

 Phoenix

 v1.4.0-rc.0

 [image: Logo]

 Table of contents

 	Introduction

 	Overview

 	Installation

 	Learning

 	Community

 	Guides

 	Up and Running

 	Adding Pages

 	Routing

 	Plug

 	Endpoint

 	Controllers

 	Views

 	Templates

 	Channels

 	Presence

 	Ecto

 	Contexts

 	Mix Tasks

 	Custom Errors

 	Testing

 	Introduction to Testing

 	Testing Schemas

 	Testing Controllers

 	Testing Channels

 	Deployment

 	Introduction to Deployment

 	Deploying on Heroku

 	Modules

 	Phoenix

 	Phoenix.Channel

 	Phoenix.Controller

 	Phoenix.Endpoint

 	Phoenix.Naming

 	Phoenix.Param

 	Phoenix.Presence

 	Phoenix.Router

 	Phoenix.Token

 	Phoenix.View

 	Phoenix.ChannelTest

 	Phoenix.ConnTest

 	Phoenix.CodeReloader

 	Phoenix.Endpoint.Cowboy2Adapter

 	Phoenix.Endpoint.CowboyAdapter

 	Phoenix.Logger

 	Phoenix.Socket

 	Phoenix.Socket.Broadcast

 	Phoenix.Socket.Message

 	Phoenix.Socket.Reply

 	Phoenix.Socket.Serializer

 	Phoenix.Socket.Transport

 	Phoenix.Template

 	Phoenix.Template.EExEngine

 	Phoenix.Template.Engine

 	Phoenix.Template.ExsEngine

 	Phoenix.Template.HTML

 	Exceptions

 	Phoenix.ActionClauseError

 	Phoenix.MissingParamError

 	Phoenix.NotAcceptableError

 	Phoenix.Router.NoRouteError

 	Phoenix.Socket.InvalidMessageError

 	Phoenix.Template.UndefinedError

 	Mix Tasks

 	compile.phoenix

 	local.phx

 	phx

 	phx.digest

 	phx.digest.clean

 	phx.gen.cert

 	phx.gen.channel

 	phx.gen.context

 	phx.gen.embedded

 	phx.gen.html

 	phx.gen.json

 	phx.gen.presence

 	phx.gen.schema

 	phx.gen.secret

 	phx.new

 	phx.new.ecto

 	phx.new.web

 	phx.routes

 	phx.server

 Overview

Phoenix is a web development framework written in Elixir which implements the server-side Model View Controller (MVC) pattern. Many of its components and concepts will seem familiar to those of us with experience in other web frameworks like Ruby on Rails or Python’s Django.

Phoenix provides the best of both worlds - high developer productivity and high application performance. It also has some interesting new twists like channels for implementing realtime features and pre-compiled templates for blazing speed.

If you are already familiar with Elixir, great! If not, there are a number of places to learn. The Elixir guides and the Elixir learning resources page are two great places to start. We also have a list of helpful resources to learn more about Phoenix and some of the projects it depends on.

The aim of this introductory guide is to present a brief, high-level overview of Phoenix, the parts that make it up, and the layers underneath that support it.

If you would prefer to read these guides as an EPUB click here!

Phoenix

Phoenix is made up of a number of distinct parts, each with its own purpose and role to play in building a web application. We will cover them all in depth throughout these guides, but here’s a quick breakdown.

	Endpoint

	the start and end of the request lifecycle

	handles all aspects of requests up until the point where the router takes over

	provides a core set of plugs to apply to all requests

	dispatches requests into a designated router

	Router

	parses incoming requests and dispatches them to the correct controller/action, passing parameters as needed

	provides helpers to generate route paths or urls to resources

	defines named pipelines through which we may pass our requests

	Pipelines - allow easy application of groups of plugs to a set of routes

	Controllers

	provide functions, called actions, to handle requests

	actions:

	prepare data and pass it into views

	invoke rendering via views

	perform redirects

	Views

	render templates

	act as a presentation layer

	define helper functions, available in templates, to decorate data for presentation

	Templates

	files containing the contents that will be served in a response

	provide the basic structure for a response, and allow dynamic data to be substituted in

	are precompiled and fast

	Channels

	manage sockets for easy realtime communication

	are analogous to controllers except that they allow bi-directional communication with persistent connections

	PubSub

	underlies the channel layer and allows clients to subscribe to topics

	abstracts the underlying pubsub adapter for third-party pubsub integration

Phoenix Layers

We just covered the internal parts that make up Phoenix, but its important to remember Phoenix itself is actually the top layer of a multi-layer system designed to be modular and flexible. The other layers include Cowboy, Plug, and Ecto.

Cowboy

By default, the web server used by Phoenix (and Plug) is Cowboy. It is uncommon to interface with Cowboy directly when using Phoenix. If you do require using Cowboy directly, please refer to the Cowboy documentation.

Plug

Plug is a specification for constructing composable modules to build web applications. Plugs are reusable modules or functions built to that specification. They provide discrete behaviors - like request header parsing or logging. Because the Plug API is small and consistent, plugs can be defined and executed in a set order, like a pipeline. They can also be re-used within a project or across projects.

Plugs can be written to handle almost anything, from authentication to parameter pre-processing, and even rendering.

Phoenix takes great advantage of Plug in general - the router and controllers especially so.

One of the most important things about Plug is that it provides adapters to HTTP servers which will ultimately deliver application content to our users. Currently Plug only provides an adapter for Cowboy, a web server written in Erlang by Loïc Hoguin of 99s.

Have a look at the Plug Guide for more details.

Ecto

Ecto is a language integrated query composition tool and database wrapper for Elixir. With Ecto, we can read and write to different databases, model our domain data, write complex queries in a type-safe way, protect against attack vectors - including SQL injection, and much more.

Ecto is built around four main abstractions:

	Repo - A repository represents a connection to an individual database. Every database operation is done via the repository.

	Schema - Schemas are our data definitions. They define table names and fields as well as each field’s type. Schemas also define associations - the relationships between our resources.

	Query - Queries tie both schemas and repositories together, allowing us to elegantly retrieve data from the repository and cast it into the schemas themselves.

	Changeset - Changesets declare transformations we need to perform on our data before our application can use it. These include type casting, validations, and more.

A new Phoenix application will use Ecto with PostgreSQL storage by default.

A Note about these guides

If you find an issue with the guides or would like to help improve these guides please checkout the Phoenix Guides on github. Issues and Pull Requests are happily accepted!

 Installation

In the Overview Guide we got a look at the Phoenix ecosystem and how the pieces interrelate. Now it’s time to install any software we might need before we jump into the Up and Running Guide.

Please take a look at this list and make sure to install anything necessary for your system. Having dependencies installed in advance can prevent frustrating problems later on.

Elixir 1.4 or later

Phoenix is written in Elixir, and our application code will also be written in Elixir. We won’t get far in a Phoenix app without it! The Elixir site maintains a great Installation Page to help.

If we have just installed Elixir for the first time, we will need to install the Hex package manager as well. Hex is necessary to get a Phoenix app running (by installing dependencies) and to install any extra dependencies we might need along the way.

Here’s the command to install Hex (If you have Hex already installed, it will upgrade Hex to the latest version):

$ mix local.hex

Erlang 18 or later

Elixir code compiles to Erlang byte code to run on the Erlang virtual machine. Without Erlang, Elixir code has no virtual machine to run on, so we need to install Erlang as well.

When we install Elixir using instructions from the Elixir Installation Page, we will usually get Erlang too. If Erlang was not installed along with Elixir, please see the Erlang Instructions section of the Elixir Installation Page for instructions.

People using Debian-based systems may need to explicitly install Erlang to get all the needed packages.

$ wget https://packages.erlang-solutions.com/erlang-solutions_1.0_all.deb && sudo dpkg -i erlang-solutions_1.0_all.deb
$ sudo apt-get update
$ sudo apt-get install esl-erlang

Phoenix

To check that we are on Elixir 1.4 and Erlang 18 or later, run:

elixir -v
Erlang/OTP 19 [erts-8.3] [source] [64-bit] [smp:8:8] [async-threads:10] [hipe] [kernel-poll:false] [dtrace]

Elixir 1.4.2

Once we have Elixir and Erlang, we are ready to install the Phoenix Mix archive. A Mix archive is a Zip file which contains an application as well as its compiled BEAM files. It is tied to a specific version of the application. The archive is what we will use to generate a new, base Phoenix application which we can build from.

Here’s the command to install the Phoenix archive:

$ mix archive.install hex phx_new 1.4.0-rc.0

Note: if the Phoenix archive won’t install properly with this command, we can download the package from the Phoenix archives, save it to the filesystem, and then run: mix archive.install /path/to/local/phx_new.ez.

Plug, Cowboy, and Ecto

These are either Elixir or Erlang projects which are part of Phoenix applications by default. We won’t need to do anything special to install them. If we let Mix install our dependencies as we create our new application, these will be taken care of for us. If we don’t, Phoenix will tell us how to do so after the app creation is done.

node.js (>= 5.0.0)

Node is an optional dependency. Phoenix will use webpack to compile static assets (JavaScript, CSS, etc), by default. Webpack uses the node package manager (npm) to install its dependencies, and npm requires node.js.

If we don’t have any static assets, or we want to use another build tool, we can pass the --no-webpack flag when creating a new application and node won’t be required at all.

We can get node.js from the download page. When selecting a package to download, it’s important to note that Phoenix requires version 5.0.0 or greater.

Mac OS X users can also install node.js via homebrew.

Note: io.js, which is an npm compatible platform originally based on Node.js, is not known to work with Phoenix.

Debian/Ubuntu users might see an error that looks like this:

sh: 1: node: not found
npm WARN This failure might be due to the use of legacy binary "node"

This is due to Debian having conflicting binaries for node: discussion on stackoverflow

There are two options to fix this problem, either:

	install nodejs-legacy:

$ apt-get install nodejs-legacy

or

	create a symlink

$ ln -s /usr/bin/nodejs /usr/bin/node

PostgreSQL

PostgreSQL is a relational database server. Phoenix configures applications to use it by default, but we can switch to MySQL by passing the --database mysql flag when creating a new application.

When we work with Ecto schemas in these guides, we will use PostgreSQL and the Postgrex adapter for it. In order to follow along with the examples, we should install PostgreSQL. The PostgreSQL wiki has installation guides for a number of different systems.

Postgrex is a direct Phoenix dependency, and it will be automatically installed along with the rest of our dependencies as we start our app.

inotify-tools (for linux users)

This is a Linux-only filesystem watcher that Phoenix uses for live code reloading. (Mac OS X or Windows users can safely ignore it.)

Linux users need to install this dependency. Please consult the inotify-tools wiki for distribution-specific installation instructions.

Our First Phoenix Application

Now that we have everything installed, let’s create our first Phoenix application and get up and running.

 Learning

Here’s a list of other resources for learning about Phoenix and some of the projects it depends on.

Phoenix

Books

	Programming Phoenix (print and ebook)

Online Resources

	The Phoenix Project

	Official Documentation (current stable release)

Videos

Phoenix author Chris McCord’s videos covering the roadmap to Phoenix 1.0 and an overview of the current state of Phoenix.

	Phoenix Takes Flight, Chris McCord

	Phoenix - a framework for the modern web, Chris McCord

	Phoenix 1.3 - Lonestar ElixirConf 2017 Keynote, Chris McCord

Plug

The Elixir middleware layer that Phoenix makes extensive use of.

	Source Code and Readme

	Documentation

Ecto

The default data layer for Phoenix.

	Source Code and Readme

	Documentation

Phoenix HTML

The project which contains many HTML helper functions used in Phoenix.

	Source Code and Readme

	Documentation

ExUnit

	Documentation

Cowboy

The webserver Phoenix is based on.

	Source Code and Readme

	User Guides

	Manual/Function Reference

EEx

The default templating system for Phoenix.

	Source Code and Readme

	Documentation

 Community

The Elixir and Phoenix communities are friendly and welcoming. All questions and comments are valuable, so please come join the discussion!

There are a number of places to connect with community members at all experience levels.

	We’re on Freenode IRC in the #elixir-lang) channel.

	Request an invitation and join the #phoenix channel on Slack.

	Read about bug reports or open an issue in the Phoenix issue tracker.

	Ask or answer questions about Phoenix on Elixir Forum or Stack Overflow.

	To discuss new features in the framework, email the phoenix-core mailing list.

	Follow the Phoenix Framework on Twitter.

	The source for these guides is on GitHub. To help improve the guides, please report an issue or open a pull request.

 Up and Running

The aim of this first guide is to get a Phoenix application up and running as quickly as possible.

Before we begin, please take a minute to read the Installation Guide. By installing any necessary dependencies beforehand, we’ll be able to get our application up and running smoothly.

At this point, we should have Elixir, Erlang, Hex, and the Phoenix archive installed. We should also have PostgreSQL and node.js installed to build a default application.

Ok, we’re ready to go!

We can run mix phx.new from any directory in order to bootstrap our Phoenix application. Phoenix will accept either an absolute or relative path for the directory of our new project. Assuming that the name of our application is hello, let’s run the following command:

$ mix phx.new hello

A note about webpack before we begin: Phoenix will use webpack for asset management by default. Webpacks’ dependencies are installed via the node package manager, not mix. Phoenix will prompt us to install them at the end of the mix phx.new task. If we say “no” at that point, and if we don’t install those dependencies later with npm install, our application will raise errors when we try to start it, and our assets may not load properly. If we don’t want to use webpack at all, we can simply pass --no-webpack to mix phx.new.

A note about Ecto: Ecto allows our Phoenix application to communicate with a data store, such as PostgreSQL or MongoDB. If our application will not require this component we can skip this dependency by passing the --no-ecto flag to the mix phx.new. This flag may also be combined with --no-webpack to create a skeleton application.

Note to learn more about mix phx.new read Phoenix Mix Tasks.

mix phx.new hello
* creating hello/config/config.exs
* creating hello/config/dev.exs
* creating hello/config/prod.exs
...
* creating hello/lib/hello_web/views/layout_view.ex
* creating hello/lib/hello_web/views/page_view.ex

Fetch and install dependencies? [Yn]

Phoenix generates the directory structure and all the files we will need for our application. When it’s done, it will ask us if we want it to install our dependencies for us. Let’s say yes to that.

Fetch and install dependencies? [Yn] Y
* running mix deps.get
* running mix deps.compile
* running cd assets && npm install && node node_modules/webpack/bin/webpack.js --mode development

We are all set! Go into your application by running:

 $ cd hello

Then configure your database in config/dev.exs and run:

 $ mix ecto.create

Start your Phoenix app with:

 $ mix phx.server

You can also run your app inside IEx (Interactive Elixir) as:

 $ iex -S mix phx.server

Once our dependencies are installed, the task will prompt us to change into our project directory and start our application.

Phoenix assumes that our PostgreSQL database will have a postgres user account with the correct permissions and a password of “postgres”. If that isn’t the case, please see the instructions for the ecto.create mix task.

Ok, let’s give it a try. First, we’ll cd into the hello/ directory we’ve just created:

$ cd hello

Now we’ll create our database:

$ mix ecto.create
The database for Hello.Repo has been created

Note: if this is the first time you are running this command, Phoenix may also ask to install Rebar. Go ahead with the installation as Rebar is used to build Erlang packages.

