

 philtre

 v0.11.1

 Table of contents

 	Readme

 	Changelog

 	LICENSE

 	Outlines

 	Block JSON Format

 	Proposals

 	Extensible Components

 	Modules

 	Philtre.Block

 	Philtre.BlockRegistry

 	Philtre.LiveBlock

 	Philtre.StaticBlock

 	Philtre.Editor

 	Philtre.Editor.Engine

 	Philtre.Editor.Serializer

 	Philtre.Editor.Utils

 	Philtre.UI.Page

 	Philtre.Block.Code

 	Philtre.Block.ContentEditable

 	Philtre.Block.Table

 	Philtre.Block.ContentEditable.Cell

 	Philtre.Block.ContentEditable.CleanEmptyCells

 	Philtre.Block.ContentEditable.Reduce

 	Philtre.Block.ContentEditable.Selection

 	Playground.App

 	Playground.Controller

 	Playground.Documents

 	Playground.Endpoint

 	Playground.Live.Edit

 	Playground.Live.Index

 	Playground.Live.New

 	Playground.Router

 	Playground.Router.Helpers

 	Playground.View

 	Mix Tasks

 	mix philtre.convert

Readme

Description
A block-based content editor, with support for static html generation, in phoenix live view.
Disclaimer
This library is still heavily in development.
Things will break and at least initially, they
will not maintain backwards compatibility. In fact, the final, release-worthy version may never
see the light of day.
Use it at your own risk!

Currently supports the following blocks:
	a generic content-editable wrapped which can output any of:
<p>, <h1>, <h2>, <h3>, , <pre>, <blockquote>
	a very badly styled table
	a code block with synthax highlighting for elixir only

Installation and Usage
Add it to your dependencies in mix.exs:
deps: [
 # ...
 {:philtre, "~> 0.11.0"}
 # ...
]
Include the styles somewhere in your application, for example, from app.js:
import 'philtre/dist/index.css';
Or from app.css:
@import 'philtre/dist/index.css';
Import and add the necessary hooks to your live view application
import * as philtreHooks from 'philtre/src/hooks';

const liveSocket = new LiveSocket('/live', Socket, {
 hooks: { ...philtreHooks, ...yourHooks },
});
Render the page component inside one of your live views
def mount(%{}, _session, socket) do
 {:ok, assign(socket, %{editor: Philtre.Editor.new()})}
end

def render(assigns) do
 ~H"""
 <button phx-click="save">Save</button>
 <.live_component
 module={Philtre.UI.Page}
 id={@editor.id}
 editor={@editor}
 />
 """
end

def handle_event("save", %{}, socket) do
 json = Philtre.Editor.serialize(socket.assigns.json)
 # Save the json however you please
 # Load into editor using Philtre.Editor.normalize/1
 inspect(json)
 {:noreply, socket}
end

def handle_info({:update, %Philtre.Editor{} = editor}, socket) do
 {:noreply, assign(socket, :editor, editor)}
end
Developing using Playground
Playground is a locally setup, minimal phoenix application which loads the editor files using local paths, so they are always kept up to date and are even being watched by esbuild.
THis means it allows for live-reload development of hte library.
To start it, run mix playground
Note that editor pages are saved as files under playground\priv\documents so you should probably periodically clean them.

Changelog

0.11.1
	[FEATURE] Add Javascript support for code block
	[FIX] Remove block functionatliy not actually being saved unless there is a
manual update to another block
	[FIX] Move and rename mix convert -> mix philtre.convert

0.11.0
	[FEATURE] New, more general block json format

Notes
A new format a block serializes into has been introduced. It's description is
available in the docs, unter the outline section.
A task to convert from old format into new is also available. You can use it by
running
mix philtre.convert path_where_your_files_are
If you need to manually convert, it should also be quite straightforward, from
looking at the documentation.
The reason for the new format is to support more generalized block structures
in the future.
0.10.2
	[QA] Simplify Playground endpoint
	[QA] Reorganize e2e tests around scopes
	[REFACTOR] Introduce common LiveBlock component
	[REFACTOR] Introduce common StaticBlock component
	[FIX] Transform being applied to soon due to placeholder space character in new cells
	[QA] Add blank .credo.exs
	[REFACTOR] Make ContentEditable less hacky
	[QA] Document ContentEditable

0.10.1
	[FIX] Adding a new empty h1, h2, h3, or li would crash
	[FIX] Better padding on li block
	[FEATURE] Shift + enter in /code block starts new block below
	[FEATURE] Code block auto-focuses when added
	[FEATURE] Navigation between blocks using tab and shift + tab
	[QA] Remove pageModel from integration tests
	[DOCS] Proposal for extensible block interface

