

 OddJob

 v0.4.0-dev

 Table of contents

 	Modules

 	OddJob

 	OddJob.Job

 	OddJob.Pool

 	OddJob.Supervisor

 	Mix Tasks

 	mix odd_job

OddJob

Job pools for Elixir OTP applications, written in Elixir.
Use OddJob when you need to limit concurrency of background processing in your Elixir app, like forcing backpressure on
calls to databases or external APIs. OddJob is easy to use and configure, and provides functions for fire-and-forget jobs,
async/await calls where the results must be returned, and job scheduling. Job queues are stored in process memory so no
database is required.
Installation
The package can be installed by adding odd_job to your list of dependencies in mix.exs:
def deps do
[
 {:odd_job, "~> 0.4.0"}
]
end
Getting started
After installation you can start processing jobs right away. OddJob automatically starts up a supervised job
pool of 5 workers out of the box with no configuration required. The default name of this job pool is :job,
and it can be sent work in the following way:
OddJob.perform(:job, fn -> do_some_work() end)
You can skip ahead for more usage, or read on for a guide to configuring your job pools.
Configuration
The default pool can be customized in your config if you want to change the name or pool size:
config :odd_job,
 default_pool: :work, # :job is the default
 pool_size: 10 # defaults to 5
If you are processing jobs that have a high chance of failure, you may want to customize the max_restarts and max_seconds
options to prevent all the workers in a pool from restarting if too many jobs are failing. These options
default to the Supervisor defaults (max_restarts: 3, max_seconds: 5) and can be overridden in your config:
config :odd_job,
 default_pool: :dangerous_work,
 pool_size: 50,
 max_restarts: 10,
 max_seconds: 2
Extra pools
You can add extra pools to be supervised by the OddJob application supervision tree:
config :odd_job,
 extra_pools: [:email, :external_app]
By default, extra pools will be configured with the same options as your default pool. Luckily, extra pools
can receive their own list of overrides:
config :odd_job,
 default_pool: :work,
 pool_size: 50,
 max_restarts: 5,
 extra_pools: [
 :email, # :email will use the defaults
 external_app: [# the :external_app pool gets its own config
 pool_size: 10,
 max_restarts: 2
]
]
Next we'll see how you can add job pools to your own application's supervision tree.
If you don't want OddJob to supervise any pools for you (including the default :job pool) then pass false
to the :default_pool config key:
config :odd_job, default_pool: false
Supervising job pools
To supervise your own job pools you can add a tuple in the form of {OddJob, name} (where name is an atom)
directly to the top level of your application's supervision tree or any other list of child specs for a supervisor:
defmodule MyApp.Application do
 use Application

 def start(_type, _args) do

 children = [
 {OddJob, :email},
 {OddJob, :external_app}
]

 opts = [strategy: :one_for_one, name: MyApp.Supervisor]
 Supervisor.start_link(children, opts)
 end
end
The tuple {OddJob, :email} will return a child spec for a supervisor that will start and supervise
the :email pool. The second element of the tuple can be any atom that you want to use as a unique
name for the pool. You can supervise as many pools as you want, as long as they have unique names.
Any default configuration options listed in your config.exs will also apply to your own supervised
pools. You can override the config for any pool by passing a keyword list as the second argument
in the child spec tuple:
def start(_type, _args) do

 children = [
 {OddJob, :email}, # The :email pool will use the default config
 {OddJob, name: :external_app, pool_size: 20, max_restarts: 10} # The :external_app pool will not
]