And finally, we’ll start the Phoenix server:

$ mix phx.server
[info] Running HelloWeb.Endpoint with Cowboy using http://0.0.0.0:4000
19:30:43 - info: compiled 6 files into 2 files, copied 3 in 2.1 sec

If we choose not to have Phoenix install our dependencies when we generate a new application, the phx.new task will prompt us to take the necessary steps when we do want to install them.

Fetch and install dependencies? [Yn] n

We are almost there! The following steps are missing:

 $ cd hello
 $ mix deps.get
 $ cd assets && npm install && node node_modules/webpack/bin/webpack.js --mode development

Then configure your database in config/dev.exs and run:

 $ mix ecto.create

Start your Phoenix app with:

 $ mix phx.server

You can also run your app inside IEx (Interactive Elixir) as:

 $ iex -S mix phx.server

By default Phoenix accepts requests on port 4000. If we point our favorite web browser at http://localhost:4000, we should see the Phoenix Framework welcome page.

[image: Phoenix Welcome Page]

If your screen looks like the image above, congratulations! You now have a working Phoenix application. In case you can’t see the page above, try accessing it via http://127.0.0.1:4000 and later make sure your OS has defined “localhost” as “127.0.0.1”.

Locally, our application is running in an iex session. To stop it, we hit ctrl-c twice, just as we would to stop iex normally.

The next step is customizing our application just a bit to give us a sense of how a Phoenix app is put together.

 Adding Pages

Our task for this guide is to add two new pages to our Phoenix project. One will be a purely static page, and the other will take part of the path from the URL as input and pass it through to a template for display. Along the way, we will gain familiarity with the basic components of a Phoenix project: the router, controllers, views, and templates.

When Phoenix generates a new application for us, it builds a top-level directory structure like this:

├── _build
├── assets
├── config
├── deps
├── lib
│ └── hello
│ └── hello_web
│ └── hello.ex
│ └── hello_web.ex
├── priv
├── test

Most of our work in this guide will be in the lib/hello_web directory, which holds the web-related parts of our application. It looks like this when expanded:

├── channels
│ └── user_socket.ex
├── controllers
│ └── page_controller.ex
├── templates
│ ├── layout
│ │ └── app.html.eex
│ └── page
│ └── index.html.eex
└── views
│ ├── error_helpers.ex
│ ├── error_view.ex
│ ├── layout_view.ex
│ └── page_view.ex
├── endpoint.ex
├── gettext.ex
├── router.ex

All of the files which are currently in the controllers, templates, and views directories are there to create the “Welcome to Phoenix!” page we saw in the last guide. We will see how we can re-use some of that code shortly. When running in development, code changes will be automatically recompiled on new web requests.

All of our application’s static assets like js, css, and image files live in assets, which are built into priv/static by webpack or other front-end build tools. We won’t be making any changes here for now, but it is good to know where to look for future reference.

├── assets
│ ├── css
│ │ └── app.css
│ ├── js
│ │ └── app.js
│ └── static
│ └── node_modules
│ └── vendor

There are also non web-related files we should know about. Our application file (which starts our Elixir application and its supervision tree) is at lib/hello/application.ex. We also have our Ecto Repo in lib/hello/repo.ex for interacting with the database. You can learn more in the guide for Ecto.

lib
├── hello
| ├── application.ex
| └── repo.ex
├── hello_web
| ├── channels
| ├── controllers
| ├── templates
| ├── views
| ├── endpoint.ex
| ├── gettext.ex
| └── router.ex

Our lib/hello_web directory contains web-related files – routers, controllers, templates, channels, etc. The rest of our greater Elixir application lives inside lib/hello, and you structure code here like any other Elixir application.

Enough prep, let’s get on with our first new Phoenix page!

A New Route

Routes map unique HTTP verb/path pairs to controller/action pairs which will handle them. Phoenix generates a router file for us in new applications at lib/hello_web/router.ex. This is where we will be working for this section.

The route for our “Welcome to Phoenix!” page from the previous Up And Running Guide looks like this.

get "/", PageController, :index

Let’s digest what this route is telling us. Visiting http://localhost:4000/ issues an HTTP GET request to the root path. All requests like this will be handled by the index function in the HelloWeb.PageController module defined in lib/hello_web/controllers/page_controller.ex.

The page we are going to build will simply say “Hello World, from Phoenix!” when we point our browser to http://localhost:4000/hello.

The first thing we need to do to create that page is define a route for it. Let’s open up lib/hello_web/router.ex in a text editor. It should currently look like this:

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/", HelloWeb do
 pipe_through :browser # Use the default browser stack

 get "/", PageController, :index
 end

 # Other scopes may use custom stacks.
 # scope "/api", HelloWeb do
 # pipe_through :api
 # end
end

For now, we’ll ignore the pipelines and the use of scope here and just focus on adding a route. (We cover these topics in the Routing Guide, if you’re curious.)

Let’s add a new route to the router that maps a GET request for /hello to the index action of a soon-to-be-created HelloWeb.HelloController:

get "/hello", HelloController, :index

The scope "/" block of our router.ex file should now look like this:

scope "/", HelloWeb do
 pipe_through :browser # Use the default browser stack

 get "/", PageController, :index
 get "/hello", HelloController, :index
end

A New Controller

Controllers are Elixir modules, and actions are Elixir functions defined in them. The purpose of actions is to gather any data and perform any tasks needed for rendering. Our route specifies that we need a HelloWeb.HelloController module with an index/2 action.

To make that happen, let’s create a new lib/hello_web/controllers/hello_controller.ex file, and make it look like the following:

defmodule HelloWeb.HelloController do
 use HelloWeb, :controller

 def index(conn, _params) do
 render(conn, "index.html")
 end
end

We’ll save a discussion of use HelloWeb, :controller for the Controllers Guide. For now, let’s focus on the index/2 action.

All controller actions take two arguments. The first is conn, a struct which holds a ton of data about the request. The second is params, which are the request parameters. Here, we are not using params, and we avoid compiler warnings by adding the leading _.

The core of this action is render(conn, "index.html"). This tells Phoenix to find a template called index.html.eex and render it. Phoenix will look for the template in a directory named after our controller, so lib/hello_web/templates/hello.

Note: Using an atom as the template name will also work here, render(conn, :index), but the template will be chosen based off the Accept headers, e.g. "index.html" or "index.json".

The modules responsible for rendering are views, and we’ll make a new one of those next.

A New View

Phoenix views have several important jobs. They render templates. They also act as a presentation layer for raw data from the controller, preparing it for use in a template. Functions which perform this transformation should go in a view.

As an example, say we have a data structure which represents a user with a first_name field and a last_name field, and in a template, we want to show the user’s full name. We could write code in the template to merge those fields into a full name, but the better approach is to write a function in the view to do it for us, then call that function in the template. The result is a cleaner and more legible template.

In order to render any templates for our HelloController, we need a HelloView. The names are significant here - the first part of the names of the view and controller must match. Let’s create an empty one for now, and leave a more detailed description of views for later. Create lib/hello_web/views/hello_view.ex and make it look like this:

defmodule HelloWeb.HelloView do
 use HelloWeb, :view
end

A New Template

Phoenix templates are just that, templates into which data can be rendered. The standard templating engine Phoenix uses is EEx, which stands for Embedded Elixir. Phoenix enhances EEx to include automatic escaping of values. This protects you from security vulnerabilities like Cross-Site-Scripting with no extra work on your part. All of our template files will have the .eex file extension.

Templates are scoped to a view, which are scoped to controller. Phoenix creates a lib/hello_web/templates directory where we can put all these. It is best to namespace these for organization, so for our hello page, that means we need to create a hello directory under lib/hello_web/templates and then create an index.html.eex file within it.

Let’s do that now. Create lib/hello_web/templates/hello/index.html.eex and make it look like this:

<div class="jumbotron">
 <h2>Hello World, from Phoenix!</h2>
</div>

Now that we’ve got the route, controller, view, and template, we should be able to point our browsers at http://localhost:4000/hello and see our greeting from Phoenix! (In case you stopped the server along the way, the task to restart it is mix phx.server.)

[image: Phoenix Greets Us]

There are a couple of interesting things to notice about what we just did. We didn’t need to stop and re-start the server while we made these changes. Yes, Phoenix has hot code reloading! Also, even though our index.html.eex file consisted of only a single div tag, the page we get is a full HTML document. Our index template is rendered into the application layout - lib/hello_web/templates/layout/app.html.eex. If you open it, you’ll see a line that looks like this:

<%= render(@view_module, @view_template, assigns) %>

which is what renders our template into the layout before the HTML is sent off to the browser.

A note on hot code reloading, some editors with their automatic linters may prevent hot code reloading from working. If it’s not working for you, please see the dicussion in this issue.

Another New Page

Let’s add just a little complexity to our application. We’re going to add a new page that will recognize a piece of the URL, label it as a “messenger” and pass it through the controller into the template so our messenger can say hello.

As we did last time, the first thing we’ll do is create a new route.

A New Route

For this exercise, we’re going to re-use the HelloController we just created and just add a new show action. We’ll add a line just below our last route, like this:

scope "/", HelloWeb do
 pipe_through :browser # Use the default browser stack.

 get "/", PageController, :index
 get "/hello", HelloController, :index
 get "/hello/:messenger", HelloController, :show
end

Notice that we put the atom :messenger in the path. Phoenix will take whatever value that appears in that position in the URL and pass a Map with the key messenger pointing to that value to the controller.

For example, if we point the browser at: http://localhost:4000/hello/Frank, the value of “:messenger” will be “Frank”.

A New Action

Requests to our new route will be handled by the HelloWeb.HelloController show action. We already have the controller at lib/hello_web/controllers/hello_controller.ex, so all we need to do is edit that file and add a show action to it. This time, we’ll need to keep one of the items in the map of params that gets passed into the action, so that we can pass it (the messenger) to the template. To do that, we add this show function to the controller:

def show(conn, %{"messenger" => messenger}) do
 render(conn, "show.html", messenger: messenger)
end

There are a couple of things to notice here. We pattern match against the params passed into the show function so that the messenger variable will be bound to the value we put in the :messenger position in the URL. For example, if our URL is http://localhost:4000/hello/Frank, the messenger variable would be bound to Frank.

Within the body of the show action, we also pass a third argument into the render function, a key/value pair where :messenger is the key, and the messenger variable is passed as the value.

Note: If the body of the action needs access to the full map of parameters bound to the params variable in addition to the bound messenger variable, we could define show/2 like this:

def show(conn, %{"messenger" => messenger} = params) do
 ...
end

It’s good to remember that the keys to the params map will always be strings, and that the equals sign does not represent assignment, but is instead a pattern match assertion.

A New Template

For the last piece of this puzzle, we’ll need a new template. Since it is for the show action of the HelloController, it will go into the lib/hello_web/templates/hello directory and be called show.html.eex. It will look surprisingly like our index.html.eex template, except that we will need to display the name of our messenger.

To do that, we’ll use the special EEx tags for executing Elixir expressions - <%= %>. Notice that the initial tag has an equals sign like this: <%= . That means that any Elixir code that goes between those tags will be executed, and the resulting value will replace the tag. If the equals sign were missing, the code would still be executed, but the value would not appear on the page.

And this is what the template should look like:

<div class="jumbotron">
 <h2>Hello World, from <%= @messenger %>!</h2>
</div>

Our messenger appears as @messenger. In this case, this is not a module attribute. It is special bit of metaprogrammed syntax which stands in for assigns.messenger. The result is much nicer on the eyes and much easier to work with in a template.

We’re done. If you point your browser here: http://localhost:4000/hello/Frank, you should see a page that looks like this:

[image: Frank Greets Us from Phoenix]

Play around a bit. Whatever you put after /hello/ will appear on the page as your messenger.

 Routing

Routers are the main hubs of Phoenix applications. They match HTTP requests to controller actions, wire up real-time channel handlers, and define a series of pipeline transformations for scoping middleware to sets of routes.

The router file that Phoenix generates, lib/hello_web/router.ex, will look something like this one:

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/", HelloWeb do
 pipe_through :browser # Use the default browser stack

 get "/", PageController, :index
 end

 # Other scopes may use custom stacks.
 # scope "/api", HelloWeb do
 # pipe_through :api
 # end
end

The name you gave your application will appear instead of Hello for both the router module and controller name.

The first line of this module, use HelloWeb, :router, simply makes Phoenix router functions available in our particular router.

Scopes have their own section in this guide, so we won’t spend time on the scope "/", HelloWeb do block here. The pipe_through :browser line will get a full treatment in the Pipeline section of this guide. For now, you only need to know that pipelines allow a set of middleware transformations to be applied to different sets of routes.

Inside the scope block, however, we have our first actual route:

 get "/", PageController, :index

get is a Phoenix macro which expands out to define one clause of the match/5 function. It corresponds to the HTTP verb GET. Similar macros exist for other HTTP verbs including POST, PUT, PATCH, DELETE, OPTIONS, CONNECT, TRACE and HEAD.

The first argument to these macros is the path. Here, it is the root of the application, /. The next two arguments are the controller and action we want to have handle this request. These macros may also take other options, which we will see throughout the rest of this guide.

If this were the only route in our router module, the clause of the match/5 function would look like this after the macro is expanded:

 def match(:get, "/", PageController, :index, [])

The body of the match/5 function sets up the connection and invokes the matched controller action.

As we add more routes, more clauses of the match function will be added to our router module. These will behave like any other multi-clause function in Elixir. They will be tried in order from the top, and the first clause to match the parameters given (verb and path) will be executed. After a match is found, the search will stop and no other clauses will be tried.

This means that it is possible to create a route which will never match, based on the HTTP verb and the path, regardless of the controller and action.

If we do create an ambiguous route, the router will still compile, but we will get a warning. Let’s see this in action.

Define this route at the bottom of the scope "/", HelloWeb do block in the router.

get "/", RootController, :index

Then run $ mix compile at the root of your project.

Examining Routes

Phoenix provides a great tool for investigating routes in an application, the mix task phx.routes.

Let’s see how this works. Go to the root of a newly-generated Phoenix application and run $ mix phx.routes. (If you haven’t already done so, you’ll need to run $ mix do deps.get, compile before running the routes task.) You should see something like the following, generated from the only route we currently have:

$ mix phx.routes
page_path GET / HelloWeb.PageController :index

The output tells us that any HTTP GET request for the root of the application will be handled by the index action of the HelloWeb.PageController.

page_path is an example of what Phoenix calls a path helper, and we’ll talk about those very soon.

Resources

The router supports other macros besides those for HTTP verbs like get, post, and put. The most important among them is resources, which expands out to eight clauses of the match/5 function.

Let’s add a resource to our lib/hello_web/router.ex file like this:

scope "/", HelloWeb do
 pipe_through :browser # Use the default browser stack

 get "/", PageController, :index
 resources "/users", UserController
end

For this purpose, it doesn’t matter that we don’t actually have a HelloWeb.UserController.