0.10.0
	[FEATURE] Basic code block only supporing elixir synthax highlighting
	[FIX] Using button to add block after a code or table block fails
	[QA] Improve docs
	[FIX] Styles for /code block were not getting included correctly

0.9.4 2022-05-30
	[FIX] Bug with typing after inserting new line at the end of block
	[CHORE] Loosen floki dependency & update
	[CHORE] Update phoenix_live_view dependency
	[TWEAK] Use n to split lines in block component, instead of

	[TWEAK] Clean up redundant cells during block operations

0.9.3 2022-05-25
	fix publish + installation story

0.9.2 2022-05-22
	separate out scss into individual files
	style and restructure table component
	publish to hex and npm
	add basic setup readme

0.9.0 2022-05-21
	basic table component

0.8.1 2022-05-12
	various bugfixes related to blocks splitting and joining
	phoenix dependency update
	failed attempt configuration for heex formatter
	basic styling for PRE block

0.8.0 2022-05-08
There have been many changes since the last update
	complete engine rewrite
	e2e test suite
	conversion to library
	support for scss
	various misc additions and tweaks

0.7.1 2022-01-25
	reduce blocks after backspacing or updating, so they contain a minimal amount of cells

0.7.0 2022-01-25
	blockquote
	further codebase simplication
	removal of page struct
	bugfixes to backspace operation

0.6.1 2022-01-19
	simplification and improvements to internal API
	fix for a selection bug

0.6.0 2022-01-16
	introduce esbuild via npm
	introduce eslint
	introduce prettier
	make topbar an npm dependency

0.5.2 2022-01-08
	update elixir to 1.13.1 + all dependencies
	clear up credo issues
	add CI action workflow
	documentation improvements

0.5.0 2022-01-08
	block selection feature
	copy paste feature
	cleanup
	known bug: typing too quickly changes cursor position

0.4.0 2021-11-21
	block + cell based editor, supporting following blocks	p
	h1,h2,h3
	ul
	with block downgrades, splitting, etc.

0.2.0 2021-11-07
	credo + pre-commit hook for credo
	dialyzer + specs + fixes + pre-commit hook for dialyzer

0.2.0 2021-11-06
	basic markdown support

0.1.0
	Basic article crud and routes
	Slug generation and uniqueness

LICENSE

MIT License

Copyright (c) 2021 Nikola Begedin

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Block JSON Format

Current status
All blocks serialize into valid JSON, sharing some common structures.
The editor itself, will serialize into json with a single, root field:
{
 "blocks": []
}
Each individual block is then a JSON containing at minimum a type, an id and
a free form data field.
For example, this is what a contenteditable p block will look like:
{
 "id": "7040fb6a-9e17-4c7e-a4d8-70c8427be9dc",
 "type": "contenteditable",
 "data": {
 "kind" => "p",
 "cells": [
 {
 "id": "4cdc009b-c0c0-4bc1-94d6-e353ac25afa7",
 "modifiers": [],
 "text": "This is the title of your page"
 }
]
 }
}
A different example, the table block, has the same root fields, but the
value of data is different:
{
 "id": "01de4dc5-e9bb-47db-aa90-b95760012754",
 "type": "table",
 "data" => {
 "header_rows": [["ID", "First Name", "Last Name"]],
 "rows": [
 ["1", "John", "Doe"],
 ["2", "Jane", "Doe"]
]
 }
}
Reasoning
The id field serves as something to match and identify blocks across actions
and changes.
The type field allows the system to identify the block and properly
serialize/normalize it.
The data field is the actual, custom data of the block.

Proposal: Extensible Components

Preface
Right now, each new type of section is a new module component.
This keeps things contained, but not not easily managed, as every section is
required to have a
	render function for the live version
	functional component for the static html version
	serialize function (converts component struct to JSON, ie. plain map)
	normalize function (converts serialized function to component struct)
	html function (outputs html string)
	series of event handlers and hooks for managing it's events

New structure
We introduce a single live component, called LiveBlock. This block component
has a well defined interface for managing of the live component.
	render
	handle_event
	update
	etc

Similarly, we introduce a StaticBlock, which has a smaller interface for
rendering static content.
	render

The existing (and later new) block types now define a module to which the
LiveBlock and StaticBlock will delegate to.
The delegation happens according to which blocks are registered in the app
configuration.
Registration
In app configuration we register a block type using something like
config, :philtre, :blocks, [
 Philtre.Block.ContentEditable,
 Philtre.Block.Code,
 Philtre.Block.Table
]
For this to work, each of the block modules also to define some additional
functions, to allow the LiveBlock and StaticBlock components respecitivly, to
identify where to delegate to, how to handle conversion between blocks, etc.
Questions
Will conversion between blocks using wildcards work in this system?
How do we deal with blocks being merged together, split, pasted into, etc.?
Proposed interface for a block
defmodule CustomBlock do
 defstruct [:id, ...]

