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Introduction to Nx
    

Mix.install([
  {:nx, "~> 0.2"}
])
Numerical Elixir
Elixir's primary numerical datatypes and structures are not optimized
for numerical programming. Nx is a library built to bridge that gap.
Elixir Nx is a numerical computing library
to smoothly integrate to typed, multidimensional data implemented on other
platforms (called tensors). This support extends to the compilers and
libraries that support those tensors. Nx has three primary capabilities:
	In Nx, tensors hold typed data in multiple, named dimensions.
	Numerical definitions, known as defn, support custom code with
tensor-aware operators and functions.
	Automatic differentiation, also known as
autograd or autodiff, supports common computational scenarios
such as machine learning, simulations, curve fitting, and probabilistic models.

Here's more about each of those capabilities. Nx tensors can hold
unsigned integers (u8, u16, u32, u64),
signed integers (s8, s16, s32, s64),
floats (f32, f64), brain floats (bf16), and complex (c64, c128).
Tensors support backends implemented outside of Elixir, including Google's
Accelerated Linear Algebra (XLA) and LibTorch.
Numerical definitions have compiler support to allow just-in-time compilation
that support specialized processors to speed up numeric computation including
TPUs and GPUs.
To know Nx, we'll get to know tensors first. This rapid overview will touch
on the major libraries. Then, future notebooks will take a deep dive into working
with tensors in detail, autograd, and backends. Then, we'll dive into specific
problem spaces like Axon, the machine learning library.
Nx and tensors
Systems of equations are a central theme in numerical computing.
These equations are often expressed and solved with multidimensional
arrays. For example, this is a two dimensional array:
$$
\begin{bmatrix}
  1 & 2 \\
  3 & 4
\end{bmatrix}
$$
Elixir programmers typically express a similar data structure using
a list of lists, like this:
[
  [1, 2],
  [3, 4]
]
This data structure works fine within many functional programming
algorithms, but breaks down with deep nesting and random access.
On top of that, Elixir numeric types lack optimization for many numerical
applications. They work fine when programs
need hundreds or even thousands of calculations. They tend to break
down with traditional STEM applications when a typical problem
needs millions of calculations.
In Nx, we express multi-dimensional data using typed tensors. Simply put,
a tensor is a multi-dimensional array with a predetermined shape and
type. To interact with them, Nx relies on tensor-aware operators rather
than Enum.map/2 and Enum.reduce/3.
In this section, we'll look at some of the various tools for
creating and interacting with tensors. The IEx helpers will assist our
exploration of the core tensor concepts.
import IEx.Helpers
Now, everything is set up, so we're ready to create some tensors.
Creating tensors
Start out by getting a feel for Nx through its documentation.
Do so through the IEx helpers, like this:
h Nx
Immediately, you can see that tensors are at the center of the
API. The main API for creating tensors is Nx.tensor/2:
h Nx.tensor
We use it to create tensors from raw Elixir lists of numbers, like this:
tensor =
  1..4
  |> Enum.chunk_every(2)
  |> Nx.tensor(names: [:y, :x])
The result shows all of the major fields that make up a tensor:
	The data, presented as the list of lists [[1, 2], [3, 4]].
	The type of the tensor, a signed integer 64 bits long, with the type s64.
	The shape of the tensor, going left to right, with the outside dimensions listed first.
	The names of each dimension.

We can easily convert it to a binary:
binary = Nx.to_binary(tensor)
A tensor of type s64 uses four bytes for each integer. The binary
shows the individual bytes that make up the tensor, so you can see
the integers 1..4 interspersed among the zeros that make
up the tensor. If all of our data only uses positive numbers from
0..255, we could save space with a different type:
Nx.tensor([[1, 2], [3, 4]], type: :u8) |> Nx.to_binary()
If you have already have binary, you can directly convert it to a tensor
by passing the binary and the type:
Nx.from_binary(<<0, 1, 2>>, :u8)
This function comes in handy when working with published datasets
because they must often be processed. Elixir binaries make quick work
of dealing with numerical data structured for platforms other than
Elixir.
We can get any cell of the tensor:
tensor[0][1]
Now, try getting the first row of the tensor:
# ...your code here...
We can also get a whole dimension:
tensor[x: 1]
or a range:
tensor[y: 0..1]
Now,
	create your own {3, 3} tensor with named dimensions
	return a {2, 2} tensor containing the first two columns
of the first two rows