Then go to the root of your project, and run $ mix phx.routes

You should see something like the following:

user_path GET /users HelloWeb.UserController :index
user_path GET /users/:id/edit HelloWeb.UserController :edit
user_path GET /users/new HelloWeb.UserController :new
user_path GET /users/:id HelloWeb.UserController :show
user_path POST /users HelloWeb.UserController :create
user_path PATCH /users/:id HelloWeb.UserController :update
 PUT /users/:id HelloWeb.UserController :update
user_path DELETE /users/:id HelloWeb.UserController :delete

Of course, the name of your project will replace Hello.

This is the standard matrix of HTTP verbs, paths, and controller actions. Let’s look at them individually, in a slightly different order.

	A GET request to /users will invoke the index action to show all the users.

	A GET request to /users/:id will invoke the show action with an id to show an individual user identified by that ID.

	A GET request to /users/new will invoke the new action to present a form for creating a new user.

	A POST request to /users will invoke the create action to save a new user to the data store.

	A GET request to /users/:id/edit will invoke the edit action with an ID to retrieve an individual user from the data store and present the information in a form for editing.

	A PATCH request to /users/:id will invoke the update action with an ID to save the updated user to the data store.

	A PUT request to /users/:id will also invoke the update action with an ID to save the updated user to the data store.

	A DELETE request to /users/:id will invoke the delete action with an ID to remove the individual user from the data store.

If we don’t feel that we need all of these routes, we can be selective using the :only and :except options.

Let’s say we have a read-only posts resource. We could define it like this:

resources "/posts", PostController, only: [:index, :show]

Running $ mix phx.routes shows that we now only have the routes to the index and show actions defined.

post_path GET /posts HelloWeb.PostController :index
post_path GET /posts/:id HelloWeb.PostController :show

Similarly, if we have a comments resource, and we don’t want to provide a route to delete one, we could define a route like this.

resources "/comments", CommentController, except: [:delete]

Running $ mix phx.routes now shows that we have all the routes except the DELETE request to the delete action.

comment_path GET /comments HelloWeb.CommentController :index
comment_path GET /comments/:id/edit HelloWeb.CommentController :edit
comment_path GET /comments/new HelloWeb.CommentController :new
comment_path GET /comments/:id HelloWeb.CommentController :show
comment_path POST /comments HelloWeb.CommentController :create
comment_path PATCH /comments/:id HelloWeb.CommentController :update
 PUT /comments/:id HelloWeb.CommentController :update

The Phoenix.Router.resources/4 function describes additional options for customizing resource routes.

Forward

The Phoenix.Router.forward/4 macro can be used to send all requests that start with a particular path to a particular plug. Let’s say we have a part of our system that is responsible (it could even be a separate application or library) for running jobs in the background, it could have its own web interface for checking the status of the jobs. We can forward to this admin interface using:

defmodule HelloWeb.Router do
 use HelloWeb, :router

 #...

 scope "/", HelloWeb do
 #...
 end

 forward "/jobs", BackgroundJob.Plug
end

This means that all routes starting with /jobs will be sent to the BackgroundJob.Plug module.

We can even use the forward/4 macro in a pipeline. If we wanted to ensure that the user was authenticated and an administrator in order to see the jobs page, we could use the following in our router.

defmodule HelloWeb.Router do
 use HelloWeb, :router

 #...

 scope "/" do
 pipe_through [:authenticate_user, :ensure_admin]
 forward "/jobs", BackgroundJob.Plug
 end
end

This means that the plugs in the authenticate_user and ensure_admin pipelines will be called before the BackgroundJob.Plug allowing them to send an appropriate response and call halt() .

The opts that are passed to the init/1 callback of a Plug can be passed as a 3rd argument. For example, maybe the background job page lets you set the name of your application to be displayed on the page. This could be passed with:

 forward "/jobs", BackgroundJob.Plug, name: "Hello Phoenix"

There is a fourth router_opts argument that can be passed. These options are outlined in the Phoenix.Router.scope/2 documentation.

Although it is possible to forward to any module plug, it is not advised to forward to another endpoint. This is because plugs defined by your app and the forwarded endpoint would be invoked twice, which may lead to errors.

Writing an actual background job worker is beyond the scope of this guide. However for convenience and to allow you to test the code above, here is the implementation of BackgroundJob.Plug that you can copy into your application inside lib/plugs/background_job_plug.ex:

defmodule BackgroundJob.Plug do
 def init(opts), do: opts
 def call(conn, opts) do
 conn
 |> Plug.Conn.assign(:name, Keyword.get(opts, :name, "Background Job"))
 |> BackgroundJob.Router.call(opts)
 end
end

defmodule BackgroundJob.Router do
 use Plug.Router

 plug :match
 plug :dispatch

 get "/", do: send_resp(conn, 200, "Welcome to #{conn.assigns.name}")
 get "/active", do: send_resp(conn, 200, "5 Active Jobs")
 get "/pending", do: send_resp(conn, 200, "3 Pending Jobs")
 match _, do: send_resp(conn, 404, "Not found")
end

Path Helpers

Path helpers are functions which are dynamically defined on the Router.Helpers module for an individual application. For us, that is HelloWeb.Router.Helpers. Their names are derived from the name of the controller used in the route definition. Our controller is HelloWeb.PageController, and page_path is the function which will return the path to the root of our application.

That’s a mouthful. Let’s see it in action. Run $ iex -S mix at the root of the project. When we call the page_path function on our router helpers with the Endpoint or connection and action as arguments, it returns the path to us.

iex> HelloWeb.Router.Helpers.page_path(HelloWeb.Endpoint, :index)
"/"

This is significant because we can use the page_path function in a template to link to the root of our application. We can then use this helper in our templates:

<a href="<%= Routes.page_path(@conn, :index) %>">To the Welcome Page!

The reason we can use Routes.page_path instead of the full HelloWeb.Router.Helpers.page_path name is because HelloWeb.Router.Helpers is aliased as Routes by default in the view/0 definition (lib/hello_web.ex) and made available to our templates through use HelloWeb, :view. We can, of course, use HelloWeb.Router.Helpers.page_path(@conn, :index) instead, but the convention is to use the aliased version for conciseness (note that the alias is only set automatically for use in views, controllers and templates - outside these you need either the full name, or to alias it yourself inside the module definition: alias HelloWeb.Router.Helpers, as: Routes). Please see the View Guide for more information.

This pays off tremendously if we should ever have to change the path of our route in the router. Since the path helpers are built dynamically from the routes, any calls to page_path in our templates will still work.

More on Path Helpers

When we ran the phx.routes task for our user resource, it listed the user_path as the path helper function for each line of output. Here is what that translates to for each action:

iex> alias HelloWeb.Router.Helpers, as: Routes
iex> alias HelloWeb.Endpoint
iex> Routes.user_path(Endpoint, :index)
"/users"

iex> Routes.user_path(Endpoint, :show, 17)
"/users/17"

iex> Routes.user_path(Endpoint, :new)
"/users/new"

iex> Routes.user_path(Endpoint, :create)
"/users"

iex> Routes.user_path(Endpoint, :edit, 37)
"/users/37/edit"

iex> Routes.user_path(Endpoint, :update, 37)
"/users/37"

iex> Routes.user_path(Endpoint, :delete, 17)
"/users/17"

What about paths with query strings? By adding an optional fourth argument of key value pairs, the path helpers will return those pairs in the query string.

iex> Routes.user_path(Endpoint, :show, 17, admin: true, active: false)
"/users/17?admin=true&active=false"

What if we need a full url instead of a path? Just replace _path with _url:

iex(3)> Routes.user_url(Endpoint, :index)
"http://localhost:4000/users"

The _url functions will get the host, port, proxy port, and SSL information needed to construct the full URL from the configuration parameters set for each environment. We’ll talk about configuration in more detail in its own guide. For now, you can take a look at config/dev.exs file in your own project to see those values.

Whenever possible prefer to pass a conn in place of an Endpoint.

Nested Resources

It is also possible to nest resources in a Phoenix router. Let’s say we also have a posts resource which has a many-to-one relationship with users. That is to say, a user can create many posts, and an individual post belongs to only one user. We can represent that by adding a nested route in lib/hello_web/router.ex like this:

resources "/users", UserController do
 resources "/posts", PostController
end

When we run $ mix phx.routes now, in addition to the routes we saw for users above, we get the following set of routes:

. . .
user_post_path GET /users/:user_id/posts HelloWeb.PostController :index
user_post_path GET /users/:user_id/posts/:id/edit HelloWeb.PostController :edit
user_post_path GET /users/:user_id/posts/new HelloWeb.PostController :new
user_post_path GET /users/:user_id/posts/:id HelloWeb.PostController :show
user_post_path POST /users/:user_id/posts HelloWeb.PostController :create
user_post_path PATCH /users/:user_id/posts/:id HelloWeb.PostController :update
 PUT /users/:user_id/posts/:id HelloWeb.PostController :update
user_post_path DELETE /users/:user_id/posts/:id HelloWeb.PostController :delete

We see that each of these routes scopes the posts to a user ID. For the first one, we will invoke the PostController index action, but we will pass in a user_id. This implies that we would display all the posts for that individual user only. The same scoping applies for all these routes.

When calling path helper functions for nested routes, we will need to pass the IDs in the order they came in the route definition. For the following show route, 42 is the user_id, and 17 is the post_id. Let’s remember to alias our HelloWeb.Endpoint before we begin.

iex> alias HelloWeb.Endpoint
iex> HelloWeb.Router.Helpers.user_post_path(Endpoint, :show, 42, 17)
"/users/42/posts/17"

Again, if we add a key/value pair to the end of the function call, it is added to the query string.

iex> HelloWeb.Router.Helpers.user_post_path(Endpoint, :index, 42, active: true)
"/users/42/posts?active=true"

If we had aliased the Helpers module as before (it is only automatically aliased for views, templates and controllers, in this case, since we’re inside iex we need to do it ourselves), we could instead do:

iex> alias HelloWeb.Router.Helpers, as: Routes
iex> alias HelloWeb.Endpoint
iex> Routes.user_post_path(Endpoint, :index, 42, active: true)
"/users/42/posts?active=true"

Scoped Routes

Scopes are a way to group routes under a common path prefix and scoped set of plug middleware. We might want to do this for admin functionality, APIs, and especially for versioned APIs. Let’s say we have user generated reviews on a site, and that those reviews first need to be approved by an admin. The semantics of these resources are quite different, and they might not share the same controller. Scopes enable us to segregate these routes.

The paths to the user facing reviews would look like a standard resource.

/reviews
/reviews/1234
/reviews/1234/edit
. . .

The admin review paths could be prefixed with /admin.

/admin/reviews
/admin/reviews/1234
/admin/reviews/1234/edit
. . .

We accomplish this with a scoped route that sets a path option to /admin like this one. For now, let’s not nest this scope inside of any other scopes (like the scope "/", HelloWeb do one provided for us in a new app).

scope "/admin" do
 pipe_through :browser

 resources "/reviews", HelloWeb.Admin.ReviewController
end

Note also, that the way this scope is currently defined, we need to fully qualify our controller name, HelloWeb.Admin.ReviewController. We’ll fix that in a minute.

Running $ mix phx.routes again, in addition to the previous set of routes we get the following:

. . .
review_path GET /admin/reviews HelloWeb.Admin.ReviewController :index
review_path GET /admin/reviews/:id/edit HelloWeb.Admin.ReviewController :edit
review_path GET /admin/reviews/new HelloWeb.Admin.ReviewController :new
review_path GET /admin/reviews/:id HelloWeb.Admin.ReviewController :show
review_path POST /admin/reviews HelloWeb.Admin.ReviewController :create
review_path PATCH /admin/reviews/:id HelloWeb.Admin.ReviewController :update
 PUT /admin/reviews/:id HelloWeb.Admin.ReviewController :update
review_path DELETE /admin/reviews/:id HelloWeb.Admin.ReviewController :delete

This looks good, but there is a problem here. Remember that we wanted both user facing reviews routes /reviews as well as the admin ones /admin/reviews. If we now include the user facing reviews in our router like this:

scope "/", HelloWeb do
 pipe_through :browser
 . . .
 resources "/reviews", ReviewController
 . . .
end

scope "/admin" do
 resources "/reviews", HelloWeb.Admin.ReviewController
end

and we run $ mix phx.routes, we get this output:

. . .
review_path GET /reviews HelloWeb.ReviewController :index
review_path GET /reviews/:id/edit HelloWeb.ReviewController :edit
review_path GET /reviews/new HelloWeb.ReviewController :new
review_path GET /reviews/:id HelloWeb.ReviewController :show
review_path POST /reviews HelloWeb.ReviewController :create
review_path PATCH /reviews/:id HelloWeb.ReviewController :update
 PUT /reviews/:id HelloWeb.ReviewController :update
review_path DELETE /reviews/:id HelloWeb.ReviewController :delete
. . .
review_path GET /admin/reviews HelloWeb.Admin.ReviewController :index
review_path GET /admin/reviews/:id/edit HelloWeb.Admin.ReviewController :edit
review_path GET /admin/reviews/new HelloWeb.Admin.ReviewController :new
review_path GET /admin/reviews/:id HelloWeb.Admin.ReviewController :show
review_path POST /admin/reviews HelloWeb.Admin.ReviewController :create
review_path PATCH /admin/reviews/:id HelloWeb.Admin.ReviewController :update
 PUT /admin/reviews/:id HelloWeb.Admin.ReviewController :update
review_path DELETE /admin/reviews/:id HelloWeb.Admin.ReviewController :delete

The actual routes we get all look right, except for the path helper review_path at the beginning of each line. We are getting the same helper for both the user facing review routes and the admin ones, which is not correct. We can fix this problem by adding an as: :admin option to our admin scope.

scope "/", HelloWeb do
 pipe_through :browser
 . . .
 resources "/reviews", ReviewController
 . . .
end

scope "/admin", as: :admin do
 resources "/reviews", HelloWeb.Admin.ReviewController
end

$ mix phx.routes now shows us we have what we are looking for.

