

 Pathex

 v2.1.0

 Table of contents

 	Pathex

 	Changelog

 	Tutorials

 	Basics

 	Cheatsheet

 	Lenses tutorial

 	Modifiers tutorial

 	Path

 	Modules

 	Pathex

 	Pathex.Combinator

 	Pathex.Debug

 	Pathex.Lenses

 	Pathex.Error

Pathex

Speed or composability? Choose both!
What is Pathex?
Pathex is a library for performing fast actions with nested data structures in Elixir.
With pathex you can trivially set, get and update values in structures in a functional manner.
It provides all necessary logic to manipulate data structures in different ways using flexible functional lens pattern.
Why another library?
Existing methods of accesssing data in nested structures are either slow (like Focus) or do not provide enough functionality (like Access). For example setting the value in structure with Pathex is 70-160x faster than Focus or 2-3x faster than put_in and get_in
You can checkout benchmarks at https://github.com/hissssst/pathex_bench

Usage
Pathex is really simple and straightforward to use (almost like Enum). You don't need to learn any specific language, just create paths with path and use verbs with them.
Add it to your module
This will import path macro and operators and require Pathex
use Pathex
Or just import Pathex

Create the path
path_to_streets = path :user / :private / :addresses / 0 / :street
path_in_json = path "users" / 1 / "street", :json
This creates closure which can get, set, update and delete values in this path
Use the path
{:ok, "6th avenue" = street} =
 %{
 user: %{
 id: 1,
 name: "hissssst",
 private: %{
 phone: "123-456-789",
 addresses: [
 [city: "City", street: "6th avenue", mail_index: 123456]
]
 }
 }
 }
 |> Pathex.view(path_to_streets)

%{
 "users" => %{
 1 => %{"street" => "6th avenue"}
 }
} = Pathex.force_set!(%{}, path_in_json, street)
Features
Pathex has a lot of different features and can even compete with code written by hand in terms of efficiency.
Pathex significantly reduces the time to write a code which manipulates nested structure, while
providing efficiency and composability. No more functions like get_users, set_users, update_users! No more XPaths, JSONPaths, CSS Selectors!
Easy to use
It's not harder to use than Map or Enum! Check out the cheatsheet for common tasks.
Pathex also provides more information about errors than any other tool.
iex(1)> field = :email
iex(2)> Pathex.view!(%{}, path(:users) ~> all() ~> path(:personal / field))
** (Pathex.Error)
 Couldn't find element

 Path: path(:users) ~> all() ~> path(:personal / :email)

 Structure: %{}
Fast
Paths are just a set of pattern-matching cases.
This is done to extract maximum efficiency from BEAM's pattern-matching compiler.
Code for viewing variables for path
path(1 / "y", :map)

Almost equals to
case input do
 %{1 => %{"y" => res}} ->
 {:ok, res}

 _ ->
 :error
end
Reusable
One path can be used to update, get, set, delete a value in the structure!
And paths can be composed together.
This composition is very efficient, there's no need to concat lists like Access does.
User structure
user = %User{
 personal: %{fname: "Kabs", sname: "Rocks"},
 phone: "123-456-789"
}

Path to username in user structure
username = path(:personal / :fname)

Get a username
{:ok, "Kabs"} = Pathex.view(user, username)

Set a username
another_user =
 %User{
 personal: %{fname: "Blabs", sname: "Rocks"},
 phone: "123-456-789"
 } = Pathex.set!(user, username, "Blabs")

Get all usernames!
import Pathex.Lenses
["Kabs", "Blabs"] =
 [
 user,
 another_user
]
 |> Pathex.view!(all() ~> username)
Pathex can be used to manipulate different nested data structure. From GenServer state to HTML or Elixir's AST!
Extensible
Pathex is built around simple primitive called path-closure, which is a simple closure with clearly defined specification. Anything complying with Pathex.t() spec can be used within Pathex.
Installation
def deps do
 [
 {:pathex, "~> 2.0"}
]
end
Contributions
Welcome! If you want to get your hands dirty, you can check existing TODO's.
By the way
If you have any suggestions or want to change something in this library don't hesitate to open an issue. If you have any whitepapers about functional lenses, you can add them in a PR to the bottom of this readme

