

 opentelemetry_exporter

 v1.0.2

 Table of contents

 	opentelemetry_exporter

 	LICENSE

 	Modules

 	opentelemetry_exporter

 	opentelemetry_trace_service

opentelemetry_exporter

The OpenTelemetry Protocol exporter for use with the OpenTelemetry
Collector. The
version of this Application does not track the supported version of the
OpenTelemetry Protocol (OTLP). The currently used version of the OTLP protobufs
is v0.11.0.
Currently only supports the Tracer protocol using either GRPC or Protobuffers over HTTP1.1.
Configuration
By default the exporter will use HTTP to export protobuf encoded Spans to
http://localhost:4138/v1/traces.
Available configuration keys:
	otlp_endpoint: The URL to send traces and metrics to, for traces the path v1/traces is appended to the path in the URL.
	otlp_traces_endpoint: URL to send only traces to. This takes precedence for exporting traces and the path of the URL is kept as is, no suffix is appended.
	otlp_headers: List of additional headers ([{unicode:chardata(), unicode:chardata()}]) to add to export requests.
	otlp_traces_headers: Additional headers ([{unicode:chardata(), unicode:chardata()}]) to add to only trace export requests.
	otlp_protocol: The transport protocol, supported values: grpc and http_protobuf. Defaults to http_protobuf.
	otlp_traces_protocol: The transport protocol to use for exporting traces, supported values: grpc and http_protobuf. Defaults to http_protobuf.
	otlp_compression: Compression type to use, supported values: gzip. Defaults to no compression.
	otlp_traces_compression: Compression type to use for exporting traces, supported values: gzip. Defaults to no compression.

{opentelemetry_exporter,
 [{otlp_protocol, grpc},
 {otlp_compression, gzip},
 {otlp_endpoint, "https://api.honeycomb.io:443"},
 {otlp_headers, [{"x-honeycomb-dataset", "experiments"}]}]}
An Elixir release uses releases.exs:
config :opentelemetry_exporter,
 otlp_protocol: :grpc,
 otlp_compression: :gzip,
 otlp_endpoint: "https://api.honeycomb.io:443",
 otlp_headers: [{"x-honeycomb-dataset", "experiments"}]
The default SSL options for HTTPS requests are set using
tls_certificate_check. This
package also provides the CA certificates from Mozilla.
The user can override these options either as part of the endpoint or for all
endpoints used by the exporter with the Application environment variable
ssl_options
See secure coding with
inets
for more information on securing HTTP requests in Erlang.
OS Environment
Lastly, configuring the exporter can be done with OS environment variables,
which take precedence:
	OTEL_EXPORTER_OTLP_ENDPOINT: The URL to send traces and metrics to, for traces the path v1/traces is appended to the path in the URL.
	OTEL_EXPORTER_OTLP_TRACES_ENDPOINT: URL to send only traces to. This takes precedence for exporting traces and the path of the URL is kept as is, no suffix is appended.
	OTEL_EXPORTER_OTLP_HEADERS: List of additional headers to add to export requests.
	OTEL_EXPORTER_OTLP_TRACES_HEADERS: Additional headers to add to only trace export requests.
	OTEL_EXPORTER_OTLP_PROTOCOL: The transport protocol to use, supported values: grpc and http_protobuf. Defaults to http_protobuf
	OTEL_EXPORTER_OTLP_TRACES_PROTOCOL: The transport protocol to use for exporting traces, supported values: grpc and http_protobuf. Defaults to http_protobuf.
	OTEL_EXPORTER_OTLP_COMPRESSION: Compression to use, supported value: gzip. Defaults to no compression.
	OTEL_EXPORTER_OTLP_TRACES_COMPRESSION: Compression to use when exporting traces, supported value: gzip. Defaults to no compression.

