

 partisan

 v5.0.0-beta.13

 Table of contents

 	Partisan

 	LICENSE

 	CHANGELOG

 	Contributor Covenant Code of Conduct

 	Modules

 	partisan

 	partisan_config

 	partisan_peer_service

 	partisan_peer_service_client

 	partisan_peer_service_console

 	partisan_peer_service_events

 	partisan_peer_service_manager

 	partisan_peer_service_server

 	partisan_peer_service_sup

 	partisan_client_server_peer_service_manager

 	partisan_hyparview_peer_service_manager

 	partisan_hyparview_xbot_peer_service_manager

 	partisan_pluggable_peer_service_manager

 	partisan_static_peer_service_manager

 	partisan_full_membership_strategy

 	partisan_membership_set

 	partisan_membership_strategy

 	partisan_plumtree_backend

 	partisan_plumtree_broadcast

 	partisan_plumtree_broadcast_handler

 	partisan_plumtree_util

 	partisan_scamp_v1_membership_strategy

 	partisan_scamp_v2_membership_strategy

 	partisan_acknowledgement_backend

 	partisan_causality_backend

 	partisan_promise_backend

 	partisan_acceptor_pool

 	partisan_acceptor_socket

 	partisan_acceptor_socket_pool_sup

 	partisan_peer_connections

 	partisan_peer_socket

 	partisan_gen

 	partisan_gen_server

 	partisan_gen_statem

 	partisan_inet

 	partisan_monitor

 	partisan_remote_ref

 	partisan_rpc

 	partisan_rpc_backend

 	partisan_test_server

 	partisan_compose_orchestration_strategy

 	partisan_kubernetes_orchestration_strategy

 	partisan_orchestration_backend

 	partisan_orchestration_strategy

 	partisan_trace_file

 	partisan_trace_orchestrator

 	partisan_app

 	partisan_sup

 	partisan_analysis

 	partisan_transform

 	partisan_transformed_module

 	partisan_util

 	partisan_vclock

 	partisan_gen_fsm

 	partisan_otp_adapter

Partisan

[image: Build Status]
Partisan is a scalable and flexible, TCP-based membership system and distribution layer for the BEAM. It bypasses the use of Distributed Erlang for manual connection management via TCP, and has several pluggable backends for different deployment scenarios.
Partisan features
	Erlang-like API
	OTP compliance: Partisan offers re-implementations of gen_server and gen_statem.
	Monitoring: Partisan offers an API similar to the modules erlang and net_kernel for monitoring nodes and remote processes.
	Messages are sent via TCP connections that are maintained to a subset or all cluster members (depending on the backend).
	Failure detection is performed using TCP.
	Connections are verified at each gossip round.
	Configurable number of connections between nodes (named channels and fanout).
	On join, gossip is performed immediately, instead of having to wait for the next gossip round.
	Single node testing, facilitated by a disterl control channel for figuring out which ports the peer service is operating at.

Partisan has many available backends a.k.a peer service managers:
	partisan_pluggable_peer_service_manager: full mesh with TCP-based failure detection. All nodes maintain active connections to all other nodes in the system using one or more TPC connections.
	partisan_hyparview_peer_service_manager.: modified implementation of the HyParView protocol, peer-to-peer, designed for high scale, high churn environments. A hybrid partial view membership protocol, with TCP-based failure detection.
	partisan_client_server_peer_service_manager.: star topology, where clients communicate with servers, and servers communicate with other servers.
	partisan_static_peer_service_manager: static membership, where connections are explicitly made between nodes

Requirements
	Erlang/OTP 24+

Documentation
Find the documentation at hex.pm.
Alternatively you can build it yourself locally using make docs.
The resulting documentation will be found in the docs directory.
Who is using Partisan
	Erleans
	PlumDB
	Bondy
	Leapsight

LICENSE

Copyright (c) 2021-2022, Leapsight Technologies Limited
Copyright (c) 2016, Christopher Meiklejohn
Copyright (c) 2015, Basho Technologies, Inc
Copyright (c) 2015, Helium Systems, Inc
All rights reserved.

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

CHANGELOG

v5.0.0 (beta)
API
In general, the API was redesigned to concentrate all functions around two modules: partisan and partisan_peer_service.
Changes
	partisan module was repurposed as a replacement for the erlang module for use cases related to distribution e.g. erlang:nodes/0 -> partisan:nodes/0.
	Several functions previously found in partisan_peer_service, partisan_monitor and partisan_util are now in this module:	partisan:broadcast/2
	partisan:cast_message/2
	partisan:cast_message/3
	partisan:cast_message/4
	partisan:default_channel/0
	partisan:demonitor/1
	partisan:demonitor/2
	partisan:disconnect_node/1.
	partisan:forward_message/2
	partisan:forward_message/3
	partisan:forward_message/4
	partisan:is_alive/0
	partisan:is_connected/1
	partisan:is_connected/2
	partisan:is_fully_connected/1
	partisan:is_local/1
	partisan:is_pid/1
	partisan:is_process_alive/1
	partisan:is_reference/1
	partisan:make_ref/0
	partisan:monitor/1
	partisan:monitor/2
	partisan:monitor/3
	partisan:monitor_node/2
	partisan:monitor_nodes/1
	partisan:monitor_nodes/2
	partisan:node/0
	partisan:node/1
	partisan:node_spec/0
	partisan:node_spec/1
	partisan:node_spec/2
	partisan:nodes/0
	partisan:nodes/1
	partisan:nodestring/0
	partisan:self/0

	Added the following functions:
	partisan_peer_service:broadcast_members/0
	partisan_peer_service:broadcast_members/1
	partisan_peer_service:cancel_exchanges/1
	partisan_peer_service:exchanges/0
	partisan_peer_service:exchanges/1
	partisan_peer_service:get_local_state/0
	partisan_peer_service:inject_partition/2
	partisan_peer_service:leave/1
	partisan_peer_service:member/1
	partisan_peer_service:members_for_orchestration/0
	partisan_peer_service:on_down/2
	partisan_peer_service:on_up/2
	partisan_peer_service:partitions/0
	partisan_peer_service:reserve/1
	partisan_peer_service:resolve_partition/1
	partisan_peer_service:update_members/1

	Use of partisan_peer_service:mynode/0 has been replaced by partisan:node/0 to follow Erlang convention

	Use of partisan_peer_service:myself/0 has been replaced by partisan:node_spec/0 to disambiguate from partisan:node/0.

	Use of Node variable name for node() type (as opposed to Name) and NodeSpec for node_spec() (as opposed to Node) to disambiguate.

	Adde new module partisan_rpc that will provide and API that mirrors Erlangs rpc and erpc modules

	Added partisan_remote_ref to encapsulate the creation of reference and added an optional/alternative representation for encoded pids, references and registered names. The module offers all the functions to convert pids, references and names to/from Partisan encoded references.
	Alternative representation: In cases where lots of references are stored in process state, ets and specially where those are uses as keys, a binary format is preferable to the tuple format in order to save memory usage and avoid copying the term every time a message is send between processes. partisan_remote_ref represents an encoded reference as binary URI. This is controlled by the config option remote_ref_as_uri and remote_ref_binary_padding in case the resulting URIs are smaller than 65 bytes.
 1> partisan_remote_ref:from_term(self()).
 {partisan_remote_reference,nonode@nohost,{partisan_process_reference,"<0.1062.0>"}}
 2> partisan_config:set(remote_ref_as_uri, true).
 ok
 3> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0">>
 4> partisan_config:set(remote_ref_binary_padding, true).
 ok
 5> partisan_remote_ref:from_term(self()).
 <<"partisan:pid:nonode@nohost:0.1062.0:"...>>

Peer Membership
Fixes
	Extracted the use of state_orset from partisan_full_membership_strategy into its own module partisan_membership_set which will allow the possibility to explore alternative data structures to manage the membership set.
	Introduced a membership prune operation to remove duplicate node specifications in the underlying state_orset data structure. This isto avoid an issue where a node will crash and restart with a different IP address e.g. when deploying in cloud orchestration platforms. As the membership set contains node_spec() objects which contain IP addresses we ended up with duplicate entries for the node. The prune operation tries to break ties between these duplicates at time of connection, trying to recognise when a node specification might be no longer valid forcing the removal of the spec from the set.
	Fixes several bugs related to the leave operation in partisan_pluggable_peer_service_manager:	Added a missing call to update the membership set during leave
	Fixed a concurrency issue whereby on self leave the peer service server will restart before being able to sending the new state with the cluster peers and thus the node would remain as a member in all other nodes.

	Resolves an issue partisan_plumtree_broadcast where the all_members set was not updated when a member is removed.
	Resolves the issue where the partisan_plumtree_broadcast was not removing the local node from the broadcast member set.
	Gen Behaviours take new option channel if defined.
	Fixed implementation of on_up and on_down callback functions in partisan_pluggable_peer_service_manager

Changes
	Added function partisan_peer_service_manager:member/1
	Replaced the use of in-process sets in plumtree_broadcast_backend with an ets table for outstanding messages keeping the gen_server stack lean and avoiding garbage collection

Peer Connection management
Fixes
	Fixes a bug where connections where not properly killed during a leave
	Split TLS options for client and server roles	Removed tls_options
	Added tls_client_options and tls_server_options

Changes
	New module peer_service_connections:	Replaces the former peer_service_connections process state data structure and the partisan_connection_cache module.
	As a result, the partisan_connection_cache module has been was removed.
	Checking connection status is now very fast and cheap. The implementation uses ets to handle concurreny. It leverages leverages ets:update_counter/4, ets:lookup_element/3 and ets:select_count/2 for fast access and to minimise copying data into the caller's process heap.

Process and Peer Monitoring
Fixes
	A more complete/safe implementation of process monitoring in partisan_monitor.
	More robust implementation of monitors using the new subscription capabilities provided by peer_service:on_up and peer_service:on_down callback functions.	monitor a node or all nodes
	use node monitors to signal a process monitor when the remote node is disconnected
	local cache of process monitor to ensure the delivery of DOWN signal when the connection to the process node is down.
	avoid leaking monitors
	new supervisor to ensure that partisan_monitor is restarted every time the configured partisan_peer_service_manager is restarted.
	re-implementation based on ets tables
	If using OTP25 the monitor gen_server uses the parallel signal optimisation by placing the process inbox data off heap

Changes
	New api in partisan module following the same name, signature and semantics of their erlang and net_kernel modules counterparts:	partisan:monitor/1
	partisan:monitor/2
	partisan:monitor/3
	partisan:monitor_node/2
	partisan:monitor_nodes/1
	partisan:monitor_nodes/2

OTP compatibility
Fixes
Changes
	Partisan now requires OTP24 or later.
	Upgraded partisan_gen and partisan_gen_server to match their OTP24 counterparts implementation
	Added partisan_gen_statem
	partisan_gen_fsm deprecated as it was not complete and focus was given to the implementation of partisan_gen_statem instead
	Module partisan_mochiglobal has been removed and replaced by persistent_term

Misc
Fixes
	Most existing INFO level logs have been reclassified as DEBUG
	Fixed types specifications in various modules

Changes
	lager dependency has been removed and all logging is done using the new Erlang logger
	Most uses of the orddict module have been replaced by maps for extra performance and better usability
	Most API options using proplists module have been replaced by maps for extra performance and better usability
	In several functions the computation of options (merging user provided with defaults, validation, etc.) has been posponed until (and only if) it is needed for extra performance e.g. partisan_pluggable_peer_servie_manager:forward_message
	More utils in partisan_util
	Added ex_doc (Elixir documentation) rebar plugin
	Upgraded the following dependencies:	uuid
	types
	rebar plugins

Contributor Covenant Code of Conduct

Our Pledge
In the interest of fostering an open and welcoming environment, we as contributors and maintainers pledge to making participation in our project and our community a harassment-free experience for everyone, regardless of age, body size, disability, ethnicity, gender identity and expression, level of experience, nationality, personal appearance, race, religion, or sexual identity and orientation.
Our Standards
Examples of behavior that contributes to creating a positive environment include:
	Using welcoming and inclusive language
	Being respectful of differing viewpoints and experiences
	Gracefully accepting constructive criticism
	Focusing on what is best for the community
	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:
	The use of sexualized language or imagery and unwelcome sexual attention or advances
	Trolling, insulting/derogatory comments, and personal or political attacks
	Public or private harassment
	Publishing others' private information, such as a physical or electronic address, without explicit permission
	Other conduct which could reasonably be considered inappropriate in a professional setting

Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and are expected to take appropriate and fair corrective action in response to any instances of unacceptable behavior.
Project maintainers have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, issues, and other contributions that are not aligned to this Code of Conduct, or to ban temporarily or permanently any contributor for other behaviors that they deem inappropriate, threatening, offensive, or harmful.
Scope
This Code of Conduct applies both within project spaces and in public spaces when an individual is representing the project or its community. Examples of representing a project or community include using an official project e-mail address, posting via an official social media account, or acting as an appointed representative at an online or offline event. Representation of a project may be further defined and clarified by project maintainers.
Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by contacting the project team at christopher.meiklejohn@gmail.com. The project team will review and investigate all complaints, and will respond in a way that it deems appropriate to the circumstances. The project team is obligated to maintain confidentiality with regard to the reporter of an incident. Further details of specific enforcement policies may be posted separately.
Project maintainers who do not follow or enforce the Code of Conduct in good faith may face temporary or permanent repercussions as determined by other members of the project's leadership.
Attribution
This Code of Conduct is adapted from the Contributor Covenant, version 1.4, available at http://contributor-covenant.org/version/1/4

partisan

 Anchor for this section

 Summary

 Types

 channel/0

 forward_opts/0

 listen_addr/0

 message/0

 monitor_nodes_opt/0

 monitor_process_identifier/0

 node_spec/0

 node_type/0

 server_ref/0

 Functions

 broadcast(Broadcast, Mod)

 Broadcasts a message originating from this node.

 cast_message(ServerRef, Msg)

 Cast message to a remote ref

 cast_message(ServerRef, Msg, Opts)

 Cast message to registered process on the remote side.

 cast_message(Node, ServerRef, Msg, Opts)

 Cast message to registered process on the remote side.

 default_channel()

 demonitor(MonitorRef)

 demonitor(MonitorRef, OptionList)

 disconnect_node(Node)

 forward_message(ServerRef, Msg)

 Forward message to registered process on the remote side.

 forward_message(ServerRef, Msg, Opts)

 Forward message to registered process on the remote side.

 forward_message(Node, ServerRef, Msg, Opts)

 Forward message to registered process on the remote side.

 is_alive()

 Returns true if the local node is alive (that is, if the node can be part of a distributed system), otherwise false.

 is_connected(NodeOrSpec)

 Returns the name of the local node.

 is_connected(NodeOrSpec, Channel)

 Returns the name of the local node.

 is_fully_connected(NodeOrSpec)

 Returns the name of the local node.

 is_local(Term)

 Returns the name of the local node.

 is_pid(Pid)

 is_process_alive(Pid)

 Returns the name of the local node.

 is_reference(Pid)

 Returns the name of the local node.

 make_ref()

 Returns a new partisan_remote_ref. This is the same as calling partisan_remote_ref:from_term(erlang:make_ref()).

 monitor(Term)

 deprecated

 monitor(Type, Item)

 Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format: {Tag, MonitorRef, Type, Object, Info}

 monitor(Type, RegPid, Opts)

 Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format

 monitor_node(Node, Flag)

 Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.

 monitor_nodes(Flag)

 monitor_nodes(Flag, Opts)

 The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected.

 node()

 Returns the name of the local node.

 node(Term)

 Returns the node where Arg originates. Arg can be a process identifier, a reference, a port or a partisan remote refererence.

 node_spec()

 Returns the node specification of the local node.

 node_spec(Node)

 Return the partisan node_spec() for node named Node.

 node_spec(Node, Opts)

 Return the tuple {ok, node_spec() for node named Node or the tuple {error, Reason}.

 nodes()

 Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed). Same as nodes(visible).

 nodes(Arg)

 Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed). Same as nodes(visible).

 nodestring()

 Returns the name of the local node as a binary string.

 self()

 Returns the partisan encoded pid for the calling process. This is the same as calling partisan_remote_ref:from_term(erlang:self()).

 start()

 Start the application.

 stop()

 Stop the application.

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 forward_opts/0

 View Source

 -type forward_opts() :: partisan_peer_service_manager:forward_opts().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 monitor_nodes_opt/0

 View Source

 -type monitor_nodes_opt() :: nodedown_reason | {node_type, visible | hidden | all}.

