector to show.
defaults to the interacted element.
	:transition - The string of classes to apply before showing.
	:time - The time to apply the transition from :transition.
Defaults 200
	:display - The optional display value to set when showing. Defaults "block".

 Examples

<div id="item">My Item</div>

<button phx-click={JS.show(to: "#item")}>
 show!
</button>

<button phx-click={JS.show(to: "#item", transition: "fade-in-scale")}>
 show fancy!
</button>

 Link to this function

 show(cmd, opts)

 View Source

 Link to this function

 toggle(opts \\ [])

 View Source

Toggles elements.

 Options

	:to - The optional DOM selector to toggle.
defaults to the interacted element.
	:in - The string of classes to apply when toggling in.
	:out - The string of classes to apply when toggling out.
	:time - The time to apply the transition :in and :out classes.
Defaults 200
	:display - The optional display value to set when toggling in. Defaults "block".

 Examples

<div id="item">My Item</div>

<button phx-click={JS.toggle(to: "#item")}>
 toggle item!
</button>

<button phx-click={JS.show(to: "#item", in: "fade-in-scale", out: "fade-out-scale")}>
 toggle fancy!
</button>

 Link to this function

 toggle(cmd, opts)

 View Source

 Link to this function

 transition(names)

 View Source

Transitions elements.
Transitions are useful for temporarily adding an animation class
to element(s), such as for highligthing content changes.

 Options

	:to - The optional DOM selector to remove classes from.
defaults to the interacted element.
	:transition - The string of classes to apply before removing classes.
	:time - The time to apply the transition from :transition.
Defaults 200

 Examples

<div id="item">My Item</div>
<button phx-click={JS.transition("shake", to: "#item")}>Shake!</button>

 Link to this function

 transition(names, opts)

 View Source

 Link to this function

 transition(cmd, names, opts)

 View Source

Phoenix.LiveView.Router

Provides LiveView routing for Phoenix routers.

 Anchor for this section

 Summary

 Functions

 fetch_live_flash(conn, _)

 Fetches the LiveView and merges with the controller flash.

 live(path, live_view, action \\ nil, opts \\ [])

 Defines a LiveView route.

 live_session(name, opts \\ [], list)

 Defines a live session for live redirects within a group of live routes.

 Anchor for this section

Functions

 Link to this function

 fetch_live_flash(conn, _)

 View Source

Fetches the LiveView and merges with the controller flash.
Replaces the default :fetch_flash plug used by Phoenix.Router.

 Examples

defmodule MyAppWeb.Router do
 use LiveGenWeb, :router
 import Phoenix.LiveView.Router

 pipeline :browser do
 ...
 plug :fetch_live_flash
 end
 ...
end

 Link to this macro

 live(path, live_view, action \\ nil, opts \\ [])

 View Source

 (macro)

Defines a LiveView route.
A LiveView can be routed to by using the live macro with a path and
the name of the LiveView:
live "/thermostat", ThermostatLive
By default, you can generate a route to this LiveView by using the live_path helper:
live_path(@socket, ThermostatLive)

 Actions and live navigation

It is common for a LiveView to have multiple states and multiple URLs.
For example, you can have a single LiveView that lists all articles on
your web app. For each article there is an "Edit" button which, when
pressed, opens up a modal on the same page to edit the article. It is a
best practice to use live navigation in those cases, so when you click
edit, the URL changes to "/articles/1/edit", even though you are still
within the same LiveView. Similarly, you may also want to show a "New"
button, which opens up the modal to create new entries, and you want
this to be reflected in the URL as "/articles/new".
In order to make it easier to recognize the current "action" your
LiveView is on, you can pass the action option when defining LiveViews
too:
live "/articles", ArticleLive.Index, :index
live "/articles/new", ArticleLive.Index, :new
live "/articles/:id/edit", ArticleLive.Index, :edit
When an action is given, the generated route helpers are named after
the LiveView itself (in the same way as for a controller). For the example
above, we will have:
article_index_path(@socket, :index)
article_index_path(@socket, :new)
article_index_path(@socket, :edit, 123)
The current action will always be available inside the LiveView as
the @live_action assign, that can be used to render a LiveComponent:
<%= if @live_action == :new do %>
 <.live_component module={MyAppWeb.ArticleLive.FormComponent} id="form" />
<% end %>
Or can be used to show or hide parts of the template:
<%= if @live_action == :edit do %>
 <%= render("form.html", user: @user) %>
<% end %>
Note that @live_action will be nil if no action is given on the route definition.

 Options

	:container - an optional tuple for the HTML tag and DOM attributes to
be used for the LiveView container. For example: {:li, style: "color: blue;"}.
See Phoenix.LiveView.Helpers.live_render/3 for more information and examples.

	:as - optionally configures the named helper. Defaults to :live when
using a LiveView without actions or defaults to the LiveView name when using
actions.

	:metadata - a map to optional feed metadata used on telemetry events and route info,
for example: %{route_name: :foo, access: :user}.

	:private - an optional map of private data to put in the plug connection.
for example: %{route_name: :foo, access: :user}.

 Examples

defmodule MyApp.Router
 use Phoenix.Router
 import Phoenix.LiveView.Router

 scope "/", MyApp do
 pipe_through [:browser]

 live "/thermostat", ThermostatLive
 live "/clock", ClockLive
 live "/dashboard", DashboardLive, container: {:main, class: "row"}
 end
end

iex> MyApp.Router.Helpers.live_path(MyApp.Endpoint, MyApp.ThermostatLive)
"/thermostat"

 Link to this macro

 live_session(name, opts \\ [], list)

 View Source

 (macro)

Defines a live session for live redirects within a group of live routes.
live_session/3 allow routes defined with live/4 to support
live_redirect from the client with navigation purely over the existing
websocket connection. This allows live routes defined in the router to
mount a new root LiveView without additional HTTP requests to the server.

 Security Considerations

You must always perform authentication and authorization in your LiveViews.
If your application handle both regular HTTP requests and LiveViews, then
you must perform authentication and authorization on both. This is important
because live_redirects do not go through the plug pipeline.
live_session can be used to draw boundaries between groups of LiveViews.
Redirecting between live_sessions will always force a full page reload
and establish a brand new LiveView connection. This is useful when LiveViews
require different authentication strategies or simply when they use different
root layouts (as the root layout is not updated between live redirects).
Please read our guide on the security model for a
detailed description and general tips on authentication, authorization,
and more.

 Options

	:session - The optional extra session map or MFA tuple to be merged with
the LiveView session. For example, %{"admin" => true}, {MyMod, :session, []}.
For MFA, the function is invoked, passing the Plug.Conn struct is prepended
to the arguments list.

	:root_layout - The optional root layout tuple for the initial HTTP render to
override any existing root layout set in the router.

	:on_mount - The optional list of hooks to attach to the mount lifecycle of
each LiveView in the session. See Phoenix.LiveView.on_mount/1. Passing a
single value is also accepted.

 Examples

scope "/", MyAppWeb do
 pipe_through :browser

 live_session :default do
 live "/feed", FeedLive, :index
 live "/status", StatusLive, :index
 live "/status/:id", StatusLive, :show
 end

 live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 live "/admin", AdminDashboardLive, :index
 live "/admin/posts", AdminPostLive, :index
 end
end
In the example above, we have two live sessions. Live navigation between live views
in the different sessions is not possible and will always require a full page reload.
This is important in the example above because the :admin live session has authentication
requirements, defined by on_mount: MyAppWeb.AdminLiveAuth, that the other LiveViews
do not have.
If you have both regular HTTP routes (via get, post, etc) and live routes, then
you need to perform the same authentication and authorization rules in both.
For example, if you were to add a get "/admin/health" entry point inside the
:admin live session above, then you must create your own plug that performs the
same authentication and authorization rules as MyAppWeb.AdminLiveAuth, and then
pipe through it:
live_session :admin, on_mount: MyAppWeb.AdminLiveAuth do
 # Regular routes
 pipe_through [MyAppWeb.AdminPlugAuth]
 get "/admin/health"

 # Live routes
 live "/admin", AdminDashboardLive, :index
 live "/admin/posts", AdminPostLive, :index
end
The opposite is also true, if you have regular http routes and you want to
add your own live routes, the same authentication and authorization checks
executed by the plugs listed in pipe_through must be ported to LiveViews
and be executed via on_mount hooks.