. . .
 review_path GET /reviews HelloWeb.ReviewController :index
 review_path GET /reviews/:id/edit HelloWeb.ReviewController :edit
 review_path GET /reviews/new HelloWeb.ReviewController :new
 review_path GET /reviews/:id HelloWeb.ReviewController :show
 review_path POST /reviews HelloWeb.ReviewController :create
 review_path PATCH /reviews/:id HelloWeb.ReviewController :update
 PUT /reviews/:id HelloWeb.ReviewController :update
 review_path DELETE /reviews/:id HelloWeb.ReviewController :delete
. . .
admin_review_path GET /admin/reviews HelloWeb.Admin.ReviewController :index
admin_review_path GET /admin/reviews/:id/edit HelloWeb.Admin.ReviewController :edit
admin_review_path GET /admin/reviews/new HelloWeb.Admin.ReviewController :new
admin_review_path GET /admin/reviews/:id HelloWeb.Admin.ReviewController :show
admin_review_path POST /admin/reviews HelloWeb.Admin.ReviewController :create
admin_review_path PATCH /admin/reviews/:id HelloWeb.Admin.ReviewController :update
 PUT /admin/reviews/:id HelloWeb.Admin.ReviewController :update
admin_review_path DELETE /admin/reviews/:id HelloWeb.Admin.ReviewController :delete

The path helpers now return what we want them to as well. Run $ iex -S mix and give it a try yourself.

iex(1)> HelloWeb.Router.Helpers.review_path(HelloWeb.Endpoint, :index)
"/reviews"

iex(2)> HelloWeb.Router.Helpers.admin_review_path(HelloWeb.Endpoint, :show, 1234)
"/admin/reviews/1234"

What if we had a number of resources that were all handled by admins? We could put all of them inside the same scope like this:

scope "/admin", as: :admin do
 pipe_through :browser

 resources "/images", HelloWeb.Admin.ImageController
 resources "/reviews", HelloWeb.Admin.ReviewController
 resources "/users", HelloWeb.Admin.UserController
end

Here’s what $ mix phx.routes tells us:

. . .
 admin_image_path GET /admin/images HelloWeb.Admin.ImageController :index
 admin_image_path GET /admin/images/:id/edit HelloWeb.Admin.ImageController :edit
 admin_image_path GET /admin/images/new HelloWeb.Admin.ImageController :new
 admin_image_path GET /admin/images/:id HelloWeb.Admin.ImageController :show
 admin_image_path POST /admin/images HelloWeb.Admin.ImageController :create
 admin_image_path PATCH /admin/images/:id HelloWeb.Admin.ImageController :update
 PUT /admin/images/:id HelloWeb.Admin.ImageController :update
 admin_image_path DELETE /admin/images/:id HelloWeb.Admin.ImageController :delete
admin_review_path GET /admin/reviews HelloWeb.Admin.ReviewController :index
admin_review_path GET /admin/reviews/:id/edit HelloWeb.Admin.ReviewController :edit
admin_review_path GET /admin/reviews/new HelloWeb.Admin.ReviewController :new
admin_review_path GET /admin/reviews/:id HelloWeb.Admin.ReviewController :show
admin_review_path POST /admin/reviews HelloWeb.Admin.ReviewController :create
admin_review_path PATCH /admin/reviews/:id HelloWeb.Admin.ReviewController :update
 PUT /admin/reviews/:id HelloWeb.Admin.ReviewController :update
admin_review_path DELETE /admin/reviews/:id HelloWeb.Admin.ReviewController :delete
 admin_user_path GET /admin/users HelloWeb.Admin.UserController :index
 admin_user_path GET /admin/users/:id/edit HelloWeb.Admin.UserController :edit
 admin_user_path GET /admin/users/new HelloWeb.Admin.UserController :new
 admin_user_path GET /admin/users/:id HelloWeb.Admin.UserController :show
 admin_user_path POST /admin/users HelloWeb.Admin.UserController :create
 admin_user_path PATCH /admin/users/:id HelloWeb.Admin.UserController :update
 PUT /admin/users/:id HelloWeb.Admin.UserController :update
 admin_user_path DELETE /admin/users/:id HelloWeb.Admin.UserController :delete

This is great, exactly what we want, but we can make it even better. Notice that for each resource, we needed to fully qualify the controller name by prefixing it with HelloWeb.Admin. That’s tedious and error prone. Assuming that the name of each controller begins with HelloWeb.Admin, then we can add a HelloWeb.Admin option to our scope declaration just after the scope path, and all of our routes will have the correct, fully qualified controller name.

scope "/admin", HelloWeb.Admin, as: :admin do
 pipe_through :browser

 resources "/images", ImageController
 resources "/reviews", ReviewController
 resources "/users", UserController
end

Now run $ mix phx.routes again and you can see that we get the same result as above when we qualified each controller name individually.

This doesn’t just apply to nested routes, we can even nest all of the routes for our application inside a scope that simply has an alias for the name of our Phoenix app, and eliminate the duplication of our application name in our controller names.

Phoenix already does this for us in the generated router for a new application (see beginning of this section). Notice here the use of HelloWeb in the scope declaration:

defmodule HelloWeb.Router do
 use HelloWeb, :router

 scope "/", HelloWeb do
 pipe_through :browser

 get "/images", ImageController, :index
 resources "/reviews", ReviewController
 resources "/users", UserController
 end
end

Again $ mix phx.routes tells us that all of our controllers now have the correct, fully-qualified names.

 image_path GET /images HelloWeb.ImageController :index
review_path GET /reviews HelloWeb.ReviewController :index
review_path GET /reviews/:id/edit HelloWeb.ReviewController :edit
review_path GET /reviews/new HelloWeb.ReviewController :new
review_path GET /reviews/:id HelloWeb.ReviewController :show
review_path POST /reviews HelloWeb.ReviewController :create
review_path PATCH /reviews/:id HelloWeb.ReviewController :update
 PUT /reviews/:id HelloWeb.ReviewController :update
review_path DELETE /reviews/:id HelloWeb.ReviewController :delete
 user_path GET /users HelloWeb.UserController :index
 user_path GET /users/:id/edit HelloWeb.UserController :edit
 user_path GET /users/new HelloWeb.UserController :new
 user_path GET /users/:id HelloWeb.UserController :show
 user_path POST /users HelloWeb.UserController :create
 user_path PATCH /users/:id HelloWeb.UserController :update
 PUT /users/:id HelloWeb.UserController :update
 user_path DELETE /users/:id HelloWeb.UserController :delete

Although technically scopes can also be nested (just like resources), the use of nested scopes is generally discouraged because it can sometimes make our code confusing and less clear. With that said, suppose that we had a versioned API with resources defined for images, reviews and users. Then technically we could setup routes for the versioned API like this:

scope "/api", HelloWeb.Api, as: :api do
 pipe_through :api

 scope "/v1", V1, as: :v1 do
 resources "/images", ImageController
 resources "/reviews", ReviewController
 resources "/users", UserController
 end
end

$ mix phx.routes tells us that we have the routes we’re looking for.

 api_v1_image_path GET /api/v1/images HelloWeb.Api.V1.ImageController :index
 api_v1_image_path GET /api/v1/images/:id/edit HelloWeb.Api.V1.ImageController :edit
 api_v1_image_path GET /api/v1/images/new HelloWeb.Api.V1.ImageController :new
 api_v1_image_path GET /api/v1/images/:id HelloWeb.Api.V1.ImageController :show
 api_v1_image_path POST /api/v1/images HelloWeb.Api.V1.ImageController :create
 api_v1_image_path PATCH /api/v1/images/:id HelloWeb.Api.V1.ImageController :update
 PUT /api/v1/images/:id HelloWeb.Api.V1.ImageController :update
 api_v1_image_path DELETE /api/v1/images/:id HelloWeb.Api.V1.ImageController :delete
api_v1_review_path GET /api/v1/reviews HelloWeb.Api.V1.ReviewController :index
api_v1_review_path GET /api/v1/reviews/:id/edit HelloWeb.Api.V1.ReviewController :edit
api_v1_review_path GET /api/v1/reviews/new HelloWeb.Api.V1.ReviewController :new
api_v1_review_path GET /api/v1/reviews/:id HelloWeb.Api.V1.ReviewController :show
api_v1_review_path POST /api/v1/reviews HelloWeb.Api.V1.ReviewController :create
api_v1_review_path PATCH /api/v1/reviews/:id HelloWeb.Api.V1.ReviewController :update
 PUT /api/v1/reviews/:id HelloWeb.Api.V1.ReviewController :update
api_v1_review_path DELETE /api/v1/reviews/:id HelloWeb.Api.V1.ReviewController :delete
 api_v1_user_path GET /api/v1/users HelloWeb.Api.V1.UserController :index
 api_v1_user_path GET /api/v1/users/:id/edit HelloWeb.Api.V1.UserController :edit
 api_v1_user_path GET /api/v1/users/new HelloWeb.Api.V1.UserController :new
 api_v1_user_path GET /api/v1/users/:id HelloWeb.Api.V1.UserController :show
 api_v1_user_path POST /api/v1/users HelloWeb.Api.V1.UserController :create
 api_v1_user_path PATCH /api/v1/users/:id HelloWeb.Api.V1.UserController :update
 PUT /api/v1/users/:id HelloWeb.Api.V1.UserController :update
 api_v1_user_path DELETE /api/v1/users/:id HelloWeb.Api.V1.UserController :delete

Interestingly, we can use multiple scopes with the same path as long as we are careful not to duplicate routes. If we do duplicate a route, we’ll get this familiar warning.

warning: this clause cannot match because a previous clause at line 16 always matches

This router is perfectly fine with two scopes defined for the same path.

defmodule HelloWeb.Router do
 use Phoenix.Router
 . . .
 scope "/", HelloWeb do
 pipe_through :browser

 resources "/users", UserController
 end

 scope "/", AnotherAppWeb do
 pipe_through :browser

 resources "/posts", PostController
 end
 . . .
end

And when we run $ mix phx.routes, we see the following output.

user_path GET /users HelloWeb.UserController :index
user_path GET /users/:id/edit HelloWeb.UserController :edit
user_path GET /users/new HelloWeb.UserController :new
user_path GET /users/:id HelloWeb.UserController :show
user_path POST /users HelloWeb.UserController :create
user_path PATCH /users/:id HelloWeb.UserController :update
 PUT /users/:id HelloWeb.UserController :update
user_path DELETE /users/:id HelloWeb.UserController :delete
post_path GET /posts AnotherAppWeb.PostController :index
post_path GET /posts/:id/edit AnotherAppWeb.PostController :edit
post_path GET /posts/new AnotherAppWeb.PostController :new
post_path GET /posts/:id AnotherAppWeb.PostController :show
post_path POST /posts AnotherAppWeb.PostController :create
post_path PATCH /posts/:id AnotherAppWeb.PostController :update
 PUT /posts/:id AnotherAppWeb.PostController :update
post_path DELETE /posts/:id AnotherAppWeb.PostController :delete

Pipelines

We have come quite a long way in this guide without talking about one of the first lines we saw in the router - pipe_through :browser. It’s time to fix that.

Remember in the Overview Guide when we described plugs as being stacked and executable in a pre-determined order, like a pipeline? Now we’re going to take a closer look at how these plug stacks work in the router.

Pipelines are simply plugs stacked up together in a specific order and given a name. They allow us to customize behaviors and transformations related to the handling of requests. Phoenix provides us with some default pipelines for a number of common tasks. In turn we can customize them as well as create new pipelines to meet our needs.

A newly generated Phoenix application defines two pipelines called :browser and :api. We’ll get to those in a minute, but first we need to talk about the plug stack in the Endpoint plugs.

The Endpoint Plugs

Endpoints organize all the plugs common to every request, and apply them before dispatching into the router(s) with their underlying :browser, :api, and custom pipelines. The default Endpoint plugs do quite a lot of work. Here they are in order.

	Plug.Static - serves static assets. Since this plug comes before the logger, serving of static assets is not logged

	Plug.RequestId - generates a unique request id for each request.

	Plug.Logger - logs incoming requests

	Phoenix.CodeReloader - a plug that enables code reloading for all entries in the web directory. It is configured directly in the Phoenix application

	Plug.Parsers - parses the request body when a known parser is available. By default parsers parse urlencoded, multipart and json (with jason). The request body is left untouched when the request content-type cannot be parsed

	Plug.MethodOverride - converts the request method to
 PUT, PATCH or DELETE for POST requests with a valid _method parameter

	Plug.Head - converts HEAD requests to GET requests and strips the response body

	Plug.Session - a plug that sets up session management.
 Note that fetch_session/2 must still be explicitly called before using the session as this plug just sets up how the session is fetched

	Plug.Router - plugs a router into the request cycle

The :browser and :api Pipelines

Phoenix defines two other pipelines by default, :browser and :api. The router will invoke these after it matches a route, assuming we have called pipe_through/1 with them in the enclosing scope.

As their names suggest, the :browser pipeline prepares for routes which render requests for a browser. The :api pipeline prepares for routes which produce data for an api.

The :browser pipeline has five plugs: plug :accepts, ["html"] which defines the request format or formats which will be accepted, :fetch_session, which, naturally, fetches the session data and makes it available in the connection, :fetch_flash which retrieves any flash messages which may have been set, as well as :protect_from_forgery and :put_secure_browser_headers, which protects form posts from cross site forgery.

Currently, the :api pipeline only defines plug :accepts, ["json"].

The router invokes a pipeline on a route defined within a scope. If no scope is defined, the router will invoke the pipeline on all the routes in the router. Although the use of nested scopes is discouraged (see above), if we call pipe_through within a nested scope, the router will invoke all pipe_through’s from parent scopes, followed by the nested one.

Those are a lot of words bunched up together. Let’s take a look at some examples to untangle their meaning.

Here’s another look at the router from a newly generated Phoenix application, this time with the api scope uncommented back in and a route added.

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :api do
 plug :accepts, ["json"]
 end

 scope "/", HelloWeb do
 pipe_through :browser

 get "/", PageController, :index
 end

 # Other scopes may use custom stacks.
 scope "/api", HelloWeb do
 pipe_through :api

 resources "/reviews", ReviewController
 end
end

When the server accepts a request, the request will always first pass through the plugs in our Endpoint, after which it will attempt to match on the path and HTTP verb.

Let’s say that the request matches our first route: a GET to /. The router will first pipe that request through the :browser pipeline - which will fetch the session data, fetch the flash, and execute forgery protection - before it dispatches the request to the PageController index action.

Conversely, if the request matches any of the routes defined by the resources/2 macro, the router will pipe it through the :api pipeline - which currently does nothing - before it dispatches further to the correct action of the HelloWeb.ReviewController.

If we know that our application only renders views for the browser, we can simplify our router quite a bit by removing the api stuff as well as the scopes:

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipe_through :browser

 get "/", HelloWeb.PageController, :index

 resources "/reviews", HelloWeb.ReviewController
end

Removing all scopes forces the router to invoke the :browser pipeline on all routes.

Let’s stretch these ideas out a little bit more. What if we need to pipe requests through both :browser and one or more custom pipelines? We simply pipe_through a list of pipelines, and Phoenix will invoke them in order.

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end
 ...

 scope "/reviews" do
 # Use the default browser stack.
 pipe_through [:browser, :review_checks, :other_great_stuff]

 resources "/", HelloWeb.ReviewController
 end
end

Here’s another example with two scopes that have different pipelines:

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end
 ...

 scope "/", HelloWeb do
 pipe_through :browser

 resources "/posts", PostController
 end

 scope "/reviews", HelloWeb do
 pipe_through [:browser, :review_checks]

 resources "/", ReviewController
 end
end

In general, the scoping rules for pipelines behave as you might expect. In this example, all routes will pipe through the :browser pipeline. However, only the reviews resources routes will pipe through the :review_checks pipeline. Since we declared both pipes pipe_through [:browser, :review_checks] in a list of pipelines, Phoenix will pipe_through each of them as it invokes them in order.

Creating New Pipelines

Phoenix allows us to create our own custom pipelines anywhere in the router. To do so, we call the pipeline/2 macro with these arguments: an atom for the name of our new pipeline and a block with all the plugs we want in it.

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end

 pipeline :review_checks do
 plug :ensure_authenticated_user
 plug :ensure_user_owns_review
 end

 scope "/reviews", HelloWeb do
 pipe_through :review_checks

 resources "/", ReviewController
 end
end

Channel Routes

Channels are a very exciting, real-time component of the Phoenix framework. Channels handle incoming and outgoing messages broadcast over a socket for a given topic. Channel routes, then, need to match requests by socket and topic in order to dispatch to the correct channel. (For a more detailed description of channels and their behavior, please see the Channel Guide.)