 Supervisor.start_link(children, opts)
end
All of the previously mentioned config options can be combined. You can have a default pool with an optional
custom name, extra pools in the OddJob supervision tree, and pools to be supervised by your own application,
all of which can either use the default config or their own overrides.
Usage
A job pool can be sent jobs by passing its unique name and an anonymous function to one of the OddJob
module's perform functions:
job = OddJob.async_perform(:external_app, fn -> get_data(user) end)
do something else
data = OddJob.await(job)
OddJob.perform(:email, fn -> send_email(user, data) end)
If a worker in the pool is available then the job will be performed right away. If all of the workers
are already assigned to other jobs then the new job will be added to a FIFO queue. Jobs in the queue
are performed as workers become available.
Use perform/2 for immediate fire and forget jobs where you don't care about the results or if it succeeds.
async_perform/2 and await/1 follow the async/await pattern in the Task module, and are useful when
you need to retrieve the results and you care about success or failure. Similarly to Task.async/1, async jobs
will be linked and monitored by the caller (in this case, through a proxy). If either the caller or the job
crash or exit, the other will crash or exit with the same reason.
Scheduled jobs
Jobs can be scheduled for later execution with perform_after/3 and perform_at/3:
OddJob.perform_after(1_000_000, :job, fn -> clean_database() end) # accepts a timer in milliseconds

time = ~T[03:00:00.000000]
OddJob.perform_at(time, :job, fn -> verify_work_is_done() end) # accepts a valid Time or DateTime struct
The scheduling functions return a unique timer reference which can be read with Process.read_timer/1 and
cancelled with OddJob.cancel_timer/1, which will cancel execution of the job itself and clean up after
itself by causing the scheduler process to exit. When the timer is up the job will be sent to the pool and
can no longer be aborted.
ref = OddJob.perform_after(5000, :job, fn -> :will_be_canceled end)

somewhere else in your code
if some_condition() do
 OddJob.cancel_timer(ref)
end
Note that there is no guarantee that a scheduled job will be executed immediately when the timer runs out.
Like all jobs it is sent to the pool and if all workers are busy then the job enters the queue to be
performed as soon as a worker is available.
License
MIT - Copyright (c) 2022 M. Simon Borg

 Anchor for this section

 Summary

 Types

 child_spec()

 job()

 pool()

 start_arg()

 start_option()

 Functions

 async_perform(pool, fun)

 Performs an async job that can be awaited on for the result.

 async_perform_many(pool, collection, fun)

 Sends a collection of async jobs to the pool.

 await(job, timeout \\ 5000)

 Awaits on an async job and returns the results.

 await_many(jobs, timeout \\ 5000)

 Awaits replies form multiple async jobs and returns them in a list.

 cancel_timer(timer_ref)

 Cancels a scheduled job.

 child_spec(name)

 Returns a specification to start this module under a supervisor.

 perform(pool, fun)

 Performs a fire and forget job.

 perform_after(timer, pool, fun)

 Sends a job to the pool after the given timer has elapsed.

 perform_at(time, pool, fun)

 Sends a job to the pool at the given time.

 perform_many(pool, collection, fun)

 Sends a collection of jobs to the pool.

 perform_this(pool, contents)

 A macro for creating jobs with an expressive DSL.

 perform_this(pool, option, contents)

 A macro for creating jobs with an expressive DSL.

 pool(pool)

 Returns the pid and state of the job pool.

 pool_id(pool)

 Returns the ID of the job pool.

 start_link(arg)

 Starts an OddJob pool supervision tree with a link to the calling process.

 supervisor(pool)

 Returns the pid of the job pool's supervisor.

 supervisor_id(pool)

 Returns the ID of the job pool's supervisor.

 workers(pool)

 Returns a list of pids for the specified worker pool.

 Anchor for this section

Types

 Link to this type

 child_spec()

 View Source

 Specs

 child_spec() :: OddJob.Supervisor.child_spec()

 Link to this type

 job()

 View Source

 Specs

 job() :: OddJob.Job.t()

 Link to this type

 pool()

 View Source

 Specs

 pool() :: OddJob.Pool.t()

 Link to this type

 start_arg()

 View Source

 Specs

 start_arg() :: OddJob.Supervisor.start_arg()

 Link to this type

 start_option()

 View Source

 Specs

 start_option() :: OddJob.Supervisor.start_option()

 Anchor for this section

Functions

 Link to this function

 async_perform(pool, fun)

 View Source

 (since 0.1.0)

 Specs

 async_perform(atom(), function()) :: job()

Performs an async job that can be awaited on for the result.
Functions like Task.async/1 and Task.await/2.