Changelog

2.1
Breaking
	Updating and viewing keywords with star and some lenses now doesn't raise when they're used against non-proper keyword

Non-breaking
	Concatenated paths now can force_over for not only maps
	Fixed debug lens
	Added ability to pass calls and arbitary structures into path macro
	Unrolled some clauses for star and some for extra efficiency

2.0
Breaking
	Reworked star lens. Now it is less optimistic and returns :error when no values were viewed/updated
	Removed sigils
	Removed deprecated lens id
	Removed deprecated lens either
	Removed recur function

Non-breaking
	compose function for recursive lens
	delete method for all paths, lenses and higher order functions
	inspect method for all paths, lenses and higher order functions
	Matchable updater for lists and maps
	Builders are selected for combination (not for mod as they used to)
	Reworked documentation
	Annotated paths

1.3.0
Breaking
None! (See deprecated in Non-breaking)
Non-breaking
	Deprecated id lens

	Deprecated either lens

	Fixed bug with concatenation context overlapping

	some lens

	star lens

	matching lens

	filtering lens

	Removed some dead code

	Moved lenses code to separate modules

1.2.0
Breaking
None!
Non-breaking
	star lens
	all lens

1.1.0
Breaking
None!
Non-breaking
	||| operator
	stack-optimized version of ~> operator
	stack-optimized version of ||| operator

1.0.0
Breaking
	force_set/get/set clause in closure was renamed to force_update/view/update
and added a special argument with default value in it

Non-breaking
	alongside macro
	stack-optimized version of &&& operator
	path code generation size assertion
	better documentation format
	id lens
	either lens
	any lens

Yeah, it starts from 1.0.0
I can describe previous versions if anybody needs this. Just open an issue! :)

Basics

This guide will show the basics of Pathex. This is the best place to start learning Pathex.
It won't take more than 5 minutes.
As README says, Pathex is a library for working with collections and nested key-value structures.
Pathex uses powerful functional abstraction called lens (in Pathex we call it path or path-closure, you'll later see why).
Path is a basically a path to value in nested structure, almost like filesystem path.
Create paths
First of all, we need to know how to create paths. Path can be created with Pathex.path/2 macro.
For example:
p = path :x / :y
Note the "/". That's why the library is called Pathex
This path specifies a way to get (or set, or delete or whatever) value 1 from %{x: %{y: 1}}
Note:
You don't have to capture used variables
x = 1
path :some_atom / x # Right
path :some_atom / ^x # Wrong

Each type of value used in path corresponds to one or more types of Elixir collections
	Strings, tuples, maps, functions, lists are treated only as Map keys.
	Atoms are treated as Map or Keyword keys.
	Positive integers are treated as Map keys or List and Tuple indexes
	Negative integers are treated as Map keys or first element in List's view or
prepending element in List's update or force_set operations
	Variables are treated the same way as the type they have in runtime. For example, variables containing negative
integers are treated as negative integer values. Unfortunately, it is not possible to know variable type at compile-time,
that's why Pathex generates code for all possible types. See performance tips for more information.

Use paths
Alright, we have a path. Now, we need to know how to use it
Let's take a value from nested structure
iex> p = path :usernames / 0
iex> Pathex.view(%{usernames: ["SubZero", "Scorpion"]}, p)
{:ok, "SubZero"}
There are a lot of other ways to use paths. Every macro with human-readable name
(except path) is a macro for using path in some way, check Pathex documentation.
In all such macros first argument is an input structure and the second argument is a path-closure itself
Note:
Path-closure which are created inside path-using macro are optimised to have
only one operation generated (instead of default three).
You can read more about path-closures and operations here

As usual
	Macro without ! always return {:ok, result} or :error
	Macro with ! return result or raise Pathex.Error