Phoenix.LiveView.Socket

The LiveView socket for Phoenix Endpoints.
This is typically mounted directly in your endpoint.
socket "/live", Phoenix.LiveView.Socket

 Anchor for this section

 Summary

 Types

 assigns()

 The data in a LiveView as stored in the socket.

 assigns_not_in_socket()

 Struct returned when assigns is not in the socket.

 fingerprints()

 t()

 Anchor for this section

Types

 Link to this type

 assigns()

 View Source

 Specs

 assigns() :: map() | assigns_not_in_socket()

The data in a LiveView as stored in the socket.

 Link to this opaque

 assigns_not_in_socket()

 View Source

 (opaque)

 Specs

 assigns_not_in_socket()

Struct returned when assigns is not in the socket.

 Link to this type

 fingerprints()

 View Source

 Specs

 fingerprints() :: {nil, map()} | {binary(), map()}

 Link to this type

 t()

 View Source

 Specs

 t() :: %Phoenix.LiveView.Socket{
 assigns: assigns(),
 endpoint: module(),
 fingerprints: fingerprints(),
 host_uri: URI.t() | :not_mounted_at_router,
 id: binary(),
 parent_pid: nil | pid(),
 private: map(),
 redirected: nil | tuple(),
 root_pid: pid(),
 router: module(),
 transport_pid: pid() | nil,
 view: module()
}

Phoenix.LiveViewTest

Conveniences for testing Phoenix LiveViews.
In LiveView tests, we interact with views via process
communication in substitution of a browser. Like a browser,
our test process receives messages about the rendered updates
from the view which can be asserted against to test the
life-cycle and behavior of LiveViews and their children.
LiveView Testing
The life-cycle of a LiveView as outlined in the Phoenix.LiveView
docs details how a view starts as a stateless HTML render in a disconnected
socket state. Once the browser receives the HTML, it connects to the
server and a new LiveView process is started, remounted in a connected
socket state, and the view continues statefully. The LiveView test functions
support testing both disconnected and connected mounts separately, for example:
import Plug.Conn
import Phoenix.ConnTest
import Phoenix.LiveViewTest
@endpoint MyEndpoint

test "disconnected and connected mount", %{conn: conn} do
 conn = get(conn, "/my-path")
 assert html_response(conn, 200) =~ "<h1>My Disconnected View</h1>"

 {:ok, view, html} = live(conn)
end

test "redirected mount", %{conn: conn} do
 assert {:error, {:redirect, %{to: "/somewhere"}}} = live(conn, "my-path")
end
Here, we start by using the familiar Phoenix.ConnTest function, get/2 to
test the regular HTTP GET request which invokes mount with a disconnected socket.
Next, live/1 is called with our sent connection to mount the view in a connected
state, which starts our stateful LiveView process.
In general, it's often more convenient to test the mounting of a view
in a single step, provided you don't need the result of the stateless HTTP
render. This is done with a single call to live/2, which performs the
get step for us:
test "connected mount", %{conn: conn} do
 {:ok, _view, html} = live(conn, "/my-path")
 assert html =~ "<h1>My Connected View</h1>"
end
Testing Events
The browser can send a variety of events to a LiveView via phx- bindings,
which are sent to the handle_event/3 callback. To test events sent by the
browser and assert on the rendered side effect of the event, use the
render_* functions:
	render_click/1 - sends a phx-click event and value, returning
the rendered result of the handle_event/3 callback.

	render_focus/2 - sends a phx-focus event and value, returning
the rendered result of the handle_event/3 callback.

	render_blur/1 - sends a phx-blur event and value, returning
the rendered result of the handle_event/3 callback.

	render_submit/1 - sends a form phx-submit event and value, returning
the rendered result of the handle_event/3 callback.

	render_change/1 - sends a form phx-change event and value, returning
the rendered result of the handle_event/3 callback.

	render_keydown/1 - sends a form phx-keydown event and value, returning
the rendered result of the handle_event/3 callback.

	render_keyup/1 - sends a form phx-keyup event and value, returning
the rendered result of the handle_event/3 callback.

	render_hook/3 - sends a hook event and value, returning
the rendered result of the handle_event/3 callback.

For example:
{:ok, view, _html} = live(conn, "/thermo")

assert view
 |> element("button#inc")
 |> render_click() =~ "The temperature is: 31℉"
In the example above, we are looking for a particular element on the page
and triggering its phx-click event. LiveView takes care of making sure the
element has a phx-click and automatically sends its values to the server.
You can also bypass the element lookup and directly trigger the LiveView
event in most functions:
assert render_click(view, :inc, %{}) =~ "The temperature is: 31℉"
The element style is preferred as much as possible, as it helps LiveView
perform validations and ensure the events in the HTML actually matches the
event names on the server.
Testing regular messages
LiveViews are GenServer's under the hood, and can send and receive messages
just like any other server. To test the side effects of sending or receiving
messages, simply message the view and use the render function to test the
result:
send(view.pid, {:set_temp, 50})
assert render(view) =~ "The temperature is: 50℉"
Testing components
There are two main mechanisms for testing components. To test stateless
components or just a regular rendering of a component, one can use
render_component/2:
assert render_component(MyComponent, id: 123, user: %User{}) =~
 "some markup in component"
If you want to test how components are mounted by a LiveView and
interact with DOM events, you can use the regular live/2 macro
to build the LiveView with the component and then scope events by
passing the view and a DOM selector in a list:
{:ok, view, html} = live(conn, "/users")
html = view |> element("#user-13 a", "Delete") |> render_click()
refute html =~ "user-13"
refute view |> element("#user-13") |> has_element?()
In the example above, LiveView will lookup for an element with
ID=user-13 and retrieve its phx-target. If phx-target points
to a component, that will be the component used, otherwise it will
fallback to the view.

 Anchor for this section

 Summary

 Functions

 assert_patch(view, timeout \\ 100)

 Asserts a live patch will happen within timeout milliseconds. The default
timeout is 100.

 assert_patch(view, to, timeout)

 Asserts a live patch will to a given path within timeout milliseconds. The
default timeout is 100.

 assert_patched(view, to)

 Asserts a live patch was performed, and returns the new path.

 assert_push_event(view, event, payload, timeout \\ 100)

 Asserts an event will be pushed within timeout.

 assert_redirect(view, timeout \\ 100)

 Asserts a redirect will happen within timeout milliseconds.
The default timeout is 100.

 assert_redirect(view, to, timeout)

 Asserts a redirect will happen to a given path within timeout milliseconds.
The default timeout is 100.

 assert_redirected(view, to)

 Asserts a redirect was performed.

 assert_reply(view, payload, timeout \\ 100)

 Asserts a hook reply was returned from a handle_event callback.

 element(view, selector, text_filter \\ nil)

 Returns an element to scope a function to.

 file_input(view, form_selector, name, entries)

 Builds a file input for testing uploads within a form.

 find_live_child(parent, child_id)

 Gets the nested LiveView child by child_id from the parent LiveView.

 follow_redirect(reason, conn, to \\ nil)

 Follows the redirect from a render_* action or an {:error, redirect}
tuple.

 follow_trigger_action(form, conn)

 Receives a form_element and asserts that phx-trigger-action has been
set to true, following up on that request.

 form(view, selector, form_data \\ %{})

 Returns a form element to scope a function to.

 has_element?(element)

 Checks if the given element exists on the page.

 has_element?(view, selector, text_filter \\ nil)

 Checks if the given selector with text_filter is on view.

 live(conn, path \\ nil)

 Spawns a connected LiveView process.

 live_children(parent)

 Returns the current list of LiveView children for the parent LiveView.

 live_isolated(conn, live_view, opts \\ [])

 Spawns a connected LiveView process mounted in isolation as the sole rendered element.

 live_redirect(view, opts)

 Performs a live redirect from one LiveView to another.

 open_browser(view_or_element, open_fun \\ &open_with_system_cmd/1)

 Open the default browser to display current HTML of view_or_element.

 page_title(view)

 Returns the most recent title that was updated via a page_title assign.

 preflight_upload(upload)

 Performs a preflight upload request.

 put_connect_info(conn, params)

 Puts connect info to be used on LiveView connections.

 put_connect_params(conn, params)

 Puts connect params to be used on LiveView connections.

 refute_redirected(view, to)

 Refutes a redirect to a given path was performed.

 render(view_or_element)