 Link to this type

 monitor_process_identifier/0

 View Source

 -type monitor_process_identifier() ::
 erlang:monitor_process_identifier() | partisan_remote_ref:p() | partisan_remote_ref:n().

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 node_type/0

 View Source

 -type node_type() :: this | known | visible | connected | hidden | all.

 Link to this type

 server_ref/0

 View Source

 -type server_ref() :: partisan_peer_service_manager:server_ref().

 Anchor for this section

Functions

 Link to this function

 broadcast(Broadcast, Mod)

 View Source

 -spec broadcast(any(), module()) -> ok.

Broadcasts a message originating from this node.
The message will be delivered to each node at least once. The Mod passed is responsible for handling the message on remote nodes as well as providing some other information both locally and and on other nodes. Mod must be loaded on all members of the clusters and implement the partisan_plumtree_broadcast_handler behaviour.

 Link to this function

 cast_message(ServerRef, Msg)

 View Source

 -spec cast_message(ServerRef :: server_ref(), Msg :: message()) -> ok.

Cast message to a remote ref

 Link to this function

 cast_message(ServerRef, Msg, Opts)

 View Source

 -spec cast_message(ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) -> ok.

Cast message to registered process on the remote side.

 Link to this function

 cast_message(Node, ServerRef, Msg, Opts)

 View Source

 -spec cast_message(Node :: node(), ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) ->
 ok.

Cast message to registered process on the remote side.

 Link to this function

 default_channel()

 View Source

 Link to this function

 demonitor(MonitorRef)

 View Source

 -spec demonitor(MonitorRef :: reference() | partisan_remote_ref:r()) -> true.

 Link to this function

 demonitor(MonitorRef, OptionList)

 View Source

 -spec demonitor(MonitorRef :: reference() | partisan_remote_ref:r(),
 OptionList :: partisan_monitor:demonitor_opts()) ->
 boolean().

 Link to this function

 disconnect_node(Node)

 View Source

 -spec disconnect_node(Node :: node()) -> boolean() | ignored.

 Link to this function

 forward_message(ServerRef, Msg)

 View Source

 -spec forward_message(ServerRef :: server_ref(), Msg :: message()) -> ok.

Forward message to registered process on the remote side.

 Link to this function

 forward_message(ServerRef, Msg, Opts)

 View Source

 -spec forward_message(ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) -> ok.

Forward message to registered process on the remote side.

 Link to this function

 forward_message(Node, ServerRef, Msg, Opts)

 View Source

 -spec forward_message(Node :: node(),
 ServerRef :: server_ref(),
 Msg :: message(),
 Opts :: forward_opts()) ->
 ok.

Forward message to registered process on the remote side.

 Link to this function

 is_alive()

 View Source

 -spec is_alive() -> boolean().

Returns true if the local node is alive (that is, if the node can be part of a distributed system), otherwise false.

 Link to this function

 is_connected(NodeOrSpec)

 View Source

 -spec is_connected(NodeOrSpec :: node_spec() | node()) -> boolean().

Returns the name of the local node.

 Link to this function

 is_connected(NodeOrSpec, Channel)

 View Source

 -spec is_connected(node_spec() | node(), channel()) -> boolean().

Returns the name of the local node.

 Link to this function

 is_fully_connected(NodeOrSpec)

 View Source

 -spec is_fully_connected(NodeOrSpec :: node_spec() | node()) -> boolean().

Returns the name of the local node.

 Link to this function

 is_local(Term)

 View Source

 -spec is_local(Term) -> Result
 when
 Term ::
 pid() |
 port() |
 reference() |
 partisan_remote_ref:p() |
 partisan_remote_ref:r(),
 Result :: boolean().

Returns the name of the local node.

 Link to this function

 is_pid(Pid)

 View Source

 -spec is_pid(pid() | partisan_remote_ref:p()) -> boolean() | no_return().

 Link to this function

 is_process_alive(Pid)

 View Source

 -spec is_process_alive(pid() | partisan_remote_ref:p()) -> boolean() | no_return().

Returns the name of the local node.

 Link to this function

 is_reference(Pid)

 View Source

 -spec is_reference(reference() | partisan_remote_ref:r()) -> boolean() | no_return().

Returns the name of the local node.

 Link to this function

 make_ref()

 View Source

 -spec make_ref() -> partisan_remote_ref:r().

Returns a new partisan_remote_ref. This is the same as calling partisan_remote_ref:from_term(erlang:make_ref()).

 Link to this function

 monitor(Term)

 View Source

 This function is deprecated. Use monitor/2 instead..

 Link to this function

 monitor(Type, Item)

 View Source

 -spec monitor(process, monitor_process_identifier()) ->
 reference() | partisan_remote_ref:r() | no_return();
 (port, erlang:monitor_port_identifier()) -> reference() | no_return();
 (time_offset, clock_service) -> reference() | no_return().

Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format: {Tag, MonitorRef, Type, Object, Info}
This is the Partisan's equivalent to erlang:monitor/2.
Failure: notalive if the partisan_monitor server is not alive.

 Link to this function

 monitor(Type, RegPid, Opts)

 View Source

 -spec monitor(process, monitor_process_identifier(), [erlang:monitor_option()]) ->
 reference() | partisan_remote_ref:r() | no_return();
 (port, erlang:monitor_port_identifier(), [erlang:monitor_option()]) ->
 reference() | no_return();
 (time_offset, clock_service, [erlang:monitor_option()]) -> reference() | no_return().

Sends a monitor request of type Type to the entity identified by Item. If the monitored entity does not exist or it changes monitored state, the caller of monitor/2 is notified by a message on the following format:
{Tag, MonitorRef, Type, Object, Info}
This is the Partisan's equivalent to erlang:monitor/2. It differs from the Erlang implementation only when monitoring a process. For all other cases (monitoring a port or time_offset) this function calls erlang:monitor/2.
[bookmark: Monitoring_a_`process`]Monitoring a `process`
Creates monitor between the current process and another process identified by Item, which can be a pid() (local or remote), an atom RegisteredName or a tuple {RegisteredName, Node}' for a registered process, located elsewhere.
In the case of a local pid() or a remote pid() A process monitor by name resolves the RegisteredName to pid() or port() only once at the moment of monitor instantiation, later changes to the name registration will not affect the existing monitor.
Failure: notalive if the partisan_monitor server is not alive.

 Link to this function

 monitor_node(Node, Flag)

 View Source

 -spec monitor_node(node() | node_spec(), boolean()) -> boolean().

Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.
Making several calls to monitor_node(Node, true) for the same Node from is not an error; it results in as many independent monitoring instances as the number of different calling processes i.e. If a process has made two calls to monitor_node(Node, true) and Node terminates, only one nodedown message is delivered to the process (this differs from erlang:monitor_node/2).
If Node fails or does not exist, the message {nodedown, Node} is delivered to the calling process. If there is no connection to Node, a nodedown message is delivered. As a result when using a membership strategy that uses a partial view, you can not monitor nodes that are not members of the view.
If Node is the caller's node, the function returns false.

 Link to this function

 monitor_nodes(Flag)

 View Source

 -spec monitor_nodes(Flag :: boolean()) -> ok | error | {error, term()}.

 Link to this function

 monitor_nodes(Flag, Opts)

 View Source

 -spec monitor_nodes(Flag :: boolean(), [monitor_nodes_opt()]) -> ok | error | {error, term()}.

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected.

 Link to this function

 node()

 View Source

 -spec node() -> node().

Returns the name of the local node.

 Link to this function

 node(Term)

 View Source

 -spec node(Term) -> Result
 when
 Term ::
 pid() | port() | reference() | partisan_remote_ref:p() | partisan_remote_ref:r(),
 Result :: node() | no_return().

Returns the node where Arg originates. Arg can be a process identifier, a reference, a port or a partisan remote refererence.

 Link to this function

 node_spec()

 View Source

 -spec node_spec() -> node_spec().

Returns the node specification of the local node.

 Link to this function

 node_spec(Node)

 View Source

 -spec node_spec(node()) -> {ok, node_spec()} | {error, Reason :: any()}.

Return the partisan node_spec() for node named Node.
This function retrieves the node_spec() from the remote node using RPC and returns {error, Reason} if the RPC fails. Otherwise, asumes the node is running on the same host and returns a node_spec() with with nodename Name and host 'Host' and same metadata as myself/0.
If configuration option connect_disterl is true, the RPC will be implemented using the rpc module. Otherwise it will use partisan_rpc.
You should only use this function when distributed erlang is enabled (configuration option connect_disterl is true) or if the node is running on the same host and you are using this for testing purposes as there is no much sense in running a partisan cluster on a single host.

 Link to this function

 node_spec(Node, Opts)

 View Source

 -spec node_spec(Node :: list() | node(), Opts :: #{rpc_timeout => timeout()}) ->
 {ok, node_spec()} | {error, Reason :: any()}.

Return the tuple {ok, node_spec() for node named Node or the tuple {error, Reason}.
This function first checks If there is a partisan connection to Node, if so returns the cached specification that was used for creating the connection. If no connection is present (the case for a p2p topology), then it tries to use @link partisan_rpc} to retrieve the node specification from the remote node. This later alternative requires the partisan configuration forward_opts` to have `broadcast and transitive enabled.
NOTICE: At the moment partisan_rpc might not work corrently w/ a p2p topology.

 Link to this function

 nodes()

 View Source

 -spec nodes() -> [node()].

Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed). Same as nodes(visible).

 Link to this function

 nodes(Arg)

 View Source

 -spec nodes(Arg :: node_type()) -> [node()].

Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed). Same as nodes(visible).

 Link to this function

 nodestring()

 View Source

 -spec nodestring() -> binary().

Returns the name of the local node as a binary string.

 Link to this function

 self()

 View Source

 -spec self() -> partisan_remote_ref:p().

Returns the partisan encoded pid for the calling process. This is the same as calling partisan_remote_ref:from_term(erlang:self()).

 Link to this function

 start()

 View Source

Start the application.

 Link to this function

 stop()

 View Source

Stop the application.

partisan_config

 Anchor for this section

 Summary

 Functions

 channels()

 default_channel()

 get(Key)

 get(Key, Default)

 init()

 listen_addrs()

 parallelism()

 seed()

 seed(Seed)

 set(Key, Value)

 trace(Message, Args)

 Anchor for this section

Functions

 Link to this function

 channels()

 View Source

 Link to this function

 default_channel()

 View Source

 Link to this function

 get(Key)

 View Source

 Link to this function

 get(Key, Default)

 View Source

 Link to this function

 init()

 View Source

 Link to this function

 listen_addrs()

 View Source

 Link to this function

 parallelism()

 View Source

 Link to this function

 seed()

 View Source

 Link to this function

 seed(Seed)

 View Source

 Link to this function

 set(Key, Value)

 View Source

 Link to this function

 trace(Message, Args)

 View Source

partisan_peer_service

 Anchor for this section

 Summary

 Types

 channel/0

 listen_addr/0

 node_spec/0

 partitions/0

 ttl/0

 Functions

 add_sup_callback(Function)

 Adds a supervised callback to receive peer service membership updates.

 broadcast_members()

 Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 broadcast_members(Timeout)

 Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 cancel_exchanges(WhichExchanges)

 cancel exchanges started by this node.

 connections()

 Return peer service connections

 decode(State)

 Decode peer_service_manager state from an encoded form

 exchanges()

 return a list of exchanges, started by broadcast on thisnode, that are running.

 exchanges(Node)

 returns a list of exchanges, started by broadcast on Node, that are running.

 get_local_state()

 inject_partition(Origin, TTL)

 Inject a partition.

 join(NodeSpec)

 leave()

 Leave the cluster. We will not be able to re-join the cluster, we must be restarted first.

 leave(NodeSpec)

 Remove a node from the cluster. Subsequently calling join (NodeSpec) will not work for the removed node. The removed node must be restarted first.

 manager()

 Return current peer service manager for this

 member(Node)

 Return cluster members

 members()

 Return cluster members

 members_for_orchestration()

 Return cluster members

 on_down(Node, Function)

 Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Node, Function)

 Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 partitions()

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 stop()

 Stop

 stop(Reason)

 Stop

 sync_join(NodeSpec)

 update_members(Nodes)

 Update cluster members.

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 partitions/0

 View Source

 -type partitions() :: [{reference(), node_spec()}].

 Link to this type

 ttl/0

 View Source

 -type ttl() :: non_neg_integer().

 Anchor for this section

Functions

 Link to this function

 add_sup_callback(Function)

 View Source

Adds a supervised callback to receive peer service membership updates.

 Link to this function

 broadcast_members()

 View Source

 -spec broadcast_members() -> ordsets:ordset(node()).

Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 Link to this function

 broadcast_members(Timeout)

 View Source

 -spec broadcast_members(infinity | pos_integer()) -> ordsets:ordset(node()).

Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 Link to this function

 cancel_exchanges(WhichExchanges)

 View Source

 -spec cancel_exchanges(partisan_plumtree_broadcast:selector()) ->
 partisan_plumtree_broadcast:exchanges().

cancel exchanges started by this node.

 Link to this function

 connections()

 View Source

Return peer service connections

 Link to this function

 decode(State)

 View Source

 -spec decode(term()) -> term().

Decode peer_service_manager state from an encoded form

 Link to this function

 exchanges()

 View Source

 -spec exchanges() -> partisan_plumtree_broadcast:exchanges().

return a list of exchanges, started by broadcast on thisnode, that are running.

 Link to this function

 exchanges(Node)

 View Source

 -spec exchanges(node()) -> partisan_plumtree_broadcast:exchanges().

returns a list of exchanges, started by broadcast on Node, that are running.

 Link to this function

 get_local_state()

 View Source

 -spec get_local_state() -> term().

 Link to this function

 inject_partition(Origin, TTL)

 View Source

 -spec inject_partition(node_spec(), ttl()) -> {ok, reference()} | {error, not_implemented}.

Inject a partition.

 Link to this function

 join(NodeSpec)

 View Source

 -spec join(node_spec() | node() | list) -> ok | {error, self_join | any()}.

 Link to this function

 leave()

 View Source

 -spec leave() -> ok.

Leave the cluster. We will not be able to re-join the cluster, we must be restarted first.

 Link to this function

 leave(NodeSpec)

 View Source

 -spec leave(node_spec()) -> ok.

Remove a node from the cluster. Subsequently calling join (NodeSpec) will not work for the removed node. The removed node must be restarted first.

 Link to this function

 manager()

 View Source

 -spec manager() -> module().

Return current peer service manager for this

 Link to this function

 member(Node)

 View Source

 -spec member(Node :: node() | node_spec()) -> boolean().

Return cluster members

 Link to this function

 members()

 View Source

 -spec members() -> {ok, [node()]}.

Return cluster members

 Link to this function

 members_for_orchestration()

 View Source

 -spec members_for_orchestration() -> [node_spec()].

Return cluster members

 Link to this function

 on_down(Node, Function)

 View Source

 -spec on_down(node() | node_spec() | any | '_', function()) -> ok | {error, not_implemented}.

Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_up(Node, Function)

 View Source

 -spec on_up(node() | node_spec() | any | '_', function()) -> ok | {error, not_implemented}.

Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 partitions()

 View Source

 -spec partitions() -> {ok, partitions()} | {error, not_implemented}.

 Link to this function

 reserve(Tag)

 View Source

 -spec reserve(atom()) -> ok | {error, no_available_slots}.

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

 -spec resolve_partition(reference()) -> ok | {error, not_implemented}.

Resolve a partition.

 Link to this function

 stop()

 View Source

Stop

 Link to this function

 stop(Reason)

 View Source

Stop

 Link to this function

 sync_join(NodeSpec)

 View Source

 -spec sync_join(node_spec()) -> ok | {error, self_join | not_implemented | any()}.

 Link to this function

 update_members(Nodes)

 View Source

 -spec update_members([node()]) -> ok | {error, not_implemented}.

Update cluster members.

partisan_peer_service_client

 Anchor for this section

 Summary

 Types

 channel/0

 listen_addr/0

 node_spec/0

 state_t/0

 Functions

 start_link(Peer, ListenAddr, Channel, From)

 Start and link to calling process. If the process is tarted and can get a connection it returns {ok, pid()}. Otherwise if it fails with

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 start_link(Peer, ListenAddr, Channel, From)

 View Source

 -spec start_link(node_spec(), listen_addr(), channel(), pid()) ->
 {ok, pid()} | ignore | {error, Reason :: any()}.