Compose paths
Path-closures can be composed together to create new path-closure,
every path comosition macro is a binary operator. Some compositions
are optimized to have generate one closure even if multiple closures
are used.
You can concat paths with Pathex.~>/2 composition macro
iex> p1 = path :x
iex> p2 = path :y
iex> composed_path = p1 ~> p2
iex> 1 = Pathex.view(%{x: [y: 1]}, composed_path)
Think about paths composition just like paths concatenation in shell
For example
iex> first_user = path :users / 0 # users/0
iex> name = path :name # name
iex> first_user_name = first_user ~> name # users/0/name

Prebuilt paths
Pathex provides some prebuilt paths for non-standart data manipulation. You
can find them in Pathex.Lenses module. You can read more about them in
lenses guide
For example Pathex.Lenses.star/0 lens works just like * in filesystem path.
Performance tips
General rule: the more data you provide to Pathex at compile-time the better
For example:
path(1 / :x / :y, :json)
works faster than
path(1 / :x / :y)
Because :json mod optimizes closure to one big case,
while default :naive mod generates nested cases
And, in this example:
path(1 / :x / :y)
works faster than
x = :x; path(1 / x / :y)
Because constants provide more information about available type.
This means that for :x pathex know that this can be a to Keyword or Map,
while x means that this is a variable which can contain List/Tuple index or Map/Keyword value
And, in this example:
path(1 / x / :y)
works faster than
path(1) ~> path(x) ~> path(:y)
Because paths concatenation actually creates a path which calls all operands internally
which increases the call stack and makes concatenated path handle errors by hand

Cheatsheet

This documentation page is intended to provide some common use cases of Pathex.
Operations
This section describes actions which can be used with path-closures.
Note that for single-key operations Pathex is slightly slower than Map or Keyword
	Map	Pathex
	Map.fetch/2	Pathex.view/2
	Map.get/3	Pathex.get/3
	Map.update!/3	Pathex.over/3
	Map.update/4	Pathex.force_over/4
	Map.put/3	Pathex.force_set/3
	Map.replace/3	Pathex.set/3
	Map.delete/2	Pathex.delete/2

Nested
This section describes how Pathex can be used instead of Access for accessing nested data structures.
Note that Pathex is 2 to 4 times faster than Access
	Access	Pathex
	get_in(s, [:x, :y, :z])	Pathex.get(s, path(:x / :y / :z))
	put_in(s, [:x, :y, :z], v)	Pathex.set(s, path(:x / :y / :z), v)

Note that Pathex works with structures (i.e. %User{}) like maps and doesn't need any special behaviour implemented in the module. Plus Pathex also works with tuples and lists
This means that this code
structure
|> get_in([:x, :y, :z])
|> Enum.at(10)
|> elem(1)
|> get_in([:z, :y, :x])
Can be rewritten to
Pathex.view(structure, path(:x / :y / :z / 10 / 1 / :z / :y / :x))
Enumerables and lenses
	Enum	Pathex
	Enum.find/2	Pathex.Lenses.some/0
	Enum.map/2	Pathex.Lenses.all/0
	Enum.filter_map/3	Pathex.Lenses.star/0
	Enum.at/2	path()

More examples in Lenses tutorial
Traverse leaves
This function traverses all leaves in the structure
use Pathex; import Pathex.Combinator; import Pathex.Lenses

def leaves(iterlens \\ star()) do
 combine(fn recursive ->
 iterlens ~> (recursive ||| matching(_))
 end)
end

[2, 1, [:dot, 1234]] =
 %{
 x: 1,
 y: 2,
 meta: %{
 type: :dot,
 id: 1234
 }
 }
 |> Pathex.view!(leaves)
You can change the star() lens to whatever lens you prefer.
For example, for parsed HTML documents you can use star() ~> path(2) to
not traverse attributes. And if you want to find one leaf, you can use some()
Walk structure
If you want to walk the whole structure, not only leaves, but the structure and
it's substructures too, you can use this function
use Pathex; import Pathex.Combinator; import Pathex.Lenses

Like Macro.postwalk but for any tree-like structure
def postwalking(iterlens, predicate) do
 combine(fn recursive ->
 predicate
 ~> (
 alongside([
 iterlens ~> recursive,
 matching(_)
])
 ||| matching(_)
)
 ||| (iterlens ~> recursive)
 end)
end