Example usage of setting the environment variables:
OTEL_EXPORTER_OTLP_TRACES_ENDPOINT=https://api.honeycomb.io:443
OTEL_EXPORTER_OTLP_TRACES_PROTOCOL=grpc
OTEL_EXPORTER_OTLP_TRACES_COMPRESSION=gzip
OTEL_EXPORTER_OTLP_TRACES_HEADERS=x-honeycomb-team=<HONEYCOMB API TOKEN>,x-honeycomb-dataset=experiments
Options to span processor
In addition to using the environment variables the exporter accepts a map of
arguments. The argument to the exporter's init function can be configured as
part of the Span Processor (simple or batch) in the OpenTelemetry application
environment.
For an Erlang release in sys.config:
{opentelemetry,
 [{processors,
 [{otel_batch_processor,
 #{exporter => {opentelemetry_exporter, #{endpoints =>
 ["http://localhost:9090"],
 headers => [{"x-honeycomb-dataset", "experiments"}]}}}}]}]}
The default protocol is http_protobuf, to override this and use grpc add
protocol to the config map:
{opentelemetry,
 [{processors,
 [{otel_simple_processor,
 #{exporter => {opentelemetry_exporter, #{protocol => grpc,
 endpoints => ["http://localhost:9090"],
 headers => [{"x-honeycomb-dataset", "experiments"}]}}}}]}]}
In Elixir, you can use config.exs or runtime.exs:
config :opentelemetry, :processors,
 otel_batch_processor: %{
 exporter: {:opentelemetry_exporter, %{endpoints: ["http://localhost:9090"],
 headers: [{"x-honeycomb-dataset", "experiments"}]}}
 }
The configuration map
The second element of the configuration tuple is a configuration map. It can contain the following keys:
	protocol - one of: http_protobuf, grpc or http_json. Defaults to http_protobuf. http_json is not implemented yet.
	endpoints - A list of endpoints to send traces to. Can take one of the forms described below. By default, exporter sends data to http://localhost:4318.
	headers - a list of headers to send to the collector (i.e [{<<"x-access-key">> <<"secret">>}]). Defaults to an empty list.
	compression - an atom. Setting it to gzip enables gzip compression.
	ssl_options - a list of SSL options. See Erlang's SSL docs for what options are available.

Contributing
This project uses a submodule during development, it is not needed if the application is being used as a dependency, so be sure to clone with the option recurse-submodules:
$ git clone --recurse-submodules https://github.com/opentelemetry-beam/opentelemetry_exporter

Upgrading OpenTelemetry Protos
The protos are in a separate repository, opentelemetry-proto, and used as a submodule in this repo. To update the Erlang protobuf modules and GRPC client first update the submodule and then use the rebar3 grpcbox plugin to generate the client:
$ git submodule update --remote opentelemetry-proto
$ rebar3 grpc gen -t client
===> Writing src/trace_service_pb.erl
===> Writing src/opentelemetry_proto_collector_trace_v_1_trace_service_client.erl (forcibly overwriting)
$ mv src/opentelemetry_proto_collector_trace_v_1_trace_service_client.erl src/opentelemetry_trace_service.erl

Then open src/opentelemetry_trace_service.erl and fix the module name.

LICENSE

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

opentelemetry_exporter

This is the module providing the OpenTelemetry protocol for exporting traces. It can be configured through its application environment, the OS environment or directly through a map of options passed when setting up the exporter in the batch processor.
opentelemetry_exporter application environment options are:
	otlp_endpoint: The URL to send traces and metrics to, for traces the path v1/traces is appended to the path in the URL.
	otlp_traces_endpoint: URL to send only traces to. This takes precedence for exporting traces and the path of the URL is kept as is, no suffix is appended.
	otlp_headers: List of additional headers ([{unicode:chardata(), unicode:chardata()}]) to add to export requests.
	otlp_traces_headers: Additional headers ([{unicode:chardata(), unicode:chardata()}]) to add to only trace export requests.
	otlp_protocol: The transport protocol, supported values: grpc and http_protobuf. Defaults to http_protobuf.
	otlp_traces_protocol: The transport protocol to use for exporting traces, supported values: grpc and http_protobuf. Defaults to http_protobuf
	otlp_compression: Compression type to use, supported values: gzip. Defaults to no compression.
	otlp_traces_compression: Compression type to use for exporting traces, supported values: gzip. Defaults to no compression.

There also corresponding OS environment variables can also set those configuration values:
	OTEL_EXPORTER_OTLP_ENDPOINT: The URL to send traces and metrics to, for traces the path v1/traces is appended to the path in the URL.
	OTEL_EXPORTER_OTLP_TRACES_ENDPOINT: URL to send only traces to. This takes precedence for exporting traces and the path of the URL is kept as is, no suffix is appended.
	OTEL_EXPORTER_OTLP_HEADERS: List of additional headers to add to export requests.
	OTEL_EXPORTER_OTLP_TRACES_HEADERS: Additional headers to add to only trace export requests.
	OTEL_EXPORTER_OTLP_PROTOCOL: The transport protocol to use, supported values: grpc and http_protobuf. Defaults to http_protobuf.
	OTEL_EXPORTER_OTLP_TRACES_PROTOCOL: The transport protocol to use for exporting traces, supported values: grpc and http_protobuf. Defaults to http_protobuf.
	OTEL_EXPORTER_OTLP_COMPRESSION: Compression to use, supported value: gzip. Defaults to no compression.
	OTEL_EXPORTER_OTLP_TRACES_COMPRESSION: Compression to use when exporting traces, supported value: gzip. Defaults to no compression.