We mount socket handlers in our endpoint at lib/hello_web/endpoint.ex. Socket handlers take care of authentication callbacks and channel routes.

defmodule HelloWeb.Endpoint do
 use Phoenix.Endpoint

 socket "/socket", HelloWeb.UserSocket
 ...
end

Next, we need to open our lib/hello_web/channels/user_socket.ex file and use the channel/3 macro to define our channel routes. The routes will match a topic pattern to a channel to handle events. If we have a channel module called RoomChannel and a topic called "rooms:*", the code to do this is straightforward.

defmodule HelloWeb.UserSocket do
 use Phoenix.Socket

 channel "rooms:*", HelloWeb.RoomChannel
 ...
end

Topics are just string identifiers. The form we are using here is a convention which allows us to define topics and subtopics in the same string - “topic:subtopic”. The * is a wildcard character which allows us to match on any subtopic, so "rooms:lobby" and "rooms:kitchen" would both match this route.

Phoenix abstracts the socket transport layer and includes two transport mechanisms out of the box - WebSockets and Long-Polling. If we wanted to make sure that our channel is handled by only one type of transport, we could specify that using the via option, like this.

channel "rooms:*", HelloWeb.RoomChannel, via: [Phoenix.Transports.WebSocket]

Each socket can handle requests for multiple channels.

channel "rooms:*", HelloWeb.RoomChannel, via: [Phoenix.Transports.WebSocket]
channel "foods:*", HelloWeb.FoodChannel

We can mount multiple socket handlers in our endpoint:

socket "/socket", HelloWeb.UserSocket
socket "/admin-socket", HelloWeb.AdminSocket

Summary

Routing is a big topic, and we have covered a lot of ground here. The important points to take away from this guide are:

	Routes which begin with an HTTP verb name expand to a single clause of the match function.

	Routes which begin with ‘resources’ expand to 8 clauses of the match function.

	Resources may restrict the number of match function clauses by using the only: or except: options.

	Any of these routes may be nested.

	Any of these routes may be scoped to a given path.

	Using the as: option in a scope can reduce duplication.

	Using the helper option for scoped routes eliminates unreachable paths.

 Plug

Plug lives at the heart of Phoenix’s HTTP layer, and Phoenix puts Plug front and center. We interact with plugs at every step of the connection lifecycle, and the core Phoenix components like Endpoints, Routers, and Controllers are all just Plugs internally. Let’s jump in and find out just what makes Plug so special.

Plug is a specification for composable modules in between web applications. It is also an abstraction layer for connection adapters of different web servers. The basic idea of Plug is to unify the concept of a “connection” that we operate on. This differs from other HTTP middleware layers such as Rack, where the request and response are separated in the middleware stack.

At the simplest level, the Plug specification comes in two flavors: function plugs and module plugs.

Function Plugs

In order to act as a plug, a function simply needs to accept a connection struct (%Plug.Conn{}) and options. It also needs to return a connection struct. Any function that meets those criteria will do. Here’s an example.

def put_headers(conn, key_values) do
 Enum.reduce key_values, conn, fn {k, v}, conn ->
 Plug.Conn.put_resp_header(conn, to_string(k), v)
 end
end

Pretty simple, right?

This is how we use them to compose a series of transformations on our connection in Phoenix:

defmodule HelloWeb.MessageController do
 use HelloWeb, :controller

 plug :put_headers, %{content_encoding: "gzip", cache_control: "max-age=3600"}
 plug :put_layout, "bare.html"

 ...
end

By abiding by the plug contract, put_headers/2, put_layout/2, and even action/2 turn an application request into a series of explicit transformations. It doesn’t stop there. To really see how effective Plug’s design is, let’s imagine a scenario where we need to check a series of conditions and then either redirect or halt if a condition fails. Without plug, we would end up with something like this:

defmodule HelloWeb.MessageController do
 use HelloWeb, :controller

 def show(conn, params) do
 case authenticate(conn) do
 {:ok, user} ->
 case find_message(params["id"]) do
 nil ->
 conn |> put_flash(:info, "That message wasn't found") |> redirect(to: "/")
 message ->
 case authorize_message(conn, params["id"]) do
 :ok ->
 render(conn, :show, page: find_message(params["id"]))
 :error ->
 conn |> put_flash(:info, "You can't access that page") |> redirect(to: "/")
 end
 end
 :error ->
 conn |> put_flash(:info, "You must be logged in") |> redirect(to: "/")
 end
 end
end

Notice how just a few steps of authentication and authorization require complicated nesting and duplication? Let’s improve this with a couple of plugs.

defmodule HelloWeb.MessageController do
 use HelloWeb, :controller

 plug :authenticate
 plug :fetch_message
 plug :authorize_message

 def show(conn, params) do
 render(conn, :show, page: find_message(params["id"]))
 end

 defp authenticate(conn, _) do
 case Authenticator.find_user(conn) do
 {:ok, user} ->
 assign(conn, :user, user)
 :error ->
 conn |> put_flash(:info, "You must be logged in") |> redirect(to: "/") |> halt()
 end
 end

 defp fetch_message(conn, _) do
 case find_message(conn.params["id"]) do
 nil ->
 conn |> put_flash(:info, "That message wasn't found") |> redirect(to: "/") |> halt()
 message ->
 assign(conn, :message, message)
 end
 end

 defp authorize_message(conn, _) do
 if Authorizer.can_access?(conn.assigns[:user], conn.assigns[:message]) do
 conn
 else
 conn |> put_flash(:info, "You can't access that page") |> redirect(to: "/") |> halt()
 end
 end
end

By replacing the nested blocks of code with a flattened series of plug transformations, we are able to achieve the same functionality in a much more composable, clear, and reusable way.

Now let’s look at the other flavor plugs come in, module plugs.

Module Plugs

Module plugs are another type of Plug that let us define a connection transformation in a module. The module only needs to implement two functions:

	init/1 which initializes any arguments or options to be passed to call/2

	call/2 which carries out the connection transformation. call/2 is just a function plug that we saw earlier

To see this in action, let’s write a module plug that puts the :locale key and value into the connection assign for downstream use in other plugs, controller actions, and our views.

defmodule HelloWeb.Plugs.Locale do
 import Plug.Conn

 @locales ["en", "fr", "de"]

 def init(default), do: default

 def call(%Plug.Conn{params: %{"locale" => loc}} = conn, _default) when loc in @locales do
 assign(conn, :locale, loc)
 end
 def call(conn, default), do: assign(conn, :locale, default)
end

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html"]
 plug :fetch_session
 plug :fetch_flash
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 plug HelloWeb.Plugs.Locale, "en"
 end
 ...

We are able to add this module plug to our browser pipeline via plug HelloWeb.Plugs.Locale, "en". In the init/1 callback, we pass a default locale to use if none is present in the params. We also use pattern matching to define multiple call/2 function heads to validate the locale in the params, and fall back to “en” if there is no match.

That’s all there is to Plug. Phoenix embraces the plug design of composable transformations all the way up and down the stack. This is just the first taste. If we ask ourselves, “Could I put this in a plug?” The answer is usually, “Yes!”

 Endpoint

Phoenix applications start the HelloWeb.Endpoint as a supervised process. By default, the Endpoint is added to the supervision tree in lib/hello/application.ex as a supervised process. Each request begins and ends its lifecycle inside your application in an endpoint. The endpoint handles starting the web server and transforming requests through several defined plugs before calling the Router.

defmodule Hello.Application do
 use Application
 def start(_type, _args) do
 #...

 children = [
 supervisor(HelloWeb.Endpoint, []),
]

 opts = [strategy: :one_for_one, name: Hello.Supervisor]
 Supervisor.start_link(children, opts)
 end
end

Endpoint Contents

Endpoints gather together common functionality and serve as entrance and exit for all of the HTTP requests to your application. The endpoint holds plugs that are common to all requests coming into your application.

Let’s take a look at the endpoint for the application Hello generated in the Up and Running page.

defmodule HelloWeb.Endpoint do
 ...
end

The first call inside of our Endpoint module is the use Phoenix.Endpoint macro with the otp_app. The otp_app is used for the configuration. This defines several functions on the HelloWeb.Endpoint module, including the start_link function which is called in the supervision tree.

 use Phoenix.Endpoint, otp_app: :hello

Next the endpoint declares a socket on the “/socket” URI. “/socket” requests will be handled by the HelloWeb.UserSocket module which is declared elsewhere in our application. Here we are just declaring that such a connection will exist.

 socket "/socket", HelloWeb.UserSocket

Next comes a series of plugs that are relevant to all requests in our application. We can customize some of the features, for example, enabling gzip: true when deploying to production to gzip the static files.

Static files are served from priv/static before any part of our request makes it to a router.

 plug Plug.Static,
 at: "/", from: :hello, gzip: false,
 only: ~w(css fonts images js favicon.ico robots.txt)

If code reloading is enabled, a socket will be used to communicate to the browser that the page needs to be reloaded when code is changed on the server. This feature is enabled by default in the development environment. This is configured using config :hello, HelloWeb.Endpoint, code_reloader: true.

 if code_reloading? do
 socket "/phoenix/live_reload/socket", Phoenix.LiveReloader.Socket
 plug Phoenix.LiveReloader
 plug Phoenix.CodeReloader
 end

Plug.RequestId generates a unique id for each request and Plug.Logger logs the request path, status code and request time by default.

 plug Plug.RequestId
 plug Plug.Logger

Plug.Session handles the session cookies and session stores.

 plug Plug.Session,
 store: :cookie,
 key: "_hello_key",
 signing_salt: "change_me"

By default the last plug in the endpoint is the router. The router matches a path to a particular controller action or plug. The router is covered in the Routing Guide.

 plug HelloWeb.Router

The endpoint can be customized to add additional plugs, to allow HTTP basic authentication, CORS, subdomain routing and more.

Faults in the different parts of the supervision tree, such as the Ecto Repo, will not immediately impact the main application. The supervisor is therefore able to restart those processes separately after unexpected faults. It is also possible for an application to have multiple endpoints, each with its own supervision tree.

There are many functions defined in the endpoint module for path helpers, channel subscriptions and broadcasts, instrumentation, and endpoint configuration. These are all covered in the Endpoint API docs for Phoenix.Endpoint.

Using SSL

To prepare an application to serve requests over SSL, we need to add a little bit of configuration and two environment variables. In order for SSL to actually work, we’ll need a key file and certificate file from a certificate authority. The environment variables that we’ll need are paths to those two files.

The configuration consists of a new https: key for our endpoint whose value is a keyword list of port, path to the key file, and path to the cert (pem) file. If we add the otp_app: key whose value is the name of our application, Plug will begin to look for them at the root of our application. We can then put those files in our priv directory and set the paths to priv/our_keyfile.key and priv/our_cert.crt.

Here’s an example configuration from config/prod.exs.

use Mix.Config

config :hello, HelloWeb.Endpoint,
 http: [port: {:system, "PORT"}],
 url: [host: "example.com"],
 cache_static_manifest: "priv/static/cache_manifest.json",
 https: [port: 443,
 otp_app: :hello,
 keyfile: System.get_env("SOME_APP_SSL_KEY_PATH"),
 certfile: System.get_env("SOME_APP_SSL_CERT_PATH"),
 cacertfile: System.get_env("INTERMEDIATE_CERTFILE_PATH") # OPTIONAL Key for intermediate certificates
]

Without the otp_app: key, we need to provide absolute paths to the files wherever they are on the filesystem in order for Plug to find them.

Path.expand("../../../some/path/to/ssl/key.pem", __DIR__)

If you require further customization to the TLS versions or ciphers used you can include additional https: configuration. For example to disable older versions of TLS which are now considered insecure you could add versions: [:'tlsv1.2']. More information on the available settings is available in the Erlang SSL docs (see “TLS/DTLS OPTION DESCRIPTIONS - SERVER SIDE”).

SSL in Development

If you would like to use HTTPS in development, a self-signed certificate can be generated by running: mix phx.gen.cert. This requires Erlang/OTP 20 or later.

With your self-signed certificate, your development configuration in config/dev.exs can be updated to run an HTTPS endpoint:

config :my_app, MyApp.Endpoint,
 # ...
 https: [
 port: 4001,
 cipher_suite: :strong,
 keyfile: "priv/cert/selfsigned_key.pem",
 certfile: "priv/cert/selfsigned.pem"
]

This can replace your http configuration, or you can run HTTP and HTTPS servers on different ports.

Force SSL

In many cases, you’ll want to force all incoming requests to use SSL by redirecting HTTP to HTTPS. This can be accomplished by setting the :force_ssl option in your endpoint configuration. It expects a list of options which are forwarded to Plug.SSL. By default it sets the “strict-transport-security” header in HTTPS requests, forcing browsers to always use HTTPS. If an unsafe (HTTP) request is sent, it redirects to the HTTPS version using the :host specified in the :url configuration. For example:

config :my_app, MyApp.Endpoint,
 force_ssl: [rewrite_on: [:x_forwarded_proto]]

To dynamically redirect to the host of the current request, set :host in the :force_ssl configuration to nil.

config :my_app, MyApp.Endpoint,
 force_ssl: [rewrite_on: [:x_forwarded_proto], host: nil]

HSTS

HSTS or “strict-transport-security” is a mechanism that allows a website to declare itself as only accessible via a secure connection (HTTPS). It was introduced to prevent man-in-the-middle attacks that strip SSL/TLS. It causes web browers to redirect from HTTP to HTTPS and refuse to connect unless the connection uses SSL/TLS.

With force_ssl: :hsts set the Strict-Transport-Security header is set with a max age that defines the length of time the policy is valid for. Modern web browsers will respond to this by redirecting from HTTP to HTTPS for the standard case but it does have other consequenses. RFC6797 which defines HSTS also specifies that the browser should keep track of the policy of a host and apply it until it expires. It also specifies that traffic on any port other than 80 is assumed to be encrypted as per the policy.

This can result in unexpected behaviour if you access your application on localhost, for example https://localhost:4000, as from that point forward and traffic coming from localhost will be expected to be encrypted, except port 80 which will be redirected to port 443. This has the potential to disrupt traffic to any other local servers or proxies that you may be running on your computer. Other applications or proxies on localhost will refuse to work unless the traffic is encrypted.

If you do inadvertently turn on HSTS for localhost you may need to reset the cache on your browser before it will accept any HTTP traffic from localhost. For Chrome you need to Empty Cache and Hard Reload which is available from the reload menu that appears when you click and hold the reload icon from the Developer Tools Panel. For Safari you will need to clear your cache, remove the entry from ~/Library/Cookies/HSTS.plist (or delete that file entirely) and restart Safari. Alternately you can set the :expires option on force_ssl to 0 which should expired the entry to turn off HSTS. More information on the options for HSTS are available at Plug.SSL.

Releasing with Exrm

In order to build and run a release with Exrm, make sure you also include the :ssl app in mix.exs:

def application do
 [mod: {MyApp, []},
 applications: [:phoenix, :phoenix_html, :cowboy, :logger, :gettext,
 :phoenix_ecto, :postgrex, :ssl]]
end

Or else you might run into errors:

** (MatchError) no match of right hand side value: {:error, {:ssl, {'no such file or directory', 'ssl.app'}}}

 Controllers

Phoenix controllers act as intermediary modules. Their functions - called actions - are invoked from the router in response to HTTP requests. The actions, in turn, gather all the necessary data and perform all the necessary steps before invoking the view layer to render a template or returning a JSON response.

