

 off_broadway_splunk

 v2.0.0

 Table of contents

 	OffBroadway.Splunk

 	Changelog

 	LICENSE

 	Modules

 	OffBroadway.Splunk.Client

 	OffBroadway.Splunk.Producer

 	OffBroadway.Splunk.Queue

 	OffBroadway.Splunk.SplunkClient

OffBroadway.Splunk

[image: pipeline status]
A Splunk consumer for Broadway.
Broadway producer acts as a consumer for a given Splunk report or (triggered) alert.
When the Broadway pipeline starts, a OffBroadway.Splunk.Queue process will be started as part of the pipeline
supervision tree. This process is responsible to query the Splunk Web API for available jobs for the given report or
alert. Available jobs will be enqueued and the OffBroadway.Splunk.Producer process will consume messages
sequentially (from earliest published to latest) and passing them through the Broadway system.
Read the full documentation here.
Installation
This package is available in Hex, and can be installed
by adding off_broadway_splunk to your list of dependencies in mix.exs:
def deps do
 [
 {:off_broadway_splunk, "~> 2.0"}
]
end
Usage
The OffBroadway.Splunk.SplunkClient tries to read the following configuration from config.exs.
config.exs

config :off_broadway_splunk, :splunk_client,
 base_url: System.get_env("SPLUNK_BASE_URL", "https://splunk.example.com"),
 api_token: System.get_env("SPLUNK_API_TOKEN", "your-api-token-here")
Options for the OffBroadway.Splunk.SplunkClient can be configured either in config.exs or passed as
options directly to the OffBroadway.Splunk.Producer module. Options are merged, with the passed options
taking precedence over those configured in config.exs.
my_broadway.ex

defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 def start_link(_opts) do
 Broadway.start_link(__MODULE__,
 name: __MODULE__,
 producer: [
 module:
 {OffBroadway.Splunk.Producer,
 name: "My fine report",
 config: [api_token: "override-api-token"]}
],
 processors: [
 default: []
],
 batchers: [
 default: [
 batch_size: 500,
 batch_timeout: 5000
]
]
)
 end

 ...callbacks...
end
Processing messages
In order to process incoming messages, we need to implement some callback functions.
defmodule MyBroadway do
 use Broadway

 alias Broadway.Message

 ...start_link...

 @impl true
 def handle_message(_, %Message{data: data} ,_) do
 message
 |> Message.update_data(fn -> ...whatever... end)
 end

 @impl true
 def handle_batch(_batcher, messages, _batch_info, _context) do
 IO.puts("Received a batch of #{length(messages)} messages!")
 messages
 end
end
For the sake of the example, we're not really doing anything here. Whenever we're receiving a batch of messages, we just prints out a
message saying "Received a batch of messages!", and for each message we run Message.update_data/2 passing a function that can process
that message ie. by doing some calculations on the data or something else.

Changelog

2.0.0 - Upgrade version
Released 2023-05-23
This almost a complete rewrite and is uncompatible with the v1.x branch.
Instead of targeting a specific SID to produce messages for, this release is focused around producing messages
from Splunk Reports or (triggered) Alerts.
This is a more efficient way to prepare data for export by Splunk, and produces more predictable messages both
in terms of when they are available and the structure of the data in the messages.
Instead of passing a SID to the producer option, simply pass the name for your report or alert. The
OffBroadway.Splunk.Queue process will query the Splunk Web API and fetch a list of available jobs that can produce
messages for the given report or alert.
Options
	Replace sid option with name. Pipelines should now be given the name of a report or alert.
	Remove endpoint option. All messages will be downloaded using the results endpoint.
	Remove offset option, as it is only available for the events endpoint.
	Add refetch_intervaloption. This is the amount in milliseconds the OffBroadway.Splunk.Queue process will
wait before refetching the list of available jobs.

Other
	Add OffBroadway.Splunk.Queue GenServer process that will start as part of the pipeline supervision tree.
	Remove OffBroadway.Splunk.Leader GenServer process as it is not usable anymore.
	Refactored OffBroadway.Splunk.Producer and OffBroadway.Splunk.SplunkClient to new workflow.
	Updated telemetry events to new workflow.

1.2.4 - Bug fix
Released 2023-04-20
Bug fixes
	Using state.is_done proved unreliable when consuming certain jobs. Replaced calculation of retry timings
to be based on receive_interval.
	Fixed typings for OffBroadway.Splunk.Leader struct.