 Returns the HTML string of the rendered view or element.

 render_blur(element, value \\ %{})

 Sends a blur event given by element and returns the rendered result.

 render_blur(view, event, value)

 Sends a blur event to the view and returns the rendered result.

 render_change(element, value \\ %{})

 Sends a form change event given by element and returns the rendered result.

 render_change(view, event, value)

 Sends a form change event to the view and returns the rendered result.

 render_click(element, value \\ %{})

 Sends a click event given by element and returns the rendered result.

 render_click(view, event, value)

 Sends a click event to the view with value and returns the rendered result.

 render_component(component, assigns, opts \\ [])

 Renders a component.

 render_focus(element, value \\ %{})

 Sends a focus event given by element and returns the rendered result.

 render_focus(view, event, value)

 Sends a focus event to the view and returns the rendered result.

 render_hook(view_or_element, event, value \\ %{})

 Sends a hook event to the view or an element and returns the rendered result.

 render_keydown(element, value \\ %{})

 Sends a keydown event given by element and returns the rendered result.

 render_keydown(view, event, value)

 Sends a keydown event to the view and returns the rendered result.

 render_keyup(element, value \\ %{})

 Sends a keyup event given by element and returns the rendered result.

 render_keyup(view, event, value)

 Sends a keyup event to the view and returns the rendered result.

 render_patch(view, path)

 Simulates a live_patch to the given path and returns the rendered result.

 render_submit(element, value \\ %{})

 Sends a form submit event given by element and returns the rendered result.

 render_submit(view, event, value)

 Sends a form submit event to the view and returns the rendered result.

 render_upload(upload, entry_name, percent \\ 100)

 Performs an upload of a file input and renders the result.

 with_target(view, target)

 Sets the target of the view for events.

 Anchor for this section

Functions

 Link to this function

 assert_patch(view, timeout \\ 100)

 View Source

Asserts a live patch will happen within timeout milliseconds. The default
timeout is 100.
It returns the new path.
To assert on the flash message, you can assert on the result of the
rendered LiveView.

 Examples

render_click(view, :event_that_triggers_patch)
assert_patch view

render_click(view, :event_that_triggers_patch)
assert_patch view, 30

render_click(view, :event_that_triggers_patch)
path = assert_patch view
assert path =~ ~r/path/�+/

 Link to this function

 assert_patch(view, to, timeout)

 View Source

Asserts a live patch will to a given path within timeout milliseconds. The
default timeout is 100.
It always returns :ok.
To assert on the flash message, you can assert on the result of the
rendered LiveView.

 Examples

render_click(view, :event_that_triggers_patch)
assert_patch view, "/path"

render_click(view, :event_that_triggers_patch)
assert_patch view, "/path", 30

 Link to this function

 assert_patched(view, to)

 View Source

Asserts a live patch was performed, and returns the new path.
To assert on the flash message, you can assert on the result of
the rendered LiveView.

 Examples

render_click(view, :event_that_triggers_redirect)
assert_patched view, "/path"

 Link to this macro

 assert_push_event(view, event, payload, timeout \\ 100)

 View Source

 (macro)

Asserts an event will be pushed within timeout.

 Examples

assert_push_event view, "scores", %{points: 100, user: "josé"}

 Link to this function

 assert_redirect(view, timeout \\ 100)

 View Source

Asserts a redirect will happen within timeout milliseconds.
The default timeout is 100.
It returns a tuple containing the new path and the flash messages from said
redirect, if any. Note the flash will contain string keys.

 Examples

render_click(view, :event_that_triggers_redirect)
{path, flash} = assert_redirect view
assert flash["info"] == "Welcome"
assert path =~ ~r/path\/\d+/

render_click(view, :event_that_triggers_redirect)
assert_redirect view, 30

 Link to this function

 assert_redirect(view, to, timeout)

 View Source

Asserts a redirect will happen to a given path within timeout milliseconds.
The default timeout is 100.
It returns the flash messages from said redirect, if any.
Note the flash will contain string keys.

 Examples

render_click(view, :event_that_triggers_redirect)
flash = assert_redirect view, "/path"
assert flash["info"] == "Welcome"

render_click(view, :event_that_triggers_redirect)
assert_redirect view, "/path", 30

 Link to this function

 assert_redirected(view, to)

 View Source

Asserts a redirect was performed.
It returns a tuple containing the new path and the flash messages
from said redirect, if any. Note the flash will contain string keys.

 Examples

render_click(view, :event_that_triggers_redirect)
{_path, flash} = assert_redirected view, "/path"
assert flash["info"] == "Welcome"

 Link to this macro

 assert_reply(view, payload, timeout \\ 100)

 View Source

 (macro)

Asserts a hook reply was returned from a handle_event callback.

 Examples

assert_reply view, %{result: "ok", transaction_id: _}

 Link to this function

 element(view, selector, text_filter \\ nil)

 View Source

Returns an element to scope a function to.
It expects the current LiveView, a query selector, and a text filter.
An optional text filter may be given to filter the results by the query
selector. If the text filter is a string or a regex, it will match any
element that contains the string or matches the regex. After the text
filter is applied, only one element must remain, otherwise an error is
raised.
If no text filter is given, then the query selector itself must return
a single element.
assert view
 |> element("#term a:first-child()", "Increment")
 |> render() =~ "Increment"
Attribute selectors are also supported, and may be used on special cases
like ids which contain periods:
assert view
 |> element(~s{[href="/foo"][id="foo.bar.baz"]})
 |> render() =~ "Increment"

 Link to this macro

 file_input(view, form_selector, name, entries)

 View Source

 (macro)

Builds a file input for testing uploads within a form.
Given the form DOM selector, the upload name, and a list of maps of client metadata
for the upload, the returned file input can be passed to render_upload/2.
Client metadata takes the following form:
	:last_modified - the last modified timestamp
	:name - the name of the file
	:content - the binary content of the file
	:size - the byte size of the content
	:type - the MIME type of the file

 Examples

avatar = file_input(lv, "#my-form-id", :avatar, [%{
 last_modified: 1_594_171_879_000,
 name: "myfile.jpeg",
 content: File.read!("myfile.jpg"),
 size: 1_396_009,
 type: "image/jpeg"
}])

assert render_upload(avatar, "myfile.jpeg") =~ "100%"

 Link to this function

 find_live_child(parent, child_id)

 View Source

Gets the nested LiveView child by child_id from the parent LiveView.

 Examples

{:ok, view, _html} = live(conn, "/thermo")
assert clock_view = find_live_child(view, "clock")
assert render_click(clock_view, :snooze) =~ "snoozing"

 Link to this macro

 follow_redirect(reason, conn, to \\ nil)

 View Source

 (macro)

Follows the redirect from a render_* action or an {:error, redirect}
tuple.
Imagine you have a LiveView that redirects on a render_click
event. You can make it sure it immediately redirects after the
render_click action by calling follow_redirect/3:
live_view
|> render_click("redirect")
|> follow_redirect(conn)
Or in the case of an error tuple:
assert {:error, {:redirect, %{to: "/somewhere"}}} = result = live(conn, "my-path")
{:ok, view, html} = follow_redirect(result, conn)
follow_redirect/3 expects a connection as second argument.
This is the connection that will be used to perform the underlying
request.
If the LiveView redirects with a live redirect, this macro returns
{:ok, live_view, disconnected_html} with the content of the new
LiveView, the same as the live/3 macro. If the LiveView redirects
with a regular redirect, this macro returns {:ok, conn} with the
rendered redirected page. In any other case, this macro raises.
Finally, note that you can optionally assert on the path you are
being redirected to by passing a third argument:
live_view
|> render_click("redirect")
|> follow_redirect(conn, "/redirected/page")

 Link to this macro

 follow_trigger_action(form, conn)

 View Source

 (macro)

Receives a form_element and asserts that phx-trigger-action has been
set to true, following up on that request.
Imagine you have a LiveView that sends an HTTP form submission. Say that it
sets the phx-trigger-action to true, as a response to a submit event.
You can follow the trigger action like this:
form = form(live_view, selector, %{"form" => "data"})

First we submit the form. Optionally verify that phx-trigger-action
is now part of the form.
assert render_submit(form) =~ ~r/phx-trigger-action/

Now follow the request made by the form
conn = follow_trigger_action(form, conn)
assert conn.method == "POST"
assert conn.params == %{"form" => "data"}

 Link to this function

 form(view, selector, form_data \\ %{})

 View Source

Returns a form element to scope a function to.
It expects the current LiveView, a query selector, and the form data.
The query selector must return a single element.
The form data will be validated directly against the form markup and
make sure the data you are changing/submitting actually exists, failing
otherwise.