Phoenix controllers also build on the Plug package, and are themselves plugs. Controllers provide the functions to do almost anything we need to in an action. If we do find ourselves looking for something that Phoenix controllers don’t provide; however, we might find what we’re looking for in Plug itself. Please see the Plug Guide or Plug Documentation for more information.

A newly generated Phoenix app will have a single controller, the PageController, which can be found at lib/hello_web/controllers/page_controller.ex and looks like this.

defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 def index(conn, _params) do
 render(conn, "index.html")
 end
end

The first line below the module definition invokes the __using__/1 macro of the HelloWeb module, which imports some useful modules.

The PageController gives us the index action to display the Phoenix welcome page associated with the default route Phoenix defines in the router.

Actions

Controller actions are just functions. We can name them anything we like as long as they follow Elixir’s naming rules. The only requirement we must fulfill is that the action name matches a route defined in the router.

For example, in lib/hello_web/router.ex we could change the action name in the default route that Phoenix gives us in a new app from index:

get "/", PageController, :index

To test:

get "/", PageController, :test

As long as we change the action name in the PageController to test as well, the welcome page will load as before.

defmodule HelloWeb.PageController do
 . . .

 def test(conn, _params) do
 render(conn, "index.html")
 end
end

While we can name our actions whatever we like, there are conventions for action names which we should follow whenever possible. We went over these in the Routing Guide, but we’ll take another quick look here.

	index - renders a list of all items of the given resource type

	show - renders an individual item by id

	new - renders a form for creating a new item

	create - receives params for one new item and saves it in a datastore

	edit - retrieves an individual item by id and displays it in a form for editing

	update - receives params for one edited item and saves it to a datastore

	delete - receives an id for an item to be deleted and deletes it from a datastore

Each of these actions takes two parameters, which will be provided by Phoenix behind the scenes.

The first parameter is always conn, a struct which holds information about the request such as the host, path elements, port, query string, and much more. conn, comes to Phoenix via Elixir’s Plug middleware framework. More detailed info about conn can be found in plug’s documentation.

The second parameter is params. Not surprisingly, this is a map which holds any parameters passed along in the HTTP request. It is a good practice to pattern match against params in the function signature to provide data in a simple package we can pass on to rendering. We saw this in the Adding Pages guide when we added a messenger parameter to our show route in lib/hello_web/controllers/hello_controller.ex.

defmodule HelloWeb.HelloController do
 . . .

 def show(conn, %{"messenger" => messenger}) do
 render(conn, "show.html", messenger: messenger)
 end
end

In some cases - often in index actions, for instance - we don’t care about parameters because our behavior doesn’t depend on them. In those cases, we don’t use the incoming params, and simply prepend the variable name with an underscore, _params. This will keep the compiler from complaining about the unused variable while still keeping the correct arity.

Gathering Data

While Phoenix does not ship with its own data access layer, the Elixir project Ecto provides a very nice solution for those using the Postgres relational database. We cover how to use Ecto in a Phoenix project in the Ecto Guide. Databases supported by Ecto are covered in the Usage section of the Ecto README.

Of course, there are many other data access options. Ets and Dets are key value data stores built into OTP. OTP also provides a relational database called mnesia with its own query language called QLC. Both Elixir and Erlang also have a number of libraries for working with a wide range of popular data stores.

The data world is your oyster, but we won’t be covering these options in these guides.

Flash Messages

There are times when we need to communicate with users during the course of an action. Maybe there was an error updating a schema. Maybe we just want to welcome them back to the application. For this, we have flash messages.

The Phoenix.Controller module provides the put_flash/3 and get_flash/2 functions to help us set and retrieve flash messages as a key value pair. Let’s set two flash messages in our HelloWeb.PageController to try this out.

To do this we modify the index action as follows:

defmodule HelloWeb.PageController do
 . . .
 def index(conn, _params) do
 conn
 |> put_flash(:info, "Welcome to Phoenix, from flash info!")
 |> put_flash(:error, "Let's pretend we have an error.")
 |> render("index.html")
 end
end

The Phoenix.Controller module is not particular about the keys we use. As long as we are internally consistent, all will be well. :info and :error, however, are common.

In order to see our flash messages, we need to be able to retrieve them and display them in a template/layout. One way to do the first part is with get_flash/2 which takes conn and the key we care about. It then returns the value for that key.

Fortunately, our application layout, lib/hello_web/templates/layout/app.html.eex, already has markup for displaying flash messages.

<p class="alert alert-info" role="alert"><%= get_flash(@conn, :info) %></p>
<p class="alert alert-danger" role="alert"><%= get_flash(@conn, :error) %></p>

When we reload the Welcome Page, our messages should appear just above “Welcome to Phoenix!”

Besides put_flash/3 and get_flash/2, the Phoenix.Controller module has another useful function worth knowing about. clear_flash/1 takes only conn and removes any flash messages which might be stored in the session.

Rendering

Controllers have several ways of rendering content. The simplest is to render some plain text using the text/2 function which Phoenix provides.

Let’s say we have a show action which receives an id from the params map, and all we want to do is return some text with the id. For that, we could do the following.

def show(conn, %{"id" => id}) do
 text(conn, "Showing id #{id}")
end

Assuming we had a route for get "/our_path/:id" mapped to this show action, going to /our_path/15 in your browser should display Showing id 15 as plain text without any HTML.

A step beyond this is rendering pure JSON with the json/2 function. We need to pass it something that the Jason library can decode into JSON, such as a map. (Jason is one of Phoenix’s dependencies.)

def show(conn, %{"id" => id}) do
 json(conn, %{id: id})
end

If we again visit our_path/15 in the browser, we should see a block of JSON with the key id mapped to the number 15.

{"id": "15"}

Phoenix controllers can also render HTML without a template. As you may have already guessed, the html/2 function does just that. This time, we implement the show action like this.

def show(conn, %{"id" => id}) do
 html(conn, """
 <html>
 <head>
 <title>Passing an Id</title>
 </head>
 <body>
 <p>You sent in id #{id}</p>
 </body>
 </html>
 """)
end

Hitting /our_path/15 now renders the HTML string we defined in the show action, with the value 15 interpolated. Note that what we wrote in the action is not an eex template. It’s a multi-line string, so we interpolate the id variable like this #{id} instead of this <%= id %>.

It is worth noting that the text/2, json/2, and html/2 functions require neither a Phoenix view, nor a template to render.

The json/2 function is obviously useful for writing APIs, and the other two may come in handy, but rendering a template into a layout with values we pass in is a very common case.

For this, Phoenix provides the render/3 function.

Interestingly, render/3 is defined in the Phoenix.View module instead of Phoenix.Controller, but it is aliased in Phoenix.Controller for convenience.

We have already seen the render function in the Adding Pages Guide. Our show action in lib/hello_web/controllers/hello_controller.ex looked like this.

defmodule HelloWeb.HelloController do
 use HelloWeb, :controller

 def show(conn, %{"messenger" => messenger}) do
 render(conn, "show.html", messenger: messenger)
 end
end

In order for the render/3 function to work correctly, the controller must have the same root name as the individual view. The individual view must also have the same root name as the template directory where the show.html.eex template lives. In other words, the HelloController requires HelloView, and HelloView requires the existence of the lib/hello_web/templates/hello directory, which must contain the show.html.eex template.

render/3 will also pass the value which the show action received for messenger from the params hash into the template for interpolation.

If we need to pass values into the template when using render, that’s easy. We can pass a dictionary like we’ve seen with messenger: messenger, or we can use Plug.Conn.assign/3, which conveniently returns conn.

def index(conn, _params) do
 conn
 |> assign(:message, "Welcome Back!")
 |> render("index.html")
end

Note: The Phoenix.Controller module imports Plug.Conn, so shortening the call to assign/3 works just fine.

We can access this message in our index.html.eex template, or in our layout, with this <%= @message %>.

Passing more than one value in to our template is as simple as connecting assign/3 functions together in a pipeline.

def index(conn, _params) do
 conn
 |> assign(:message, "Welcome Back!")
 |> assign(:name, "Dweezil")
 |> render("index.html")
end

With this, both @message and @name will be available in the index.html.eex template.

What if we want to have a default welcome message that some actions can override? That’s easy, we just use plug and transform conn on its way towards the controller action.

plug :assign_welcome_message, "Welcome Back"

def index(conn, _params) do
 conn
 |> assign(:message, "Welcome Forward")
 |> render("index.html")
end

defp assign_welcome_message(conn, msg) do
 assign(conn, :message, msg)
end

What if we want to plug assign_welcome_message, but only for some of our actions? Phoenix offers a solution to this by letting us specify which actions a plug should be applied to. If we only wanted plug :assign_welcome_message to work on the index and show actions, we could do this.

defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 plug :assign_welcome_message, "Hi!" when action in [:index, :show]
. . .

Sending responses directly

If none of the rendering options above quite fits our needs, we can compose our own using some of the functions that Plug gives us. Let’s say we want to send a response with a status of “201” and no body whatsoever. We can easily do that with the send_resp/3 function.

def index(conn, _params) do
 conn
 |> send_resp(201, "")
end

Reloading http://localhost:4000 should show us a completely blank page. The network tab of our browser’s developer tools should show a response status of “201”.

If we would like to be really specific about the content type, we can use put_resp_content_type/2 in conjunction with send_resp/3.

def index(conn, _params) do
 conn
 |> put_resp_content_type("text/plain")
 |> send_resp(201, "")
end

Using Plug functions in this way, we can craft just the response we need.

Rendering does not end with the template, though. By default, the results of the template render will be inserted into a layout, which will also be rendered.

Templates and layouts have their own guide, so we won’t spend much time on them here. What we will look at is how to assign a different layout, or none at all, from inside a controller action.

Assigning Layouts

Layouts are just a special subset of templates. They live in lib/hello_web/templates/layout. Phoenix created one for us when we generated our app. It’s called app.html.eex, and it is the layout into which all templates will be rendered by default.

Since layouts are really just templates, they need a view to render them. This is the LayoutView module defined in lib/hello_web/views/layout_view.ex. Since Phoenix generated this view for us, we won’t have to create a new one as long as we put the layouts we want to render inside the lib/hello_web/templates/layout directory.

Before we create a new layout, though, let’s do the simplest possible thing and render a template with no layout at all.

The Phoenix.Controller module provides the put_layout/2 function for us to switch layouts. This takes conn as its first argument and a string for the basename of the layout we want to render. Another clause of the function will match on the boolean false for the second argument, and that’s how we will render the Phoenix welcome page without a layout.

In a freshly generated Phoenix app, edit the index action of the PageController module lib/hello_web/controllers/page_controller.ex to look like this.

def index(conn, _params) do
 conn
 |> put_layout(false)
 |> render("index.html")
end

After reloading http://localhost:4000/, we should see a very different page, one with no title, logo image, or css styling at all.

Very Important! For function calls in a pipeline, it is critical to use parentheses around the arguments because the pipe operator binds very tightly. This leads to parsing problems and very strange results.

If you ever get a stack trace that looks like this,

**(FunctionClauseError) no function clause matching in Plug.Conn.get_resp_header/2

Stacktrace

 (plug) lib/plug/conn.ex:353: Plug.Conn.get_resp_header(false, "content-type")

where your argument replaces conn as the first argument, one of the first things to check is whether there are parentheses in the right places.

This is fine.

def index(conn, _params) do
 conn
 |> put_layout(false)
 |> render("index.html")
end

Whereas this won’t work.

def index(conn, _params) do
 conn
 |> put_layout false
 |> render "index.html"
end

Now let’s actually create another layout and render the index template into it. As an example, let’s say we had a different layout for the admin section of our application which didn’t have the logo image. To do this, let’s copy the existing app.html.eex to a new file admin.html.eex in the same directory lib/hello_web/templates/layout. Then let’s remove the line in admin.html.eex that displays the logo.

 <!-- remove this line -->

Then, pass the basename of the new layout into put_layout/2 in our index action in lib/hello_web/controllers/page_controller.ex.

def index(conn, _params) do
 conn
 |> put_layout("admin.html")
 |> render("index.html")
end

When we load the page, we should be rendering the admin layout without a logo.

Overriding Rendering Formats

Rendering HTML through a template is fine, but what if we need to change the rendering format on the fly? Let’s say that sometimes we need HTML, sometimes we need plain text, and sometimes we need JSON. Then what?

Phoenix allows us to change formats on the fly with the _format query string parameter. To make this happen, Phoenix requires an appropriately named view and an appropriately named template in the correct directory.

As an example, let’s take the PageController index action from a newly generated app. Out of the box, this has the right view, PageView, the right templates directory, lib/hello_web/templates/page, and the right template for rendering HTML, index.html.eex.

def index(conn, _params) do
 render(conn, "index.html")
end

What it doesn’t have is an alternative template for rendering text. Let’s add one at lib/hello_web/templates/page/index.text.eex. Here is our example index.text.eex template.

OMG, this is actually some text.

There are just a few more things we need to do to make this work. We need to tell our router that it should accept the text format. We do that by adding text to the list of accepted formats in the :browser pipeline. Let’s open up lib/hello_web/router.ex and change the plug :accepts to include text as well as html like this.

defmodule HelloWeb.Router do
 use HelloWeb, :router

 pipeline :browser do
 plug :accepts, ["html", "text"]
 plug :fetch_session
 plug :protect_from_forgery
 plug :put_secure_browser_headers
 end
. . .

We also need to tell the controller to render a template with the same format as the one returned by Phoenix.Controller.get_format/1. We do that by substituting the name of the template “index.html” with the atom version :index.

def index(conn, _params) do
 render(conn, :index)
end

If we go to http://localhost:4000/?_format=text, we will see OMG, this is actually some text.

Of course, we can pass data into our template as well. Let’s change our action to take in a message parameter by removing the _ in front of params in the function definition. This time, we’ll use the somewhat less-flexible string version of our text template, just to see that it works as well.

def index(conn, params) do
 render(conn, "index.text", message: params["message"])
end

And let’s add a bit to our text template.

OMG, this is actually some text. <%= @message %>

Now if we go to http://localhost:4000/?_format=text&message=CrazyTown, we will see “OMG, this is actually some text. CrazyTown”

Setting the Content Type

Analogous to the _format query string param, we can render any sort of format we want by modifying the HTTP Content-Type Header and providing the appropriate template.

If we wanted to render an xml version of our index action, we might implement the action like this in lib/hello_web/page_controller.ex.

def index(conn, _params) do
 conn
 |> put_resp_content_type("text/xml")
 |> render("index.xml", content: some_xml_content)
end

We would then need to provide an index.xml.eex template which created valid xml, and we would be done.

For a list of valid content mime-types, please see the mime.types documentation from the mime type library.

Setting the HTTP Status

We can also set the HTTP status code of a response similarly to the way we set the content type. The Plug.Conn module, imported into all controllers, has a put_status/2 function to do this.

put_status/2 takes conn as the first parameter and as the second parameter either an integer or a “friendly name” used as an atom for the status code we want to set. Here is the list of supported friendly names. Please note that the rule to convert a “friendly name” to an atom follows this rule. For example, I'm a teapot becomes :im_a_teapot.