Start and link to calling process. If the process is tarted and can get a connection it returns {ok, pid()}. Otherwise if it fails with

partisan_peer_service_console

 Anchor for this section

 Summary

 Functions

 members(_)

 Anchor for this section

Functions

 Link to this function

 members(_)

 View Source

partisan_peer_service_events

 Anchor for this section

 Summary

 Functions

 add_callback(Fn)

 add_handler(Handler, Args)

 add_sup_callback(Fn)

 add_sup_handler(Handler, Args)

 code_change(OldVsn, State, Extra)

 handle_call(Event, State)

 handle_event(Event, State)

 handle_info(Event, State)

 init(_)

 start_link()

 terminate(Reason, State)

 update(LocalState)

 Anchor for this section

Functions

 Link to this function

 add_callback(Fn)

 View Source

 Link to this function

 add_handler(Handler, Args)

 View Source

 Link to this function

 add_sup_callback(Fn)

 View Source

 Link to this function

 add_sup_handler(Handler, Args)

 View Source

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 handle_call(Event, State)

 View Source

 Link to this function

 handle_event(Event, State)

 View Source

 Link to this function

 handle_info(Event, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 terminate(Reason, State)

 View Source

 Link to this function

 update(LocalState)

 View Source

partisan_peer_service_manager behaviour

 Anchor for this section

 Summary

 Types

 channel/0

 forward_opts/0

 listen_addr/0

 message/0

 node_spec/0

 server_ref/0

 Callbacks

 cast_message/2

 cast_message/3

 cast_message/4

 decode/1

 forward_message/2

 forward_message/3

 forward_message/4

 get_local_state/0

 inject_partition/2

 join/1

 leave/0

 leave/1

 members/0

 members_for_orchestration/0

 myself/0

 on_down/2

 on_up/2

 partitions/0

 receive_message/2

 reserve/1

 resolve_partition/1

 send_message/2

 start_link/0

 sync_join/1

 update_members/1

 Functions

 mynode()

 deprecated

 myself()

 deprecated

 process_forward(ServerRef, Msg)

 Internal function used by peer_service manager implementations to forward a message to a process identified by ServerRef that is either local or located at remote process when the remote node is connected via disterl. Trying to send a message to a remote server reference when the process is located at a node connected with Partisan will return ok but will not succeed.

 send_message(Node, Message)

 Send a message to a remote peer_service_manager.

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 forward_opts/0

 View Source

 -type forward_opts() ::
 #{ack => boolean(),
 causal_label => atom(),
 channel => channel(),
 clock => any(),
 partition_key => non_neg_integer(),
 transitive => boolean()} |
 [{ack, boolean()} |
 {causal_label, atom()} |
 {channel, channel()} |
 {clock, any()} |
 {partition_key, non_neg_integer()} |
 {transitive, boolean()}].

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 server_ref/0

 View Source

 -type server_ref() ::
 partisan_remote_ref:p() |
 partisan_remote_ref:encoded_pid() |
 partisan_remote_ref:n() |
 partisan_remote_ref:encoded_name() |
 (Name ::
 atom() |
 {Name :: atom(), node()} |
 {global, atom()} |
 {via, module(), ViaName :: atom()} |
 pid()).

 Anchor for this section

Callbacks

 Link to this callback

 cast_message/2

 View Source

 -callback cast_message(ServerRef :: server_ref(), Msg :: message()) -> ok.

 Link to this callback

 cast_message/3

 View Source

 -callback cast_message(ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) -> ok.

 Link to this callback

 cast_message/4

 View Source

 -callback cast_message(Node :: node(), ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) ->
 ok.

 Link to this callback

 decode/1

 View Source

 -callback decode(term()) -> term().

 Link to this callback

 forward_message/2

 View Source

 -callback forward_message(ServerRef :: server_ref(), Msg :: message()) -> ok.

 Link to this callback

 forward_message/3

 View Source

 -callback forward_message(ServerRef :: server_ref(), Msg :: message(), Opts :: forward_opts()) -> ok.

 Link to this callback

 forward_message/4

 View Source

 -callback forward_message(Node :: node(),
 ServerRef :: server_ref(),
 Msg :: message(),
 Opts :: forward_opts()) ->
 ok.

 Link to this callback

 get_local_state/0

 View Source

 -callback get_local_state() -> term().

 Link to this callback

 inject_partition/2

 View Source

 -callback inject_partition(node_spec(), ttl()) -> {ok, reference()} | {error, not_implemented}.

 Link to this callback

 join/1

 View Source

 -callback join(node_spec()) -> ok.

 Link to this callback

 leave/0

 View Source

 -callback leave() -> ok.

 Link to this callback

 leave/1

 View Source

 -callback leave(node_spec()) -> ok.

 Link to this callback

 members/0

 View Source

 -callback members() -> [node()].

 Link to this callback

 members_for_orchestration/0

 View Source

 -callback members_for_orchestration() -> [node_spec()].

 Link to this callback

 myself/0

 View Source

 -callback myself() -> node_spec().

 Link to this callback

 on_down/2

 View Source

 -callback on_down(node(), function()) -> ok | {error, not_implemented}.

 Link to this callback

 on_up/2

 View Source

 -callback on_up(node(), function()) -> ok | {error, not_implemented}.

 Link to this callback

 partitions/0

 View Source

 -callback partitions() -> {ok, partitions()} | {error, not_implemented}.

 Link to this callback

 receive_message/2

 View Source

 -callback receive_message(node(), message()) -> ok.

 Link to this callback

 reserve/1

 View Source

 -callback reserve(atom()) -> ok | {error, no_available_slots}.

 Link to this callback

 resolve_partition/1

 View Source

 -callback resolve_partition(reference()) -> ok | {error, not_implemented}.

 Link to this callback

 send_message/2

 View Source

 -callback send_message(node(), message()) -> ok.

 Link to this callback

 start_link/0

 View Source

 -callback start_link() -> {ok, pid()} | ignore | {error, term()}.

 Link to this callback

 sync_join/1

 View Source

 -callback sync_join(node_spec()) -> ok | {error, not_implemented}.

 Link to this callback

 update_members/1

 View Source

 -callback update_members([node()]) -> ok | {error, not_implemented}.

 Anchor for this section

Functions

 Link to this function

 mynode()

 View Source

 This function is deprecated. use partisan:node/0 instead.

 -spec mynode() -> atom().

 Link to this function

 myself()

 View Source

 This function is deprecated. use partisan:node_spec/0 instead.

 -spec myself() -> node_spec().

 Link to this function

 process_forward(ServerRef, Msg)

 View Source

 -spec process_forward(ServerRef :: server_ref(), Msg :: any()) -> ok.

Internal function used by peer_service manager implementations to forward a message to a process identified by ServerRef that is either local or located at remote process when the remote node is connected via disterl. Trying to send a message to a remote server reference when the process is located at a node connected with Partisan will return ok but will not succeed.

 Link to this function

 send_message(Node, Message)

 View Source

 -spec send_message(node(), message()) -> ok.

Send a message to a remote peer_service_manager.

partisan_peer_service_server

 Anchor for this section

 Summary

 Types

 state_t/0

 Functions

 acceptor_continue(PeerName, Socket0, MRef)

 acceptor_init(SockName, LSocket, _)

 acceptor_terminate(Reason, _)

 handle_call(Req, _, State)

 handle_cast(Req, State)

 handle_info(_, State)

 init(_)

 terminate(_, State)

 Anchor for this section

Types

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 acceptor_continue(PeerName, Socket0, MRef)

 View Source

 Link to this function

 acceptor_init(SockName, LSocket, _)

 View Source

 Link to this function

 acceptor_terminate(Reason, _)

 View Source

 Link to this function

 handle_call(Req, _, State)

 View Source

 Link to this function

 handle_cast(Req, State)

 View Source

 Link to this function

 handle_info(_, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 terminate(_, State)

 View Source

partisan_peer_service_sup

 Anchor for this section

 Summary

 Functions

 init(_)

 start_link()

 Anchor for this section

Functions

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

partisan_client_server_peer_service_manager

 Anchor for this section

 Summary

 Types

 channel/0

 listen_addr/0

 membership/0

 message/0

 node_spec/0

 pending/0

 state_t/0

 tag/0

 Functions

 cast_message(Term, MEssage)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Node, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 decode(State)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_local_state()

 Return local node's view of cluster membership.

 handle_call(Msg, From, State)

 handle_info(Event, State)

 init(_)

 inject_partition(Origin, TTL)

 Inject a partition.

 join(Node)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(NodeSpec)

 Remove another node from the cluster.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 myself()

 Return myself.

 on_down(Name, Function)

 Register a trigger to fire when a connection drops.

 on_up(Name, Function)

 Register a trigger to fire when a connection opens.

 partitions()

 Return partitions.

 receive_message(Peer, Message)

 Receive message from a remote manager.

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Name, Message)

 Send message to a remote manager.

 start_link()

 Same as start_link([]).

 sync_join(Node)

 Attempt to join a remote node.

 update_members(Nodes)

 Update membership.

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 membership/0

 View Source

 -type membership() :: sets:set(node_spec()).

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 pending/0

 View Source

 -type pending() :: sets:set(node_spec()).

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Link to this type

 tag/0

 View Source

 -type tag() :: atom().

 Anchor for this section

Functions

 Link to this function

 cast_message(Term, MEssage)

 View Source

 -spec cast_message(Term :: partisan_remote_ref:p() | partisan_remote_ref:n() | pid(),
 MEssage :: message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Node, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 decode(State)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 handle_call(Msg, From, State)

 View Source

 -spec handle_call(term(), {pid(), term()}, state_t()) -> {reply, term(), state_t()}.

 Link to this function

 handle_info(Event, State)

 View Source

 Link to this function

 init(_)

 View Source

 -spec init([]) -> {ok, state_t()}.

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(NodeSpec)

 View Source

Remove another node from the cluster.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 myself()

 View Source

Return myself.

 Link to this function

 on_down(Name, Function)

 View Source

Register a trigger to fire when a connection drops.

 Link to this function

 on_up(Name, Function)

 View Source

Register a trigger to fire when a connection opens.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 receive_message(Peer, Message)

 View Source

Receive message from a remote manager.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Name, Message)

 View Source

Send message to a remote manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 sync_join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 update_members(Nodes)

 View Source

Update membership.

partisan_hyparview_peer_service_manager

 Anchor for this section

 Summary

 Types

 active/0

 channel/0

 epoch/0

 The epoch_count indicates how many disconnect messages are generated.

 epoch_count/0

 listen_addr/0

 message/0

 message_id/0

 message_id_store/0

 node_spec/0

 partitions/0

 passive/0

 reserved/0

 state_t/0

 tag/0

 The epoch indicates how many times the node is restarted.

 Functions

 active()

 Debugging.

 active(Tag)

 Debugging.

 cast_message(Term, MEssage)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Node, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 decode(Active)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_local_state()

 Return local node's view of cluster membership.

 inject_partition(Origin, TTL)

 Inject a partition.

 join(Node)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(Node)

 Remove another node from the cluster.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 myself()

 Return myself.

 on_down(Name, Function)

 Register a trigger to fire when a connection drops.

 on_up(Name, Function)

 Register a trigger to fire when a connection opens.

 partitions()

 Return partitions.

 passive()

 Debugging.

 receive_message(Peer, FullMessage)

 Receive message from a remote manager.

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Name, Message)

 Send message to a remote manager.

 start_link()

 Same as start_link([]).

 sync_join(Node)

 Attempt to join a remote node.

 update_members(Nodes)

 Update membership.

 Anchor for this section

Types

 Link to this type

 active/0

 View Source

 -type active() :: sets:set(node_spec()).

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 epoch/0

 View Source

 -type epoch() :: non_neg_integer().

The epoch_count indicates how many disconnect messages are generated.

 Link to this type

 epoch_count/0

 View Source

 -type epoch_count() :: non_neg_integer().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 message_id/0

 View Source

 -type message_id() :: {epoch(), epoch_count()}.

 Link to this type

 message_id_store/0

 View Source

 -type message_id_store() :: dict:dict(node_spec(), message_id()).

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 partitions/0

 View Source

 -type partitions() :: [{reference(), node_spec()}].

 Link to this type

 passive/0

 View Source

 -type passive() :: sets:set(node_spec()).

 Link to this type

 reserved/0

 View Source

 -type reserved() :: dict:dict(atom(), node_spec()).

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Link to this type

 tag/0

 View Source

 -type tag() :: atom().

The epoch indicates how many times the node is restarted.

 Anchor for this section

Functions

 Link to this function

 active()

 View Source

Debugging.

 Link to this function

 active(Tag)

 View Source

Debugging.

 Link to this function

 cast_message(Term, MEssage)

 View Source

 -spec cast_message(Term :: partisan_remote_ref:p() | partisan_remote_ref:n() | pid(),
 MEssage :: message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Node, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 decode(Active)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(Node)

 View Source

Remove another node from the cluster.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 myself()

 View Source

Return myself.

 Link to this function

 on_down(Name, Function)

 View Source

Register a trigger to fire when a connection drops.

 Link to this function

 on_up(Name, Function)

 View Source

Register a trigger to fire when a connection opens.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 passive()

 View Source

Debugging.

 Link to this function

 receive_message(Peer, FullMessage)

 View Source

Receive message from a remote manager.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Name, Message)

 View Source

Send message to a remote manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 sync_join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 update_members(Nodes)

 View Source

Update membership.

partisan_hyparview_xbot_peer_service_manager

 Anchor for this section

 Summary

 Types

 active/0

 channel/0

 epoch/0

 The epoch_count indicates how many disconnect messages are generated.

 epoch_count/0

 listen_addr/0

 message/0

 message_id/0

 message_id_store/0

 node_spec/0

 partitions/0

 passive/0

 reserved/0

 state_t/0

 tag/0

 The epoch indicates how many times the node is restarted.

 Functions

 active()

 Debugging.

 active(Tag)

 Debugging.

 cast_message(Term, MEssage)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Name, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 decode(Active)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_local_state()

 Return local node's view of cluster membership.

 inject_partition(Origin, TTL)

 Inject a partition.

 join(Node)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(Node)

 Remove another node from the cluster.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 myself()

 Return myself.

 on_down(Name, Function)

 Register a trigger to fire when a connection drops.

 on_up(Name, Function)

 Register a trigger to fire when a connection opens.

 partitions()

 Return partitions.

 passive()

 Debugging.

 receive_message(Peer, Message)

 Receive message from a remote manager.

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Name, Message)

 Send message to a remote manager.

 start_link()

 Same as start_link([]).

 sync_join(Node)

 Attempt to join a remote node.

 update_members(Nodes)

 Update membership.

 Anchor for this section

Types

 Link to this type

 active/0

 View Source

 -type active() :: sets:set(node_spec()).

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 epoch/0

 View Source

 -type epoch() :: non_neg_integer().

The epoch_count indicates how many disconnect messages are generated.

 Link to this type

 epoch_count/0

 View Source

 -type epoch_count() :: non_neg_integer().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 message_id/0

 View Source

 -type message_id() :: {epoch(), epoch_count()}.

 Link to this type

 message_id_store/0

 View Source

 -type message_id_store() :: dict:dict(node_spec(), message_id()).

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 partitions/0

 View Source

 -type partitions() :: [{reference(), node_spec()}].

 Link to this type

 passive/0

 View Source

 -type passive() :: sets:set(node_spec()).

 Link to this type

 reserved/0

 View Source

 -type reserved() :: dict:dict(atom(), node_spec()).

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Link to this type

 tag/0

 View Source

 -type tag() :: atom().

The epoch indicates how many times the node is restarted.

 Anchor for this section

Functions

 Link to this function

 active()

 View Source

Debugging.

 Link to this function

 active(Tag)

 View Source

Debugging.

 Link to this function

 cast_message(Term, MEssage)

 View Source

 -spec cast_message(Term :: partisan_remote_ref:p() | partisan_remote_ref:n() | pid(),
 MEssage :: message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Name, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 decode(Active)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(Node)

 View Source

Remove another node from the cluster.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 myself()

 View Source

Return myself.

 Link to this function

 on_down(Name, Function)

 View Source

Register a trigger to fire when a connection drops.

 Link to this function

 on_up(Name, Function)

 View Source

Register a trigger to fire when a connection opens.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 passive()

 View Source

Debugging.