 Examples

assert view
 |> form("#term", user: %{name: "hello"})
 |> render_submit() =~ "Name updated"
This function is meant to mimic what the user can actually do, so you cannot
 set hidden input values. However, hidden values can be given when calling
 render_submit/2 or render_change/2, see their docs for examples.

 Link to this function

 has_element?(element)

 View Source

Checks if the given element exists on the page.

 Examples

assert view |> element("#some-element") |> has_element?()

 Link to this function

 has_element?(view, selector, text_filter \\ nil)

 View Source

Checks if the given selector with text_filter is on view.
See element/3 for more information.

 Examples

assert has_element?(view, "#some-element")

 Link to this macro

 live(conn, path \\ nil)

 View Source

 (macro)

Spawns a connected LiveView process.
If a path is given, then a regular get(conn, path)
is done and the page is upgraded to a LiveView. If
no path is given, it assumes a previously rendered
%Plug.Conn{} is given, which will be converted to
a LiveView immediately.

 Examples

{:ok, view, html} = live(conn, "/path")
assert view.module = MyLive
assert html =~ "the count is 3"

assert {:error, {:redirect, %{to: "/somewhere"}}} = live(conn, "/path")

 Link to this function

 live_children(parent)

 View Source

Returns the current list of LiveView children for the parent LiveView.
Children are returned in the order they appear in the rendered HTML.

 Examples

{:ok, view, _html} = live(conn, "/thermo")
assert [clock_view] = live_children(view)
assert render_click(clock_view, :snooze) =~ "snoozing"

 Link to this macro

 live_isolated(conn, live_view, opts \\ [])

 View Source

 (macro)

Spawns a connected LiveView process mounted in isolation as the sole rendered element.
Useful for testing LiveViews that are not directly routable, such as those
built as small components to be re-used in multiple parents. Testing routable
LiveViews is still recommended whenever possible since features such as
live navigation require routable LiveViews.

 Options

	:session - the session to be given to the LiveView

All other options are forwarded to the LiveView for rendering. Refer to
Phoenix.LiveView.Helpers.live_render/3 for a list of supported render
options.

 Examples

{:ok, view, html} =
 live_isolated(conn, MyAppWeb.ClockLive, session: %{"tz" => "EST"})
Use put_connect_params/2 to put connect params for a call to
Phoenix.LiveView.get_connect_params/1 in Phoenix.LiveView.mount/3:
{:ok, view, html} =
 conn
 |> put_connect_params(%{"param" => "value"})
 |> live_isolated(AppWeb.ClockLive, session: %{"tz" => "EST"})

 Link to this function

 live_redirect(view, opts)

 View Source

Performs a live redirect from one LiveView to another.
When redirecting between two LiveViews of the same live_session,
mounts the new LiveView and shutsdown the previous one, which
mimics general browser live navigation behaviour.
When attempting to navigate from a LiveView of a different
live_session, an error redirect condition is returned indicating
a failed live_redirect from the client.

 Examples

assert {:ok, page_live, _html} = live(conn, "/page/1")
assert {:ok, page2_live, _html} = live(conn, "/page/2")

assert {:error, {:redirect, _}} = live_redirect(page2_live, to: "/admin")

 Link to this function

 open_browser(view_or_element, open_fun \\ &open_with_system_cmd/1)

 View Source

Open the default browser to display current HTML of view_or_element.

 Examples

view
|> element("#term a:first-child()", "Increment")
|> open_browser()

assert view
 |> form("#term", user: %{name: "hello"})
 |> open_browser()
 |> render_submit() =~ "Name updated"

 Link to this function

 page_title(view)

 View Source

Returns the most recent title that was updated via a page_title assign.

 Examples

render_click(view, :event_that_triggers_page_title_update)
assert page_title(view) =~ "my title"

 Link to this function

 preflight_upload(upload)

 View Source

Performs a preflight upload request.
Useful for testing external uploaders to retrieve the :external entry metadata.

 Examples

avatar = file_input(lv, "#my-form-id", :avatar, [%{name: ..., ...}, ...])
assert {:ok, %{ref: _ref, config: %{chunk_size: _}}} = preflight_upload(avatar)

 Link to this function

 put_connect_info(conn, params)

 View Source

Puts connect info to be used on LiveView connections.
See Phoenix.LiveView.get_connect_info/1.

 Link to this function

 put_connect_params(conn, params)

 View Source

Puts connect params to be used on LiveView connections.
See Phoenix.LiveView.get_connect_params/1.

 Link to this function

 refute_redirected(view, to)

 View Source

Refutes a redirect to a given path was performed.
It returns :ok if the specified redirect isn't already in the mailbox.

 Examples

render_click(view, :event_that_triggers_redirect_to_path)
:ok = refute_redirect view, "/wrong_path"

 Link to this function

 render(view_or_element)

 View Source

Returns the HTML string of the rendered view or element.
If a view is provided, the entire LiveView is rendered.
If a view after calling with_target/2 or an element
are given, only that particular context is returned.

 Examples

{:ok, view, _html} = live(conn, "/thermo")
assert render(view) =~ ~s|<button id="alarm">Snooze</div>|

assert view
 |> element("#alarm")
 |> render() == "Snooze"

 Link to this function

 render_blur(element, value \\ %{})

 View Source

Sends a blur event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-blur attribute in it. The event name
given set on phx-blur is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given
with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("#inactive")
 |> render_blur() =~ "Tap to wake"

 Link to this function

 render_blur(view, event, value)

 View Source

Sends a blur event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_blur(view, :inactive) =~ "Tap to wake"

 Link to this function

 render_change(element, value \\ %{})

 View Source

Sends a form change event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-change attribute in it. The event name
given set on phx-change is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values.
If you need to pass any extra values or metadata, such as the "_target"
parameter, you can do so by giving a map under the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("form")
 |> render_change(%{deg: 123}) =~ "123 exceeds limits"

Passing metadata
{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("form")
 |> render_change(%{_target: ["deg"], deg: 123}) =~ "123 exceeds limits"
As with render_submit/2, hidden input field values can be provided like so:
refute view
 |> form("#term", user: %{name: "hello"})
 |> render_change(%{user: %{"hidden_field" => "example"}}) =~ "can't be blank"

 Link to this function

 render_change(view, event, value)

 View Source

Sends a form change event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_change(view, :validate, %{deg: 123}) =~ "123 exceeds limits"

 Link to this function

 render_click(element, value \\ %{})

 View Source

Sends a click event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-click attribute in it. The event name
given set on phx-click is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given
with the value argument.
If the element is does not have a phx-click attribute but it is
a link (the <a> tag), the link will be followed accordingly:
	if the link is a live_patch, the current view will be patched
	if the link is a live_redirect, this function will return
{:error, {:live_redirect, %{to: url}}}, which can be followed
with follow_redirect/2
	if the link is a regular link, this function will return
{:error, {:redirect, %{to: url}}}, which can be followed
with follow_redirect/2

It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("buttons", "Increment")
 |> render_click() =~ "The temperature is: 30℉"

 Link to this function

 render_click(view, event, value)

 View Source

Sends a click event to the view with value and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temperature is: 30℉"
assert render_click(view, :inc) =~ "The temperature is: 31℉"

 Link to this macro

 render_component(component, assigns, opts \\ [])

 View Source

 (macro)

Renders a component.
The first argument may either be a function component, as an
anonymous function:
assert render_component(&Weather.city/1, name: "Kraków") =~
 "some markup in component"
Or a stateful component as a module. In this case, this function
will mount, update, and render the component. The :id option is
a required argument:
assert render_component(MyComponent, id: 123, user: %User{}) =~
 "some markup in component"
If your component is using the router, you can pass it as argument:
assert render_component(MyComponent, %{id: 123, user: %User{}}, router: SomeRouter) =~
 "some markup in component"

 Link to this function

 render_focus(element, value \\ %{})

 View Source

Sends a focus event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-focus attribute in it. The event name
given set on phx-focus is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given
with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("#inactive")
 |> render_focus() =~ "Tap to wake"