Like Macro.prewalk but for any tree-like structure
def prewalking(iterlens, predicate) do
 combine(fn recursive ->
 predicate
 ~> (
 alongside([
 matching(_),
 iterlens ~> recursive
])
 ||| matching(_)
)
 ||| (iterlens ~> recursive)
 end)
end

walking = postwalking(star(), matching(%{}))

This code updates all maps and submaps in the structure
%{
 size: 3,
 x: 1,
 y: 2,
 meta: %{
 type: :dot,
 id: 1234,
 size: 3,
 empty_map_in_list: [[[%{size: 0}]]]
 }
} =
 %{
 x: 1,
 y: 2,
 meta: %{
 type: :dot,
 id: 1234,
 empty_map_in_list: [[[%{}]]]
 }
 }
 |> Pathex.over!(walking, & Map.put(&1, :size, map_size(&1)))

Lenses tutorial

This guide will show you how to create powerful lenses using Pathex.Lenses module. Here we will take a look at common tasks in nested data structure manipulation which can be solved using Pathex.Lenses.
For all values in collection
What if we need to update all values in the collection matching specific pattern?
This simple task can be solved using Elixir's Enum module but it is quite tough
to be polymorphic and reusable for different patterns or types of collections
Let's say we have a list of users with roles and we want to add access to admin
page for all admins:
The list looks like this
users = [
 %{fname: "John", sname: "Doe", role: "CEO", access: ["admin_page", "users_page"]},
 %{fname: "Mike", sname: "Lee", role: "admin", access: ["users_page"]},
 %{fname: "Fred", sname: "Can", role: "admin", access: ["users_page"]},
 %{fname: "Dave", sname: "Lee", role: "user", access: []}
]
With Enum this would look like
new_users =
 Enum.map(users, fn
 %{role: "admin", access: access} = user ->
 %{user | access: Enum.uniq(["admin_page" | access])}

 other ->
 other
 end)
But using Pathex.Lenses.star/0 and Pathex.Lenses.matching/1 this would look like
import Pathex
import Pathex.Lenses

`l` in the end stands for `lens`
adminl = matching(%{role: "admin"})
accessl = path(:access)

`star()` works like `*` in shell.
so `star() ~> path(:file)` works almost like `*/file`

Here `star() ~> adminl` translates to `select * where role == "admin"`
and `star() ~> adminl ~> accessl` translates to `select access where role == "admin"`
new_users = Pathex.over!(users, star() ~> adminl ~> accessl, & Enum.uniq(["admin_page" | &1]))
For any value in collection
What if we need to update first value matching specific pattern
(in our example it will be {:option, _}) and we need to
return {:ok, updated_collection} if the
first value was updated and :error if not
This task can be also done using Enum, but what if we can write the solution
which would be as simple as saying Update first value in collection, which matches the pattern?
With Enum this would look really terrible.
I couldn't come up with a polymorphic solution that would fit in less than 20 lines of code.
But with Pathex.Lenses.some/0 and Pathex.Lenses.matching/1 this would be as simple as
use Pathex; import Pathex.Lenses
def update_first_option(collection, update_func) do
 Pathex.over(collection, some() ~> matching({:option, _}), update_func)
end
For any value in nested structure
Allright, we have a nested structure with various types inside and we need to find any value in any map
for which the special condition occurs and change it
Think of an HTML-like structure without attributes like
{"html", [
 {"head", [...]},
 {"body", [...]}
]}
And we need to update just one label with string which ends with "Please click subscribe button"
In Elixir we'd need to write a recursive function, which would untrivially update tuples and lists
Using Pathex.Combinator.combine/1, Pathex.Lenses.some/0 and Pathex.Lenses.filtering/1 it's very simple
use Pathex; import Pathex.Lenses; import Pathex.Lenses.Recur

path_to_subscribe =
 combine(fn recursive -> some() ~> (recursive() ||| matching()) end)
 ~> matching({"label", _}) # To find a label
 ~> path(1) # To get to value of a label
 ~> filtering(& String.ends_with?(&1, "Please click subscribe button")