1.2.3 - Minor fixes
Released 2023-04-05
Minor fixes
	Remove Tesla.Middleware.Logger from default OffBroadway.Splunk.SplunkClient tesla client because
of too much noise.

1.2.2 - Minor fixes
Released 2023-04-03
Minor fixes
	Filter authorization headers for Tesla.Middleware.Logger
	Replace some enumerations with streams

1.2.1 - Dependecies
Released 2023-03-28
Upgrade accepted dependencies
	Accept nimble_options version v1.0

1.2.0 - Feature release
Released 2023-01-23
Added new options
	api_version - Configures if messages should be produced from the v1 or v2 versioned API endpoints.

Upgrade accepted dependencies
	Accept telemetry version 1.1 or 1.2
	Accept tesla version 1.4 or 1.5

1.1.1 - Feature release
Released 2023-01-16
Added new options
	shutdown_timeout - Configurable number of milliseconds Broadway should wait before timing out when trying to stop
the pipeline.
	endpoint - Choose to consume messages using the events or results endpoint of the Splunk Web API.
	offset - Allow passing a custom initial offset to start consuming messages from. Passing a negative value will
cause the pipeline to consume messages from the "end" of the results.
	max_events - If set to a positive integer, shut down the pipeline after producing this many messages.

1.1.0 - Initial release
Released 2022-10-28
The first release targeted consuming a single SID (Search ID) produced by saving a triggered alert.

LICENSE

Copyright 2022 Intility

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

OffBroadway.Splunk.Client behaviour

A generic behaviour for implementing Splunk clients for
OffBroadway.Splunk.Producer.
This module defines callbacks to normalize options and receive items
for a Splunk job.
Modules that implements this behaviour should be passed as the
:splunk_client option from OffBroadway.Splunk.Producer.

 Anchor for this section

 Summary

 Types

 messages()

 Callbacks

 ack_message(message, ack_options)

 init(opts)

 receive_messages(sid, demand, opts)

 receive_status(name, opts)

 Anchor for this section

Types

 Link to this type

 messages()

 View Source

 @type messages() :: [Broadway.Message.t()]

 Anchor for this section

Callbacks

 Link to this callback

 ack_message(message, ack_options)

 View Source

 (optional)

 @callback ack_message(message :: Broadway.Message.t(), ack_options :: any()) :: any()

 Link to this callback

 init(opts)

 View Source

 @callback init(opts :: any()) ::
 {:ok, normalized_opts :: any()} | {:error, reason :: binary()}

 Link to this callback

 receive_messages(sid, demand, opts)

 View Source

 @callback receive_messages(sid :: binary(), demand :: pos_integer(), opts :: any()) ::
 messages()

 Link to this callback

 receive_status(name, opts)

 View Source

 @callback receive_status(name :: binary(), opts :: any()) ::
 {:ok, response :: any()} | {:error, reason :: any()}

OffBroadway.Splunk.Producer

GenStage Producer for a Splunk Event Stream.
Broadway producer acts as a consumer for Splunk report or alerts.
Producer Options
	:name - Required. The report or alert name for the Splunk job we want to consume events from.

	:receive_interval (non_neg_integer/0) - The duration (in milliseconds) for which the producer waits before
making a request for more messages. The default value is 5000.

	:refetch_interval (non_neg_integer/0) - The duration (in milliseconds) to wait before fetching new jobs to be processed. The default value is 60000.

	:shutdown_timeout (timeout/0) - The duration (in milliseconds) Broadway should wait before timing out when
trying to stop the pipeline. The default value is :infinity.

	:on_success (atom/0) - Configures the acking behaviour for successful messages. See the "Acknowledgements"
section below for all the possible values. The default value is :ack.

	:on_failure (atom/0) - Configures the acking behaviour for failed messages. See the "Acknowledgements"
section below for all the possible values. The default value is :noop.

	:splunk_client - A module that implements the OffBroadway.Splunk.Client behaviour.
This module is responsible for fetching and acknowledging the messages
from Splunk. All options passed to the producer will also be forwarded to
the client. The default value is OffBroadway.Splunk.SplunkClient.