We can get information about this most recent term with
the IEx helper i, like this:
i tensor
The tensor is a struct that supports the usual Inspect protocol.
The struct has keys, but we typically treat the Nx.Tensor
as an opaque data type (meaning we typically access the contents and
shape of a tensor using the tensor's API instead of the struct).
Primarily, a tensor is a struct, and the
functions to access it go through a specific backend. We'll get to
the backend details in a moment. For now, use the IEx h helper
to get more documentation about tensors. We could also open a Code
cell, type Nx.tensor, and hover the cursor over the word tensor
to see the help about that function.
We can get the shape of the tensor with Nx.shape/1:
Nx.shape(tensor)
We can also create a new tensor with a new shape using  Nx.reshape/2:
Nx.reshape(tensor, {1, 4}, names: [:batches, :values])
This operation reuses all of the tensor data and simply
changes the metadata, so it has no notable cost.
The new tensor has the same type, but a new shape.
Now, reshape the tensor to contain three dimensions with
one batch, one row, and four columns.
# ...your code here...
We can create a tensor with named dimensions, a type, a shape,
and our target data. A dimension is called an axis, and axes
can have names. We can specify the tensor type and dimension names
with options, like this:
Nx.tensor([[1, 2, 3]], names: [:rows, :cols], type: :u8)
We created a tensor of the shape {1, 3}, with the type u8,
the values [1, 2, 3], and two axes named rows and cols.
Now we know how to create tensors, so it's time to do something with them.
Tensor aware functions
In the last section, we created a s64[2][2] tensor. In this section,
we'll use Nx functions to work with it. Here's the value of tensor:
tensor
We can use IEx.Helpers.exports/1 or code completion to find
some functions in the Nx module that operate on tensors:
exports Nx
You might recognize that many of those functions have names that
suggest that they would work on primitive values, called scalars.
Indeed, a tensor can be a scalar:
pi = Nx.tensor(3.1415, type: :f32)
Take the cosine:
Nx.cos(pi)
That function took the cosine of pi.  We can also call them
on a whole tensor, like this:
Nx.cos(tensor)
We can also call a function that aggregates the contents
of a tensor. For example, to get a sum of the numbers
in tensor, we can do this:
Nx.sum(tensor)
That's 1 + 2 + 3 + 4, and Nx went to multiple dimensions to get that sum.
To get the sum of values along the x axis instead, we'd do this:
Nx.sum(tensor, axes: [:x])
Nx sums the values across the x dimension: 1 + 2 in the first row
and 3 + 4 in the second row.
Now,
	create a {2, 2, 2} tensor
	with the values 1..8
	with dimension names [:z, :y, :x]
	calculate the sums along the y axis