Pathex.set(document, path_to_subscribe, "Do not subscribe, hehe")
Recurring
Sometimes you may want to create a recurring lens. We have a Pathex.Combinator.combine/1 which can help you. It is a fixed point combinator for paths, what may sound too smart, but this is a function which makes your lens be able to compose with itself.
Consider this representation of an HTML
{"html", [], [
 {"body", [], ...}
 {"html", [], ...}]}
And we want to update a node which has id=big-image. It would be nice to have a lens which would do something like
path(2) ~> some()
 ~> path(2) ~> some()
 ~> path(2) ~> some()`
Until it finds the tag we're looking for.
Meet the Pathex.Combinator.combine/1. Using this higher order function we can represent lens combining with itself.
The lens above can be specified with this code.
combine(fn recursive ->
 path(2) ~> some() ~> recursive
end)
And we also need to find a specific id, so let's combine this lens with matching(_)
path_to_id =
 combine(fn recursive ->
 path(2) ~> some ~> recursive
 end)
 ~> matching({_, [{"id", "big-image"}], _})
However, it has a drawback -- this recursive lens will never succeed, because we didn't specify the exit. Let's fix it
path_to_big_image =
 combine(fn recursive ->
 path(2) ~> some ~> (recursive ||| matching(_))
 end)
 ~> matching({_, [{"id", "big-image"}], _})

{"div", [{"id", "big-image"}], [
 {"img", [{"src", "/image.png"}], ""}]} = Pathex.view!(html, path_to_big_image)

Modifiers tutorial

Every pathex path created with Pathex.path/2 can have modifier specified as a second argument.
Modifier defines behaviour of the path in a way of structures it can match inside.
For example, path created with :map modifier can only match maps inside them.
Modifiers can be specified only in form of an atom, variables are not accepted.
Usage
Currently only three modifiers are available:
	:json which matches lists and maps
	:naive which matches lists, tuples, keywords and maps
	:map which matches only maps

Default modifier for every path is :naive

Modifiers are specified as second argument in path/2 like
path :x / :y, :naive
path 0 / :x, :json
Naive modifier
This modifier matches lists, tuples, keyword and maps
It generates matches for every structure like
For example path(:x, :naive) generates something like
case input do
 %{x: value} ->
 ...
 [{a, _} | _] = k when is_atom(a) ->
 case Keyword.fetch(k, :x) do
 ...
 end
end
Note:
Variables are treated as their values

Json modifier
This modifier specifies paths which macth lists (for integer keys only) and maps
Note:
This modifier treats variables as map keys, this means that
iex> x = 1
iex> p = path x, :json
iex> :error = Pathex.view([1, 2, 3], p)
iex> {:ok, :x} = Pathex.view(%{1 => :x}, p)

But passed integers are exanded into list matching
this makes it very efficient to view data from the structure
For example path 1 / :x, :json generates closure with
case input do
 [_, %{x: value} | _] ->
 {:ok, value}

 %{1 => %{x: value}} ->
 {:ok, value}

 _ ->
 :error
end
Which extracts maximum efficiency from BEAM's pattern-matching
Map modifier
This modifier matches only maps and therefore is the fastest modifier available
For example path 1 / :x / "y", :map will generate closure with
case input do
 %{1 => %{x: %{"y" => value}}} ->
 {:ok, value}

 _ ->
 :error
end
Annotations
Usually a key passed to path can match to one or more types. For example, key :x can be a key in Map like %{x: 1} and a key in Keyword like [x: 1]. To make key match only certain type it can be annotated to the exact type using this syntax path(:x :: :map). Available annotations are :map, :keyword, :list and :tuple.
When? How? & Why?
You should use modifiers when you need to specify type of inner structures to match
or reduce amount of generated code by Pathex or improve performance of the path

Path

Note:
This is a documentation about internal Pathex API and it is subject to change
You do not need to read this unless you are interested in Pathex internals, want to hack Pathex or want to create your own Pathex compatible lens