 Examples

iex> job = OddJob.async_perform(:job, fn -> :math.exp(100) end)
iex> OddJob.await(job)
2.6881171418161356e43

 Link to this function

 async_perform_many(pool, collection, fun)

 View Source

 (since 0.4.0)

 Specs

 async_perform_many(atom(), list() | map(), function()) :: [job()]

Sends a collection of async jobs to the pool.
There's a limit to the number of jobs that can be started with this function that
roughly equals the BEAM's process limit.

 Examples

iex> jobs = OddJob.async_perform_many(:job, 1..5, fn x -> x ** 2 end)
iex> OddJob.await_many(jobs)
[1, 4, 9, 16, 25]

 Link to this function

 await(job, timeout \\ 5000)

 View Source

 (since 0.1.0)

 Specs

 await(job(), timeout()) :: any()

Awaits on an async job and returns the results.

 Examples

iex> OddJob.async_perform(:job, fn -> :math.log(2.6881171418161356e43) end)
...> |> OddJob.await()
100.0

 Link to this function

 await_many(jobs, timeout \\ 5000)

 View Source

 (since 0.2.0)

 Specs

 await_many([job()], timeout()) :: [any()]

Awaits replies form multiple async jobs and returns them in a list.
This function receives a list of jobs and waits for their replies in the given time interval.
It returns a list of the results, in the same order as the jobs supplied in the jobs input argument.
If any of the job worker processes dies, the caller process will exit with the same reason as that worker.
A timeout, in milliseconds or :infinity, can be given with a default value of 5000. If the timeout
is exceeded, then the caller process will exit. Any worker processes that are linked to the caller process
(which is the case when a job is started with async_perform/2) will also exit.
This function assumes the jobs' monitors are still active or the monitor's :DOWN message is in the
message queue. If any jobs have been demonitored, or the message already received, this function will
wait for the duration of the timeout.

 Examples

iex> job1 = OddJob.async_perform(:job, fn -> 2 ** 2 end)
iex> job2 = OddJob.async_perform(:job, fn -> 3 ** 2 end)
iex> [job1, job2] |> OddJob.await_many()
[4, 9]

 Link to this function

 cancel_timer(timer_ref)

 View Source

 (since 0.2.0)

 Specs

 cancel_timer(reference()) :: non_neg_integer() | false

Cancels a scheduled job.
timer_ref is the unique reference returned by perform_at/3 or perform_after/3. This function
returns the number of milliseconds left in the timer when cancelled, or false if the timer already
expired. If the return is false you can assume that the job has already been sent to the pool
for execution.
NOTE: Cancelling the timer with this function ensures that the job is never executed and that
the scheduler process is exited and not left "hanging". Using Process.cancel_timer/1 will also
cancel execution, but may leave hanging processes. A hanging scheduler process will eventually
timeout, but not until one second after the expiration of the original timer.

 Examples

iex> ref = OddJob.perform_after(500, :work, fn -> :never end)
iex> time = OddJob.cancel_timer(ref)
iex> is_integer(time)
true

iex> ref = OddJob.perform_after(10, :work, fn -> :never end)
iex> Process.sleep(11)
iex> OddJob.cancel_timer(ref)
false

 Link to this function

 child_spec(name)

 View Source

 (since 0.1.0)

 Specs

 child_spec(start_arg() | {atom(), [start_option()]}) :: child_spec()

Returns a specification to start this module under a supervisor.