 @doc "Value of the type key in the json representation, to identify the block"
 def type, do: "custom"

 @doc "Wild cards used to convert other blocks into this one"
 def wildcards, do: ["|> ", "/custom"]

 @doc "Functional component to do the live render of this block"
 def live(assigns) do, ~H"Live renderer"

 @doc "Functional component to do the static render of this block"
 def static(assigns), do: ~H"Static renderer"

 @doc "Event handler for all the events this block supports"
 def handle_event(type, params, socket)

 @doc "Converts the block module into plain map that can be serialized into json"
 def serialize(%__MODULE__{}), do: %{}

 @doc "Converts plain map into module struct, idempotent with serialize"
 def normalize(%{}), do: %__MODULE__{}

 @doc "Converts module to raw html string"
 def html(%__MODULE__{}), do: "Raw html string"

 @doc "Converts module to plain text-only content of the block"
 def text(%__MODULE__{}), do: "Plain text string"

 @doc """
 Could be used when pasting other blocks into block, or splitting the block in
 two for some other reason.

 The block would have to be in charge of encoding the position within the
 component, and interpreting it correctly.
 """
 def split(%__MODULE__{}, position_in_this_component), do: :how?

 @doc """
 Another one that's kind of unclear. Used to merge another block into this
 block.

 The block would need to know about specifics of the other block in order for
 this to work.

 We could also move the responsibility into the module of the other block, but
 the same problem is there. Specifics need to be known, or there needs to be
 some common interface.

 Possibly, the other block could be passed in as text or html representation.
 """
 def merge(%__MODULE__{}, other)
end

Philtre.Block behaviour

Defines what the structure of a block should be

 Anchor for this section

 Summary

 Callbacks

 data(struct)

 Takes the struct for the specific block type and returns its data serialized
as a json-encodeable map with string keys.

 id(struct)

 Takes the struct for the specific block type and returns its id

 normalize(t, any)

 Takes in the block id and the serialized data and returns the struct for the
block.

 type(struct)

 Takes the struct for the specific block type and returns its string type

 Anchor for this section

Callbacks

 Link to this callback

 data(struct)

 View Source

 @callback data(struct()) :: %{required(String.t()) => any()}

Takes the struct for the specific block type and returns its data serialized
as a json-encodeable map with string keys.

 Link to this callback

 id(struct)

 View Source

 @callback id(struct()) :: String.t()

Takes the struct for the specific block type and returns its id

 Link to this callback

 normalize(t, any)

 View Source

 @callback normalize(String.t(), any()) :: struct()

Takes in the block id and the serialized data and returns the struct for the
block.

 Link to this callback

 type(struct)

 View Source

 @callback type(struct()) :: String.t()

Takes the struct for the specific block type and returns its string type

Philtre.BlockRegistry

Hardcoded registry for block types. Once custom blocks are possible externally,
this will be a config- or runtime registry.

 Anchor for this section

 Summary

 Functions

 struct_for_type(type)

 Anchor for this section

Functions

 Link to this function

 struct_for_type(type)

 View Source

Philtre.LiveBlock

Single live component in charge of rendering all types of live blocks.
Current implementation infers block type from struct module and simply
delegates major callbacks to the bloc module.
Later implementations might instead take block type from some sort of registry
and require some sort of return format from the block modules, to decide how
to render them.
Ideally, we want individual blocks to be decoupled from the editor.

 Anchor for this section

 Summary

 Functions

 handle_event(event, payload, socket)

 Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

 Callback implementation for Phoenix.LiveComponent.render/1.

 update(assigns, socket)

 Callback implementation for Phoenix.LiveComponent.update/2.

 Anchor for this section

Functions

 Link to this function

 handle_event(event, payload, socket)

 View Source

Callback implementation for Phoenix.LiveComponent.handle_event/3.

 Link to this function

 render(assigns)

 View Source

Callback implementation for Phoenix.LiveComponent.render/1.

 Link to this function

 update(assigns, socket)

 View Source

Callback implementation for Phoenix.LiveComponent.update/2.