 Link to this function

 render_focus(view, event, value)

 View Source

Sends a focus event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_focus(view, :inactive) =~ "Tap to wake"

 Link to this function

 render_hook(view_or_element, event, value \\ %{})

 View Source

Sends a hook event to the view or an element and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_hook(view, :refresh, %{deg: 32}) =~ "The temp is: 32℉"
If you are pushing events from a hook to a component, then you must pass
an element, created with element/3, as first argument and it must point
to a single element on the page with a phx-target attribute in it:
{:ok, view, _html} = live(conn, "/thermo")
assert view
 |> element("#thermo-component")
 |> render_hook(:refresh, %{deg: 32}) =~ "The temp is: 32℉"

 Link to this function

 render_keydown(element, value \\ %{})

 View Source

Sends a keydown event given by element and returns the rendered result.
The element is created with element/3 and must point to a single element
on the page with a phx-keydown or phx-window-keydown attribute in it.
The event name given set on phx-keydown is then sent to the appropriate
LiveView (or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values can be given with
the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert view |> element("#inc") |> render_keydown() =~ "The temp is: 31℉"

 Link to this function

 render_keydown(view, event, value)

 View Source

Sends a keydown event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_keydown(view, :inc) =~ "The temp is: 31℉"

 Link to this function

 render_keyup(element, value \\ %{})

 View Source

Sends a keyup event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-keyup or phx-window-keyup attribute
in it. The event name given set on phx-keyup is then sent to the
appropriate LiveView (or component if phx-target is set accordingly).
All phx-value-* entries in the element are sent as values. Extra values
can be given with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert view |> element("#inc") |> render_keyup() =~ "The temp is: 31℉"

 Link to this function

 render_keyup(view, event, value)

 View Source

Sends a keyup event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_keyup(view, :inc) =~ "The temp is: 31℉"

 Link to this function

 render_patch(view, path)

 View Source

Simulates a live_patch to the given path and returns the rendered result.

 Link to this function

 render_submit(element, value \\ %{})

 View Source

Sends a form submit event given by element and returns the rendered result.
The element is created with element/3 and must point to a single
element on the page with a phx-submit attribute in it. The event name
given set on phx-submit is then sent to the appropriate LiveView
(or component if phx-target is set accordingly). All phx-value-*
entries in the element are sent as values. Extra values, including hidden
input fields, can be given with the value argument.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")

assert view
 |> element("form")
 |> render_submit(%{deg: 123, avatar: upload}) =~ "123 exceeds limits"
To submit a form along with some with hidden input values:
assert view
 |> form("#term", user: %{name: "hello"})
 |> render_submit(%{user: %{"hidden_field" => "example"}}) =~ "Name updated"

 Link to this function

 render_submit(view, event, value)

 View Source

Sends a form submit event to the view and returns the rendered result.
It returns the contents of the whole LiveView or an {:error, redirect}
tuple.

 Examples

{:ok, view, html} = live(conn, "/thermo")
assert html =~ "The temp is: 30℉"
assert render_submit(view, :refresh, %{deg: 32}) =~ "The temp is: 32℉"

 Link to this function

 render_upload(upload, entry_name, percent \\ 100)

 View Source

Performs an upload of a file input and renders the result.
See file_input/4 for details on building a file input.

 Examples

Given the following LiveView template:
<%= for entry <- @uploads.avatar.entries do %>
 <%= entry.name %>: <%= entry.progress %>%
<% end %>
Your test case can assert the uploaded content:
avatar = file_input(lv, "#my-form-id", :avatar, [
 %{
 last_modified: 1_594_171_879_000,
 name: "myfile.jpeg",
 content: File.read!("myfile.jpg"),
 size: 1_396_009,
 type: "image/jpeg"
 }
])

assert render_upload(avatar, "myfile.jpeg") =~ "100%"
By default, the entire file is chunked to the server, but an optional
percentage to chunk can be passed to test chunk-by-chunk uploads:
assert render_upload(avatar, "myfile.jpeg", 49) =~ "49%"
assert render_upload(avatar, "myfile.jpeg", 51) =~ "100%"

 Link to this function

 with_target(view, target)

 View Source

Sets the target of the view for events.
This emulates phx-target directly in tests, without
having to dispatch the event to a specific element.
This can be useful for invoking events to one or
multiple components at the same time:
view
|> with_target("#user-1,#user-2")
|> render_click("Hide", %{})

Phoenix.Component

API for function components.
A function component is any function that receives
an assigns map as argument and returns a rendered
struct built with the ~H sigil.
Here is an example:
defmodule MyComponent do
 use Phoenix.Component

 # Optionally also bring the HTML helpers
 # use Phoenix.HTML

 def greet(assigns) do
 ~H"""
 <p>Hello, <%= assigns.name %></p>
 """
 end
end
The component can be invoked as a regular function:
MyComponent.greet(%{name: "Jane"})
But it is typically invoked using the function component
syntax from the ~H sigil:
~H"""
<MyComponent.greet name="Jane" />
"""
If the MyComponent module is imported or if the function
is defined locally, you can skip the module name:
~H"""
<.greet name="Jane" />
"""
Similar to any HTML tag inside the ~H sigil, you can
interpolate attributes values too:
~H"""
<.greet name={@user.name} />
"""
You can learn more about the ~H sigil in its documentation.
use Phoenix.Component
Modules that define function components should call
use Phoenix.Component at the top. Doing so will import
the functions from both Phoenix.LiveView and
Phoenix.LiveView.Helpers modules. Phoenix.LiveView
and Phoenix.LiveComponent automatically invoke
use Phoenix.Component for you.
You must avoid defining a module for each component. Instead,
we should use modules to group side-by-side related function
components.
Assigns
While inside a function component, you must use Phoenix.LiveView.assign/3
and Phoenix.LiveView.assign_new/3 to manipulate assigns,
so that LiveView can track changes to the assigns values.
For example, let's imagine a component that receives the first
name and last name and must compute the name assign. One option
would be:
def show_name(assigns) do
 assigns = assign(assigns, :name, assigns.first_name <> assigns.last_name)

 ~H"""
 <p>Your name is: <%= @name %></p>
 """
end
However, when possible, it may be cleaner to break the logic over function
calls instead of precomputed assigns:
def show_name(assigns) do
 ~H"""
 <p>Your name is: <%= full_name(@first_name, @last_name) %></p>
 """
end

defp full_name(first_name, last_name), do: first_name <> last_name
Another example is making an assign optional by providing
a default value:
def field_label(assigns) do
 assigns = assign_new(assigns, :help, fn -> nil end)

 ~H"""
 <label>
 <%= @text %>

 <%= if @help do %>
 <%= @help %>
 <% end %>
 </label>
 """
end
Slots
Slots is a mechanism to give HTML blocks to function components
as in regular HTML tags.
Default slots
Any content you pass inside a component is assigned to a default slot
called @inner_block. For example, imagine you want to create a button
component like this:
<.button>
 This renders inside the button!
</.button>
It is quite simple to do so. Simply define your component and call
render_slot(@inner_block) where you want to inject the content:
def button(assigns) do
 ~H"""
 <button class="btn">
 <%= render_slot(@inner_block) %>
 </button>
 """
end
In a nutshell, the contents given to the component is assigned to
the @inner_block assign and then we use Phoenix.LiveView.Helpers.render_slot/2
to render it.
You can even have the component give a value back to the caller,
by using let. Imagine this component:
def unordered_list(assigns) do
 ~H"""

 <%= for entry <- @entries do %>
 <%= render_block(@inner_block, entry) %>
 <% end %>

 """
end
And now you can invoke it as:
<.unordered_list let={entry} entries={~w(apple banana cherry)}>
 I like <%= entry %>
</.unordered_list>
You can also pattern match the arguments provided to the render block. Let's
make our unordered_list component fancier:
def unordered_list(assigns) do
 ~H"\""

 <%= for entry <- @entries do %>
 <%= render_block(@inner_block, %{entry: entry, gif_url: random_gif()} %>
 <% end %>

 "\""
end
And now we can invoke it like this:
<.unordered_list let={%{entry: entry, gif_url: url}}>
 I like <%= entry %>.
</.unordered_list>
Named slots
Besides @inner_block, it is also possible to pass named slots
to the component. For example, imagine that you want to create
a modal component. The modal component has a header, a footer,
and the body of the modal, which we would use like this:
<.modal>
 <:header>
 This is the top of the modal.
 </:header>

 This is the body - everything not in a
 named slot goes to @inner_block.