 Link to this function

 receive_message(Peer, Message)

 View Source

Receive message from a remote manager.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Name, Message)

 View Source

Send message to a remote manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 sync_join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 update_members(Nodes)

 View Source

Update membership.

partisan_pluggable_peer_service_manager

 Anchor for this section

 Summary

 Types

 actor/0

 channel/0

 from/0

 interposition_arg/0

 interposition_fun/0

 listen_addr/0

 message/0

 node_spec/0

 on_change_function/0

 pre_post_interposition_fun/0

 t/0

 Functions

 add_interposition_fun(Name, InterpositionFun)

 add_post_interposition_fun(Name, PostInterpositionFun)

 add_pre_interposition_fun(Name, PreInterpositionFun)

 cast_message(Term, Message)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Node, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 decode(Membership)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_interposition_funs()

 get_local_state()

 Return local node's view of cluster membership.

 get_pre_interposition_funs()

 handle_call(Event, From, State)

 init(_)

 inject_partition(Origin, TTL)

 Inject a partition.

 join(NodeSpec)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(NodeSpec)

 Remove another node from the cluster.

 member(Node)

 Returns true if node Node is a member in the membership list. Otherwise returns false.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 myself()

 Return partisan:node_spec().

 on_down(Node, Function)

 Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 on_up(Node, Function)

 Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 partitions()

 Return partitions.

 receive_message(Node, Cmd)

 Receive message from a remote manager.

 remove_interposition_fun(Name)

 remove_post_interposition_fun(Name)

 remove_pre_interposition_fun(Name)

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Node, Message)

 Send message to a remote peer service manager.

 start_link()

 Same as start_link([]).

 sync_join(NodeSpec)

 Attempt to join a remote node.

 update_members(Nodes)

 Update membership.

 Anchor for this section

Types

 Link to this type

 actor/0

 View Source

 -type actor() :: binary().

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 from/0

 View Source

 -type from() :: {pid(), atom()}.

 Link to this type

 interposition_arg/0

 View Source

 -type interposition_arg() :: {receive_message, node(), any()}.

 Link to this type

 interposition_fun/0

 View Source

 -type interposition_fun() :: fun((interposition_arg()) -> interposition_arg()).

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 on_change_function/0

 View Source

 -type on_change_function() :: fun(() -> ok) | fun((node()) -> ok).

 Link to this type

 pre_post_interposition_fun/0

 View Source

 -type pre_post_interposition_fun() :: fun((interposition_arg()) -> ok).

 Link to this type

 t/0

 View Source

 -type t() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 add_interposition_fun(Name, InterpositionFun)

 View Source

 Link to this function

 add_post_interposition_fun(Name, PostInterpositionFun)

 View Source

 Link to this function

 add_pre_interposition_fun(Name, PreInterpositionFun)

 View Source

 Link to this function

 cast_message(Term, Message)

 View Source

 -spec cast_message(Term :: partisan_remote_ref:p() | partisan_remote_ref:n() | pid(),
 Message :: message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Node, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 decode(Membership)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_interposition_funs()

 View Source

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 get_pre_interposition_funs()

 View Source

 Link to this function

 handle_call(Event, From, State)

 View Source

 -spec handle_call(term(), {pid(), term()}, t()) -> {reply, term(), t()}.

 Link to this function

 init(_)

 View Source

 -spec init([]) -> {ok, t()}.

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(NodeSpec)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(NodeSpec)

 View Source

Remove another node from the cluster.

 Link to this function

 member(Node)

 View Source

Returns true if node Node is a member in the membership list. Otherwise returns false.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 myself()

 View Source

Return partisan:node_spec().

 Link to this function

 on_down(Node, Function)

 View Source

Trigger function on connection close for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 on_up(Node, Function)

 View Source

Trigger function on connection open for a given node. Function is a function object taking zero or a single argument, where the argument is the Node name.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 receive_message(Node, Cmd)

 View Source

Receive message from a remote manager.

 Link to this function

 remove_interposition_fun(Name)

 View Source

 Link to this function

 remove_post_interposition_fun(Name)

 View Source

 Link to this function

 remove_pre_interposition_fun(Name)

 View Source

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Node, Message)

 View Source

Send message to a remote peer service manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 sync_join(NodeSpec)

 View Source

Attempt to join a remote node.

 Link to this function

 update_members(Nodes)

 View Source

Update membership.

partisan_static_peer_service_manager

 Anchor for this section

 Summary

 Types

 channel/0

 listen_addr/0

 membership/0

 message/0

 node_spec/0

 pending/0

 state_t/0

 Functions

 cast_message(Term, MEssage)

 cast_message(Node, ServerRef, Message)

 Cast a message to a remote gen_server.

 cast_message(Name, ServerRef, Message, Options)

 Cast a message to a remote gen_server.

 decode(State)

 Decode state.

 forward_message(Term, Message)

 Gensym support for forwarding.

 forward_message(Pid, Message, Opts)

 Gensym support for forwarding.

 forward_message(Node, ServerRef, Message, Opts)

 Forward message to registered process on the remote side.

 get_local_state()

 Return local node's view of cluster membership.

 handle_info(Event, State)

 inject_partition(Origin, TTL)

 Inject a partition.

 join(Node)

 Attempt to join a remote node.

 leave()

 Leave the cluster.

 leave(Node)

 Remove another node from the cluster.

 members()

 Return membership list.

 members_for_orchestration()

 Return membership list.

 myself()

 Return myself.

 on_down(Name, Function)

 Trigger function on connection close for a given node.

 on_up(Name, Function)

 Trigger function on connection open for a given node.

 partitions()

 Return partitions.

 receive_message(Peer, Message)

 Receive message from a remote manager.

 reserve(Tag)

 Reserve a slot for the particular tag.

 resolve_partition(Reference)

 Resolve a partition.

 send_message(Name, Message)

 Send message to a remote manager.

 start_link()

 Same as start_link([]).

 sync_join(Node)

 Attempt to join a remote node.

 update_members(Nodes)

 Update membership.

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 membership/0

 View Source

 -type membership() :: sets:set(node_spec()).

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 pending/0

 View Source

 -type pending() :: [node_spec()].

 Link to this type

 state_t/0

 View Source

 -type state_t() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 cast_message(Term, MEssage)

 View Source

 -spec cast_message(Term :: partisan_remote_ref:p() | partisan_remote_ref:n() | pid(),
 MEssage :: message()) ->
 ok.

 Link to this function

 cast_message(Node, ServerRef, Message)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 cast_message(Name, ServerRef, Message, Options)

 View Source

Cast a message to a remote gen_server.

 Link to this function

 decode(State)

 View Source

Decode state.

 Link to this function

 forward_message(Term, Message)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Pid, Message, Opts)

 View Source

Gensym support for forwarding.

 Link to this function

 forward_message(Node, ServerRef, Message, Opts)

 View Source

Forward message to registered process on the remote side.

 Link to this function

 get_local_state()

 View Source

Return local node's view of cluster membership.

 Link to this function

 handle_info(Event, State)

 View Source

 Link to this function

 inject_partition(Origin, TTL)

 View Source

Inject a partition.

 Link to this function

 join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 leave()

 View Source

Leave the cluster.

 Link to this function

 leave(Node)

 View Source

Remove another node from the cluster.

 Link to this function

 members()

 View Source

Return membership list.

 Link to this function

 members_for_orchestration()

 View Source

Return membership list.

 Link to this function

 myself()

 View Source

Return myself.

 Link to this function

 on_down(Name, Function)

 View Source

Trigger function on connection close for a given node.

 Link to this function

 on_up(Name, Function)

 View Source

Trigger function on connection open for a given node.

 Link to this function

 partitions()

 View Source

Return partitions.

 Link to this function

 receive_message(Peer, Message)

 View Source

Receive message from a remote manager.

 Link to this function

 reserve(Tag)

 View Source

Reserve a slot for the particular tag.

 Link to this function

 resolve_partition(Reference)

 View Source

Resolve a partition.

 Link to this function

 send_message(Name, Message)

 View Source

Send message to a remote manager.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 sync_join(Node)

 View Source

Attempt to join a remote node.

 Link to this function

 update_members(Nodes)

 View Source

Update membership.

partisan_full_membership_strategy

 Anchor for this section

 Summary

 Functions

 handle_message(Full_v1, _)

 Handling incoming protocol message.

 init(Identity)

 Initialize the strategy state.

 join(Full_v1, Node, _)

 When a node is connected, return the state, membership and outgoing message queue to be transmitted.

 leave(Full_v1, _)

 Leave a node from the cluster.

 periodic(State)

 Periodic protocol maintenance.

 prune(Full_v1, T)

 Anchor for this section

Functions

 Link to this function

 handle_message(Full_v1, _)

 View Source

Handling incoming protocol message.

 Link to this function

 init(Identity)

 View Source

Initialize the strategy state.

 Link to this function

 join(Full_v1, Node, _)

 View Source

When a node is connected, return the state, membership and outgoing message queue to be transmitted.

 Link to this function

 leave(Full_v1, _)

 View Source

Leave a node from the cluster.

 Link to this function

 periodic(State)

 View Source

Periodic protocol maintenance.

 Link to this function

 prune(Full_v1, T)

 View Source

partisan_membership_set

This module represents the cluster membership view for this node.
When a node joins the cluster it is added to the set. Conversely when a node leaves the cluster it is removed from the set. A node that crashes or gets disconnected will remain in the set so that Partisan can try to re-connect with the node when it restarts or becomes reachable again.
[bookmark: Implementation]Implementation
The set is implemented as a CRDT set of node_spec() objects. More specifically a state_orset.
Notice that because the set stores node_spec() objects and not node(), the set can have multiple node_spec() objects for the same node.
This can occur when the set contains one or more stale specifications.
[bookmark: Stale_Specifications]Stale Specifications
A stale specification exists due to the following reasons:
	A node crashes (without leaving the cluster) and returns bearing different IP Addresses (the value of the node specification's listen_addrs property). This is common in cloud orchestration scenarios where instances have dynamic IP addresses.
	A node crashes (without leaving the cluster) and returns bearing different values for the node specification properties channels and/or parallelism. For example, this can happen in the case the Partisan configuration has changed when using a rolling update strategy i.e. a gradual update process that allows you to update a cluster one node at a time to minimise downtime.

 Anchor for this section

 Summary

 Types

 actor/0

 channel/0

 listen_addr/0

 node_spec/0

 t/0

 Functions

 add(NodeSpec, Actor, T0)

 decode(Binary)

 encode(T)

 equal(T1, T2)

 merge(T1, T2)

 new()

 remove(NodeSpec, Actor, T)

 to_list(T)

 Anchor for this section

Types

 Link to this type

 actor/0

 View Source

 -type actor() :: binary().

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this opaque

 t/0

 View Source

 (opaque)

 -opaque t()

 Anchor for this section

Functions

 Link to this function

 add(NodeSpec, Actor, T0)

 View Source

 -spec add(node_spec(), Actor :: actor(), t()) -> t().

 Link to this function

 decode(Binary)

 View Source

 -spec decode(binary()) -> t().

 Link to this function

 encode(T)

 View Source

 -spec encode(t()) -> binary().

 Link to this function

 equal(T1, T2)

 View Source

 -spec equal(t(), t()) -> boolean().

 Link to this function

 merge(T1, T2)

 View Source

 -spec merge(t(), t()) -> t().

 Link to this function

 new()

 View Source

 -spec new() -> t().

 Link to this function

 remove(NodeSpec, Actor, T)

 View Source

 -spec remove(node_spec(), Actor :: actor(), t()) -> t().

 Link to this function

 to_list(T)

 View Source

 -spec to_list(t()) -> [node_spec()].

partisan_membership_strategy behaviour

 Anchor for this section

 Summary

 Callbacks

 handle_message/2

 init/1

 join/3

 leave/2

 periodic/1

 prune/2

 Anchor for this section

Callbacks

 Link to this callback

 handle_message/2

 View Source

 -callback handle_message(state(), message()) -> {ok, membership_list(), outgoing_messages(), state()}.

 Link to this callback

 init/1

 View Source

 -callback init(actor()) -> {ok, membership_list(), state()}.

 Link to this callback

 join/3

 View Source

 -callback join(state(), node_spec(), state()) -> {ok, membership_list(), outgoing_messages(), state()}.

 Link to this callback

 leave/2

 View Source

 -callback leave(state(), node_spec()) -> {ok, membership_list(), outgoing_messages(), state()}.

 Link to this callback

 periodic/1

 View Source

 -callback periodic(state()) -> {ok, membership_list(), outgoing_messages(), state()}.

 Link to this callback

 prune/2

 View Source

 -callback prune(state(), [node_spec()]) -> {ok, membership_list(), state()}.

partisan_plumtree_backend

 Anchor for this section

 Summary

 Types

 broadcast_id/0

 broadcast_message/0

 broadcast_payload/0

 timestamp/0

 Functions

 broadcast_data(Broadcast)

 Returns from the broadcast message the identifier and the payload.

 exchange(Peer)

 Anti-entropy mechanism.

 extract_log_type_and_payload(Message)

 graft(Timestamp)

 Given a message identifier and a clock, return a given message.

 is_stale(Timestamp)

 Use the clock on the object to determine if this message is stale or not.

 merge(Timestamp, _)

 Perform a merge of an incoming object with an object in the local datastore.

 start_link()

 Same as start_link([]).

 start_link(Opts)

 Start and link to calling process.

 Anchor for this section

Types

 Link to this type

 broadcast_id/0

 View Source

 -type broadcast_id() :: timestamp().

 Link to this type

 broadcast_message/0

 View Source

 -type broadcast_message() :: #broadcast{}.

 Link to this type

 broadcast_payload/0

 View Source

 -type broadcast_payload() :: timestamp().

 Link to this type

 timestamp/0

 View Source

 -type timestamp() :: non_neg_integer().

 Anchor for this section

Functions

 Link to this function

 broadcast_data(Broadcast)

 View Source

 -spec broadcast_data(broadcast_message()) -> {broadcast_id(), broadcast_payload()}.

Returns from the broadcast message the identifier and the payload.

 Link to this function

 exchange(Peer)

 View Source

 -spec exchange(node()) -> {ok, pid()}.

Anti-entropy mechanism.

 Link to this function

 extract_log_type_and_payload(Message)

 View Source

 Link to this function

 graft(Timestamp)

 View Source

 -spec graft(broadcast_id()) -> stale | {ok, broadcast_payload()} | {error, term()}.

Given a message identifier and a clock, return a given message.

 Link to this function

 is_stale(Timestamp)

 View Source

 -spec is_stale(broadcast_id()) -> boolean().

Use the clock on the object to determine if this message is stale or not.

 Link to this function

 merge(Timestamp, _)

 View Source

 -spec merge(broadcast_id(), broadcast_payload()) -> boolean().

Perform a merge of an incoming object with an object in the local datastore.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Same as start_link([]).

 Link to this function

 start_link(Opts)

 View Source

 -spec start_link(list()) -> {ok, pid()} | ignore | {error, term()}.