This page describes what a Pathex.t() is and how to create and use one.
Most of the time you might want to use Pathex.path/2 and Pathex.Lenses to create paths.
If you find their functionality limited and unapplicable for your use case, you can create you own Pathex-compatible closure. This doc describes how to do this.
Path-closure
Path-closure is specified in Pathex.t(), and it's a closure of two arguments:
	Operation name. It is an atom, one of :view, :update, :force_update, :delete, :inpsect
	Operation arguments. It is a tuple which size depends on an operation

Currently every path-closure has 5 operations:
path_closure =
 fn
 # Operation which gets value from structure and return `function.(value)`
 :view, {structure, hook_function} -> ...

 # Operation which returns new structure with updated value
 :update, {structure, hook_function} -> ...

 # Operation which returns new structure with updated value, or default set
 :force_update, {structure, hook_function, default} -> ...

 # Operation which returns new structure with deleted value.
 :delete, {structure, delete_function} -> ...

 # Inspects the path. Returns Elixir's AST. This is used only for error-logging and debugging
 :inspect, _ -> ...
 end
Here structure is the structure which is viewed or updated by this path and hook_function or delete_function is a hook function described in the next section. If the value in the structure defined by the path is not present, path-closure must return :error. If it's present, path-closure must return whatever is returned by hook_function(value)
Hook function
You can see that for every operation except inspect accepts some function as a second argument. This function is called a hook function and it must be called on the value from the structure defined by the path (if the value is present). Hook function is required to
Return types
Here function returns {:ok, result} | :error
And delete_function returns {:ok, result} | :error | :delete_me
	{:ok, result} returns updated value for update/force_update/delete operations and value to be returned for view
	:error in case function call has not succeeded
	:delete_me is returned by function only for :delete operation clause. It means that the value upon which the hook function was called must be deleted. For all other clauses, this must be treated as an invalid hook function and error must be raised

Qualities
Special requirements are described here
	Path-closure must not raise or throw if it's called with correct operation and argument tuple

	Path-closure must be idempotent. This means that path-closure must return the same result for the same inputs every time it's called.

	Path-closure should not produce any side-effects. Thought it actually can produce side-effects, you shouldn't count on them.

Pathex

This module contains functions and macros to be used with Pathex and i
To use Pathex just insert to your context. You can import Pathex in module body or even in function body.
require Pathex
import Pathex, only: [path: 1, path: 2, "~>": 2, ...]
Or you can use use
defmodule MyModule do

 # `default_mod` option is optional
 # when no mod is specified, `:naive` is selected
 use Pathex, default_mod: :json

 ...
end
This will import all operatiors and path macro
Any macro here belongs to one of three categories:
	Macro which creates path closure (only path/2)
	Macro which uses path closure as path (over/3, set/3, view/2, ...)
	Macro which creates path composition (~>/2, |||/2, ...)

 Anchor for this section

 Summary

 Types

 force_update_args(input, output)

 inner_func(output)

 Function which is passed to path-closure as second element in args tuple

 inspect_args()

 mod()

 More about modifiers

 pathex_compatible_structure()

 This depends on the modifier

 result(inner)

 Value returned by non-bang path call

 t()

 Also known as path-closure

 t(input, output)

 Also known as path-closure

 update_args(input, output)

 Functions

 Pathex.Combinator - Pathex v2.1.0

Pathex.Combinator

Combinator for lenses
Read Pathex.Combinator.combine/1 documentation

 Anchor for this section

 Summary

 Functions

 combine(path_func, max_depth \\ :infinity)

 This function creates a recursive path from path defined in path_func
Consider this example

 Anchor for this section

Functions

 Link to this function

 combine(path_func, max_depth \\ :infinity)

 View Source

 @spec combine((Pathex.t() -> Pathex.t()), pos_integer() | :infinity) :: Pathex.t()