Let’s change the status in our PageController index action.

def index(conn, _params) do
 conn
 |> put_status(202)
 |> render("index.html")
end

The status code we provide must be valid - Cowboy, the web server Phoenix runs on, will throw an error on invalid codes. If we look at our development logs (which is to say, the iex session), or use our browser’s web inspection network tool, we will see the status code being set as we reload the page.

If the action sends a response - either renders or redirects - changing the code will not change the behavior of the response. If, for example, we set the status to 404 or 500 and then render("index.html"), we do not get an error page. Similarly, no 300 level code will actually redirect. (It wouldn’t know where to redirect to, even if the code did affect behavior.)

The following implementation of the HelloWeb.PageController index action, for example, will not render the default not_found behavior as expected.

def index(conn, _params) do
 conn
 |> put_status(:not_found)
 |> render("index.html")
end

The correct way to render the 404 page from HelloWeb.PageController is:

def index(conn, _params) do
 conn
 |> put_status(:not_found)
 |> put_view(HelloWeb.ErrorView)
 |> render("404.html")
end

Redirection

Often, we need to redirect to a new url in the middle of a request. A successful create action, for instance, will usually redirect to the show action for the schema we just created. Alternately, it could redirect to the index action to show all the things of that same type. There are plenty of other cases where redirection is useful as well.

Whatever the circumstance, Phoenix controllers provide the handy redirect/2 function to make redirection easy. Phoenix differentiates between redirecting to a path within the application and redirecting to a url - either within our application or external to it.

In order to try out redirect/2, let’s create a new route in lib/hello_web/router.ex.

defmodule HelloWeb.Router do
 use HelloWeb, :router
 . . .

 scope "/", HelloWeb do
 . . .
 get "/", PageController, :index
 end

 # New route for redirects
 scope "/", HelloWeb do
 get "/redirect_test", PageController, :redirect_test, as: :redirect_test
 end
 . . .
end

Then we’ll change the index action to do nothing but redirect to our new route.

def index(conn, _params) do
 redirect(conn, to: "/redirect_test")
end

Finally, let’s define in the same file the action we redirect to, which simply renders the text Redirect!.

def redirect_test(conn, _params) do
 text(conn, "Redirect!")
end

When we reload our Welcome Page, we see that we’ve been redirected to /redirect_test which has rendered the text Redirect!. It works!

If we care to, we can open up our developer tools, click on the network tab, and visit our root route again. We see two main requests for this page - a get to / with a status of 302, and a get to /redirect_test with a status of 200.

Notice that the redirect function takes conn as well as a string representing a relative path within our application. It can also take conn and a string representing a fully-qualified url.

def index(conn, _params) do
 redirect(conn, external: "https://elixir-lang.org/")
end

We can also make use of the path helpers we learned about in the Routing Guide.

defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 def index(conn, _params) do
 redirect(conn, to: Routes.redirect_test_path(conn, :redirect_test))
 end
end

Note that we can’t use the url helper here because redirect/2 using the atom :to, expects a path. For example, the following will fail.

def index(conn, _params) do
 redirect(conn, to: Routes.redirect_test_url(conn, :redirect_test))
end

If we want to use the url helper to pass a full url to redirect/2, we must use the atom :external. Note that the url does not have to be truly external to our application to use :external, as we see in this example.

def index(conn, _params) do
 redirect(conn, external: Routes.redirect_test_url(conn, :redirect_test))
end

Action Fallback

Action Fallback allows us to centralize error handling code in plugs which are called when a controller action fails to return a Plug.Conn.t. These plugs receive both the conn which was originally passed to the controller action along with the return value of the action.

Let’s say we have a show action which uses with to fetch a blog post and then authorize the current user to view that blog post. In this example we might expect Blog.fetch_post/1 to return {:error, :not_found} if the post is not found and Authorizer.authorize/3 might return {:error, :unauthorized} if the user is unauthorized. We could render the error views for these non-happy-paths directly.

defmodule HelloWeb.MyController do
 use Phoenix.Controller
 alias Hello.{Authorizer, Blog}
 alias HelloWeb.ErrorView

 def show(conn, %{"id" => id}, current_user) do
 with {:ok, post} <- Blog.fetch_post(id),
 :ok <- Authorizer.authorize(current_user, :view, post) do

 render(conn, "show.json", post: post)
 else
 {:error, :not_found} ->
 conn
 |> put_status(:not_found)
 |> put_view(ErrorView)
 |> render(:"404")
 {:error, :unauthorized} ->
 conn
 |> put_status(403)
 |> put_view(ErrorView)
 |> render(:"403")
 end
 end
end

Many times - especially when implementing controllers for an API - error handling in the controllers like this results in a lot of repetition. Instead we can define a plug which knows how to handle these error cases.

defmodule HelloWeb.MyFallbackController do
 use Phoenix.Controller
 alias HelloWeb.ErrorView

 def call(conn, {:error, :not_found}) do
 conn
 |> put_status(:not_found)
 |> put_view(ErrorView)
 |> render(:"404")
 end

 def call(conn, {:error, :unauthorized}) do
 conn
 |> put_status(403)
 |> put_view(ErrorView)
 |> render(:"403")
 end
end

Then we can reference that plug using action_fallback and simply remove the else block from our with. Our plug will receive the original conn as well as the result of the action and respond appropriately.

defmodule HelloWeb.MyController do
 use Phoenix.Controller
 alias Hello.{Authorizer, Blog}

 action_fallback HelloWeb.MyFallbackController

 def show(conn, %{"id" => id}, current_user) do
 with {:ok, post} <- Blog.fetch_post(id),
 :ok <- Authorizer.authorize(current_user, :view, post) do

 render(conn, "show.json", post: post)
 end
 end
end

Halting the Plug Pipeline

As we mentioned - Controllers are plugs…. specifically plugs which are called toward the end of the plug pipeline. At any step of the pipeline we might have cause to stop processing - typically because we’ve redirected or rendered a response. Plug.Conn.t has a :halted key - setting it to true will cause downstream plugs to be skipped. We can do that easily using Plug.Conn.halt/1.

Consider a HelloWeb.PostFinder plug. On call, if we find a post related to a given id then we add it to conn.assigns; and if we don’t find the post we respond with a 404 page.

defmodule HelloWeb.PostFinder do
 use Plug
 import Plug.Conn

 alias Hello.Blog

 def init(opts), do: opts

 def call(conn, _) do
 case Blog.get_post(conn.params["id"]) do
 {:ok, post} ->
 assign(conn, :post, post)
 {:error, :notfound} ->
 conn
 |> send_resp(404, "Not found")
 end
 end
end

If we call this plug as part of the plug pipeline any downstream plugs will still be processed. If we want to prevent downstream plugs from being processed in the event of the 404 response we can simply call Plug.Conn.halt/1.

 case Blog.get_post(conn.params["id"]) do
 {:ok, post} ->
 assign(conn, :post, post)
 {:error, :notfound} ->
 conn
 |> send_resp(404, "Not found")
 |> halt()
 end

It’s important to note that halt/1 simply sets the :halted key on Plug.Conn.t to true. This is enough to prevent downstream plugs from being invoked but it will not stop the execution of code locally. As such

 conn
 |> send_resp(404, "Not found")
 |> halt()

… is functionally equivalent to…

 conn
 |> halt()
 |> send_resp(404, "Not found")

It’s also important to note that halting will only stop the plug pipeline from continuing. Function plugs will still execute unless their implementation checks for the :halted value.

 def post_authorization_plug(%{halted: true} = conn, _), do: conn
 def post_authorization_plug(conn, _) do
 . . .
 end

 Views

Phoenix views have two main jobs. First and foremost, they render templates (this includes layouts). The core function involved in rendering, render/3, is defined in Phoenix itself in the Phoenix.View module. Views also provide functions which take raw data and make it easier for templates to consume. If you are familiar with decorators or the facade pattern, this is similar.

Rendering Templates

Phoenix assumes a strong naming convention from controllers to views to the templates they render. The PageController requires a PageView to render templates in the lib/hello_web/templates/page directory. If we want to, we can change the directory Phoenix considers to be the template root. Phoenix provides a view/0 function in the HelloWeb module defined in lib/hello_web.ex. The first line of view/0 allows us to change our root directory by changing the value assigned to the :root key.

A newly generated Phoenix application has three view modules - ErrorView, LayoutView, and PageView - which are all in the, lib/hello_web/views directory.

Let’s take a quick look at the LayoutView.

defmodule HelloWeb.LayoutView do
 use HelloWeb, :view
end

That’s simple enough. There’s only one line, use HelloWeb, :view. This line calls the view/0 function we just saw above. Besides allowing us to change our template root, view/0 exercises the __using__ macro in the Phoenix.View module. It also handles any module imports or aliases our application’s view modules might need.

At the top of this guide, we mentioned that views are a place to put functions for use in our templates. Let’s experiment with that a little bit.

Let’s open up our application layout template, lib/hello_web/templates/layout/app.html.eex, and change this line,

<title>Hello · Phoenix Framework</title>

to call a title/0 function, like this.

<title><%= title() %></title>

Now let’s add a title/0 function to our LayoutView.

defmodule HelloWeb.LayoutView do
 use HelloWeb, :view

 def title do
 "Awesome New Title!"
 end
end

When we reload the Welcome to Phoenix page, we should see our new title.

The <%= and %> are from the Elixir EEx project. They enclose executable Elixir code within a template. The = tells EEx to print the result. If the = is not there, EEx will still execute the code, but there will be no output. In our example, we are calling the title/0 function from our LayoutView and printing the output into the title tag.

Note that we didn’t need to fully qualify title/0 with HelloWeb.LayoutView because our LayoutView actually does the rendering. In fact, “templates” in Phoenix are really just function definitions on their view module. You can try this out by temporarily deleting your lib/hello_web/templates/page/index.html.eex file and adding this function clause to your PageView module in lib/hello_web/views/page_view.ex.

defmodule HelloWeb.PageView do
 use HelloWeb, :view

 def render("index.html", assigns) do
 "rendering with assigns #{inspect Map.keys(assigns)}"
 end
end

Now if you fire up the server with mix phx.server and visit http://localhost:4000, you should see the following text below your layout header instead of the main template page:

rendering with assigns [:conn, :view_module, :view_template]

Pretty neat, right? At compile-time, Phoenix precompiles all *.html.eex templates and turns them into render/2 function clauses on their respective view modules. At runtime, all templates are already loaded in memory. There’s no disk reads, complex file caching, or template engine computation involved. This is also why we were able to define functions like title/0 in our LayoutView and they were immediately available inside the layout’s app.html.eex – the call to title/0 was just a local function call!

When we use HelloWeb, :view, we get other conveniences as well. Since view/0 aliases HelloWeb.Router.Helpers as Routes (look in lib/hello_web.ex), we can simply call these helpers by using Routes.*_path in templates. Let’s see how that works by changing the template for our Welcome to Phoenix page.

Let’s open up the lib/hello_web/templates/page/index.html.eex and locate this stanza.

<div class="jumbotron">
 <h2><%= gettext("Welcome to %{name}!", name: "Phoenix") %></h2>
 <p class="lead">A productive web framework that
does not compromise speed and maintainability.</p>
</div>

Then let’s add a line with a link back to the same page. (The objective is to see how path helpers respond in a template, not to add any functionality.)

<div class="jumbotron">
 <h2><%= gettext("Welcome to %{name}!", name: "Phoenix") %></h2>
 <p class="lead">A productive web framework that
does not compromise speed and maintainability.</p>
 <p><a href="<%= Routes.page_path(@conn, :index) %>">Link back to this page</p>
</div>

Now we can reload the page and view source to see what we have.

Link back to this page

Great, Routes.page_path/2 evaluated to / as we would expect, we just had to use the alias set in Phoenix.View.

If you happen to need access to the path helpers outside views, controllers or templates, you can either call them by the full qualified name, e.g. HelloWeb.Router.Helpers.page_path(@conn, :index) or alias it yourself in the calling module, by defining alias HelloWeb.Router.Helpers, as: Routes in the module you want to use, and then calling, e.g., Routes.page_path(@conn, :index).

More About Views

You might be wondering how views are able to work so closely with templates.

The Phoenix.View module gains access to template behavior via the use Phoenix.Template line in its __using__/1 macro. Phoenix.Template provides many convenience methods for working with templates - finding them, extracting their names and paths, and much more.

Let’s experiment a little with one of the generated views Phoenix provides us, lib/hello_web/views/page_view.ex. We’ll add a message/0 function to it, like this.

defmodule HelloWeb.PageView do
 use HelloWeb, :view

 def message do
 "Hello from the view!"
 end
end

Now let’s create a new template to play around with, lib/hello_web/templates/page/test.html.eex.

This is the message: <%= message() %>

This doesn’t correspond to any action in our controller, but we’ll exercise it in an iex session. At the root of our project, we can run iex -S mix, and then explicitly render our template.

iex(1)> Phoenix.View.render(HelloWeb.PageView, "test.html", %{})
 {:safe, [["" | "This is the message: "] | "Hello from the view!"]}

As we can see, we’re calling render/3 with the individual view responsible for our test template, the name of our test template, and an empty map representing any data we might have wanted to pass in. The return value is a tuple beginning with the atom :safe and the resultant io list of the interpolated template. “Safe” here means that Phoenix has escaped the contents of our rendered template. Phoenix defines its own Phoenix.HTML.Safe protocol with implementations for atoms, bitstrings, lists, integers, floats, and tuples to handle this escaping for us as our templates are rendered into strings.

What happens if we assign some key value pairs to the third argument of render/3? In order to find out, we need to change the template just a bit.

I came from assigns: <%= @message %>
This is the message: <%= message() %>

Note the @ in the top line. Now if we change our function call, we see a different rendering after recompiling PageView module.

iex(2)> r HelloWeb.PageView
warning: redefining module HelloWeb.PageView (current version loaded from _build/dev/lib/hello/ebin/Elixir.HelloWeb.PageView.beam)
 lib/hello_web/views/page_view.ex:1

{:reloaded, HelloWeb.PageView, [HelloWeb.PageView]}

iex(3)> Phoenix.View.render(HelloWeb.PageView, "test.html", message: "Assigns has an @.")
{:safe,
 [[[["" | "I came from assigns: "] | "Assigns has an @."] |
 "\nThis is the message: "] | "Hello from the view!"]}

Let’s test out the HTML escaping, just for fun.

iex(4)> Phoenix.View.render(HelloWeb.PageView, "test.html", message: "<script>badThings();</script>")
{:safe,
 [[[["" | "I came from assigns: "] |
 "<script>badThings();</script>"] |
 "\nThis is the message: "] | "Hello from the view!"]}

If we need only the rendered string, without the whole tuple, we can use the render_to_iodata/3.

 iex(5)> Phoenix.View.render_to_iodata(HelloWeb.PageView, "test.html", message: "Assigns has an @.")
 [[[["" | "I came from assigns: "] | "Assigns has an @."] |
 "\nThis is the message: "] | "Hello from the view!"]