Start and link to calling process.

partisan_plumtree_broadcast

 Anchor for this section

 Summary

 Types

 exchange/0

 exchanges/0

 message/0

 message_id/0

 message_round/0

 Lazy messages that have not been acked. Messages are added to this set when a node is sent a lazy message (or when it should be sent one sometime in the future). Messages are removed when the lazy pushes are acknowleged via graft or ignores. Entries are keyed by their destination These are stored in the ?PLUMTREE_OUTSTANDING ets table under using nodename as key. PLUMTREE_OUTSTANDING is created and owned by partisan_sup

 nodeset/0

 outstanding/0

 selector/0

 state/0

 Functions

 broadcast(Broadcast, Mod)

 Broadcasts a message originating from this node. The message will be delivered to each node at least once. The Mod passed is responsible for handling the message on remote nodes as well as providing some other information both locally and and on other nodes. Mod must be loaded on all members of the clusters and implement the partisan_plumtree_broadcast_handler behaviour.

 broadcast_members()

 Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 broadcast_members(Timeout)

 Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 cancel_exchanges(WhichExchanges)

 cancel exchanges started by this node.

 code_change(OldVsn, State, Extra)

 debug_get_peers(Node, Root)

 return the peers for Node for the tree rooted at Root. Wait indefinitely for a response is returned from the process

 debug_get_peers(Node, Root, Timeout)

 return the peers for Node for the tree rooted at Root. Waits Timeout ms for a response from the server

 debug_get_tree(Root, Nodes)

 return peers for all Nodes for tree rooted at Root Wait indefinitely for a response is returned from the process

 exchanges()

 return a list of exchanges, started by broadcast on thisnode, that are running.

 exchanges(Node)

 returns a list of exchanges, started by broadcast on Node, that are running.

 handle_call(_, From, State)

 handle_cast(_, State)

 handle_info(Event, State)

 init(_)

 start_link()

 Starts the broadcast server on this node. The initial membership list is fetched from the ring. If the node is a singleton then the initial eager and lazy sets are empty. If there are two nodes, each will be in the others eager set and the lazy sets will be empty. When number of members is less than 5, each node will initially have one other node in its eager set and lazy set. If there are more than five nodes each node will have at most two other nodes in its eager set and one in its lazy set, initially. In addition, after the broadcast server is started, a callback is registered with ring_events to generate membership updates as the ring changes.

 start_link(InitMembers, InitEagers, InitLazys, Mods, Opts)

 Starts the broadcast server on this node. InitMembers must be a list of all members known to this node when starting the broadcast server. InitEagers are the initial peers of this node for all broadcast trees. InitLazys is a list of random peers not in InitEagers that will be used as the initial lazy peer shared by all trees for this node. If the number of nodes in the cluster is less than 3, InitLazys should be an empty list. InitEagers and InitLazys must also be subsets of InitMembers. Mods is a list of modules that may be handlers for broadcasted messages. All modules in Mods should implement the partisan_plumtree_broadcast_handler behaviour. Opts is a proplist or map with the following possible options:	lazy_tick_period :: non_neg_integer() - Flush all outstanding lazy pushes period (in milliseconds)
	exchange_tick_period :: non_neg_integer() - Possibly perform an exchange period (in milliseconds)

NOTE: When starting the server using start_link/2 no automatic membership update from ring_events is registered. Use start_link/0.

 terminate(Reason, State)

 update(LocalState0)

 Notifies broadcast server of membership update

 Anchor for this section

Types

 Link to this type

 exchange/0

 View Source

 -type exchange() :: {module(), node(), reference(), pid()}.

 Link to this type

 exchanges/0

 View Source

 -type exchanges() :: [exchange()].

 Link to this type

 message/0

 View Source

 -type message() :: term().

 Link to this type

 message_id/0

 View Source

 -type message_id() :: any().

 Link to this type

 message_round/0

 View Source

 -type message_round() :: non_neg_integer().

Lazy messages that have not been acked. Messages are added to this set when a node is sent a lazy message (or when it should be sent one sometime in the future). Messages are removed when the lazy pushes are acknowleged via graft or ignores. Entries are keyed by their destination These are stored in the ?PLUMTREE_OUTSTANDING ets table under using nodename as key. PLUMTREE_OUTSTANDING is created and owned by partisan_sup

 Link to this type

 nodeset/0

 View Source

 -type nodeset() :: ordsets:ordset(node()).

 Link to this type

 outstanding/0

 View Source

 -type outstanding() :: {message_id(), module(), message_round(), node()}.

 Link to this type

 selector/0

 View Source

 -type selector() :: all | {peer, node()} | {mod, module()} | reference() | pid().

 Link to this type

 state/0

 View Source

 -type state() :: #state{}.

 Anchor for this section

Functions

 Link to this function

 broadcast(Broadcast, Mod)

 View Source

 -spec broadcast(any(), module()) -> ok.

Broadcasts a message originating from this node. The message will be delivered to each node at least once. The Mod passed is responsible for handling the message on remote nodes as well as providing some other information both locally and and on other nodes. Mod must be loaded on all members of the clusters and implement the partisan_plumtree_broadcast_handler behaviour.

 Link to this function

 broadcast_members()

 View Source

 -spec broadcast_members() -> nodeset().

Returns the broadcast servers view of full cluster membership. Wait indefinitely for a response is returned from the process.

 Link to this function

 broadcast_members(Timeout)

 View Source

 -spec broadcast_members(infinity | pos_integer()) -> nodeset().

Returns the broadcast servers view of full cluster membership. Waits Timeout ms for a response from the server.

 Link to this function

 cancel_exchanges(WhichExchanges)

 View Source

 -spec cancel_exchanges(selector()) -> exchanges().

cancel exchanges started by this node.

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 -spec code_change(term() | {down, term()}, state(), term()) -> {ok, state()}.

 Link to this function

 debug_get_peers(Node, Root)

 View Source

 -spec debug_get_peers(node(), node()) -> {nodeset(), nodeset()}.

return the peers for Node for the tree rooted at Root. Wait indefinitely for a response is returned from the process

 Link to this function

 debug_get_peers(Node, Root, Timeout)

 View Source

 -spec debug_get_peers(node(), node(), infinity | pos_integer()) -> {nodeset(), nodeset()}.

return the peers for Node for the tree rooted at Root. Waits Timeout ms for a response from the server

 Link to this function

 debug_get_tree(Root, Nodes)

 View Source

 -spec debug_get_tree(node(), [node()]) -> [{node(), {nodeset(), nodeset()}}].

return peers for all Nodes for tree rooted at Root Wait indefinitely for a response is returned from the process

 Link to this function

 exchanges()

 View Source

 -spec exchanges() -> exchanges().

return a list of exchanges, started by broadcast on thisnode, that are running.

 Link to this function

 exchanges(Node)

 View Source

 -spec exchanges(node()) -> partisan_plumtree_broadcast:exchanges().

returns a list of exchanges, started by broadcast on Node, that are running.

 Link to this function

 handle_call(_, From, State)

 View Source

 -spec handle_call(term(), {pid(), term()}, state()) -> {reply, term(), state()}.

 Link to this function

 handle_cast(_, State)

 View Source

 -spec handle_cast(term(), state()) -> {noreply, state()}.

 Link to this function

 handle_info(Event, State)

 View Source

 -spec handle_info(exchange_tick | lazy_tick | {'DOWN', _, process, _, _}, state()) -> {noreply, state()}.

 Link to this function

 init(_)

 View Source

 -spec init([[any()], ...]) -> {ok, state()}.

 Link to this function

 start_link()

 View Source

 -spec start_link() -> {ok, pid()} | ignore | {error, term()}.

Starts the broadcast server on this node. The initial membership list is fetched from the ring. If the node is a singleton then the initial eager and lazy sets are empty. If there are two nodes, each will be in the others eager set and the lazy sets will be empty. When number of members is less than 5, each node will initially have one other node in its eager set and lazy set. If there are more than five nodes each node will have at most two other nodes in its eager set and one in its lazy set, initially. In addition, after the broadcast server is started, a callback is registered with ring_events to generate membership updates as the ring changes.

 Link to this function

 start_link(InitMembers, InitEagers, InitLazys, Mods, Opts)

 View Source

 -spec start_link(InitMembers :: [node()],
 InitEagers :: [node()],
 InitLazys :: [node()],
 Mods :: [module()],
 Opts :: proplists:proplist() | map()) ->
 {ok, pid()} | ignore | {error, term()}.

Starts the broadcast server on this node. InitMembers must be a list of all members known to this node when starting the broadcast server. InitEagers are the initial peers of this node for all broadcast trees. InitLazys is a list of random peers not in InitEagers that will be used as the initial lazy peer shared by all trees for this node. If the number of nodes in the cluster is less than 3, InitLazys should be an empty list. InitEagers and InitLazys must also be subsets of InitMembers. Mods is a list of modules that may be handlers for broadcasted messages. All modules in Mods should implement the partisan_plumtree_broadcast_handler behaviour. Opts is a proplist or map with the following possible options:	lazy_tick_period :: non_neg_integer() - Flush all outstanding lazy pushes period (in milliseconds)
	exchange_tick_period :: non_neg_integer() - Possibly perform an exchange period (in milliseconds)

NOTE: When starting the server using start_link/2 no automatic membership update from ring_events is registered. Use start_link/0.

 Link to this function

 terminate(Reason, State)

 View Source

 -spec terminate(term(), state()) -> term().

 Link to this function

 update(LocalState0)

 View Source

 -spec update([node()]) -> ok.

Notifies broadcast server of membership update

partisan_plumtree_broadcast_handler behaviour

 Anchor for this section

 Summary

 Callbacks

 broadcast_data/1

 exchange/1

 graft/1

 is_stale/1

 merge/2

 Anchor for this section

Callbacks

 Link to this callback

 broadcast_data/1

 View Source

 -callback broadcast_data(any()) -> {any(), any()}.

 Link to this callback

 exchange/1

 View Source

 -callback exchange(node()) -> {ok, pid()} | {error, term()}.

 Link to this callback

 graft/1

 View Source

 -callback graft(any()) -> stale | {ok, any()} | {error, any()}.

 Link to this callback

 is_stale/1

 View Source

 -callback is_stale(any()) -> boolean().

 Link to this callback

 merge/2

 View Source

 -callback merge(any(), any()) -> boolean().

partisan_plumtree_util

 Anchor for this section

 Summary

 Functions

 build_tree(N, Nodes, Opts)

 Convert a list of elements into an N-ary tree. This conversion works by treating the list as an array-based tree where, for example in a binary 2-ary tree, a node at index i has children 2i and 2i+1. The conversion also supports a "cycles" mode where the array is logically wrapped around to ensure leaf nodes also have children by giving them backedges to other elements.

 log(Level, String)

 log(Level, String, Args)

 Anchor for this section

Functions

 Link to this function

 build_tree(N, Nodes, Opts)

 View Source

 -spec build_tree(N :: integer(), Nodes :: [term()], Opts :: [term()]) -> orddict:orddict().

Convert a list of elements into an N-ary tree. This conversion works by treating the list as an array-based tree where, for example in a binary 2-ary tree, a node at index i has children 2i and 2i+1. The conversion also supports a "cycles" mode where the array is logically wrapped around to ensure leaf nodes also have children by giving them backedges to other elements.

 Link to this function

 log(Level, String)

 View Source

 Link to this function

 log(Level, String, Args)

 View Source

 -spec log(debug | info | error, String :: string(), Args :: [term()]) -> ok.

partisan_scamp_v1_membership_strategy

 Anchor for this section

 Summary

 Functions

 handle_message(State, _)

 Handling incoming protocol message.

 init(Identity)

 Initialize the strategy state. Start with an empty state with only ourselves known.

 join(Scamp_v1, Node, NodeState)

 When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 leave(Scamp_v1, Node)

 Leave a node from the cluster.

 periodic(Scamp_v1)

 Periodic protocol maintenance.

 prune(Scamp_v1, Nodes)

 Anchor for this section

Functions

 Link to this function

 handle_message(State, _)

 View Source

Handling incoming protocol message.

 Link to this function

 init(Identity)

 View Source

Initialize the strategy state. Start with an empty state with only ourselves known.

 Link to this function

 join(Scamp_v1, Node, NodeState)

 View Source

When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 Link to this function

 leave(Scamp_v1, Node)

 View Source

Leave a node from the cluster.

 Link to this function

 periodic(Scamp_v1)

 View Source

Periodic protocol maintenance.

 Link to this function

 prune(Scamp_v1, Nodes)

 View Source

partisan_scamp_v2_membership_strategy

 Anchor for this section

 Summary

 Functions

 handle_message(Scamp_v2, _)

 Handling incoming protocol message.

 init(Identity)

 Initialize the strategy state. Start with an empty state with only ourselves known.

 join(Scamp_v2, Node, NodeState)

 When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 leave(Scamp_v2, Node)

 Leave a node from the cluster.

 periodic(Scamp_v2)

 Periodic protocol maintenance.

 prune(Scamp_v2, Nodes)

 Anchor for this section

Functions

 Link to this function

 handle_message(Scamp_v2, _)

 View Source

Handling incoming protocol message.

 Link to this function

 init(Identity)

 View Source

Initialize the strategy state. Start with an empty state with only ourselves known.

 Link to this function

 join(Scamp_v2, Node, NodeState)

 View Source

When a remote node is connected, notify that node to add us. Then, perform forwarding, if necessary.

 Link to this function

 leave(Scamp_v2, Node)

 View Source

Leave a node from the cluster.

 Link to this function

 periodic(Scamp_v2)

 View Source

Periodic protocol maintenance.

 Link to this function

 prune(Scamp_v2, Nodes)

 View Source

partisan_acknowledgement_backend

 Anchor for this section

 Summary

 Functions

 ack(MessageClock)

 outstanding()

 start_link()

 store(MessageClock, Message)

 Anchor for this section

Functions

 Link to this function

 ack(MessageClock)

 View Source

 Link to this function

 outstanding()

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 store(MessageClock, Message)

 View Source

partisan_causality_backend

 Anchor for this section

 Summary

 Functions

 emit(Label, Node, ServerRef, Message)

 handle_call(Msg, From, State)

 is_causal_message(_)

 Determine is a message is being sent with causal delivery or not.

 receive_message(Label, Message)

 reemit(Label, _)

 set_delivery_fun(Label, DeliveryFun)

 start_link(Label)

 Same as start_link([]).

 Anchor for this section

Functions

 Link to this function

 emit(Label, Node, ServerRef, Message)

 View Source

 Link to this function

 handle_call(Msg, From, State)

 View Source

 Link to this function

 is_causal_message(_)

 View Source

Determine is a message is being sent with causal delivery or not.

 Link to this function

 receive_message(Label, Message)

 View Source

 Link to this function

 reemit(Label, _)

 View Source

 Link to this function

 set_delivery_fun(Label, DeliveryFun)

 View Source

 Link to this function

 start_link(Label)

 View Source

Same as start_link([]).

partisan_promise_backend

 Anchor for this section

 Summary

 Functions

 start_link()

 Same as start_link([]).

 Anchor for this section

Functions

 Link to this function

 start_link()

 View Source

Same as start_link([]).

partisan_acceptor_pool

 Anchor for this section

 Summary

 Functions

 accept_socket(Socket, Acceptors)

 init(_)

 start_link()

 Anchor for this section

Functions

 Link to this function

 accept_socket(Socket, Acceptors)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

partisan_acceptor_socket

 Anchor for this section

 Summary

 Functions

 code_change(_, State, _)

 handle_call(Req, _, State)

 handle_cast(Req, State)

 handle_info(_, State)

 init(_)

 start_link(PeerIP, PeerPort)

 terminate(_, _)

 Anchor for this section

Functions

 Link to this function

 code_change(_, State, _)

 View Source

 Link to this function

 handle_call(Req, _, State)

 View Source

 Link to this function

 handle_cast(Req, State)

 View Source

 Link to this function

 handle_info(_, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link(PeerIP, PeerPort)

 View Source

 Link to this function

 terminate(_, _)

 View Source

partisan_acceptor_socket_pool_sup

 Anchor for this section

 Summary

 Functions

 init(_)

 start_link()

 Anchor for this section

Functions

 Link to this function

 init(_)

 View Source

 Link to this function

 start_link()

 View Source

partisan_peer_connections

 Anchor for this section

 Summary

 Types

 channel/0

 channel_spec/0

 connection/0

 connections/0

 info/0

 listen_addr/0

 listen_addr_spec/0

 maybe_var/1

 node_spec/0

 optional/1

 Functions

 channel(Partisan_peer_connection)

 connection_count()

 connection_count(Arg)

 Returns the number of connections for node Node.

 connection_count(NodeOrSpec, Channels)

 Returns the nbr of connections for node Node and channel Channel.

 connection_count(Node, Channels, ListenAddr)

 connections()

 Finds connection for a node.

 connections(NodeOrSpec)

 Finds connection for a node.

 connections(NodeOrSpec, Channels)

 Finds connection for a node and channel.

 connections(NodeOrSpec, Channel, ListenAddr)

 Finds connection for a node and channel.

 dispatch(_)

 dispatch_pid(Node)

 Return a pid to use for message dispatch.

 dispatch_pid(Node, Channel)

 Return a pid to use for message dispatch.

 dispatch_pid(Node, Channel, PartitionKey)

 Return a {ok, Pid} where Pid is the connection pid to use for message dispatch. If channel Channel is disconnected it falls back to a default channel connection if one exists. If no connections exist returns {error, disconnected}.

 erase(Node)

 fold(Fun, AccIn)

 foreach(Fun)

 info(NodeOrSpec)

 Returns a tuple {ok, Value}, where Value is an instance of info() associated with Node, or error if no info is associated with Node.

 init()

 Creates a new connections table. The owner of the table is the calling process and the table is protected so only the owner can write to it.

 is_connected(NodeOrSpec)

 Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 is_connected(NodeOrSpec, Channel)

 Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 is_fully_connected(Peer)

 Returns true is this node has all the requested connections (parallelism configuration parameter) for all the configured channels with node NodeOrSpec.

 listen_addr(Partisan_peer_connection)

 node(Partisan_peer_info)

 node_spec(Partisan_peer_info)

 node_specs()

 Returns a list of all nodes specifications connected to this node.

 nodes()

 Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed). Same as nodes(visible).

 nodes(Arg)

 Returns a list of all nodes connected to this node with connections of type Arg.

 pid(Partisan_peer_connection)

 processes(NodeOrSpec)

 Finds connection for a node.

 processes(NodeOrSpec, Channel)

 Finds connection for a node and channel and returns each connection pid

 prune(Node)

 Prune all occurrences of a connection pid returns the node where the pruned pid was found

 store(Node, Pid, Channel, LitenAddr)

 Store a connection

 timestamp(Partisan_peer_info)

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 channel_spec/0

 View Source

 -type channel_spec() :: channel() | {monotonic, channel()}.