This function creates a recursive path from path defined in path_func
Consider this example
iex> import Pathex; import Pathex.Lenses
iex> recursive_xpath = combine(fn recursive_xpath ->
iex> path(:x) # Takes by :x key
iex> ~> recursive_xpath # If taken, calls itself
iex> ||| matching(_) # Otherwise returns current structure
iex> end)
iex>
iex> Pathex.view!(%{x: %{x: %{x: %{x: 1}}}}, recursive_xpath)
1
iex> Pathex.set!(%{x: %{x: %{x: %{x: 1}}}}, recursive_xpath, 2)
%{x: %{x: %{x: %{x: 2}}}}
The second argument of this function specifies the maximum depth. It's infinity be default,
but you can specify this as any positive integer. It is useful when you're developing lens
and you're not sure whether the lens will or won't loop.
For example
Combinator lens with limit
limited = combine(fn rec -> path(:x) ~> rec end, 100_000)
:error = Pathex.force_set(%{x: 1}, limited, 123)

And this is without limit
unlimited = combine(fn rec -> path(:x) ~> rec end)
Pathex.force_set(%{x: 1}, unlimited, 123) # Infinite loop

 Pathex.Debug - Pathex v2.1.0

Pathex.Debug

Special lens which logs all operation
and performs the same way matching(_) does

 Anchor for this section

 Summary

 Functions

 debug(prefix \\ "")

 Anchor for this section

Functions

 Link to this function

 debug(prefix \\ "")

 View Source

 Pathex.Lenses - Pathex v2.1.0

Pathex.Lenses

Module with collection of prebuilt paths

 Anchor for this section

 Summary

 Functions

 all()

 Path function which works with all possible keys it can find
It takes all keys and than applies inner function (or concated path)
If any application fails, this lens returns :error

 any()

 Path function which works with any possible key it can find
It takes any key and than applies inner function (or concated path)

 filtering(predicate)

 This macro creates path-closure successes only when predicate returns truthy value.

 matching(pattern)

 This macro creates path-closure which successes only when input matches the pattern.

 some()

 Path function which applies inner function (or concated path-closure)
to the first value it can apply it to

 star()

 Path function which applies inner function (or concated path-closure)
to every value it can apply it to

 Anchor for this section

Functions

 Link to this function

 all()

 View Source

 @spec all() :: Pathex.t()

Path function which works with all possible keys it can find
It takes all keys and than applies inner function (or concated path)
If any application fails, this lens returns :error
Example:
iex> require Pathex; import Pathex
iex> alll = Pathex.Lenses.all()
iex> Pathex.over!([%{x: 0}, [x: 1]], alll ~> path(:x), fn x -> x + 1 end)
[%{x: 1}, [x: 2]]
iex> Pathex.view!(%{x: 1, y: 2, z: 3}, alll) |> Enum.sort()
[1, 2, 3]
iex> Pathex.set([x: 1, y: 0], alll, 2)
{:ok, [x: 2, y: 2]}

 Link to this function

 any()

 View Source

 @spec any() :: Pathex.t()

Path function which works with any possible key it can find
It takes any key and than applies inner function (or concated path)
Example:
iex> require Pathex
iex> anyl = Pathex.Lenses.any()
iex> {:ok, 1} = Pathex.view %{x: 1}, anyl
iex> {:ok, [9]} = Pathex.set [8], anyl, 9
iex> {:ok, [x: 1, y: 2]} = Pathex.force_set [x: 0, y: 2], anyl, 1
Note that force setting value to empty map has undefined behaviour
and therefore returns an error:
iex> require Pathex
iex> anyl = Pathex.Lenses.any()
iex> :error = Pathex.force_set(%{}, anyl, :well)
And note that this lens has keywords at head of list at a higher priority
than non-keyword heads:
iex> require Pathex
iex> anyl = Pathex.Lenses.any()
iex> {:ok, [{:x, 1}, 2]} = Pathex.set([{:x, 0}, 2], anyl, 1)
iex> {:ok, [1, {:x, 2}]} = Pathex.set([0, {:x, 2}], anyl, 1)
iex> {:ok, [1, 2]} = Pathex.set([{"some_tuple", "here"}, 2], anyl, 1)

 Link to this function

 filtering(predicate)