 Examples

iex> :work |> OddJob.child_spec()
%{id: :work_sup, start: {OddJob.Supervisor, :start_link, [[name: :work]]}, type: :supervisor}
Normally you would start an OddJob pool under a supervision tree and not call
child_spec/1 directly.
children = [{OddJob, :work}]
Supervisor.start_link(children, strategy: :one_for_one)
The start_arg, whether passed directly to child_spec/1 or used as the second element of a child spec tuple,
can be one of the following:
	name - An atom which will be the name of the pool.

	opts - A keyword list of options.

	{name, opts} - A two element tuple where name is an atom and opts is a keyword list of
options. If opts has a :name key it will be overridden by the first element of the tuple.

See start_link/1 for more information on start arguments and options, and the Supervisor module for more
about child specs.

 Link to this function

 perform(pool, fun)

 View Source

 (since 0.1.0)

 Specs

 perform(atom(), function()) :: :ok

Performs a fire and forget job.

 Examples

iex> parent = self()
iex> :ok = OddJob.perform(:job, fn -> send(parent, :hello) end)
iex> receive do
...> msg -> msg
...> end
:hello

 Link to this function

 perform_after(timer, pool, fun)

 View Source

 (since 0.2.0)

 Specs

 perform_after(integer(), atom(), function()) :: reference()

Sends a job to the pool after the given timer has elapsed.
timer is an integer that indicates the number of milliseconds that should elapse before
the job is sent to the pool. The timed message is executed under a separate supervised process,
so if the caller crashes the job will still be performed. A timer reference is returned,
which can be read with Process.read_timer/1 or cancelled with OddJob.cancel_timer/1.

 Examples

timer_ref = OddJob.perform_after(5000, :job, fn -> deferred_job() end)
Process.read_timer(timer_ref)
#=> 2836 # time remaining before job is sent to the pool
OddJob.cancel_timer(timer_ref)
#=> 1175 # job has been cancelled

timer_ref = OddJob.perform_after(5000, :job, fn -> deferred_job() end)
Process.sleep(6000)
OddJob.cancel_timer(timer_ref)
#=> false # too much time has passed to cancel the job

 Link to this function

 perform_at(time, pool, fun)

 View Source

 (since 0.2.0)

 Specs

 perform_at(Time.t() | DateTime.t(), atom(), function()) :: reference()

Sends a job to the pool at the given time.
time can be a Time or a DateTime struct. If a Time struct is received, then
the job will be done the next time the clock strikes the given time. The timer is executed
under a separate supervised process, so if the caller crashes the job will still be performed.
A timer reference is returned, which can be read with Process.read_timer/1 or canceled with
OddJob.cancel_timer/1.

 Examples

time = Time.utc_now() |> Time.add(600, :second)
OddJob.perform_at(time, :job, fn -> scheduled_job() end)

 Link to this function

 perform_many(pool, collection, fun)

 View Source

 (since 0.4.0)

 Specs

 perform_many(atom(), list() | map(), function()) :: :ok

Sends a collection of jobs to the pool.

 Examples

iex> caller = self()
iex> OddJob.perform_many(:job, 1..5, fn x -> send(caller, x) end)
iex> for x <- 1..5 do
...> receive do
...> ^x -> x
...> end
...> end
[1, 2, 3, 4, 5]

 Link to this macro

 perform_this(pool, contents)

 View Source

 (since 0.3.0)

 (macro)

A macro for creating jobs with an expressive DSL.
perform_this/2 works like perform/2 except it accepts a do block instead of an anonymous function.

 Examples

You must import or require OddJob to use macros:
import OddJob

perform_this :work do
 some_work()
 some_other_work()
end

perform_this :work, do: something_hard()

 Link to this macro

 perform_this(pool, option, contents)

 View Source

 (since 0.3.0)

 (macro)

A macro for creating jobs with an expressive DSL.
perform_this/3 accepts a single configuration option as the second argument that will control execution of
the job. The available options provide the functionality of async_perform/2, perform_at/3,
and perform_after/3.