 Link to this type

 connection/0

 View Source

 -type connection() :: #partisan_peer_connection{}.

 Link to this type

 connections/0

 View Source

 -type connections() :: [connection()].

 Link to this type

 info/0

 View Source

 -type info() :: #partisan_peer_info{}.

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 listen_addr_spec/0

 View Source

 -type listen_addr_spec() :: #{ip := maybe_var(inet:ip_address()), port := maybe_var(non_neg_integer())}.

 Link to this type

 maybe_var/1

 View Source

 -type maybe_var(T) :: T | '_' | '$1' | '$2' | '$3'.

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 optional/1

 View Source

 -type optional(T) :: T | undefined.

 Anchor for this section

Functions

 Link to this function

 channel(Partisan_peer_connection)

 View Source

 -spec channel(connection()) -> channel_spec().

 Link to this function

 connection_count()

 View Source

 -spec connection_count() -> non_neg_integer().

 Link to this function

 connection_count(Arg)

 View Source

 -spec connection_count(Arg :: node_spec() | node() | info()) -> non_neg_integer().

Returns the number of connections for node Node.
When passed a node_spec() as Arg it is equivalent to calling connection_count/2 with a wildcard as a second argument i.e. '_'. However, when passed a node()` as `Arg is uses the more efficient ets` `lookup_element operation.

 Link to this function

 connection_count(NodeOrSpec, Channels)

 View Source

 -spec connection_count(NodeOrSpec :: maybe_var(node_spec() | node()),
 Channels :: maybe_var(channel_spec() | [channel_spec()])) ->
 non_neg_integer() | no_return().

Returns the nbr of connections for node Node and channel Channel.

 Link to this function

 connection_count(Node, Channels, ListenAddr)

 View Source

 -spec connection_count(Node :: maybe_var(node() | node_spec()),
 Channels :: maybe_var(channel_spec() | [channel_spec()]),
 ListenAddr :: listen_addr()) ->
 Count :: non_neg_integer().

 Link to this function

 connections()

 View Source

 -spec connections() -> connections().

Finds connection for a node.

 Link to this function

 connections(NodeOrSpec)

 View Source

 -spec connections(NodeOrSpec :: atom() | node_spec()) -> connections().

Finds connection for a node.

 Link to this function

 connections(NodeOrSpec, Channels)

 View Source

 -spec connections(NodeOrSpec :: maybe_var(atom() | node_spec()),
 Channels :: maybe_var(channel_spec() | [channel_spec()])) ->
 connections() | no_return().

Finds connection for a node and channel.

 Link to this function

 connections(NodeOrSpec, Channel, ListenAddr)

 View Source

 -spec connections(NodeOrSpec :: maybe_var(atom() | node_spec()),
 Channel :: maybe_var(channel_spec()),
 ListenAddr :: listen_addr()) ->
 connections() | no_return().

Finds connection for a node and channel.

 Link to this function

 dispatch(_)

 View Source

 -spec dispatch(any()) -> ok | {error, disconnected | not_yet_connected}.

 Link to this function

 dispatch_pid(Node)

 View Source

 -spec dispatch_pid(node() | node_spec()) ->
 {ok, pid()} | {error, disconnected | not_yet_connected | notalive}.

Return a pid to use for message dispatch.

 Link to this function

 dispatch_pid(Node, Channel)

 View Source

 -spec dispatch_pid(node() | node_spec(), channel_spec()) ->
 {ok, pid()} | {error, disconnected | not_yet_connected}.

Return a pid to use for message dispatch.

 Link to this function

 dispatch_pid(Node, Channel, PartitionKey)

 View Source

 -spec dispatch_pid(node() | node_spec(), channel_spec(), optional(any())) ->
 {ok, pid()} | {error, disconnected | not_yet_connected | notalive} | no_return().

Return a {ok, Pid} where Pid is the connection pid to use for message dispatch. If channel Channel is disconnected it falls back to a default channel connection if one exists. If no connections exist returns {error, disconnected}.

 Link to this function

 erase(Node)

 View Source

 -spec erase(pid() | node_spec()) -> ok.

 Link to this function

 fold(Fun, AccIn)

 View Source

 -spec fold(Fun :: fun((node_spec(), connections(), Acc1 :: any()) -> Acc2 :: any()), AccIn :: any()) ->
 AccOut :: any().

 Link to this function

 foreach(Fun)

 View Source

 -spec foreach(Fun :: fun((info(), connections()) -> ok)) -> ok.

 Link to this function

 info(NodeOrSpec)

 View Source

 -spec info(NodeOrSpec :: node_spec() | node()) -> {ok, info()} | error.

Returns a tuple {ok, Value}, where Value is an instance of info() associated with Node, or error if no info is associated with Node.

 Link to this function

 init()

 View Source

 -spec init() -> ok.

Creates a new connections table. The owner of the table is the calling process and the table is protected so only the owner can write to it.

 Link to this function

 is_connected(NodeOrSpec)

 View Source

 -spec is_connected(NodeOrSpec :: node_spec() | node()) -> boolean().

Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 Link to this function

 is_connected(NodeOrSpec, Channel)

 View Source

 -spec is_connected(NodeOrSpec :: node_spec() | node(), Channel :: channel_spec() | [channel_spec()]) ->
 boolean() | no_return().

Returns true is this node is connected to NodeOrName. If Node is this node, returns true.

 Link to this function

 is_fully_connected(Peer)

 View Source

 -spec is_fully_connected(Peer :: node_spec() | node()) -> boolean().

Returns true is this node has all the requested connections (parallelism configuration parameter) for all the configured channels with node NodeOrSpec.

 Link to this function

 listen_addr(Partisan_peer_connection)

 View Source

 -spec listen_addr(connection()) -> listen_addr().

 Link to this function

 node(Partisan_peer_info)

 View Source

 -spec node(info() | connection()) -> node().

 Link to this function

 node_spec(Partisan_peer_info)

 View Source

 -spec node_spec(info() | connection()) -> node_spec() | no_return().

 Link to this function

 node_specs()

 View Source

Returns a list of all nodes specifications connected to this node.

 Link to this function

 nodes()

 View Source

 -spec nodes() -> [node()].

Returns a list of all nodes connected to this node through normal connections (that is, hidden nodes are not listed). Same as nodes(visible).

 Link to this function

 nodes(Arg)

 View Source

 -spec nodes(Arg :: partisan:node_type()) -> [node()].

Returns a list of all nodes connected to this node with connections of type Arg.

 Link to this function

 pid(Partisan_peer_connection)

 View Source

 -spec pid(connection()) -> pid().

 Link to this function

 processes(NodeOrSpec)

 View Source

 -spec processes(NodeOrSpec :: atom() | node_spec()) -> [pid()].

Finds connection for a node.

 Link to this function

 processes(NodeOrSpec, Channel)

 View Source

 -spec processes(NodeOrSpec :: atom() | node_spec(), Channel :: channel_spec()) -> [pid()].

Finds connection for a node and channel and returns each connection pid

 Link to this function

 prune(Node)

 View Source

 -spec prune(pid() | node_spec()) -> {info(), connections()} | no_return().

Prune all occurrences of a connection pid returns the node where the pruned pid was found

 Link to this function

 store(Node, Pid, Channel, LitenAddr)

 View Source

 -spec store(Node :: node_spec(), Pid :: pid(), Channel :: channel_spec(), LitenAddr :: listen_addr()) ->
 ok | no_return().

Store a connection

 Link to this function

 timestamp(Partisan_peer_info)

 View Source

 -spec timestamp(info() | connection()) -> non_neg_integer().

partisan_peer_socket

Wrapper that allows transparent usage of plain TCP or TLS/SSL socket for peer connections.

 Anchor for this section

 Summary

 Types

 connection/0

 options/0

 reason/0

 Functions

 accept(TCPSocket)

 Wraps a TCP socket with the appropriate information for transceiving on and controlling the socket later. If TLS/SSL is enabled, this performs the socket upgrade/negotiation before returning the wrapped socket.

 close(Connection)

 See also: gen_tcp:close/1, ssl:close/1.

 connect(Address, Port, Options)

 See also: gen_tcp:connect/3, ssl:connect/3.

 connect(Address, Port, Options, Timeout)

 connect(Address, Port, Options, Timeout, PartisanOptions)

 recv(Conn, Length)

 See also: gen_tcp:recv/2, ssl:recv/2.

 recv(Connection, Length, Timeout)

 See also: gen_tcp:recv/3, ssl:recv/3.

 send(Connection, Data)

 See also: gen_tcp:send/2, ssl:send/2.

 setopts(Connection, Options)

 See also: inet:setopts/2, ssl:setopts/2.

 socket(Conn)

 Returns the wrapped socket from within the connection.

 Anchor for this section

Types

 Link to this type

 connection/0

 View Source

 -type connection() :: #connection{}.

 Link to this type

 options/0

 View Source

 -type options() :: [gen_tcp:option()] | map().

 Link to this type

 reason/0

 View Source

 -type reason() :: closed | inet:posix().

 Anchor for this section

Functions

 Link to this function

 accept(TCPSocket)

 View Source

 -spec accept(gen_tcp:socket()) -> connection().

Wraps a TCP socket with the appropriate information for transceiving on and controlling the socket later. If TLS/SSL is enabled, this performs the socket upgrade/negotiation before returning the wrapped socket.

 Link to this function

 close(Connection)

 View Source

 -spec close(connection()) -> ok.

See also: gen_tcp:close/1, ssl:close/1.

 Link to this function

 connect(Address, Port, Options)

 View Source

 -spec connect(inet:socket_address() | inet:hostname(), inet:port_number(), options()) ->
 {ok, connection()} | {error, inet:posix()}.

See also: gen_tcp:connect/3, ssl:connect/3.

 Link to this function

 connect(Address, Port, Options, Timeout)

 View Source

 -spec connect(inet:socket_address() | inet:hostname(), inet:port_number(), options(), timeout()) ->
 {ok, connection()} | {error, inet:posix()}.

 Link to this function

 connect(Address, Port, Options, Timeout, PartisanOptions)

 View Source

 -spec connect(inet:socket_address() | inet:hostname(),
 inet:port_number(),
 options(),
 timeout(),
 map() | list()) ->
 {ok, connection()} | {error, inet:posix()}.

 Link to this function

 recv(Conn, Length)

 View Source

 -spec recv(connection(), integer()) -> {ok, iodata()} | {error, reason()}.

See also: gen_tcp:recv/2, ssl:recv/2.

 Link to this function

 recv(Connection, Length, Timeout)

 View Source

 -spec recv(connection(), integer(), timeout()) -> {ok, iodata()} | {error, reason()}.

See also: gen_tcp:recv/3, ssl:recv/3.

 Link to this function

 send(Connection, Data)

 View Source

 -spec send(connection(), iodata()) -> ok | {error, reason()}.

See also: gen_tcp:send/2, ssl:send/2.

 Link to this function

 setopts(Connection, Options)

 View Source

 -spec setopts(connection(), options()) -> ok | {error, inet:posix()}.

See also: inet:setopts/2, ssl:setopts/2.

 Link to this function

 socket(Conn)

 View Source

 -spec socket(connection()) -> gen_tcp:socket() | ssl:sslsocket().

Returns the wrapped socket from within the connection.

partisan_gen

 Anchor for this section

 Summary

 Types

 debug_flag/0

 emgr_name/0

 linkage/0

 -type linkage() :: 'link' | 'nolink'.

 option/0

 options/0

 request_id/0

 server_ref/0

 start_ret/0

 Functions

 call(Process, Label, Request)

 call(Process, Label, Request, Timeout)

 check_response(RequestId, Key)

 debug_options(Name, Opts)

 format_status_header(TagLine, Pid)

 get_channel()

 Returns channel from the process dictionary

 get_parent()

 get_proc_name(Pid)

 hibernate_after(Options)

 init_it(GenMod, Starter, Parent, Mod, Args, Options)

 init_it(GenMod, Starter, Parent, Name, Mod, Args, Options)

 name(Pid)

 receive_response(RequestId, Timeout)

 reply(_, Reply)

 send_request(Name, Label, Request)

 start(GenMod, LinkP, Mod, Args, Options)

 start(GenMod, LinkP, Name, Mod, Args, Options)

 stop(Process)

 stop(Process, Reason, Timeout)

 unregister_name(Pid)

 wait_response(RequestId, Timeout)

 Anchor for this section

Types

 Link to this type

 debug_flag/0

 View Source

 -type debug_flag() :: trace | log | statistics | debug | {logfile, string()}.

 Link to this type

 emgr_name/0

 View Source

 -type emgr_name() :: {local, atom()} | {global, term()} | {via, Module :: module(), Name :: term()}.

 Link to this type

 linkage/0

 View Source

 -type linkage() :: monitor | link | nolink.

-type linkage() :: 'link' | 'nolink'.

 Link to this type

 option/0

 View Source

 -type option() ::
 {timeout, timeout()} |
 {debug, [debug_flag()]} |
 {hibernate_after, timeout()} |
 {spawn_opt, [proc_lib:spawn_option()]}.

 Link to this type

 options/0

 View Source

 -type options() :: [option()].

 Link to this type

 request_id/0

 View Source

 -type request_id() :: term().

 Link to this type

 server_ref/0

 View Source

 -type server_ref() :: pid() | atom() | {atom(), node()} | {global, term()} | {via, module(), term()}.

 Link to this type

 start_ret/0

 View Source

 -type start_ret() :: {ok, pid()} | {ok, {pid(), reference()}} | ignore | {error, term()}.

 Anchor for this section

Functions

 Link to this function

 call(Process, Label, Request)

 View Source

 Link to this function

 call(Process, Label, Request, Timeout)

 View Source

 Link to this function

 check_response(RequestId, Key)

 View Source

 -spec check_response(RequestId :: term(), Key :: request_id()) ->
 {reply, Reply :: term()} | no_reply | {error, {term(), server_ref()}}.

 Link to this function

 debug_options(Name, Opts)

 View Source

 Link to this function

 format_status_header(TagLine, Pid)

 View Source

 Link to this function

 get_channel()

 View Source

Returns channel from the process dictionary

 Link to this function

 get_parent()

 View Source

 Link to this function

 get_proc_name(Pid)

 View Source

 Link to this function

 hibernate_after(Options)

 View Source

 Link to this function

 init_it(GenMod, Starter, Parent, Mod, Args, Options)

 View Source

 Link to this function

 init_it(GenMod, Starter, Parent, Name, Mod, Args, Options)

 View Source

 Link to this function

 name(Pid)

 View Source

 Link to this function

 receive_response(RequestId, Timeout)

 View Source

 -spec receive_response(RequestId :: request_id(), timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {term(), server_ref()}}.

 Link to this function

 reply(_, Reply)

 View Source

 Link to this function

 send_request(Name, Label, Request)

 View Source

 -spec send_request(Name :: server_ref(), Label :: term(), Request :: term()) -> request_id().

 Link to this function

 start(GenMod, LinkP, Mod, Args, Options)

 View Source

 -spec start(module(), linkage(), module(), term(), options()) -> start_ret().

 Link to this function

 start(GenMod, LinkP, Name, Mod, Args, Options)

 View Source

 -spec start(module(), linkage(), emgr_name(), module(), term(), options()) -> start_ret().

