

 PersistentEts

 v0.2.2

 Table of contents

 	Changelog

 	License

 	Overview

 	Modules

 	PersistentEts

Changelog
All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
0.2.2 (09.08.2021)
Documentation update
0.2.1 (14.08.2019)
Bug fixes
	Fix PersistentEts.new/3 (broken since 0.2.0).

0.2.0 (02.08.2019)
Changes
	Use DynamicSupervisor instead of :simple_one_for_one and migrate to the
Elixir 1.5 child specs.
	Improve documentation.

0.1.0 (02.03.2017)
	Initial release

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

PersistentEts
Ets table backed by a persistence file.
The table is persisted using the :ets.file2tab/2 and :ets.tab2file/3
functions.
Table is to be created with PersistentEts.new/3 in place of :ets.new/2.
After that all functions from :ets can be used like with any other table,
except :ets.give_away/3 and :ets.delete/1 - replacement functions are
provided in this module. The :ets.setopts/2 function to change the heir
is not supported - the heir setting is leveraged by the persistence mechanism.
Like with regular ets table, the table is destroyed once the owning process
(the one that called PersistentEts.new/3) dies, but the table data is persisted
so it will be re-read when table is opened again.
Example
pid = spawn(fn ->
 :foo = PersistentEts.new(:foo, "table.tab", [:named_table])
 :ets.insert(:foo, [a: 1])
end)
Process.exit(pid, :diediedie)
PersistentEts.new(:foo, "table.tab", [:named_table])
[a: 1] = :ets.tab2list(:foo)
Why not Dets?
With Dets every operation (read or write) hits the disk. For many application such a performance penalty (compared to ets) is not acceptable. Furthermore Dets tables are limited to 2GB. Dets doesn't support the ordered_set table type either.
With PersistentEts, the table remains in memory, so all read and write operations have the same performance they would have with pure Ets. Only periodically the table state is saved to a file. There's also no file limit, besides the memory and disk limitations. Since it's a regular Ets table, unlike with Dets, all types are fully supported.
Installation
The package can be installed by adding :persistent_ets to your list of
dependencies in mix.exs:
def deps do
 [
 {:persistent_ets, "~> 0.1.0"}
]
end
Copyright and License
Copyright (c) 2017 Michał Muskała
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

PersistentEts

Ets table backed by a persistence file.
The table is persisted using the :ets.file2tab/2 and :ets.tab2file/3
functions.
Table is to be created with PersistentEts.new/3 in place of :ets.new/2.
After that all functions from :ets can be used like with any other table,
except :ets.give_away/3 and :ets.delete/1 - replacement functions are
provided in this module. The :ets.setopts/2 function to change the heir
is not supported - the heir setting is leveraged by the persistence mechanism.
Like with regular ets table, the table is destroyed once the owning process
(the one that called PersistentEts.new/3) dies, but the table data is persisted
so it will be re-read when table is opened again.
Example
pid = spawn(fn ->
 :foo = PersistentEts.new(:foo, "table.tab", [:named_table])
 :ets.insert(:foo, [a: 1])
end)
Process.exit(pid, :diediedie)
PersistentEts.new(:foo, "table.tab", [:named_table])
[a: 1] = :ets.tab2list(:foo)

 Anchor for this section

 Summary

 Types

 access()

 option()

 persist_opt()

 persistence()

 tab()

 tweaks()

 type()

 Functions

 delete(table)

 Deletes the entire table table.

 flush(table)

 Synchronously dumps the table table to disk.

 give_away(table, pid, data)

 Make process pid the new owner of table.

 new(module, path, opts)

 Creates a new table backed by the file path.

 Anchor for this section

Types

 Link to this type

 access()

 View Source

 Specs

 access() :: :public | :protected

 Link to this type

 option()

 View Source

 Specs

 option() ::
 type()
 | access()
 | :named_table
 | {:keypos, pos_integer()}
 | tweaks()
 | persistence()

 Link to this type

 persist_opt()

 View Source

 Specs

 persist_opt() ::
 {:extended_info, [:md5sum | :object_count]} | {:sync, boolean()}

 Link to this type

 persistence()

 View Source

 Specs

 persistence() ::
 {:persist_every, pos_integer()} | {:persist_opts, [persist_opt()]}

 Link to this type

 tab()

 View Source

 Specs

 tab() :: :ets.tab()

 Link to this type

 tweaks()

 View Source

 Specs

 tweaks() ::
 {:write_concurrency, boolean()} | {:read_concurrency, boolean()} | :compressed

 Link to this type

 type()

 View Source

 Specs

 type() :: :set | :ordered_set | :bag | :duplicate_bag

 Anchor for this section

Functions

 Link to this function

 delete(table)

 View Source

 Specs

 delete(tab()) :: true

Deletes the entire table table.
See :ets.delete/1 for more information.

 Link to this function

 flush(table)

 View Source

 Specs

 flush(tab()) :: :ok

Synchronously dumps the table table to disk.
This can be used to make sure all changes have been persisted, before continuing.
The persistence loop will be restarted.

 Link to this function

 give_away(table, pid, data)

 View Source

 Specs

 give_away(tab(), pid(), term()) :: true

Make process pid the new owner of table.
If successful, message {:"ETS-TRANSFER", table, manager_pid, data} is sent
to the new owner.
This behaviour differs slightly from the behaviour of :ets.give_away/3,
where the pid in the transfer message is the pid of the process giving the
table away. This is not maintained, because the table manager process needs
to keep track of the owner.
The old owner is unlinked from the manager process and the new onwer is linked.
See :ets.give_away/3 for more information.

 Link to this function

 new(module, path, opts)

 View Source

 Specs

 new(atom(), Path.t(), [option()]) :: tab()

Creates a new table backed by the file path.
Starts a "table manager" process responsible for periodically persisting the
table to the file path and links the caller to the process.
Tries to re-read the table from the persistence file. If no such file exists,
a new table is created. Since options a table was created with are persisted
alongside the table data, if the options the table was created with
differ from the current options an error occurs. It's advised to manually
transfer the data to the new table, with new options, if a change if options
is needed.
If the table was created with extended info, it will be read using the verify
option. For information on what this means, refer to :ets.file2tab/2.
Changing the :heir option on the returned table is not supported, since it's
leveraged by the persistence mechanism for correct operation.

 Options

	:path (required) - where to store the table file,
	:persist_every - how often to write the table to the file
in milliseconds (default: 5_000),
	:persist_opts - options passed to :ets.tab2file/3 when saving the table

For other options refer to the :ets.new/2 documentation.
The :heir option is not supported as it's leveraged by the persistence system
to guarantee the best possible durability.
The :private option is not supported since the manager process needs access
to the table in order to save it to the file.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