 Options

	:async - Passing the atom :async as the second argument before the do block creates an async
job that can be awaited on. See async_perform/2.

	at: time - Use this option to schedule the job for a specific time in the future. time must be
a valid Time or DateTime struct. See perform_at/3.

	after: timer - Use this option to schedule the job to perform after the given timer has elapsed. timer
must be in milliseconds. See perform_after/3.

 Examples

import OddJob

time = ~T[03:00:00.000000]
perform_this :work, at: time do
 scheduled_work()
end

perform_this :work, after: 5000, do: something_important()

perform_this :work, :async do
 get_data()
end
|> await()

iex> (perform_this :work, :async, do: 10 ** 2) |> await()
100

 Link to this function

 pool(pool)

 View Source

 (since 0.1.0)

 Specs

 pool(atom()) :: {pid(), pool()}

Returns the pid and state of the job pool.

 Examples

iex> {pid, %OddJob.Pool{id: id}} = OddJob.pool(:job)
iex> is_pid(pid)
true
iex> id
:job_pool

 Link to this function

 pool_id(pool)

 View Source

 (since 0.1.0)

 Specs

 pool_id(atom()) :: atom()

Returns the ID of the job pool.

 Examples

iex> OddJob.pool_id(:job)
:job_pool

 Link to this function

 start_link(arg)

 View Source

 (since 0.4.0)

 Specs

 start_link(start_arg()) :: Supervisor.on_start()

Starts an OddJob pool supervision tree with a link to the calling process.
The start_arg can be one of the following:
	name - An atom which will be the name of the pool. Use this option if you want your pool to assume
the default config options.

	opts - A keyword list of options. These options will override the default config. The available
options are:
	:name - an atom that will name the pool, and the only required key
	:pool_size - an integer, the number of concurrent workers in the pool. Defaults to 5 or your application's
config value.
	:max_restarts - an integer, the number of worker restarts allowed in a given timeframe before all
of the workers are restarted. Set a higher number if your jobs have a high rate of expected failure.
Defaults to 5 or your application's config value.
	:max_seconds - an integer, the timeframe in seconds in which max_restarts applies. Defaults to 3
or your application's config value. See Supervisor for more info on restart intensity options.

You can start an OddJob pool directly and dynamically:
iex> {:ok, _pid} = OddJob.start_link(name: :event, pool_size: 10)
iex> OddJob.async_perform(:event, fn -> :do_something end) |> OddJob.await()
:do_something
Normally you would instead use a child spec to start your pools under a supervisor:
children = [{OddJob, name: :event, pool_size: 10}]
Supervisor.start_link(children, strategy: :one_for_one)
The second element of the child spec tuple can be any of the start_args accepted by start_link/1 or
child_spec/1. See Supervisor for more on starting supervision trees.

 Link to this function

 supervisor(pool)

 View Source

 (since 0.1.0)

 Specs

 supervisor(atom()) :: pid()

Returns the pid of the job pool's supervisor.
There is no guarantee that the process will still be alive after the results are returned,
as it could exit or be killed or restarted at any time. Use supervisor_id/1 to obtain
the persistent ID of the supervisor.

 Examples

OddJob.supervisor(:job)
#=> #PID<0.239.0>

 Link to this function

 supervisor_id(pool)

 View Source

 (since 0.1.0)

 Specs

 supervisor_id(atom()) :: atom()

Returns the ID of the job pool's supervisor.

 Examples

iex> OddJob.supervisor_id(:job)
:job_pool_sup

 Link to this function

 workers(pool)

 View Source

 (since 0.1.0)

 Specs

 workers(atom()) :: [pid()]

Returns a list of pids for the specified worker pool.
There is no guarantee that the processes will still be alive after the results are returned,
as they could exit or be killed at any time.

 Examples

OddJob.workers(:job)
#=> [#PID<0.105.0>, #PID<0.106.0>, #PID<0.107.0>, #PID<0.108.0>, #PID<0.109.0>]

OddJob.Job

The OddJob.Job struct holds all of the useful information about a job.