A Word About Layouts

Layouts are just templates. They have a view, just like other templates. In a newly generated app, this is lib/hello_web/views/layout_view.ex. You may be wondering how the string resulting from a rendered view ends up inside a layout. That’s a great question! If we look at lib/hello_web/templates/layout/app.html.eex, just about in the middle of the <body>, we will see this.

<%= render(@view_module, @view_template, assigns) %>

This is where the view module and its template from the controller are rendered to a string and placed in the layout.

The ErrorView

Phoenix has a view called the ErrorView which lives in lib/hello_web/views/error_view.ex. The purpose of the ErrorView is to handle two of the most common errors - 404 not found and 500 internal error - in a general way, from one centralized location. Let’s see what it looks like.

defmodule HelloWeb.ErrorView do
 use HelloWeb, :view

 def render("404.html", _assigns) do
 "Page not found"
 end

 def render("500.html", _assigns) do
 "Server internal error"
 end
end

Before we dive into this, let’s see what the rendered 404 not found message looks like in a browser. In the development environment, Phoenix will debug errors by default, showing us a very informative debugging page. What we want here, however, is to see what page the application would serve in production. In order to do that we need to set debug_errors: false in config/dev.exs.

use Mix.Config

config :hello, HelloWeb.Endpoint,
 http: [port: 4000],
 debug_errors: false,
 code_reloader: true,
 . . .

After modifying our config file, we need to restart our server in order for this change to take effect. After restarting the server, let’s go to http://localhost:4000/such/a/wrong/path for a running local application and see what we get.

Ok, that’s not very exciting. We get the bare string “Page not found”, displayed without any markup or styling.

Let’s see if we can use what we already know about views to make this a more interesting error page.

The first question is, where does that error string come from? The answer is right in the ErrorView.

def render("404.html", _assigns) do
 "Page not found"
end

Great, so we have a render/2 function that takes a template and an assigns map, which we ignore. Where is this render/2 function being called from? The answer is the render/5 function defined in the Phoenix.Endpoint.RenderErrors module. The whole purpose of this module is to catch errors and render them with a view, in our case, the HelloWeb.ErrorView. Now that we understand how we got here, let’s make a better error page. Phoenix generates an ErrorView for us, but it doesn’t give us a lib/hello_web/templates/error directory. Let’s create one now. Inside our new directory, let’s add a template, 404.html.eex and give it some markup - a mixture of our application layout and a new div with our message to the user.

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8">
 <meta http-equiv="X-UA-Compatible" content="IE=edge">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <meta name="description" content="">
 <meta name="author" content="">

 <title>Welcome to Phoenix!</title>
 <link rel="stylesheet" href="/css/app.css">
 </head>

 <body>
 <div class="container">
 <div class="header">
 <ul class="nav nav-pills pull-right">
 Get Started

 </div>

 <div class="jumbotron">
 <p>Sorry, the page you are looking for does not exist.</p>
 </div>

 <div class="footer">
 <p>phoenixframework.org</p>
 </div>

 </div> <!-- /container -->
 <script src="/js/app.js"></script>
 </body>
</html>

Now we can use the render/2 function we saw above when we were experimenting with rendering in the iex session. Since we know that Phoenix will precompile the 404.html.eex template as a render("404.html", assigns) function clause, we can delete the clause from our ErrorView.

- def render("404.html", _assigns) do
- "Page not found"
- end

When we go back to http://localhost:4000/such/a/wrong/path, we should see a much nicer error page. It is worth noting that we did not render our 404.html.eex template through our application layout, even though we want our error page to have the look and feel of the rest of our site. The main reason is that it’s easy to run into edge case issues while handling errors globally. If we want to minimize duplication between our application layout and our 404.html.eex template, we can implement shared templates for our header and footer. Please see the Template Guide for more information. Of course, we can do these same steps with the def render("500.html", _assigns) do clause in our ErrorView as well. We can also use the assigns map passed into any render/2 clause in the ErrorView, instead of discarding it, in order to display more information in our templates.

Rendering JSON

The view’s job is not only to render HTML templates. Views are about data presentation. Given a bag of data, the view’s purpose is to present that in a meaningful way given some format, be it HTML, JSON, CSV, or others. Many web apps today return JSON to remote clients, and Phoenix views are great for JSON rendering. Phoenix uses Jason to encode Maps to JSON, so all we need to do in our views is format the data we’d like to respond with as a Map, and Phoenix will do the rest. It is possible to respond with JSON back directly from the controller and skip the View. However, if we think about a controller as having the responsibilities of receiving a request and fetching data to be sent back, data manipulation and formatting don’t fall under those responsibilities. A view gives us a module responsible for formatting and manipulating the data. Let’s take our PageController, and see what it might look like when we respond with some static page maps as JSON, instead of HTML.

defmodule HelloWeb.PageController do
 use HelloWeb, :controller

 def show(conn, _params) do
 page = %{title: "foo"}

 render(conn, "show.json", page: page)
 end

 def index(conn, _params) do
 pages = [%{title: "foo"}, %{title: "bar"}]

 render(conn, "index.json", pages: pages)
 end
end

Here, we have our show/2 and index/2 actions returning static page data. Instead of passing in "show.html" to render/3 as the template name, we pass "show.json". This way, we can have views that are responsible for rendering HTML as well as JSON by pattern matching on different file types.

defmodule HelloWeb.PageView do
 use HelloWeb, :view

 def render("index.json", %{pages: pages}) do
 %{data: render_many(pages, HelloWeb.PageView, "page.json")}
 end

 def render("show.json", %{page: page}) do
 %{data: render_one(page, HelloWeb.PageView, "page.json")}
 end

 def render("page.json", %{page: page}) do
 %{title: page.title}
 end
end

In the view we see our render/2 function pattern matching on "index.json", "show.json", and "page.json". In our controller show/2 function, render(conn, "show.json", page: page) will pattern match on the matching name and extension in the view’s render/2 functions. In other words, render(conn, "index.json", pages: pages) will call render("index.json", %{pages: pages}). The render_many/3 function takes the data we want to respond with (pages), a View, and a string to pattern match on the render/2 function defined on View. It will map over each item in pages, and pass the item to the render/2 function in View matching the file string. render_one/3 follows, the same signature, ultimately using the render/2 matching page.json to specify what each page looks like. The render/2 matching "index.json" will respond with JSON as you would expect:

 {
 "data": [
 {
 "title": "foo"
 },
 {
 "title": "bar"
 },
]
 }

And the render/2 matching "show.json":

 {
 "data": {
 "title": "foo"
 }
 }

It’s useful to build our views like this so they can be composable. Imagine a situation where our Page has a has_many relationship with Author, and depending on the request, we may want to send back author data with the page. We can easily accomplish this with a new render/2:

defmodule HelloWeb.PageView do
 use HelloWeb, :view
 alias HelloWeb.AuthorView

 def render("page_with_authors.json", %{page: page}) do
 %{title: page.title,
 authors: render_many(page.authors, AuthorView, "author.json")}
 end

 def render("page.json", %{page: page}) do
 %{title: page.title}
 end
end

The name used in assigns is determined from the view. For example the PageView will use %{page: page} and the AuthorView will use %{author: author}. This can be overridden with the as option. Let’s assume that the author view uses %{writer: writer} instead of %{author: author}:

 def render("page_with_authors.json", %{page: page}) do
 %{title: page.title,
 authors: render_many(page.authors, AuthorView, "author.json", as: :writer)}
 end

 Templates

Templates are what they sound like they should be: files into which we pass data to form complete HTTP responses. For a web application these responses would typically be full HTML documents. For an API, they would most often be JSON or possibly XML. The majority of the code in template files is often markup, but there will also be sections of Elixir code for Phoenix to compile and evaluate. The fact that Phoenix templates are pre-compiled makes them extremely fast.

EEx is the default template system in Phoenix, and it is quite similar to ERB in Ruby. It is actually part of Elixir itself, and Phoenix uses EEx templates to create files like the router and the main application view while generating a new application.

As we learned in the View Guide, by default, templates live in the lib/hello_web/templates directory, organized into directories named after a view. Each directory has its own view module to render the templates in it.

Examples

We’ve already seen several ways in which templates are used, notably in the Adding Pages Guide and the Views Guide. We may cover some of the same territory here, but we will certainly add some new information.

hello_web.ex

Phoenix generates a lib/hello_web.ex file that serves as place to group common imports and aliases. All declarations here within the view block apply to all your templates.

Let’s make some additions to our application so we can experiment a little.

First, let’s define a new route in lib/hello_web/router.ex.

defmodule HelloWeb.Router do
 ...

 scope "/", HelloWeb do
 pipe_through :browser # Use the default browser stack

 get "/", PageController, :index
 get "/test", PageController, :test
 end

 # Other scopes may use custom stacks.
 # scope "/api", Hello do
 # pipe_through :api
 # end
end

Now, let’s define the controller action we specified in the route. We’ll add a test/2 action in the lib/hello_web/controllers/page_controller.ex file.

defmodule HelloWeb.PageController do
 ...

 def test(conn, _params) do
 render(conn, "test.html")
 end
end

We’re going to create a function that tells us which controller and action are handling our request.

To do that, we need to import the action_name/1 and controller_module/1 functions from Phoenix.Controller in lib/hello_web.ex.

 def view do
 quote do
 use Phoenix.View, root: "lib/hello_web/templates",
 namespace: HelloWeb

 # Import convenience functions from controllers
 import Phoenix.Controller, only: [get_flash: 1, get_flash: 2, view_module: 1,
 action_name: 1, controller_module: 1]

 ...
 end
 end

Next, let’s define a handler_info/1 function at the bottom of the lib/hello_web/views/page_view.ex which makes use of the controller_module/1 and action_name/1 functions we just imported. We’ll also define a connection_keys/1 function that we’ll use in a moment.

defmodule HelloWeb.PageView do
 use HelloWeb, :view

 def handler_info(conn) do
 "Request Handled By: #{controller_module(conn)}.#{action_name(conn)}"
 end

 def connection_keys(conn) do
 conn
 |> Map.from_struct()
 |> Map.keys()
 end
end

We have a route. We created a new controller action. We have made modifications to the main application view. Now all we need is a new template to display the string we get from handler_info/1. Let’s create a new one at lib/hello_web/templates/page/test.html.eex.

<div class="jumbotron">
 <p><%= handler_info(@conn) %></p>
</div>

Notice that @conn is available to us in the template for free via the assigns map.

If we visit localhost:4000/test, we will see that our page is brought to us by Elixir.HelloWeb.PageController.test.

We can define functions in any individual view in lib/hello_web/views. Functions defined in an individual view will only be available to templates which that view renders. For example, functions like our handler_info above, will only be available to templates in lib/hello_web/templates/page.

Displaying Lists

So far, we’ve only displayed singular values in our templates - strings here, and integers in other guides. How would we approach displaying all the elements of a list?

The answer is that we can use Elixir’s list comprehensions.

Now that we have a function, visible to our template, that returns a list of keys in the conn struct, all we need to do is modify our lib/hello_web/templates/page/test.html.eex template a bit to display them.

We can add a header and a list comprehension like this.

<div class="jumbotron">
 <p><%= handler_info(@conn) %></p>

 <h3>Keys for the conn Struct</h3>

 <%= for key <- connection_keys(@conn) do %>
 <p><%= key %></p>
 <% end %>
</div>

We use the list of keys returned by the connection_keys function as the source list to iterate over. Note that we need the = in both <%= - one for the top line of the list comprehension and the other to display the key. Without them, nothing would actually be displayed.

When we visit localhost:4000/test again, we see all the keys displayed.

Render templates within templates

In our list comprehension example above, the part that actually displays the values is quite simple.

<p><%= key %></p>

We are probably fine with leaving this in place. Quite often, however, this display code is somewhat more complex, and putting it in the middle of a list comprehension makes our templates harder to read.

The simple solution is to use another template! Templates are just function calls, so like regular code, composing your greater template by small, purpose-built functions can lead to clearer design. This is simply a continuation of the rendering chain we have already seen. Layouts are templates into which regular templates are rendered. Regular templates may have other templates rendered into them.

Let’s turn this display snippet into its own template. Let’s create a new template file at lib/hello_web/templates/page/key.html.eex, like this.

<p><%= @key %></p>

We need to change key to @key here because this is a new template, not part of a list comprehension. The way we pass data into a template is by the assigns map, and the way we get the values out of the assigns map is by referencing the keys with a preceding @. @ is actually a macro that translates @key to Map.get(assigns, :key).

Now that we have a template, we simply render it within our list comprehension in the test.html.eex template.

<div class="jumbotron">
 <p><%= handler_info(@conn) %></p>

 <h3>Keys for the conn Struct</h3>

 <%= for key <- connection_keys(@conn) do %>
 <%= render("key.html", key: key) %>
 <% end %>
</div>

Let’s take a look at localhost:4000/test again. The page should look exactly as it did before.

Shared Templates Across Views

Often, we find that small pieces of data need to be rendered the same way in different parts of the application. It’s a good practice to move these templates into their own shared directory to indicate that they ought to be available anywhere in the app.

Let’s move our template into a shared view.

key.html.eex is currently rendered by the HelloWeb.PageView module, but we use a render call which assumes that the current schema is what we want to render with. We could make that explicit, and re-write it like this:

<div class="jumbotron">
 ...

 <%= for key <- connection_keys(@conn) do %>
 <%= render(HelloWeb.PageView, "key.html", key: key) %>
 <% end %>
</div>

Since we want this to live in a new lib/hello_web/templates/shared directory, we need a new individual view to render templates in that directory, lib/hello_web/views/shared_view.ex.

defmodule HelloWeb.SharedView do
 use HelloWeb, :view
end

Now we can move key.html.eex from the lib/hello_web/templates/page directory into the lib/hello_web/templates/shared directory. Once that happens, we can change the render call in lib/hello_web/templates/page/test.html.eex to use the new HelloWeb.SharedView.

<%= for key <- connection_keys(@conn) do %>
 <%= render(HelloWeb.SharedView, "key.html", key: key) %>
<% end %>

Going back to localhost:4000/test again. The page should look exactly as it did before.

 Channels

Channels are an exciting part of Phoenix that enable soft real-time communication with and between millions of connected clients.
Some possible use cases include:

	Chat rooms and APIs for messaging apps

	Breaking news, like “a goal was scored” or “an earthquake is coming”

	Tracking trains, trucks, or race participants on a map

	Events in multiplayer games

	Monitoring sensors and controlling lights

	Notifying a browser that a page’s CSS or JavaScript has changed (this is handy in development)

Conceptually, Channels are pretty simple.
Clients connect and subscribe to one or more topics, whether that’s public_chat or updates:user1.
Any message sent on a topic, whether from the server or from a client, is sent to all clients subscribed to that topic (including the sender, if it’s subscribed), like this:

 +----------------+
 +--Topic X-->| Mobile Client |
 | +----------------+
 +-------------------+ |
+----------------+ | | | +----------------+
| Browser Client |--Topic X-->| Phoenix Server(s) |--+--Topic X-->| Desktop Client |
+----------------+ | | | +----------------+
 +-------------------+ |
 | +----------------+
 +--Topic X-->| IoT Client |
 +----------------+

Channels can support any kind of client: a browser, native app, smart watch, embedded device, or anything else that can connect to a network.
All the client needs is a suitable library; see the Client Libraries section below.
Each client library communicates using one of the “transports” that C