 View Source

This macro creates path-closure successes only when predicate returns truthy value.
This function is useful when composed with star/0 and some/0
Example:
iex> import Pathex.Lenses; import Pathex
iex> adminl = filtering(& &1.role == :admin)
iex> {:ok, %{name: "Name", role: :admin}} = Pathex.view(%{name: "Name", role: :admin}, adminl)
iex> :error = Pathex.view(%{role: :user}, adminl)

iex> import Pathex.Lenses; import Pathex
iex> dots2d = [{1, 1}, {1, 5}, {3, 0}, {4, 3}]
iex> higher_than_2 = filtering(fn {_x, y} -> y > 2 end)
iex> {:ok, [{1, 5}, {4, 3}]} = Pathex.view(dots2d, star() ~> higher_than_2)

 Link to this macro

 matching(pattern)

 View Source

 (macro)

This macro creates path-closure which successes only when input matches the pattern.
This function is useful when composed with star/0 and some/0
Example:
iex> import Pathex.Lenses; import Pathex
iex> adminl = matching(%{role: :admin})
iex> {:ok, %{name: "Name", role: :admin}} = Pathex.view(%{name: "Name", role: :admin}, adminl)
iex> :error = Pathex.view(%{}, adminl)

iex> import Pathex.Lenses; import Pathex
iex> dots2d = [{1, 1}, {1, 5}, {3, 0}, {4, 3}]
iex> higher_than_2 = matching({_x, y} when y > 2)
iex> {:ok, [{1, 5}, {4, 3}]} = Pathex.view(dots2d, star() ~> higher_than_2)

 Link to this function

 some()

 View Source

 @spec some() :: Pathex.t()

Path function which applies inner function (or concated path-closure)
to the first value it can apply it to
Example:
iex> require Pathex; import Pathex
iex> somel = Pathex.Lenses.some()
iex> Pathex.view!([x: [11], y: [22], z: 33], somel ~> path(0))
11
iex> Pathex.set!([x: %{y: 0}, z: %{y: 0}], somel ~> path(:y, :map), 1)
[x: %{y: 1}, z: %{y: 0}]
iex> Pathex.view([x: 1, y: 2, z: 3], somel)
{:ok, 1}
Note:
Force update fails for empty structures

Think of this function as star() ~> any() but optimized to work with only first element

 Link to this function

 star()

 View Source

 @spec star() :: Pathex.t()

Path function which applies inner function (or concated path-closure)
to every value it can apply it to
Example:
iex> require Pathex; import Pathex
iex> starl = Pathex.Lenses.star()
iex> Pathex.view!(%{x: [1], y: [2], z: 3}, starl ~> path(0)) |> Enum.sort()
[1, 2]
iex> Pathex.set!(%{x: %{y: 0}, z: [3]}, starl ~> path(:y, :map), 1)
%{x: %{y: 1}, z: [3]}
iex> Pathex.view([x: 1, y: 2, z: 3], starl)
{:ok, [1, 2, 3]}
Note:
It returns :error when no data was found or changed

Think of this function as filter_map. It is particularly useful for filtering
and selecting needed values with custom functions or matching/1 macro
Example:
iex> require Pathex; import Pathex; require Pathex.Lenses
iex> starl = Pathex.Lenses.star()
iex> structure = [{1, 4}, {2, 8}, {3, 6}, {4, 10}]
iex> #
iex> # For example we want to select all tuples with first element greater than 2
iex> #
iex> greater_than_2 = Pathex.Lenses.matching({x, _} when x > 2)
iex> Pathex.view(structure, starl ~> greater_than_2)
{:ok, [{3, 6}, {4, 10}]}

 Pathex.Error - Pathex v2.1.0

Pathex.Error exception

Simple exception for bang! functions (like Pathex.view!/2) errors.
Note:
Some new field may be added in the future

 Anchor for this section

 Summary

 Types

 t()

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 @type t() :: %Pathex.Error{
 __exception__: term(),
 message: String.t(),
 op: atom(),
 path: Pathex.t(),
 structure: Pathex.pathex_compatible_structure()
}

OEBPS/dist/app-db64fcdc429a9b460caa.js