You can also set these configuration values in the map passed to the opentelemetry processor configuration.	endpoints: A list of endpoints to send traces to. Can take one of the forms described below. By default, exporter sends data to http://localhost:4318.
	headers: List of additional headers to add to export requests.
	protocol: The transport protocol to use, supported values: grpc and http_protobuf. Defaults to http_protobuf.
	compression: Compression to use, supported value: gzip. Defaults to no compression.
	ssl_options: a list of SSL options. See Erlang's SSL docs for what options are available.

Endpoints configuration
You can pass your collector endpoints in three forms:
	As a string, i.e "https://localhost:4000".
	As a map, with the following keys:	host => unicode:chardata()
	path => unicode:chardata()
	port => integer() >= 0 | undefined
	scheme => unicode:chardata()

	As a 4 element tuple in format {Scheme, Host, Port, SSLOptions}.

While using http_protobuf protocol, currently only the first endpoint in that list is used to export traces, the rest is effectively ignored. grpc supports multiple endpoints.

 Anchor for this section

 Summary

 Types

 compression/0

 endpoint/0

 endpoint_map/0

 headers/0

 host/0

 opts/0

 protocol/0

 scheme/0

 Functions

 export(Tab, Resource, State)

 Export OTLP protocol telemery data to the configured endpoints.

 init(Opts)

 Initialize the exporter based on the provided configuration.

 shutdown(State)

 Shutdown the exporter.

 Anchor for this section

Types

 Link to this type

 compression/0

 View Source

 Specs

 compression() :: gzip.

 Link to this type

 endpoint/0

 View Source

 Specs

 endpoint() :: uri_string:uri_string() | uri_string:uri_map() | endpoint_map().

 Link to this type

 endpoint_map/0

 View Source

 Specs

 endpoint_map() ::
 #{scheme := scheme(),
 host := host(),
 path => unicode:chardata(),
 port => integer(),
 ssl_options => []}.

 Link to this type

 headers/0

 View Source

 Specs

 headers() :: [{unicode:chardata(), unicode:chardata()}].

 Link to this type

 host/0

 View Source

 Specs

 host() :: unicode:chardata().

 Link to this type

 opts/0

 View Source

 Specs

 opts() :: #{endpoints => [endpoint()], headers => headers(), protocol => protocol()}.

 Link to this type

 protocol/0

 View Source

 Specs

 protocol() :: grpc | http_protobuf | http_json.

 Link to this type

 scheme/0

 View Source

 Specs

 scheme() :: http | https | string() | binary().

 Anchor for this section

Functions

 Link to this function

 export(Tab, Resource, State)

 View Source

Export OTLP protocol telemery data to the configured endpoints.

 Link to this function

 init(Opts)

 View Source

 Specs

 init(opts()) -> {ok, #state{}}.

Initialize the exporter based on the provided configuration.

 Link to this function

 shutdown(State)

 View Source

Shutdown the exporter.

opentelemetry_trace_service

Client module for grpc service opentelemetry.proto.collector.trace.v1.TraceService.

 Anchor for this section

 Summary

 Functions

 export(Input)

 Unary RPC

 export(Ctx, Input)

 export(Ctx, Input, Options)

 Anchor for this section

Functions

 Link to this function

 export(Input)

 View Source

 Specs

 export(opentelemetry_exporter_trace_service_pb:export_trace_service_request()) ->
 {ok,
 opentelemetry_exporter_trace_service_pb:export_trace_service_response(),
 grpcbox:metadata()} |
 grpcbox_stream:grpc_error_response().

Unary RPC

 Link to this function

 export(Ctx, Input)

 View Source

 Specs

 export(ctx:t() | opentelemetry_exporter_trace_service_pb:export_trace_service_request(),
 opentelemetry_exporter_trace_service_pb:export_trace_service_request() |
 grpcbox_client:options()) ->
 {ok,
 opentelemetry_exporter_trace_service_pb:export_trace_service_response(),
 grpcbox:metadata()} |
 grpcbox_stream:grpc_error_response().

 Link to this function

 export(Ctx, Input, Options)

 View Source

 Specs

 export(ctx:t(),
 opentelemetry_exporter_trace_service_pb:export_trace_service_request(),
 grpcbox_client:options()) ->
 {ok,
 opentelemetry_exporter_trace_service_pb:export_trace_service_response(),
 grpcbox:metadata()} |
 grpcbox_stream:grpc_error_response().

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