 Link to this function

 stop(Process)

 View Source

 Link to this function

 stop(Process, Reason, Timeout)

 View Source

 Link to this function

 unregister_name(Pid)

 View Source

 Link to this function

 wait_response(RequestId, Timeout)

 View Source

 -spec wait_response(RequestId :: request_id(), timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {term(), server_ref()}}.

partisan_gen_server behaviour

 Anchor for this section

 Summary

 Types

 request_id/0

 server_ref/0

 Callbacks

 code_change/3

 format_status/2

 handle_call/3

 handle_cast/2

 handle_info/2

 init/1

 terminate/2

 Functions

 abcast(Name, Request)

 abcast(Nodes, Name, Request)

 call(Name, Request)

 call(Name, Request, Timeout)

 cast(Dest, Request)

 check_response(Msg, RequestId)

 enter_loop(Mod, Options, State)

 enter_loop(Mod, Options, State, ServerName)

 enter_loop(Mod, Options, State, ServerName, Timeout)

 format_log(Report)

 format_log(Report, FormatOpts0)

 format_status(Opt, StatusData)

 init_it(Starter, Parent, Name, Mod, Args, Options)

 multi_call(Name, Req)

 multi_call(Nodes, Name, Req)

 multi_call(Nodes, Name, Req, Timeout)

 receive_response(RequestId, Timeout)

 reply(From, Reply)

 send_request(Name, Request)

 start(Mod, Args, Options)

 start(Name, Mod, Args, Options)

 start_link(Mod, Args, Options)

 start_link(Name, Mod, Args, Options)

 start_monitor(Mod, Args, Options)

 start_monitor(Name, Mod, Args, Options)

 stop(Name)

 stop(Name, Reason, Timeout)

 system_code_change(_, Module, OldVsn, Extra)

 system_continue(Parent, Debug, _)

 system_get_state(_)

 system_replace_state(StateFun, _)

 system_terminate(Reason, Parent, Debug, _)

 wait_response(RequestId, Timeout)

 wake_hib(Parent, Name, State, Mod, HibernateAfterTimeout, Debug)

 Anchor for this section

Types

 Link to this type

 request_id/0

 View Source

 -type request_id() :: term().

 Link to this type

 server_ref/0

 View Source

 -type server_ref() ::
 pid() |
 (LocalName :: atom()) |
 {Name :: atom(), Node :: atom()} |
 {global, GlobalName :: term()} |
 {via, RegMod :: module(), ViaName :: term()}.

 Anchor for this section

Callbacks

 Link to this callback

 code_change/3

 View Source

 (optional)

 -callback code_change(OldVsn :: term() | {down, term()}, State :: term(), Extra :: term()) ->
 {ok, NewState :: term()} | {error, Reason :: term()}.

 Link to this callback

 format_status/2

 View Source

 (optional)

 -callback format_status(Opt, StatusData) -> Status
 when
 Opt :: normal | terminate,
 StatusData :: [PDict | State],
 PDict :: [{Key :: term(), Value :: term()}],
 State :: term(),
 Status :: term().

 Link to this callback

 handle_call/3

 View Source

 -callback handle_call(Request :: term(), From :: {pid(), Tag :: term()}, State :: term()) ->
 {reply, Reply :: term(), NewState :: term()} |
 {reply, Reply :: term(), NewState :: term(), timeout() | hibernate} |
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), Reply :: term(), NewState :: term()} |
 {stop, Reason :: term(), NewState :: term()}.

 Link to this callback

 handle_cast/2

 View Source

 -callback handle_cast(Request :: term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 Link to this callback

 handle_info/2

 View Source

 (optional)

 -callback handle_info(Info :: timeout | term(), State :: term()) ->
 {noreply, NewState :: term()} |
 {noreply, NewState :: term(), timeout() | hibernate} |
 {stop, Reason :: term(), NewState :: term()}.

 Link to this callback

 init/1

 View Source

 -callback init(Args :: term()) ->
 {ok, State :: term()} |
 {ok, State :: term(), timeout() | hibernate} |
 {stop, Reason :: term()} |
 ignore.

 Link to this callback

 terminate/2

 View Source

 (optional)

 -callback terminate(Reason :: normal | shutdown | {shutdown, term()} | term(), State :: term()) -> term().

 Anchor for this section

Functions

 Link to this function

 abcast(Name, Request)

 View Source

 Link to this function

 abcast(Nodes, Name, Request)

 View Source

 Link to this function

 call(Name, Request)

 View Source

 Link to this function

 call(Name, Request, Timeout)

 View Source

 Link to this function

 cast(Dest, Request)

 View Source

 Link to this function

 check_response(Msg, RequestId)

 View Source

 -spec check_response(Msg :: term(), RequestId :: request_id()) ->
 {reply, Reply :: term()} | no_reply | {error, {Reason :: term(), server_ref()}}.

 Link to this function

 enter_loop(Mod, Options, State)

 View Source

 Link to this function

 enter_loop(Mod, Options, State, ServerName)

 View Source

 Link to this function

 enter_loop(Mod, Options, State, ServerName, Timeout)

 View Source

 Link to this function

 format_log(Report)

 View Source

 Link to this function

 format_log(Report, FormatOpts0)

 View Source

 Link to this function

 format_status(Opt, StatusData)

 View Source

 Link to this function

 init_it(Starter, Parent, Name, Mod, Args, Options)

 View Source

 Link to this function

 multi_call(Name, Req)

 View Source

 Link to this function

 multi_call(Nodes, Name, Req)

 View Source

 Link to this function

 multi_call(Nodes, Name, Req, Timeout)

 View Source

 Link to this function

 receive_response(RequestId, Timeout)

 View Source

 -spec receive_response(RequestId :: request_id(), timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {Reason :: term(), server_ref()}}.

 Link to this function

 reply(From, Reply)

 View Source

 Link to this function

 send_request(Name, Request)

 View Source

 -spec send_request(Name :: server_ref(), Request :: term()) -> request_id().

 Link to this function

 start(Mod, Args, Options)

 View Source

 Link to this function

 start(Name, Mod, Args, Options)

 View Source

 Link to this function

 start_link(Mod, Args, Options)

 View Source

 Link to this function

 start_link(Name, Mod, Args, Options)

 View Source

 Link to this function

 start_monitor(Mod, Args, Options)

 View Source

 Link to this function

 start_monitor(Name, Mod, Args, Options)

 View Source

 Link to this function

 stop(Name)

 View Source

 Link to this function

 stop(Name, Reason, Timeout)

 View Source

 Link to this function

 system_code_change(_, Module, OldVsn, Extra)

 View Source

 Link to this function

 system_continue(Parent, Debug, _)

 View Source

 Link to this function

 system_get_state(_)

 View Source

 Link to this function

 system_replace_state(StateFun, _)

 View Source

 Link to this function

 system_terminate(Reason, Parent, Debug, _)

 View Source

 -spec system_terminate(_, _, _, [_]) -> no_return().

 Link to this function

 wait_response(RequestId, Timeout)

 View Source

 -spec wait_response(RequestId :: request_id(), timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {Reason :: term(), server_ref()}}.

 Link to this function

 wake_hib(Parent, Name, State, Mod, HibernateAfterTimeout, Debug)

 View Source

partisan_gen_statem behaviour

 Anchor for this section

 Summary

 Types

 action/0

 callback_mode/0

 callback_mode_result/0

 data/0

 enter_action/0

 enter_loop_opt/0

 event_handler_result/1

 event_handler_result/2

 event_timeout/0

 event_type/0

 external_event_type/0

 from/0

 Reply-to specifier for call

 generic_timeout/0

 handle_event_result/0

 hibernate/0

 init_result/1

 init_result/2

 postpone/0

 reply_action/0

 request_id/0

 server_name/0

 server_ref/0

 start_mon_ret/0

 start_opt/0

 start_ret/0

 state/0

 For handle_event/4 callback function

 state_callback_result/1

 state_callback_result/2

 state_enter/0

 state_enter_result/1

 state_enter_result/2

 state_function_result/0

 state_name/0

 state_timeout/0

 timeout_action/0

 timeout_cancel_action/0

 timeout_event_type/0

 timeout_option/0

 timeout_update_action/0

 transition_option/0

 Callbacks

 callback_mode/0

 code_change/4

 format_status/2

 handle_event/4

 init/1

 state_name/3

 State callback for all states when callback_mode() =:= handle_event_function.

 terminate/3

 Functions

 call(ServerRef, Request)

 call(ServerRef, Request, Timeout)

 cast(ServerRef, Msg)

 check_response(Msg, RequestId)

 enter_loop(Module, Opts, State, Data)

 enter_loop(Module, Opts, State, Data, Server_or_Actions)

 enter_loop(Module, Opts, State, Data, Server, Actions)

 format_log(Report)

 format_log(Report, FormatOpts0)

 format_status(Opt, _)

 init_it(Starter, Parent, ServerRef, Module, Args, Opts)

 receive_response(RequestId)

 receive_response(RequestId, Timeout)

 reply(Replies)

 reply(From, Reply)

 send_request(ServerRef, Request)

 start(Module, Args, Opts)

 start(ServerName, Module, Args, Opts)

 start_link(Module, Args, Opts)

 start_link(ServerName, Module, Args, Opts)

 start_monitor(Module, Args, Opts)

 start_monitor(ServerName, Module, Args, Opts)

 stop(ServerRef)

 stop(ServerRef, Reason, Timeout)

 system_code_change(_, Mod, OldVsn, Extra)

 system_continue(Parent, Debug, _)

 system_get_state(_)

 system_replace_state(StateFun, _)

 system_terminate(Reason, Parent, Debug, _)

 wait_response(RequestId)

 wait_response(RequestId, Timeout)

 wakeup_from_hibernate(P, Debug, S)

 Anchor for this section

Types

 Link to this type

 action/0

 View Source

 -type action() ::
 postpone |
 {postpone, Postpone :: postpone()} |
 {next_event, EventType :: event_type(), EventContent :: term()} |
 {change_callback_module, NewModule :: module()} |
 {push_callback_module, NewModule :: module()} |
 pop_callback_module |
 enter_action().

 Link to this type

 callback_mode/0

 View Source

 -type callback_mode() :: state_functions | handle_event_function.

 Link to this type

 callback_mode_result/0

 View Source

 -type callback_mode_result() :: callback_mode() | [callback_mode() | state_enter()].

 Link to this type

 data/0

 View Source

 -type data() :: term().

 Link to this type

 enter_action/0

 View Source

 -type enter_action() ::
 hibernate | {hibernate, Hibernate :: hibernate()} | timeout_action() | reply_action().

 Link to this type

 enter_loop_opt/0

 View Source

 -type enter_loop_opt() ::
 {hibernate_after, HibernateAfterTimeout :: timeout()} | {debug, Dbgs :: [sys:debug_option()]}.

 Link to this type

 event_handler_result/1

 View Source

 -type event_handler_result(StateType) :: event_handler_result(StateType, term()).

 Link to this type

 event_handler_result/2

 View Source

 -type event_handler_result(StateType, DataType) ::
 {next_state, NextState :: StateType, NewData :: DataType} |
 {next_state, NextState :: StateType, NewData :: DataType, Actions :: [action()] | action()} |
 state_callback_result(action()).

 Link to this type

 event_timeout/0

 View Source

 -type event_timeout() :: Time :: timeout() | integer().

 Link to this type

 event_type/0

 View Source

 -type event_type() :: external_event_type() | timeout_event_type() | internal.

 Link to this type

 external_event_type/0

 View Source

 -type external_event_type() :: {call, From :: from()} | cast | info.

 Link to this type

 from/0

 View Source

 -type from() :: {To :: pid(), Tag :: term()}.

Reply-to specifier for call

 Link to this type

 generic_timeout/0

 View Source

 -type generic_timeout() :: Time :: timeout() | integer().

 Link to this type

 handle_event_result/0

 View Source

 -type handle_event_result() :: event_handler_result(state()).

 Link to this type

 hibernate/0

 View Source

 -type hibernate() :: boolean().

 Link to this type

 init_result/1

 View Source

 -type init_result(StateType) :: init_result(StateType, term()).

 Link to this type

 init_result/2

 View Source

 -type init_result(StateType, DataType) ::
 {ok, State :: StateType, Data :: DataType} |
 {ok, State :: StateType, Data :: DataType, Actions :: [action()] | action()} |
 ignore |
 {stop, Reason :: term()}.

 Link to this type

 postpone/0

 View Source

 -type postpone() :: boolean().

 Link to this type

 reply_action/0

 View Source

 -type reply_action() :: {reply, From :: from(), Reply :: term()}.

 Link to this type

 request_id/0

 View Source

 -type request_id() :: term().

 Link to this type

 server_name/0

 View Source

 -type server_name() ::
 {global, GlobalName :: term()} | {via, RegMod :: module(), Name :: term()} | {local, atom()}.

 Link to this type

 server_ref/0

 View Source

 -type server_ref() ::
 pid() |
 (LocalName :: atom()) |
 {Name :: atom(), Node :: atom()} |
 {global, GlobalName :: term()} |
 {via, RegMod :: module(), ViaName :: term()}.

 Link to this type

 start_mon_ret/0

 View Source

 -type start_mon_ret() :: {ok, {pid(), reference()}} | ignore | {error, term()}.

 Link to this type

 start_opt/0

 View Source

 -type start_opt() ::
 {timeout, Time :: timeout()} | {spawn_opt, [proc_lib:start_spawn_option()]} | enter_loop_opt().

 Link to this type

 start_ret/0

 View Source

 -type start_ret() :: {ok, pid()} | ignore | {error, term()}.

 Link to this type

 state/0

 View Source

 -type state() :: state_name() | term().

For handle_event/4 callback function

 Link to this type

 state_callback_result/1

 View Source

 -type state_callback_result(ActionType) :: state_callback_result(ActionType, term()).

 Link to this type

 state_callback_result/2

 View Source

 -type state_callback_result(ActionType, DataType) ::
 {keep_state, NewData :: DataType} |
 {keep_state, NewData :: DataType, Actions :: [ActionType] | ActionType} |
 keep_state_and_data |
 {keep_state_and_data, Actions :: [ActionType] | ActionType} |
 {repeat_state, NewData :: DataType} |
 {repeat_state, NewData :: DataType, Actions :: [ActionType] | ActionType} |
 repeat_state_and_data |
 {repeat_state_and_data, Actions :: [ActionType] | ActionType} |
 stop |
 {stop, Reason :: term()} |
 {stop, Reason :: term(), NewData :: DataType} |
 {stop_and_reply, Reason :: term(), Replies :: [reply_action()] | reply_action()} |
 {stop_and_reply,
 Reason :: term(),
 Replies :: [reply_action()] | reply_action(),
 NewData :: DataType}.

 Link to this type

 state_enter/0

 View Source

 -type state_enter() :: state_enter.

 Link to this type

 state_enter_result/1

 View Source

 -type state_enter_result(State) :: state_enter_result(State, term()).

 Link to this type

 state_enter_result/2

 View Source

 -type state_enter_result(State, DataType) ::
 {next_state, State, NewData :: DataType} |
 {next_state, State, NewData :: DataType, Actions :: [enter_action()] | enter_action()} |
 state_callback_result(enter_action()).

 Link to this type

 state_function_result/0

 View Source

 -type state_function_result() :: event_handler_result(state_name()).

 Link to this type

 state_name/0

 View Source

 -type state_name() :: atom().

 Link to this type

 state_timeout/0

 View Source

 -type state_timeout() :: Time :: timeout() | integer().

 Link to this type

 timeout_action/0

 View Source

 -type timeout_action() ::
 (Time :: event_timeout()) |
 {timeout, Time :: event_timeout(), EventContent :: term()} |
 {timeout,
 Time :: event_timeout(),
 EventContent :: term(),
 Options :: timeout_option() | [timeout_option()]} |
 {{timeout, Name :: term()}, Time :: generic_timeout(), EventContent :: term()} |
 {{timeout, Name :: term()},
 Time :: generic_timeout(),
 EventContent :: term(),
 Options :: timeout_option() | [timeout_option()]} |
 {state_timeout, Time :: state_timeout(), EventContent :: term()} |
 {state_timeout,
 Time :: state_timeout(),
 EventContent :: term(),
 Options :: timeout_option() | [timeout_option()]} |
 timeout_cancel_action() |
 timeout_update_action().

 Link to this type

 timeout_cancel_action/0

 View Source

 -type timeout_cancel_action() ::
 {timeout, cancel} | {{timeout, Name :: term()}, cancel} | {state_timeout, cancel}.

 Link to this type

 timeout_event_type/0

 View Source

 -type timeout_event_type() :: timeout | {timeout, Name :: term()} | state_timeout.