# ...your code here...
Sometimes, we need to combine two tensors together with an
operator. Let's say we wanted to subtract one tensor from
another. Mathematically, the expression looks like this:
$$
\begin{bmatrix}
  5 & 6 \\
  7 & 8
\end{bmatrix} -
\begin{bmatrix}
  1 & 2 \\
  3 & 4
\end{bmatrix} =
\begin{bmatrix}
  4 & 4 \\
  4 & 4
\end{bmatrix}
$$
To solve this problem, subtract each right-hand integer from the
corresponding left-hand integer. Unfortunately, we cannot
use Elixir's built-in subtraction operator as it is not tensor-aware.
Luckily, we can use the Nx.subtract/2 function to solve the
problem:
tensor2 = Nx.tensor([[5, 6], [7, 8]])
Nx.subtract(tensor2, tensor)
We get a {2, 2} shaped tensor full of fours, exactly as we expected.
When calling Nx.subtract/2, both operands had the same shape.
Sometimes, you might want to process functions where the dimensions
don't match. To solve this problem, Nx takes advantage of
a concept called broadcasting.
Broadcasts
Often, the dimensions of tensors in an operator don't match.
For example, you might want to subtract a 1 from every
element of a {2, 2} tensor, like this:
$$
\begin{bmatrix}
  1 & 2 \\
  3 & 4
\end{bmatrix} - 1 =
\begin{bmatrix}
  0 & 1 \\
  2 & 3
\end{bmatrix}
$$
Mathematically, it's the same as this:
$$
\begin{bmatrix}
  1 & 2 \\
  3 & 4
\end{bmatrix} -
\begin{bmatrix}
  1 & 1 \\
  1 & 1
\end{bmatrix} =
\begin{bmatrix}
  0 & 1 \\
  2 & 3
\end{bmatrix}
$$
That means we need a way to convert 1 to a {2, 2} tensor.
Nx.broadcast/2 solves that problem. This function takes
a tensor or a scalar and a shape.
Nx.broadcast(1, {2, 2})
This broadcast takes the scalar 1 and translates it
to a compatible shape by copying it.  Sometimes, it's easier
to provide a tensor as the second argument, and let broadcast/2
extract its shape:
Nx.broadcast(1, tensor)
The code broadcasts 1 to the shape of tensor. In many operators
and functions, the broadcast happens automatically:
Nx.subtract(tensor, 1)
This result is possible because Nx broadcasts both tensors
in subtract/2 to compatible shapes. That means you can provide
scalar values as either argument:
Nx.subtract(10, tensor)
Or subtract a row or column. Mathematically, it would look like this:
$$
\begin{bmatrix}
  1 & 2 \\
  3 & 4
\end{bmatrix} -
\begin{bmatrix}
  1 & 2
\end{bmatrix} =
\begin{bmatrix}
  0 & 0 \\
  2 & 2
\end{bmatrix}
$$
which is the same as this:
$$
\begin{bmatrix}
  1 & 2 \\
  3 & 4
\end{bmatrix} -
\begin{bmatrix}
  1 & 2 \\
  1 & 2
\end{bmatrix} =
\begin{bmatrix}
  0 & 0 \\
  2 & 2
\end{bmatrix}
$$
This rewrite happens in Nx too, also through a broadcast. We want to
broadcast the tensor [1, 2] to match the {2, 2} shape, like this:
Nx.broadcast(Nx.tensor([1, 2]), {2, 2})
The subtract function in Nx takes care of that broadcast
implicitly, as before:
Nx.subtract(tensor, Nx.tensor([1, 2]))
The broadcast worked as advertised, copying the [1, 2] row
enough times to fill a {2, 2} tensor.  A tensor with a
dimension of 1 will broadcast to fill the tensor:
[[1], [2]] |> Nx.tensor() |> Nx.broadcast({1, 2, 2})
[[[1, 2, 3]]]
|> Nx.tensor()
|> Nx.broadcast({4, 2, 3})
Both of these examples copy parts of the tensor enough
times to fill out the broadcast shape. You can check out the
Nx broadcasting documentation for more details:
h Nx.broadcast
Much of the time, you won't have to broadcast yourself. Many of
the functions and operators Nx supports will do so automatically.
We can use tensor-aware operators via various Nx functions and
many of them implicitly broadcast tensors.
Throughout this section, we have been invoking Nx.subtract/2 and
our code would be more expressive if we could use its equivalent
mathematical operator. Fortunately, Nx provides a way. Next, we'll
dive into numerical definitions using defn.
Numerical definitions (defn)
The defn macro simplifies the expression of mathematical formulas
containing tensors. Numerical definitions have two primary benefits
over classic Elixir functions.
	They are tensor-aware. Nx replaces operators like Kernel.-/2
with the Defn counterparts &mdash; which in turn use Nx functions
optimized for tensors &mdash; so the formulas we express can use
tensors out of the box.

	defn definitions allow for building computation graph of all the
individual operations and using a just-in-time (JIT) compiler to emit
highly specialized native code for the desired computation unit.


We don't have to do anything special to get access to
get tensor awareness beyond importing Nx.Defn and writing
our code within a defn block.
To use Nx in a Mix project or a notebook, we need to include
the :nx dependency and import the Nx.Defn module. The
dependency is already included, so import it in a Code cell,
like this:
import Nx.Defn
Just as the Elixir language supports def, defmacro, and defp,
Nx supports defn. There are a few restrictions. It allows only
numerical arguments in the form of primitives or tensors as arguments
or return values, and supports only a subset of the language.
The subset of Elixir allowed within defn is quite broad, though. We can
use macros, pipes, and even conditionals, so we're not giving up
much when you're declaring mathematical functions.
Additionally, despite these small concessions, defn provides huge benefits.
Code in a defn block uses tensor aware operators and types, so the math
beneath your functions has a better chance to shine through. Numerical
definitions can also run on accelerated numerical processors like GPUs and
TPUs. Here's an example numerical definition:
defmodule TensorMath do
  import Nx.Defn