Philtre.StaticBlock

Static component used to render any type of block.
Works in similar fashion to Philtre.LiveBlock, but in a simplified capacity.

 Anchor for this section

 Summary

 Functions

 render(assigns)

 Anchor for this section

Functions

 Link to this function

 render(assigns)

 View Source

Philtre.Editor

Shared component used for both creation and editing of an article.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 html(editor)

 See Philtre.Editor.Serializer.html/1.

 new()

 normalize(editor)

 See Philtre.Editor.Serializer.normalize/1.

 replace_block(editor, block, new_blocks)

 serialize(editor)

 See Philtre.Editor.Serializer.serialize/1.

 text(editor)

 See Philtre.Editor.Serializer.text/1.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Philtre.Editor{
 blocks: term(),
 clipboard: term(),
 id: term(),
 selected_blocks: term(),
 selection: term()
}

 Anchor for this section

Functions

 Link to this function

 html(editor)

 View Source

See Philtre.Editor.Serializer.html/1.

 Link to this function

 new()

 View Source

 Link to this function

 normalize(editor)

 View Source

See Philtre.Editor.Serializer.normalize/1.

 Link to this function

 replace_block(editor, block, new_blocks)

 View Source

 @spec replace_block(
 t(),
 struct(),
 [struct()]
) :: t()

 Link to this function

 serialize(editor)

 View Source

See Philtre.Editor.Serializer.serialize/1.

 Link to this function

 text(editor)

 View Source

See Philtre.Editor.Serializer.text/1.

Philtre.Editor.Engine

Holds shared logic for modifying editor blocks

 Anchor for this section

 Summary

 Types

 transform()

 Functions

 add_block(editor, block)

 backspace_from_start(editor, block)

 paste(editor, block, map)

 Splits block into two at cursor, then pastes in the current
cliboard contents of the editor, between the two.

 split_block(editor, block, map)

 Performs action of splitting a block into two separate blocks at current cursor position.

 split_line(editor, block, map)

 Performs action of spliting a block like into two lines, where both stay part of the same block.

 toggle_style_on_selection(editor, block, map)

 update(editor, block, map)

 Anchor for this section

Types

 Link to this type

 transform()

 View Source

 @type transform() :: %{prefixes: [String.t()], kind: String.t()}

 Anchor for this section

Functions

 Link to this function

 add_block(editor, block)

 View Source

 Link to this function

 backspace_from_start(editor, block)

 View Source

 @spec backspace_from_start(Philtre.Editor.t(), Philtre.Block.ContentEditable.t()) ::
 Philtre.Editor.t()

 Link to this function

 paste(editor, block, map)

 View Source

 @spec paste(Philtre.Editor.t(), Philtre.Block.ContentEditable.t(), map()) ::
 Philtre.Editor.t()

Splits block into two at cursor, then pastes in the current
cliboard contents of the editor, between the two.

 Link to this function

 split_block(editor, block, map)

 View Source

 @spec split_block(Philtre.Editor.t(), Philtre.Block.ContentEditable.t(), %{
 selection: map()
}) ::
 Philtre.Editor.t()

Performs action of splitting a block into two separate blocks at current cursor position.
This is the result of a user hitting Enter.
The first block retains the type of the original.
The second block is usually a P block.

 Link to this function

 split_line(editor, block, map)

 View Source

 @spec split_line(Philtre.Editor.t(), Philtre.Block.ContentEditable.t(), %{
 selection: map()
}) ::
 Philtre.Editor.t()

Performs action of spliting a block like into two lines, where both stay part of the same block.
This is the result of the user usually hitting Shift + Enter.

 Link to this function

 toggle_style_on_selection(editor, block, map)

 View Source

 @spec toggle_style_on_selection(
 Philtre.Editor.t(),
 Philtre.Block.ContentEditable.t(),
 %{selection: map(), style: String.t()}
) :: Philtre.Editor.t()

 Link to this function

 update(editor, block, map)

 View Source

 @spec update(
 Philtre.Editor.t(),
 Philtre.Block.ContentEditable.t(),
 %{selection: map(), cells: [map()]}
) :: Philtre.Editor.t()

Philtre.Editor.Serializer

Holds normalization and serialization logic for the editor

 Anchor for this section

 Summary

 Functions

 html(block)

 normalize(params)

 serialize(editor)

 text(editor)

 Anchor for this section

Functions

 Link to this function

 html(block)

 View Source

 Link to this function

 normalize(params)

 View Source

 Link to this function

 serialize(editor)

 View Source

 @spec serialize(struct()) :: map()

 Link to this function

 text(editor)

 View Source

Philtre.Editor.Utils

Contains various utility functions used by the library, that don't really have
another place to fit in.