 <:footer>
 <button>Save</button>
 </:footer>
</.modal>
The component itself could be implemented like this:
def modal(assigns) do
 ~H"""
 <div class="modal">
 <div class="modal-header">
 <%= render_slot(@header) %>
 </div>

 <div class="modal-body">
 <%= render_slot(@inner_block) %>
 </div>

 <div class="modal-footer">
 <%= render_slot(@footer) %>
 </div>
 </div>
 """
end
If you want to make the @header and @footer optional,
you can assign them a default of an empty list at the top:
def modal(assigns) do
 assigns =
 assigns
 |> assign_new(:header, fn -> [] end)
 |> assign_new(:footer, fn -> [] end)

 ~H"""
 <div class="modal">
 ...
end
Named slots with attributes
It is also possible to pass the same named slot multiple
times and also give attributes to each of them.
If multiple slot entries are defined for the same slot,
render_slot/2 will automatically render all entries,
merging their contents. But sometimes we want more fine
grained control over each individual slot, including access
to their attributes. Let's see an example. Imagine we want
to implement a table component
For example, imagine a table component:
<.table rows={@users}>
 <:col let={user} label="Name">
 <%= user.name %>
 </:col>

 <:col let={user} label="Address">
 <%= user.address %>
 </:col>
</.table>
At the top level, we pass the rows as an assign and we define
a :col slot for each column we want in the table. Each
column also has a label, which we are going to use in the
table header.
Inside the component, you can render the table with headers,
rows, and columns:
def table(assigns) do
 ~H"""
 <table>
 <th>
 <%= for col <- @col do %>
 <td><%= col.label %></td>
 <% end >
 </th>
 <%= for row <- @rows do %>
 <tr>
 <%= for col <- @col do %>
 <td><%= render_slot(col, row) %></td>
 <% end %>
 </tr>
 <% end %>
 </table>
 """
end
Each named slot (including the @inner_block) is a list of maps,
where the map contains all slot attributes, allowing us to access
the label as col.label. This gives us complete control over how
we render them.

Phoenix.LiveComponent behaviour

LiveComponents are a mechanism to compartmentalize state, markup, and
events in LiveView.
Components are defined by using Phoenix.LiveComponent and are used
by calling Phoenix.LiveView.Helpers.live_component/1 in a parent LiveView.
Components run inside the LiveView process but have their own state and
life-cycle. For this reason, they are also often called "stateful components".
This is a contrast to Phoenix.Component, also known as "function components",
which are stateless.
The smallest LiveComponent only needs to define a render/1 function:
defmodule HeroComponent do
 # If you generated an app with mix phx.new --live,
 # the line below would be: use MyAppWeb, :live_component
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <div class="hero"><%= @content %></div>
 """
 end
end
A component can be invoked as:
<.live_component module={HeroComponent} id="hero" content={@content} />
A component must receive the :id assign as argument, which is
used to uniquely identify the component. A component will be treated
as the same component as long as its :id does not change.
Life-cycle
Stateful components are identified by the component module and their ID.
Therefore, two different component modules with the same ID are different
components. This means we can often tie the component ID to some application
based ID:
<.live_component module={UserComponent} id={@user.id} user={@user} />
When live_component/1 is called,
mount/1 is called once, when the component is first added to the page. mount/1
receives the socket as argument. Then update/2 is invoked with all of the
assigns given to live_component/1.
If update/2 is not defined all assigns are simply merged into the socket.
After the component is updated, render/1 is called with all assigns.
On first render, we get:
mount(socket) -> update(assigns, socket) -> render(assigns)
On further rendering:
update(assigns, socket) -> render(assigns)
Note all stateful components require a single root element in the HTML template
and you will receive a warning otherwise. Furthermore, the given :id is not
necessarily used as the DOM ID. If you want to set a DOM ID, it is your
responsibility to do so when rendering:
defmodule UserComponent do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <div id={"user-#{@id}"} class="user">
 <%= @user.name %>
 </div>
 """
 end
end
Targeting Component Events
Stateful components can also implement the handle_event/3 callback
that works exactly the same as in LiveView. For a client event to
reach a component, the tag must be annotated with a phx-target.
If you want to send the event to yourself, you can simply use the
@myself assign, which is an internal unique reference to the
component instance:

 Say hello!

Note that @myself is not set for stateless components, as they cannot
receive events.
If you want to target another component, you can also pass an ID
or a class selector to any element inside the targeted component.
For example, if there is a UserComponent with the DOM ID of "user-13",
using a query selector, we can send an event to it with:

 Say hello!

In both cases, handle_event/3 will be called with the
"say_hello" event. When handle_event/3 is called for a component,
only the diff of the component is sent to the client, making them
extremely efficient.
Any valid query selector for phx-target is supported, provided that the
matched nodes are children of a LiveView or LiveComponent, for example
to send the close event to multiple components:

 Dismiss

Preloading and update
Stateful components also support an optional preload/1 callback.
The preload/1 callback is useful when multiple components of the
same type are rendered on the page and you want to preload or augment
their data in batches.
For each rendering, the optional preload/1 and update/2 callbacks
are called before render/1.
So on first render, the following callbacks will be invoked:
preload(list_of_assigns) -> mount(socket) -> update(assigns, socket) -> render(assigns)
On subsequent renders, these callbacks will be invoked:
preload(list_of_assigns) -> update(assigns, socket) -> render(assigns)
To provide a more complete understanding of why both callbacks are necessary,
let's see an example. Imagine you are implementing a component and the component
needs to load some state from the database. For example:
<.live_component module={UserComponent} id={user_id} />
A possible implementation would be to load the user on the update/2
callback:
def update(assigns, socket) do
 user = Repo.get!(User, assigns.id)
 {:ok, assign(socket, :user, user)}
end
However, the issue with said approach is that, if you are rendering
multiple user components in the same page, you have a N+1 query problem.
The preload/1 callback helps address this problem as it is invoked
with a list of assigns for all components of the same type. For example,
instead of implementing update/2 as above, one could implement:
def preload(list_of_assigns) do
 list_of_ids = Enum.map(list_of_assigns, & &1.id)

 users =
 from(u in User, where: u.id in ^list_of_ids, select: {u.id, u})
 |> Repo.all()
 |> Map.new()

 Enum.map(list_of_assigns, fn assigns ->
 Map.put(assigns, :user, users[assigns.id])
 end)
end
Now only a single query to the database will be made. In fact, the
preloading algorithm is a breadth-first tree traversal, which means
that even for nested components, the amount of queries are kept to
a minimum.
Finally, note that preload/1 must return an updated list_of_assigns,
keeping the assigns in the same order as they were given.
Slots
LiveComponent can also receive slots, in the same way as a Phoenix.Component.
See the docs for Phoenix.Component for more information.
Live patches and live redirects
A template rendered inside a component can use Phoenix.LiveView.Helpers.live_patch/2
and Phoenix.LiveView.Helpers.live_redirect/2 calls. The
live_patch/2 is always handled
by the parentLiveView, as components do not provide handle_params.
Managing state
Now that we have learned how to define and use components, as well as
how to use preload/1 as a data loading optimization, it is important
to talk about how to manage state in components.
Generally speaking, you want to avoid both the parent LiveView and the
LiveComponent working on two different copies of the state. Instead, you
should assume only one of them to be the source of truth. Let's discuss
the two different approaches in detail.
Imagine a scenario where a LiveView represents a board with each card
in it as a separate stateful LiveComponent. Each card has a form to
allow update of the card title directly in the component, as follows:
defmodule CardComponent do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <form phx-submit="..." phx-target={@myself}>
 <input name="title"><%= @card.title %></input>
 ...
 </form>
 """
 end