	:config (keyword/0) - A set of config options that overrides the default config for the splunk_client
module. Any option set here can also be configured in config.exs. The default value is [].
	:base_url (String.t/0) - Base URL to Splunk instance.

	:api_token (String.t/0) - API token used to authenticate on the Splunk instance.

	:api_version - Some API endpoints are available
in multiple versions. Sets the API version to use (where applicable). The default value is "v2".

	:max_events - If set to a positive integer, automatically shut down the pipeline after consuming
max_events messages from the Splunk API.

Acknowledgements
You can use the on_success and on_failure options to control how messages are
acknowledged. You can set these options when starting the Splunk producer or change
them for each message through Broadway.Message.configure_ack/2. By default, successful
messages are acked (:ack) and failed messages are not (:noop).
The possible values for :on_success and :on_failure are:
	:ack - acknowledge the message. Splunk does not have any concept of acking messages,
because we are just consuming messages from a web api endpoint.
For now we are just executing a :telemetry event for acked messages.

	:noop - do not acknowledge the message. No action are taken.

Telemetry
This library exposes the following telemetry events:
	[:off_broadway_splunk, :receive_jobs, :start] - Dispatched before fetching jobs
from Splunk.
	measurement: %{time: System.monotonic_time}
	metadata: %{name: string, jobs_count: integer}

	[:off_broadway_splunk, :receive_jobs, :stop] - Dispatched when fetching jobs from Splunk
is complete.
	measurement: %{time: native_time}
	metadata: %{name: string, jobs_count: integer}

	[:off_broadway_splunk, :receive_jobs, :exception] - Dispatched after a failure while fetching
jobs from Splunk.
	measurement: %{duration: native_time}

	metadata:
%{
 name: string,
 kind: kind,
 reason: reason,
 stacktrace: stacktrace
}

	[:off_broadway_splunk, :receive_messages, :start] - Dispatched before receiving
messages from Splunk.
	measurement: %{time: System.monotonic_time}
	metadata: %{name: string, sid: string, demand: integer}

	[:off_broadway_splunk, :receive_messages, :stop] - Dispatched after messages have been
received from Splunk and "wrapped".
	measurement: %{time: native_time}

	metadata:
%{
 name: string,
 sid: string,
 received: integer,
 demand: integer
}

	[:off_broadway_splunk, :receive_messages, :exception] - Dispatched after a failure while
receiving messages from Splunk.
	measurement: %{duration: native_time}

	metadata:
%{
 name: string,
 sid: string,
 demand: integer,
 kind: kind,
 reason: reason,
 stacktrace: stacktrace
}

	[:off_broadway_splunk, :receive_messages, :ack] - Dispatched when acking a message.
	measurement: %{time: System.system_time, count: 1}

	meatadata:
%{
 name: string,
 receipt: receipt
}

OffBroadway.Splunk.Queue

GenServer responsible for fetching jobs from the Splunk Web API, and maintain a
queue for which jobs that should be processed by the OffBroadway.Splunk.Producer.
This process is automatically started as part of the Broadway supervision tree.

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 start_link(opts)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 start_link(opts)

 View Source

OffBroadway.Splunk.SplunkClient

Default Splunk client used by OffBroadway.Splunk.Producer to receive data from
Splunk.
This module implements the OffBroadway.Splunk.Client and Broadway.Acknowledger
behaviours which define callbacks for receiving and acknowledging messages.
Since Splunk does not have any concept of acknowledging consumed messages, we need
to keep track of what messages that are consumed ourselves (more on that later).
The default Splunk client uses the Splunk Web API for receiving messages and is
implemented using the Tesla library. Tesla
is a HTTP client abstraction library which let's us easily select from a range of
HTTP adapters. Please see the Tesla documentation
for more information.

 Anchor for this section

 Summary

 Functions

 client(opts)

 Returns a Tesla.Client configured with middleware.

 Anchor for this section

Functions

 Link to this function

 client(opts)

 View Source

 @spec client(opts :: Keyword.t()) :: Tesla.Client.t()

Returns a Tesla.Client configured with middleware.
	Tesla.Middleware.BaseUrl middleware configured with base_url passed via opts.
	Tesla.Middleware.BearerAuth middleware configured with api_token passed via opts.
	Tesla.Middleware.Query middleware configured with query passed via opts.
	Tesla.Middleware.JSON middleware configured with Jason engine.

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