 Anchor for this section

 Summary

 Types

 id()

 Functions

 new_id()

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: String.t()

 Anchor for this section

Functions

 Link to this function

 new_id()

 View Source

 @spec new_id() :: id()

Philtre.UI.Page

Shared component used for both creation and editing of an article.

 Anchor for this section

 Summary

 Functions

 block(assigns)

 handle_event(binary, params, socket)

 Callback implementation for Phoenix.LiveComponent.handle_event/3.

 render(assigns)

 Callback implementation for Phoenix.LiveComponent.render/1.

 sidebar(assigns)

 update(updated_assigns, socket)

 Callback implementation for Phoenix.LiveComponent.update/2.

 Anchor for this section

Functions

 Link to this function

 block(assigns)

 View Source

 Link to this function

 handle_event(binary, params, socket)

 View Source

 @spec handle_event(String.t(), map(), Phoenix.LiveView.Socket.t()) ::
 {:noreply, Phoenix.LiveView.Socket.t()}

Callback implementation for Phoenix.LiveComponent.handle_event/3.

 Link to this function

 render(assigns)

 View Source

Callback implementation for Phoenix.LiveComponent.render/1.

 Link to this function

 sidebar(assigns)

 View Source

 Link to this function

 update(updated_assigns, socket)

 View Source

 @spec update(%{optional(:editor) => Philtre.Editor.t()}, Phoenix.LiveView.Socket.t()) ::
 {:ok, Phoenix.LiveView.Socket.t()}

Callback implementation for Phoenix.LiveComponent.update/2.

Philtre.Block.Code

Elixir-side implementation of the code-type block
This block is used to write code in a synthax-highlighted UI. The frontend
aspect of it is implemented in hooks/Code.ts

 Anchor for this section

 Summary

 Functions

 handle_event(binary, params, socket)

 render_live(assigns)

 render_static(assigns)

 Anchor for this section

Functions

 Link to this function

 handle_event(binary, params, socket)

 View Source

 Link to this function

 render_live(assigns)

 View Source

 Link to this function

 render_static(assigns)

 View Source

Philtre.Block.ContentEditable

Represents the generic contenteditable block.
This block is initially created as a p block. It can be converted to other
blocks by entering a markdown-like wildcard sequence at the start of the
content.
	# to convert to <h1>
	## to convert to <h2>
	### to convert to <h3>
	* to convert to
	> to convert to <blockquote>
	{triple backticks} to convert to <pre>

It can also be converted to other high-level blocks. The documentation of the respective higher
level block should cover how to handle such conversion.
Typing backspace from the start of a content-editable block which isn't a P already converts it
down to the "previous" block. H1 goes to H2, which goes to H3. All other blocks convert town to P.
Typing backspace from the start of a P block merges it into the previous block.

 Anchor for this section

 Summary

 Types

 id()

 t()

 Functions

 handle_event(arg1, attrs, socket)

 render_live(assigns)

 render_static(assigns)

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %Philtre.Block.ContentEditable{
 cells: [Philtre.Block.ContentEditable.Cell.t()],
 id: id(),
 kind: String.t(),
 selection: Philtre.Block.ContentEditable.Selection.t()
}

 Anchor for this section

Functions

 Link to this function

 handle_event(arg1, attrs, socket)

 View Source

 Link to this function

 render_live(assigns)

 View Source

 Link to this function

 render_static(assigns)

 View Source

Philtre.Block.Table

Implementation for a table section/component of the editor
To add to editor, use /table.
The current implementation starts of with a single cell, to which additional
rows and cells can be added and removed from.

 Anchor for this section

 Summary

 Functions

 handle_event(binary, map, socket)

 render_live(assigns)

 render_static(assigns)

 Anchor for this section

Functions

 Link to this function

 handle_event(binary, map, socket)

 View Source

 Link to this function

 render_live(assigns)

 View Source

 Link to this function

 render_static(assigns)

 View Source

Philtre.Block.ContentEditable.Cell

Represents a single cell within a block. Cells are discrete parts of a block,
to which some style (specified by modifiers) is applied.
The logic of a block is such that there is no nesting of cells so everything
is just one level, separated purely to support styling.