  defn subtract(a, b) do
    a - b
  end
end
This module has a numerical definition that will be compiled.
If we wanted to specify a compiler for this module, we could add
a module attribute before the defn clause. One of such compilers
is the EXLA compiler.
You'd add the mix dependency for EXLA and do this:
@defn_compiler EXLA
defn subtract(a, b) do
  a - b
end
Now, it's your turn. Add a defn to TensorMath
that accepts two tensors representing the lengths of sides of a
right triangle and uses the pythagorean theorem to return the
length of the hypotenuse.
Add your function directly to the previous Code cell.
The last major feature we'll cover is called auto-differentiation, or autograd.
Automatic differentiation (autograd)
An important mathematical property for a function is the
rate of change, or the gradient. These gradients are critical
for solving systems of equations and building probabilistic
models. In advanced math, derivatives, or differential equations,
are used to take gradients. Nx can compute these derivatives
automatically through a feature called automatic differentiation,
or autograd.
Here's how it works.
h Nx.Defn.grad
We'll build a module with a few functions,
and then create another function to create the gradients of those
functions. The function grad/1 takes a function, and returns
a function returning the gradient. We have two functions: poly/1
is a simple numerical definition, and poly_slope_at/1 returns
its gradient:
$$
  poly: f(x) = 3x^2 + 2x + 1 \\
$$
$$
  polySlopeAt: g(x) = 6x + 2
$$
Here's the Elixir equivalent of those functions:
defmodule Funs do
  defn poly(x) do
    3 * Nx.power(x, 2) + 2 * x + 1
  end

  defn poly_slope_at(x) do
    grad(&poly/1).(x)
  end
end
Notice the second defn. It uses grad/1 to take its
derivative using autograd. It uses the intermediate defn AST
and mathematical composition to compute the derivative. You can
see it at work here:
Funs.poly_slope_at(2)
Nice. If you plug the number 2 into the function $$ 6x + 2 $$
you get 14! Said another way, if you look at the graph at
exactly 2, the rate of increase is 14 units of poly(x)
for every unit of x, precisely at x.
Nx also has helpers to get gradients corresponding to a number of inputs.
These come into play when solving systems of equations.
Now, you try. Find a function computing the gradient of a sin wave.
# your code here
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v0.4.0 (2022-10-25)
Enhancements
	[Nx] Add Nx.rename/2, Nx.median/2, Nx.weighted_mean/3, and Nx.mode/2
	[Nx] Implement cumulative operations using associative scan for improved performance
	[Nx.Constants] Add smallest_positive_normal, min, and max
	[Nx.Defn] Allow lists and functions anywhere as arguments in defn, jit and compile
	[Nx.Defn] Add Nx.LazyContainer that allows a data-structure to lazily define tensors
	[Nx.Defn] Allow tensors and ranges as generators inside while
	[Nx.Defn] Add debug_expr/2 and debug_expr_apply/3
	[Nx.Defn.Evaluator] Calculate cache lifetime to reduce memory usage on large numerical programs
	[Nx.LinAlg] Handle Hermitian matrices in eigh
	[Nx.LinAlg] Support batched operations in adjoint, cholesky, determinant, eigh, invert, lu, matrix_power, solve, svd, and triangular_solve
	[Nx.Random] Support pseudo random number generators algorithms

Bug fixes
	[Nx] Perform window_reduce/reduce operations from infinity and negative infinity
	[Nx.Defn] Ensure defnp emits warnings when unused
	[Nx.Defn] Warn on unused variables in while

Deprecations
	[Nx] Deprecate tensor as shape in Nx.eye/2 and Nx.iota/2
	[Nx] Deprecate Nx.random_uniform/2 and Nx.random_normal/2

v0.3.0 (2022-08-13)
Enhancements
	[Nx] Improve support for non-finite values in Nx.broadcast/2, Nx.all_close/2, and more
	[Nx] Add Nx.is_nan/1 and Nx.is_infinite/1
	[Nx] Support booleans in Nx.tensor/2
	[Nx] Add Nx.fft/2 and Nx.ifft/2
	[Nx] Rename Nx.logistic/1 to Nx.sigmoid/1
	[Nx] Add Nx.put_diagonal/3 and Nx.indexed_put/3
	[Nx] Add :reverse to cummulative functions
	[Nx] Add Nx.to_batched/3 which returns a stream
	[Nx] Support batched tensors in Nx.LinAlg.qr/1
	[Nx.Defn] Add Nx.Defn.compile/3 for precompiling expressions
	[Nx.Defn] Add deftransform/2 and deftransformp/2 for easier to define transforms
	[Nx.Defn] Add div/2
	[Nx.Defn] Support case/2, raise/1, and raise/2
	[Nx.Defn] Support booleans in if, cond, and boolean operators
	[Nx.Defn] Perform branch elimitation in if and cond and execute branches lazily
	[Nx.Defn.Evaluator] Garbage collect after evaluation (it can be disabled by setting the :garbage_collect compiler option to false)