 Anchor for this section

 Summary

 Types

 t()

 The OddJob.Job struct is the datatype that is passed between processes charged with performing
the job.

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 (since 0.1.0)

 Specs

 t() :: %OddJob.Job{
 async: boolean(),
 function: function(),
 owner: pid(),
 proxy: pid(),
 ref: reference(),
 results: term()
}

The OddJob.Job struct is the datatype that is passed between processes charged with performing
the job.
It holds all of the data that is necessary to link, monitor, perform work, and return results
to the caller.
The job struct is only returned to the caller when using the async/await pattern. When the caller receives
the struct after calling OddJob.async_perform/2 the :results field is always nil, even though the
work could conceivably already be done. This is because the results are not waited on at the time the
struct is created. The results are only known when passing the job to OddJob.await/2 or matching on the
{ref, results} message.
	:function is the anonymous function that will be performed by the worker

	:results is the term that is returned by function. This is only used internally by the
processes performing the work.

	:async is an boolean identifying if the job's results can be awaited on

	:ref is the unique monitor reference of the job

	:owner is the pid of the calling process, i.e. self()

	:proxy is the pid of the proxy server that creates the job and routes the results. The owner
links and monitors the proxy, while the proxy links and monitors the worker. Exit messages and failures
cascade up to the owner. The worker sends results back to the proxy, which then sends them to the
owner before exiting with reason :normal.

OddJob.Pool

The job pool that manages the assignments given to the pool workers.

 Anchor for this section

 Summary

 Types

 job()

 t()

 The OddJob.Pool struct holds the state of the job pool.

 Anchor for this section

Types

 Link to this type

 job()

 View Source

 Specs

 job() :: OddJob.Job.t()

 Link to this type

 t()

 View Source

 (since 0.3.0)

 Specs

 t() :: %OddJob.Pool{
 assigned: [pid()],
 id: atom(),
 jobs: [job()],
 pool: atom(),
 workers: [pid()]
}

The OddJob.Pool struct holds the state of the job pool.
	:id is an atom representing the registered name of the pool process
	:pool is an atom representing the name of the job pool
	:workers is a list of the active worker pids, whether they are busy working or not
	:assigned is a list of the worker pids that are currently assigned to a job
	:jobs is a list of OddJob.Job structs representing the jobs that are queued to be performed
when workers are available

OddJob.Supervisor

The OddJob.Supervisor is responsible for starting and supervising a job pool.
All of this module's public functions can be called using the OddJob namespace. See
the OddJob documentation for usage.

 Anchor for this section

 Summary

 Types

 child_spec()

 start_arg()

 start_option()

 Anchor for this section

Types

 Link to this type

 child_spec()

 View Source

 Specs

 child_spec() :: %{
 id: atom(),
 start: {OddJob.Supervisor, :start_link, [start_option()]},
 type: :supervisor
}

 Link to this type

 start_arg()

 View Source

 Specs

 start_arg() :: atom() | [start_option()]

 Link to this type

 start_option()

 View Source

 Specs

 start_option() ::
 {:name, atom()}
 | {:pool_size, non_neg_integer()}
 | {:max_restarts, non_neg_integer()}
 | {:max_seconds, non_neg_integer()}

mix odd_job

Mix task for development testing and code linting.
Runs the Mix code formatter and all tests, generates an ExCoveralls test coverage report, and builds
documentation locally.
Use $ mix odd_job in the project's root directory to run the task.

 Anchor for this section

 Summary

 Functions

 do_run(argv)

 run(argv)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 do_run(argv)

 View Source

 Specs

 do_run([binary()]) :: nil

 Link to this function

 run(argv)

 View Source

 (since 0.2.0)

 Specs

 run(argv :: [String.t()]) :: nil

Callback implementation for Mix.Task.run/1.

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