 Anchor for this section

 Summary

 Types

 id()

 t()

 Functions

 new()

 normalize(map)

 serialize(cell)

 Anchor for this section

Types

 Link to this type

 id()

 View Source

 @type id() :: String.t()

 Link to this type

 t()

 View Source

 @type t() :: %Philtre.Block.ContentEditable.Cell{
 id: id(),
 modifiers: [String.t()],
 text: String.t()
}

 Anchor for this section

Functions

 Link to this function

 new()

 View Source

 Link to this function

 normalize(map)

 View Source

 Link to this function

 serialize(cell)

 View Source

Philtre.Block.ContentEditable.CleanEmptyCells

Cleans up empty cells from a block.
Various block actions will result in empty cells being left over. These are
redundant and can be removed without any consequences, resulting in a simpler
html.

 Anchor for this section

 Summary

 Functions

 call(block)

 Removes empty cells from a block.

 Anchor for this section

Functions

 Link to this function

 call(block)

 View Source

 @spec call(Philtre.Block.ContentEditable.t()) :: Philtre.Block.ContentEditable.t()

Removes empty cells from a block.
Since a new block must contain an empty cell, that one is not cleaned up in
this scenario.
If block selection starts and/or ends within a cleaned up cell, that edge of
selection is moved into the next appropriate cell.

Philtre.Block.ContentEditable.Reduce

Reduces a block by merging in cells with the same styling (modifiers).
The aim is to reduce the overall number of redundant cells and keep the output HTML as simple as
possible.

 Anchor for this section

 Summary

 Functions

 call(block)

 Reduces the block by joining neighboring cells with the same modifiers.

 Anchor for this section

Functions

 Link to this function

 call(block)

 View Source

 @spec call(Philtre.Block.ContentEditable.t()) :: Philtre.Block.ContentEditable.t()

Reduces the block by joining neighboring cells with the same modifiers.
Since selection is defined by cell ids, it needs to be updated as well.

Philtre.Block.ContentEditable.Selection

Holds current selection in a block.
Passed from client to backend and vice-versa when executing block commands.
The ids are ids of cells in which a selection starts or ends.
The offests are indices within those cells where the selection starts or ends.
That means a simple caret (a cursor somewhere in the block text) will have
the same ids and same offsets.
Similarly, a selection of a text within a single cell will have the same ids,
but different offsets.
Lastly, a selection across cells within a block will have different ids and
different offsets.
Selection across blocks is not possible. Only whole blocks can be selected and
this is handled at a different level.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 new_empty()

 new_end_of(cell)

 new_start_of(cell)

 normalize!(arg1)

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Philtre.Block.ContentEditable.Selection{
 end_id: Philtre.Block.ContentEditable.Cell.id() | nil,
 end_offset: non_neg_integer() | nil,
 start_id: Philtre.Block.ContentEditable.Cell.id() | nil,
 start_offset: non_neg_integer() | nil
}

 Anchor for this section

Functions

 Link to this function

 new_empty()

 View Source

 Link to this function

 new_end_of(cell)

 View Source

 Link to this function

 new_start_of(cell)

 View Source

 Link to this function

 normalize!(arg1)

 View Source

Playground.App

 Anchor for this section

 Summary

 Functions

 run()

 run_supervisor()

 Anchor for this section

Functions

 Link to this function

 run()

 View Source

 Link to this function

 run_supervisor()

 View Source

Playground.Controller

 Anchor for this section

 Summary

 Functions

 index(conn, map)

 show(conn, map)

 Anchor for this section

Functions

 Link to this function

 index(conn, map)

 View Source

 @spec index(Plug.Conn.t(), map()) :: Plug.Conn.t()

 Link to this function

 show(conn, map)

 View Source

 @spec show(Plug.Conn.t(), map()) :: Plug.Conn.t()

Playground.Documents

Main context for storing editor content onto disk as json

 Anchor for this section

 Summary

 Functions

 delete_document(filename)

 get_document(filename)

 list_documents()

 save_document(editor, filename)

 Anchor for this section

Functions

 Link to this function

 delete_document(filename)

 View Source

 Link to this function

 get_document(filename)

 View Source

 Link to this function

 list_documents()

 View Source

 Link to this function

 save_document(editor, filename)

 View Source

Playground.Endpoint

 Anchor for this section

 Summary

 Functions

 broadcast!(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast!/3.

 broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast/3.

 broadcast_from!(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 call(conn, opts)

 Callback implementation for Plug.call/2.

 child_spec(opts)

 Returns the child specification to start the endpoint
under a supervision tree.

 config(key, default \\ nil)

 Returns the endpoint configuration for key

 config_change(changed, removed)

 Reloads the configuration given the application environment changes.

 host()

 Returns the host for the given endpoint.

 init(opts)

 Callback implementation for Plug.init/1.

 local_broadcast(topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 local_broadcast_from(from, topic, event, msg)

 Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 path(path)

 Generates the path information when routing to this endpoint.

 script_name()

 Generates the script name.

 start_link(opts \\ [])

 Starts the endpoint supervision tree.

 static_integrity(path)

 Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 static_lookup(path)

 Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 static_path(path)

 Generates a route to a static file in priv/static.

 static_url()

 Generates the static URL without any path information.

 struct_url()

 Generates the endpoint base URL but as a URI struct.

 subscribe(topic, opts \\ [])

 Callback implementation for Phoenix.Endpoint.subscribe/2.

 unsubscribe(topic)

 Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 url()

 Generates the endpoint base URL without any path information.