 Link to this type

 timeout_option/0

 View Source

 -type timeout_option() :: {abs, Abs :: boolean()}.

 Link to this type

 timeout_update_action/0

 View Source

 -type timeout_update_action() ::
 {timeout, update, EventContent :: term()} |
 {{timeout, Name :: term()}, update, EventContent :: term()} |
 {state_timeout, update, EventContent :: term()}.

 Link to this type

 transition_option/0

 View Source

 -type transition_option() ::
 postpone() | hibernate() | event_timeout() | generic_timeout() | state_timeout().

 Anchor for this section

Callbacks

 Link to this callback

 callback_mode/0

 View Source

 -callback callback_mode() -> callback_mode_result().

 Link to this callback

 code_change/4

 View Source

 (optional)

 -callback code_change(OldVsn :: term() | {down, term()},
 OldState :: state(),
 OldData :: data(),
 Extra :: term()) ->
 {ok, NewState :: state(), NewData :: data()} | (Reason :: term()).

 Link to this callback

 format_status/2

 View Source

 (optional)

 -callback format_status(StatusOption, [[{Key :: term(), Value :: term()}] | state() | data()]) ->
 Status :: term()
 when StatusOption :: normal | terminate.

 Link to this callback

 handle_event/4

 View Source

 (optional)

 -callback handle_event(enter, OldState :: state(), State, Data :: data()) -> state_enter_result(State);
 (event_type(), EventContent :: term(), State :: state(), Data :: data()) ->
 event_handler_result(state()).

 Link to this callback

 init/1

 View Source

 -callback init(Args :: term()) -> init_result(state()).

 Link to this callback

 state_name/3

 View Source

 (optional)

 -callback state_name(enter, OldStateName :: state_name(), Data :: data()) -> state_enter_result(state_name);
 (event_type(), EventContent :: term(), Data :: data()) ->
 event_handler_result(state_name()).

State callback for all states when callback_mode() =:= handle_event_function.

 Link to this callback

 terminate/3

 View Source

 (optional)

 -callback terminate(Reason :: normal | shutdown | {shutdown, term()} | term(),
 State :: state(),
 Data :: data()) ->
 any().

 Anchor for this section

Functions

 Link to this function

 call(ServerRef, Request)

 View Source

 -spec call(ServerRef :: server_ref(), Request :: term()) -> Reply :: term().

 Link to this function

 call(ServerRef, Request, Timeout)

 View Source

 -spec call(ServerRef :: server_ref(),
 Request :: term(),
 Timeout :: timeout() | {clean_timeout, T :: timeout()} | {dirty_timeout, T :: timeout()}) ->
 Reply :: term().

 Link to this function

 cast(ServerRef, Msg)

 View Source

 -spec cast(ServerRef :: server_ref(), Msg :: term()) -> ok.

 Link to this function

 check_response(Msg, RequestId)

 View Source

 -spec check_response(Msg :: term(), RequestId :: request_id()) ->
 {reply, Reply :: term()} | no_reply | {error, {term(), server_ref()}}.

 Link to this function

 enter_loop(Module, Opts, State, Data)

 View Source

 -spec enter_loop(Module :: module(), Opts :: [enter_loop_opt()], State :: state(), Data :: data()) ->
 no_return().

 Link to this function

 enter_loop(Module, Opts, State, Data, Server_or_Actions)

 View Source

 -spec enter_loop(Module :: module(),
 Opts :: [enter_loop_opt()],
 State :: state(),
 Data :: data(),
 Server_or_Actions :: server_name() | pid() | [action()]) ->
 no_return().

 Link to this function

 enter_loop(Module, Opts, State, Data, Server, Actions)

 View Source

 -spec enter_loop(Module :: module(),
 Opts :: [enter_loop_opt()],
 State :: state(),
 Data :: data(),
 Server :: server_name() | pid(),
 Actions :: [action()] | action()) ->
 no_return().

 Link to this function

 format_log(Report)

 View Source

 Link to this function

 format_log(Report, FormatOpts0)

 View Source

 Link to this function

 format_status(Opt, _)

 View Source

 Link to this function

 init_it(Starter, Parent, ServerRef, Module, Args, Opts)

 View Source

 Link to this function

 receive_response(RequestId)

 View Source

 -spec receive_response(RequestId :: request_id()) ->
 {reply, Reply :: term()} | {error, {term(), server_ref()}}.

 Link to this function

 receive_response(RequestId, Timeout)

 View Source

 -spec receive_response(RequestId :: request_id(), timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {term(), server_ref()}}.

 Link to this function

 reply(Replies)

 View Source

 -spec reply([reply_action()] | reply_action()) -> ok.

 Link to this function

 reply(From, Reply)

 View Source

 -spec reply(From :: from(), Reply :: term()) -> ok.

 Link to this function

 send_request(ServerRef, Request)

 View Source

 -spec send_request(ServerRef :: server_ref(), Request :: term()) -> RequestId :: request_id().

 Link to this function

 start(Module, Args, Opts)

 View Source

 -spec start(Module :: module(), Args :: term(), Opts :: [start_opt()]) -> start_ret().

 Link to this function

 start(ServerName, Module, Args, Opts)

 View Source

 -spec start(ServerName :: server_name(), Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
 start_ret().

 Link to this function

 start_link(Module, Args, Opts)

 View Source

 -spec start_link(Module :: module(), Args :: term(), Opts :: [start_opt()]) -> start_ret().

 Link to this function

 start_link(ServerName, Module, Args, Opts)

 View Source

 -spec start_link(ServerName :: server_name(), Module :: module(), Args :: term(), Opts :: [start_opt()]) ->
 start_ret().

 Link to this function

 start_monitor(Module, Args, Opts)

 View Source

 -spec start_monitor(Module :: module(), Args :: term(), Opts :: [start_opt()]) -> start_mon_ret().

 Link to this function

 start_monitor(ServerName, Module, Args, Opts)

 View Source

 -spec start_monitor(ServerName :: server_name(),
 Module :: module(),
 Args :: term(),
 Opts :: [start_opt()]) ->
 start_mon_ret().

 Link to this function

 stop(ServerRef)

 View Source

 -spec stop(ServerRef :: server_ref()) -> ok.

 Link to this function

 stop(ServerRef, Reason, Timeout)

 View Source

 -spec stop(ServerRef :: server_ref(), Reason :: term(), Timeout :: timeout()) -> ok.

 Link to this function

 system_code_change(_, Mod, OldVsn, Extra)

 View Source

 Link to this function

 system_continue(Parent, Debug, _)

 View Source

 Link to this function

 system_get_state(_)

 View Source

 Link to this function

 system_replace_state(StateFun, _)

 View Source

 Link to this function

 system_terminate(Reason, Parent, Debug, _)

 View Source

 Link to this function

 wait_response(RequestId)

 View Source

 -spec wait_response(RequestId :: request_id()) ->
 {reply, Reply :: term()} | {error, {term(), server_ref()}}.

 Link to this function

 wait_response(RequestId, Timeout)

 View Source

 -spec wait_response(RequestId :: request_id(), timeout()) ->
 {reply, Reply :: term()} | timeout | {error, {term(), server_ref()}}.

 Link to this function

 wakeup_from_hibernate(P, Debug, S)

 View Source

partisan_inet

 Anchor for this section

 Summary

 Functions

 code_change(OldVsn, State, Extra)

 handle_call(_, From, State0)

 handle_cast(Msg, State)

 handle_info(Msg, State0)

 init(_)

 monitor(Flag)

 net_status()

 Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 net_status(_)

 Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 start_link()

 terminate(Reason, State)

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 handle_call(_, From, State0)

 View Source

 Link to this function

 handle_cast(Msg, State)

 View Source

 Link to this function

 handle_info(Msg, State0)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 monitor(Flag)

 View Source

 -spec monitor(Flag :: boolean()) -> ok.

 Link to this function

 net_status()

 View Source

 -spec net_status() -> connected | disconnected.

Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 Link to this function

 net_status(_)

 View Source

 -spec net_status([nocache]) -> connected | disconnected.

Returns connected if the host has at least one non-loopback network interface address. Otherwise returns disconnected.

 Link to this function

 start_link()

 View Source

 Link to this function

 terminate(Reason, State)

 View Source

partisan_monitor

This module is responsible for monitoring processes on remote nodes. ** YOU SHOULD NOT USE the functions in this module **. Use the related functions in partisan instead.
Notice: Certain partisan_peer_service_manager implementations might not support the partisan_peer_service_manager:on_up/2 and partisan_peer_service_manager:on_down/2 callbacks which we need for node monitoring, so in those cases this module will not work.

 Anchor for this section

 Summary

 Types

 channel/0

 demonitor_opts/0

 listen_addr/0

 monitor_opts/0

 node_monitor/0

 node_spec/0

 nodes_monitor/0

 nodes_monitor_opts/0

 process_monitor/0

 process_monitor_cache/0

 process_monitor_idx/0

 Functions

 code_change(OldVsn, State, Extra)

 demonitor(RemoteRef, Opts)

 Failure:	notalive if the partisan_monitor process is not alive.
	not_implemented if the partisan peer service manager does not support the required capabilities required for monitoring.
	badarg if any of the arguments is invalid.

 handle_call(Msg, From, State)

 handle_cast(Msg, State)

 handle_info(Msg, State)

 init(_)

 monitor(RemoteRef, Opts)

 When you attempt to monitor a remote process, it is not guaranteed that you will receive the DOWN message. A few reasons for not receiving the message are message loss, tree reconfiguration and the node is no longer reachable. The monitor options Opts are currently ignored.

 monitor_node(Node, Flag)

 Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.

 monitor_nodes(Flag, Opts0)

 The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected. If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions started with the same Options are stopped. Two option lists are considered the same if they contain the same set of options.

 start_link()

 Starts the partisan monitor server.

 terminate(Reason, State)

 Anchor for this section

Types

 Link to this type

 channel/0

 View Source

 -type channel() :: atom().

 Link to this type

 demonitor_opts/0

 View Source

 -type demonitor_opts() :: [flush | info].

 Link to this type

 listen_addr/0

 View Source

 -type listen_addr() :: #{ip => inet:ip_address(), port => non_neg_integer()}.

 Link to this type

 monitor_opts/0

 View Source

 -type monitor_opts() :: list().

 Link to this type

 node_monitor/0

 View Source

 -type node_monitor() :: {node(), pid()}.

 Link to this type

 node_spec/0

 View Source

 -type node_spec() ::
 #{name => node(),
 listen_addrs => [listen_addr()],
 channels => [channel()],
 parallelism => non_neg_integer()}.

 Link to this type

 nodes_monitor/0

 View Source

 -type nodes_monitor() :: {{Owner :: pid(), Hash :: integer()}, nodes_monitor_opts()}.

 Link to this type

 nodes_monitor_opts/0

 View Source

 -type nodes_monitor_opts() :: {Type :: all | visible | hidden, InclReason :: boolean()}.

 Link to this type

 process_monitor/0

 View Source

 -type process_monitor() ::
 {Mref :: reference(),
 MPid :: pid(),
 Owner :: partisan_remote_ref:p() | partisan_remote_ref:n()}.

 Link to this type

 process_monitor_cache/0

 View Source

 -type process_monitor_cache() ::
 {Node :: node(),
 Mref :: reference(),
 MPid :: partisan_remote_ref:p() | partisan_remote_ref:n(),
 Owner :: pid()}.

 Link to this type

 process_monitor_idx/0

 View Source

 -type process_monitor_idx() :: {node(), reference()}.

 Anchor for this section

Functions

 Link to this function

 code_change(OldVsn, State, Extra)

 View Source

 Link to this function

 demonitor(RemoteRef, Opts)

 View Source

 -spec demonitor(RemoteRef :: partisan_remote_ref:r(), Opts :: demonitor_opts()) ->
 boolean() | no_return().

Failure:	notalive if the partisan_monitor process is not alive.
	not_implemented if the partisan peer service manager does not support the required capabilities required for monitoring.
	badarg if any of the arguments is invalid.

 Link to this function

 handle_call(Msg, From, State)

 View Source

 Link to this function

 handle_cast(Msg, State)

 View Source

 Link to this function

 handle_info(Msg, State)

 View Source

 Link to this function

 init(_)

 View Source

 Link to this function

 monitor(RemoteRef, Opts)

 View Source

 -spec monitor(RemoteRef :: partisan_remote_ref:p() | partisan_remote_ref:n(), Opts :: monitor_opts()) ->
 partisan_remote_ref:r() | no_return().

When you attempt to monitor a remote process, it is not guaranteed that you will receive the DOWN message. A few reasons for not receiving the message are message loss, tree reconfiguration and the node is no longer reachable. The monitor options Opts are currently ignored.
Failure:	notalive if the partisan_monitor process is not alive.
	not_implemented if the partisan peer service manager does not support the required capabilities required for monitoring.
	badarg if any of the arguments is invalid.

 Link to this function

 monitor_node(Node, Flag)

 View Source

 -spec monitor_node(node() | node_spec(), boolean()) -> true.

Monitor the status of the node Node. If Flag is true, monitoring is turned on. If Flag is false, monitoring is turned off.
Making several calls to monitor_node(Node, true) for the same Node is not an error; it results in as many independent monitoring instances as the number of different calling processes i.e. If a process has made two calls to monitor_node(Node, true) and Node terminates, only one nodedown message is delivered to the process (this differs from erlang:monitor_node/2).
If Node fails or does not exist, the message {nodedown, Node} is delivered to the calling process. If there is no connection to Node, a nodedown message is delivered. As a result when using a membership strategy that uses a partial view, you cannot monitor nodes that are not members of the view.
Failure:	notalive if the partisan_monitor process is not alive.
	not_implemented if the partisan peer service manager does not support the required capabilities required for monitoring.
	badarg if any of the arguments is invalid.

 Link to this function

 monitor_nodes(Flag, Opts0)

 View Source

 -spec monitor_nodes(Flag :: boolean(), [partisan:monitor_nodes_opt()]) ->
 ok | error | {error, notalive | not_implemented | badarg}.

The calling process subscribes or unsubscribes to node status change messages. A nodeup message is delivered to all subscribing processes when a new node is connected, and a nodedown message is delivered when a node is disconnected. If Flag is true, a new subscription is started. If Flag is false, all previous subscriptions started with the same Options are stopped. Two option lists are considered the same if they contain the same set of options.
Notice that the following two disterl guarantees are NOT yet provided by Partisan:	nodeup messages are delivered before delivery of any message from the remote node passed through the newly established connection.
	nodedown messages are not delivered until all messages from the remote node that have been passed through the connection have been delivered.

 Link to this function

 start_link()

 View Source

Starts the partisan monitor server.

 Link to this function

 terminate(Reason, State)

 View Source

partisan_remote_ref

Remote references are Partisan's representation for remote process identifiers (pid()), registered names and references (reference()).
Distributed Erlang (disterl) will transform the representation of process identifiers, registered names and references when they are sent to a remote node. This is done to disambiguate between remote and local instances. Because Partisan doesn't use disterl it needs to implement this same disambiguation mechanism somehow. As disterl's implementation is done by the BEAM internally and not API is exposed, this module is required to achieve the same result.
[bookmark: Representation]Representation
This module provide two representation formats for remote identifiers (in general, "references"): (i) a binary URI and; (ii) a tuple.
The functions in this module will check which format to use by reading the configuration parameter remote_ref_as_uri. If true they will return an URI representation. Otherwise they will return a tuple representation.
[bookmark: URI_Representation]URI Representation
[bookmark: URI_Padding]URI Padding
[bookmark: Tuple_Representation]Tuple Representation

 Anchor for this section

 Summary

 Types

 encoded_name/0

 encoded_pid/0

 encoded_ref/0

 n/0

 p/0

 r/0

 t/0

 target/0

 tuple_ref/1

 uri/0

 Functions

 from_term(Term)

 from_term(Name, Node)

 Takes an atom Name and a node Node and returns a partisan remote reference.

 is_identical(A, B)

 Checks two refs for identity. Two refs are identical if the are equal or if one is a process reference and the other one is a registered name reference of said process. In the latter case the funcion uses erlang:whereis/1 which means the check can fail if the process has died (and thus is no longer registered).

 is_local(Ref)

 is_local(Ref, Node)

 Returns true if reference Ref is located in node Node.

 is_name(_)

 is_name(Ref, Name)

 is_pid(_)

 is_reference(_)

 is_type(Term)

 node(Ref)

 nodestring(Ref)

 target(Ref)

 to_term(Ref)