 ...
end
We will see how to organize the data flow to keep either the board LiveView or
the card LiveComponents as the source of truth.
LiveView as the source of truth
If the board LiveView is the source of truth, it will be responsible
for fetching all of the cards in a board. Then it will call
live_component/1
for each card, passing the card struct as argument to CardComponent:
<%= for card <- @cards do %>
 <.live_component module={CardComponent} card={card} id={card.id} board_id={@id} />
<% end %>
Now, when the user submits the form, CardComponent.handle_event/3
will be triggered. However, if the update succeeds, you must not
change the card struct inside the component. If you do so, the card
struct in the component will get out of sync with the LiveView. Since
the LiveView is the source of truth, you should instead tell the
LiveView that the card was updated.
Luckily, because the component and the view run in the same process,
sending a message from the LiveComponent to the parent LiveView is as
simple as sending a message to self():
defmodule CardComponent do
 ...
 def handle_event("update_title", %{"title" => title}, socket) do
 send self(), {:updated_card, %{socket.assigns.card | title: title}}
 {:noreply, socket}
 end
end
The LiveView then receives this event using Phoenix.LiveView.handle_info/2:
defmodule BoardView do
 ...
 def handle_info({:updated_card, card}, socket) do
 # update the list of cards in the socket
 {:noreply, updated_socket}
 end
end
Because the list of cards in the parent socket was updated, the parent
LiveView will be re-rendered, sending the updated card to the component.
So in the end, the component does get the updated card, but always
driven from the parent.
Alternatively, instead of having the component send a message directly to the
parent view, the component could broadcast the update using Phoenix.PubSub.
Such as:
defmodule CardComponent do
 ...
 def handle_event("update_title", %{"title" => title}, socket) do
 message = {:updated_card, %{socket.assigns.card | title: title}}
 Phoenix.PubSub.broadcast(MyApp.PubSub, board_topic(socket), message)
 {:noreply, socket}
 end

 defp board_topic(socket) do
 "board:" <> socket.assigns.board_id
 end
end
As long as the parent LiveView subscribes to the board:<ID> topic,
it will receive updates. The advantage of using PubSub is that we get
distributed updates out of the box. Now, if any user connected to the
board changes a card, all other users will see the change.
LiveComponent as the source of truth
If each card LiveComponent is the source of truth, then the board LiveView
must no longer fetch the card structs from the database. Instead, the board
LiveView must only fetch the card ids, then render each component only by
passing an ID:
<%= for card_id <- @card_ids do %>
 <.live_component module={CardComponent} id={card_id} board_id={@id} />
<% end %>
Now, each CardComponent will load its own card. Of course, doing so
per card could be expensive and lead to N queries, where N is the
number of cards, so we can use the preload/1 callback to make it
efficient.
Once the card components are started, they can each manage their own
card, without concerning themselves with the parent LiveView.
However, note that components do not have a Phoenix.LiveView.handle_info/2
callback. Therefore, if you want to track distributed changes on a card,
you must have the parent LiveView receive those events and redirect them
to the appropriate card. For example, assuming card updates are sent
to the "board:ID" topic, and that the board LiveView is subscribed to
said topic, one could do:
def handle_info({:updated_card, card}, socket) do
 send_update CardComponent, id: card.id, board_id: socket.assigns.id
 {:noreply, socket}
end
With Phoenix.LiveView.send_update/3, the CardComponent given by id
will be invoked, triggering both preload and update callbacks, which will
load the most up to date data from the database.
Cost of stateful components
The internal infrastructure LiveView uses to keep track of stateful
components is very lightweight. However, be aware that in order to
provide change tracking and to send diffs over the wire, all of the
components' assigns are kept in memory - exactly as it is done in
LiveViews themselves.
Therefore it is your responsibility to keep only the assigns necessary
in each component. For example, avoid passing all of LiveView's assigns
when rendering a component:
<.live_component module={MyComponent} {assigns} />
Instead pass only the keys that you need:
<.live_component module={MyComponent} user={@user} org={@org} />
Luckily, because LiveViews and LiveComponents are in the same process,
they share the data structure representations in memory. For example,
in the code above, the view and the component will share the same copies
of the @user and @org assigns.
You should also avoid using stateful components to provide abstract DOM
components. As a guideline, a good LiveComponent encapsulates
application concerns and not DOM functionality. For example, if you
have a page that shows products for sale, you can encapsulate the
rendering of each of those products in a component. This component
may have many buttons and events within it. On the opposite side,
do not write a component that is simply encapsulating generic DOM
components. For instance, do not do this:
defmodule MyButton do
 use Phoenix.LiveComponent

 def render(assigns) do
 ~H"""
 <button class="css-framework-class" phx-click="click">
 <%= @text %>
 </button>
 """
 end

 def handle_event("click", _, socket) do
 _ = socket.assigns.on_click.()
 {:noreply, socket}
 end
end
Instead, it is much simpler to create a function:
def my_button(text, click) do
 assigns = %{text: text, click: click}

 ~H"""
 <button class="css-framework-class" phx-click={@click}>
 <%= @text %>
 </button>
 """
end
If you keep components mostly as an application concern with
only the necessary assigns, it is unlikely you will run into
issues related to stateful components.
Limitations
Components require at least one HTML tag
Components must only contain HTML tags at their root. At least one HTML
tag must be present. It is not possible to have components that render
only text or text mixed with tags at the root.
Change tracking requirement
Another limitation of components is that they must always be change
tracked. For example, if you render a component inside content_tag, like
this:
<%= content_tag :div, @div_attrs do %>
 <%= live_component SomeComponent, id: :example %>
<% end %>
The component ends up enclosed by the content_tag, where LiveView
cannot track it. In such cases, you may receive an error such as:
** (ArgumentError) cannot convert component SomeComponent to HTML.
A component must always be returned directly as part of a LiveView template
Luckily, there is little reason to use content_tag inside HEEx templates.
So instead you can do:
<div {@div_attrs}>
 <%= live_component SomeComponent, id: :example %>
</div>
They also work inside any function component, such as form:
<.form let={f} for={@changeset} url="#">
 <%= live_component FormComponent, id: :form %>
</.form>
SVG support
Given components compartmentalize markup on the server, they are also
rendered in isolation on the client, which provides great performance
benefits on the client too.
However, when rendering components on the client, the client needs to
choose the mime type of the component contents, which defaults to HTML.
This is the best default but in some cases it may lead to unexpected
results.
For example, if you are rendering SVG, the SVG will be interpreted as
HTML. This may work just fine for most components but you may run into
corner cases. For example, the <image> SVG tag may be rewritten to
the tag, since <image> is an obsolete HTML tag.
Luckily, there is a simple solution to this problem. Since SVG allows
<svg> tags to be nested, you can wrap the component content into an
<svg> tag. This will ensure that it is correctly interpreted by the
browser.

 Anchor for this section

 Summary

 Callbacks

 handle_event(event, unsigned_params, socket)

 mount(socket)

 preload(list_of_assigns)

 render(assigns)

 update(assigns, socket)

 Anchor for this section

Callbacks

 Link to this callback

 handle_event(event, unsigned_params, socket)

 View Source

 (optional)

 Specs

 handle_event(
 event :: binary(),
 unsigned_params :: Phoenix.LiveView.unsigned_params(),
 socket :: Phoenix.LiveView.Socket.t()
) ::
 {:noreply, Phoenix.LiveView.Socket.t()}
 | {:reply, map(), Phoenix.LiveView.Socket.t()}

 Link to this callback

 mount(socket)

 View Source

 (optional)

 Specs

 mount(socket :: Phoenix.LiveView.Socket.t()) ::
 {:ok, Phoenix.LiveView.Socket.t()}
 | {:ok, Phoenix.LiveView.Socket.t(), keyword()}

 Link to this callback

 preload(list_of_assigns)

 View Source

 (optional)

 Specs

 preload(list_of_assigns :: [Phoenix.LiveView.Socket.assigns()]) ::
 list_of_assigns :: [Phoenix.LiveView.Socket.assigns()]

 Link to this callback

 render(assigns)

 View Source

 Specs

 render(assigns :: Phoenix.LiveView.Socket.assigns()) ::
 Phoenix.LiveView.Rendered.t()

 Link to this callback

 update(assigns, socket)

 View Source

 (optional)

 Specs

 update(
 assigns :: Phoenix.LiveView.Socket.assigns(),
 socket :: Phoenix.LiveView.Socket.t()
) :: {:ok, Phoenix.LiveView.Socket.t()}

Phoenix.LiveComponent.CID

The struct representing an internal unique reference to the component instance,
available as the @myself assign in stateful components.
Read more about the uses of @myself in the Phoenix.LiveComponent docs.

Phoenix.LiveViewTest.Element

The struct returned by Phoenix.LiveViewTest.element/3.
The following public fields represent the element:
	selector - The query selector
	text_filter - The text to further filter the element

See the Phoenix.LiveViewTest documentation for usage.