 Anchor for this section

Functions

 Link to this function

 broadcast!(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast!/3.

 Link to this function

 broadcast(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast/3.

 Link to this function

 broadcast_from!(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast_from!/4.

 Link to this function

 broadcast_from(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.broadcast_from/4.

 Link to this function

 call(conn, opts)

 View Source

Callback implementation for Plug.call/2.

 Link to this function

 child_spec(opts)

 View Source

Returns the child specification to start the endpoint
under a supervision tree.

 Link to this function

 config(key, default \\ nil)

 View Source

Returns the endpoint configuration for key
Returns default if the key does not exist.

 Link to this function

 config_change(changed, removed)

 View Source

Reloads the configuration given the application environment changes.

 Link to this function

 host()

 View Source

Returns the host for the given endpoint.

 Link to this function

 init(opts)

 View Source

Callback implementation for Plug.init/1.

 Link to this function

 local_broadcast(topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.local_broadcast/3.

 Link to this function

 local_broadcast_from(from, topic, event, msg)

 View Source

Callback implementation for Phoenix.Endpoint.local_broadcast_from/4.

 Link to this function

 path(path)

 View Source

Generates the path information when routing to this endpoint.

 Link to this function

 script_name()

 View Source

Generates the script name.

 Link to this function

 start_link(opts \\ [])

 View Source

Starts the endpoint supervision tree.

 options

 Options

	:log_access_url - if the access url should be logged
once the endpoint starts

All other options are merged into the endpoint configuration.

 Link to this function

 static_integrity(path)

 View Source

Generates a base64-encoded cryptographic hash (sha512) to a static file
in priv/static. Meant to be used for Subresource Integrity with CDNs.

 Link to this function

 static_lookup(path)

 View Source

Returns a two item tuple with the first item being the static_path
and the second item being the static_integrity.

 Link to this function

 static_path(path)

 View Source

Generates a route to a static file in priv/static.

 Link to this function

 static_url()

 View Source

Generates the static URL without any path information.
It uses the configuration under :static_url to generate
such. It falls back to :url if :static_url is not set.

 Link to this function

 struct_url()

 View Source

Generates the endpoint base URL but as a URI struct.
It uses the configuration under :url to generate such.
Useful for manipulating the URL data and passing it to
URL helpers.

 Link to this function

 subscribe(topic, opts \\ [])

 View Source

Callback implementation for Phoenix.Endpoint.subscribe/2.

 Link to this function

 unsubscribe(topic)

 View Source

Callback implementation for Phoenix.Endpoint.unsubscribe/1.

 Link to this function

 url()

 View Source

Generates the endpoint base URL without any path information.
It uses the configuration under :url to generate such.

Playground.Live.Edit

 Anchor for this section

 Summary

 Functions

 handle_event(binary, map, socket)

 Callback implementation for Phoenix.LiveView.handle_event/3.

 handle_info(arg, socket)

 Callback implementation for Phoenix.LiveView.handle_info/2.

 mount(map, session, socket)

 Callback implementation for Phoenix.LiveView.mount/3.

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Anchor for this section

Functions

 Link to this function

 handle_event(binary, map, socket)

 View Source

Callback implementation for Phoenix.LiveView.handle_event/3.

 Link to this function

 handle_info(arg, socket)

 View Source

Callback implementation for Phoenix.LiveView.handle_info/2.

 Link to this function

 mount(map, session, socket)

 View Source

 @spec mount(map(), struct(), Phoenix.LiveView.Socket.t()) ::
 {:ok, Phoenix.LiveView.Socket.t()}

Callback implementation for Phoenix.LiveView.mount/3.

 Link to this function

 render(assigns)

 View Source

Callback implementation for Phoenix.LiveView.render/1.

Playground.Live.Index

 Anchor for this section

 Summary

 Functions

 handle_params(map, path, socket)

 Callback implementation for Phoenix.LiveView.handle_params/3.

 mount(map, session, socket)

 Callback implementation for Phoenix.LiveView.mount/3.

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Anchor for this section

Functions

 Link to this function

 handle_params(map, path, socket)

 View Source

Callback implementation for Phoenix.LiveView.handle_params/3.

 Link to this function

 mount(map, session, socket)

 View Source

 @spec mount(map(), struct(), Phoenix.LiveView.Socket.t()) ::
 {:ok, Phoenix.LiveView.Socket.t()}

Callback implementation for Phoenix.LiveView.mount/3.

 Link to this function

 render(assigns)

 View Source

Callback implementation for Phoenix.LiveView.render/1.

Playground.Live.New

 Anchor for this section

 Summary

 Functions

 handle_event(binary, map, socket)

 Callback implementation for Phoenix.LiveView.handle_event/3.

 handle_info(arg, socket)

 Callback implementation for Phoenix.LiveView.handle_info/2.

 mount(map, session, socket)

 Callback implementation for Phoenix.LiveView.mount/3.

 render(assigns)

 Callback implementation for Phoenix.LiveView.render/1.

 Anchor for this section

Functions

 Link to this function

 handle_event(binary, map, socket)

 View Source

Callback implementation for Phoenix.LiveView.handle_event/3.

 Link to this function

 handle_info(arg, socket)

 View Source

Callback implementation for Phoenix.LiveView.handle_info/2.

 Link to this function

 mount(map, session, socket)

 View Source

 @spec mount(map(), struct(), Phoenix.LiveView.Socket.t()) ::
 {:ok, Phoenix.LiveView.Socket.t()}

Callback implementation for Phoenix.LiveView.mount/3.

 Link to this function

 render(assigns)

 View Source

Callback implementation for Phoenix.LiveView.render/1.

Playground.Router

 Anchor for this section

 Summary

 Functions

 browser(conn, _)

 call(conn, opts)

 Callback invoked by Plug on every request.

 init(opts)

 Callback required by Plug that initializes the router
for serving web requests.

 Anchor for this section

Functions

 Link to this function

 browser(conn, _)

 View Source

 Link to this function

 call(conn, opts)

 View Source

Callback invoked by Plug on every request.

 Link to this function

 init(opts)

 View Source

Callback required by Plug that initializes the router
for serving web requests.

Playground.Router.Helpers

Module with named helpers generated from Playground.Router.

 Anchor for this section

 Summary

 Functions

 live_path(conn_or_endpoint, action)

 live_path(conn_or_endpoint, action, params)

 live_path(conn_or_endpoint, action, filename, params)

 live_url(conn_or_endpoint, action)

 live_url(conn_or_endpoint, action, params)

 live_url(conn_or_endpoint, action, filename, params)

 path(data, path)

 Generates the path information including any necessary prefix.

 static_integrity(endpoint, path)

 Generates an integrity hash to a static asset given its file path.

 static_path(conn, path)

 Generates path to a static asset given its file path.

 static_url(conn, path)

 Generates url to a static asset given its file path.

 url(data)

 Generates the connection/endpoint base URL without any path information.

 Anchor for this section

Functions

 Link to this function

 live_path(conn_or_endpoint, action)

 View Source

 Link to this function

 live_path(conn_or_endpoint, action, params)

 View Source

 Link to this function

 live_path(conn_or_endpoint, action, filename, params)

 View Source

 Link to this function

 live_url(conn_or_endpoint, action)

 View Source

 Link to this function

 live_url(conn_or_endpoint, action, params)

 View Source

 Link to this function

 live_url(conn_or_endpoint, action, filename, params)

 View Source

 Link to this function

 path(data, path)

 View Source

Generates the path information including any necessary prefix.

 Link to this function

 static_integrity(endpoint, path)

 View Source

Generates an integrity hash to a static asset given its file path.

 Link to this function

 static_path(conn, path)

 View Source

Generates path to a static asset given its file path.

 Link to this function

 static_url(conn, path)

 View Source

Generates url to a static asset given its file path.

 Link to this function

 url(data)

 View Source

Generates the connection/endpoint base URL without any path information.

Playground.View

 Anchor for this section

 Summary

 Functions

 render(binary, assigns)

 Anchor for this section

Functions

 Link to this function

 render(binary, assigns)

 View Source

mix philtre.convert

Handles conversion of old block formats to newer

 Anchor for this section

 Summary

 Functions

 normalize(params)

 run(list)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 normalize(params)

 View Source

 Link to this function

 run(list)

 View Source

Callback implementation for Mix.Task.run/1.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