Phoenix.LiveViewTest.Upload

The struct returned by Phoenix.LiveViewTest.file_input/4.
The following public fields represent the element:
	selector - The query selector
	entries - The list of selected file entries

See the Phoenix.LiveViewTest documentation for usage.

Phoenix.LiveViewTest.View

The struct for testing LiveViews.
The following public fields represent the LiveView:
	id - The DOM id of the LiveView
	module - The module of the running LiveView
	pid - The Pid of the running LiveView
	endpoint - The endpoint for the LiveView
	target - The target to scope events to

See the Phoenix.LiveViewTest documentation for usage.

Phoenix.LiveView.UploadConfig

The struct representing an upload.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Phoenix.LiveView.UploadConfig{
 accept: list() | :any,
 acceptable_exts: MapSet.t(),
 acceptable_types: MapSet.t(),
 allowed?: boolean(),
 auto_upload?: boolean(),
 chunk_size: term(),
 chunk_timeout: term(),
 cid: :unregistered | nil | integer(),
 client_key: String.t(),
 entries: list(),
 entry_refs_to_metas: %{required(String.t()) => map()},
 entry_refs_to_pids: %{required(String.t()) => pid() | :unregistered | :done},
 errors: list(),
 external:
 (Phoenix.LiveView.UploadEntry.t(), Phoenix.LiveView.Socket.t() ->
 {:ok | :error, meta :: %{uploader: String.t()},
 Phoenix.LiveView.Socket.t()})
 | false,
 max_entries: pos_integer(),
 max_file_size: pos_integer(),
 name: atom() | String.t(),
 progress_event:
 (name :: atom() | String.t(),
 Phoenix.LiveView.UploadEntry.t(),
 Phoenix.LiveView.Socket.t() ->
 {:noreply, Phoenix.LiveView.Socket.t()})
 | nil,
 ref: String.t()
}

Phoenix.LiveView.UploadEntry

The struct representing an upload entry.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Phoenix.LiveView.UploadEntry{
 cancelled?: boolean(),
 client_last_modified: integer() | nil,
 client_name: String.t() | nil,
 client_size: integer() | nil,
 client_type: String.t() | nil,
 done?: boolean(),
 preflighted?: term(),
 progress: integer(),
 ref: String.t() | nil,
 upload_config: String.t() | :atom,
 upload_ref: String.t(),
 uuid: String.t() | nil,
 valid?: boolean()
}

Phoenix.LiveView.Component

The struct returned by components in .heex templates.
This component is never meant to be output directly
into the template. It should always be handled by
the diffing algorithm.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Phoenix.LiveView.Component{
 assigns: map(),
 component: module(),
 id: binary()
}

Phoenix.LiveView.Comprehension

The struct returned by for-comprehensions in .heex templates.
See a description about its fields and use cases
in Phoenix.LiveView.Engine docs.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Phoenix.LiveView.Comprehension{
 dynamics: [
 [
 iodata()
 | Phoenix.LiveView.Rendered.t()
 | t()
 | Phoenix.LiveView.Component.t()
]
],
 fingerprint: integer(),
 static: [String.t()]
}

Phoenix.LiveView.Engine

An EEx template engine that tracks changes.
This is often used by Phoenix.LiveView.HTMLEngine which also adds
HTML validation. In the documentation below, we will explain how it
works internally. For user-facing documentation, see Phoenix.LiveView.
Phoenix.LiveView.Rendered
Whenever you render a live template, it returns a
Phoenix.LiveView.Rendered structure. This structure has
three fields: :static, :dynamic and :fingerprint.
The :static field is a list of literal strings. This
allows the Elixir compiler to optimize this list and avoid
allocating its strings on every render.
The :dynamic field contains a function that takes a boolean argument
(see "Tracking changes" below), and returns a list of dynamic content.
Each element in the list is either one of:
	iodata - which is the dynamic content
	nil - the dynamic content did not change
	another Phoenix.LiveView.Rendered struct, see "Nesting and fingerprinting" below
	a Phoenix.LiveView.Comprehension struct, see "Comprehensions" below
	a Phoenix.LiveView.Component struct, see "Component" below

When you render a live template, you can convert the
rendered structure to iodata by alternating the static
and dynamic fields, always starting with a static entry
followed by a dynamic entry. The last entry will always
be static too. So the following structure:
%Phoenix.LiveView.Rendered{
 static: ["foo", "bar", "baz"],
 dynamic: fn track_changes? -> ["left", "right"] end
}
Results in the following content to be sent over the wire
as iodata:
["foo", "left", "bar", "right", "baz"]
This is also what calling Phoenix.HTML.Safe.to_iodata/1
with a Phoenix.LiveView.Rendered structure returns.
Of course, the benefit of live templates is exactly
that you do not need to send both static and dynamic
segments every time. So let's talk about tracking changes.
Tracking changes
By default, a live template does not track changes.
Change tracking can be enabled by including a changed
map in the assigns with the key __changed__ and passing
true to the dynamic parts. The map should contain
the name of any changed field as key and the boolean
true as value. If a field is not listed in __changed__,
then it is always considered unchanged.
If a field is unchanged and live believes a dynamic
expression no longer needs to be computed, its value
in the dynamic list will be nil. This information
can be leveraged to avoid sending data to the client.
Nesting and fingerprinting
Phoenix.LiveView also tracks changes across live
templates. Therefore, if your view has this:
<%= render "form.html", assigns %>
Phoenix will be able to track what is static and dynamic
across templates, as well as what changed. A rendered
nested live template will appear in the dynamic
list as another Phoenix.LiveView.Rendered structure,
which must be handled recursively.
However, because the rendering of live templates can
be dynamic in itself, it is important to distinguish
which live template was rendered. For example,
imagine this code:
<%= if something?, do: render("one.html", assigns), else: render("other.html", assigns) %>
To solve this, all Phoenix.LiveView.Rendered structs
also contain a fingerprint field that uniquely identifies
it. If the fingerprints are equal, you have the same
template, and therefore it is possible to only transmit
its changes.
Comprehensions
Another optimization done by live templates is to
track comprehensions. If your code has this:
<%= for point <- @points do %>
 x: <%= point.x %>
 y: <%= point.y %>
<% end %>
Instead of rendering all points with both static and
dynamic parts, it returns a Phoenix.LiveView.Comprehension
struct with the static parts, that are shared across all
points, and a list of dynamics to be interpolated inside
the static parts. If @points is a list with %{x: 1, y: 2}
and %{x: 3, y: 4}, the above expression would return:
%Phoenix.LiveView.Comprehension{
 static: ["\n x: ", "\n y: ", "\n"],
 dynamics: [
 ["1", "2"],
 ["3", "4"]
]
}
This allows live templates to drastically optimize
the data sent by comprehensions, as the static parts
are emitted only once, regardless of the number of items.
The list of dynamics is always a list of iodatas or components,
as we don't perform change tracking inside the comprehensions
themselves. Similarly, comprehensions do not have fingerprints
because they are only optimized at the root, so conditional
evaluation, as the one seen in rendering, is not possible.
The only possible outcome for a dynamic field that returns a
comprehension is nil.
Components
Live also supports stateful components defined with
Phoenix.LiveComponent. Since they are stateful, they are always
handled lazily by the diff algorithm.

Phoenix.LiveView.HTMLEngine

The HTMLEngine that powers .heex templates and the ~H sigil.
It works by adding a HTML parsing and validation layer on top
of EEx engine. By default it uses Phoenix.LiveView.Engine as
its "subengine".

 Anchor for this section

 Summary

 Functions

 handle_text(state, meta, text)

 Callback implementation for EEx.Engine.handle_text/3.

 Anchor for this section

Functions

 Link to this function

 handle_text(state, meta, text)

 View Source

Callback implementation for EEx.Engine.handle_text/3.

Phoenix.LiveView.Rendered

The struct returned by .heex templates.
See a description about its fields and use cases
in Phoenix.LiveView.Engine docs.

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Phoenix.LiveView.Rendered{
 dynamic:
 (boolean() ->
 [
 nil
 | iodata()
 | t()
 | Phoenix.LiveView.Comprehension.t()
 | Phoenix.LiveView.Component.t()
]),
 fingerprint: integer(),
 root: nil | true | false,
 static: [String.t()]
}

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