Deprecations
	[Nx] Nx.to_batched_list/3 is deprecated in favor of Nx.to_batched/3
	[Nx.Defn] transform/2 is deprecated in favor of deftransform/2 and deftransformp/2
	[Nx.Defn] assert_shape/2 and assert_shape_pattern/2 are deprecated in favor of case/2 + raise/2
	[Nx.Defn] inspect_expr/1 and inspect_value/1 are deprecated in favor of print_expr/1 and print_value/1 respectively

v0.2.1 (2022-06-04)
Enhancements
	[Nx] Improve support for non-finite values in Nx.tensor/1
	[Nx] Use iovec on serialization to avoid copying binaries
	[Nx.BinaryBackend] Improve for complex numbers in Nx.tensor/1
	[Nx.Defn] Improve for complex numbers inside defn

Bug fixes
	[Nx] Properly normalize type in Nx.from_binary/3
	[Nx.Defn] Raise on Nx.Defn.Expr as JIT argument
	[Nx.Defn.Evaluator] Handle concatenate arguments on evaluator

v0.2.0 (2022-04-28)
This version requires Elixir v1.13+.
Enhancements
	[Nx] Support atom notation as the type option throughout the API (for example, :u8, :f64, etc)
	[Nx] Add support for complex numbers (c64, c128)
	[Nx] Add Nx.cumulative_sum/2, Nx.cumulative_product/2, Nx.cumulative_min/2, Nx.cumulative_max/2
	[Nx] Add Nx.conjugate/1, Nx.phase/1, Nx.real/1, and Nx.imag/1
	[Nx] Initial support for NaN and Infinity
	[Nx] Add :axis option to Nx.shuffle/2
	[Nx] Add Nx.axis_index/2
	[Nx] Add Nx.variance/2 to Nx.standard_deviation/2
	[Nx] Rename Nx.slice_axis/3 to Nx.slice_along_axis/4
	[Nx.Backend] Add support for optional backends
	[Nx.Constants] Provide a convenient module to host constants
	[Nx.Defn] Improve error messages throughout the compiler

v0.1.0 (2022-01-06)
First release.
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Numerical Elixir.
The Nx library is a collection of functions and data
types to work with Numerical Elixir. This module defines
the main entry point for building and working with said
data-structures. For example, to create an n-dimensional
tensor, do:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> Nx.shape(t)
{2, 2}
Nx also provides the so-called numerical definitions under
the Nx.Defn module. They are a subset of Elixir tailored for
numerical computations. For example, it overrides Elixir's
default operators so they are tensor-aware:
defn softmax(t) do
  Nx.exp(t) / Nx.sum(Nx.exp(t))
end
Code inside defn functions can also be given to custom compilers,
which can compile said functions just-in-time (JIT) to run on the
CPU or on the GPU.
References
Here is a general outline of the main references in this library:
	For an introduction, see our Intro to Nx guide

	This module provides the main API for working with tensors

	Nx.Defn provides numerical definitions, CPU/GPU compilation, gradients, and more

	Nx.LinAlg provides functions related to linear algebra

	Nx.Constants declares many constants commonly used in numerical code


Continue reading this documentation for an overview of creating,
broadcasting, and accessing/slicing Nx tensors.
Creating tensors
The main APIs for creating tensors are tensor/2, from_binary/2,
iota/2, eye/2, random_uniform/2, random_normal/2, and
broadcast/3.
The tensor types can be one of:
	unsigned integers (u8, u16, u32, u64)
	signed integers (s8, s16, s32, s64)
	floats (f16, f32, f64)
	brain floats (bf16)
	and complex numbers (c64, c128)

The types are tracked as tuples:
iex> Nx.tensor([1, 2, 3], type: :f32)
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>
But a shortcut atom notation is also available:
iex> Nx.tensor([1, 2, 3], type: :f32)
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>
The tensor dimensions can also be named, via the :names option
available to all creation functions:
iex> Nx.iota({2, 3}, names: [:x, :y])
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [0, 1, 2],
    [3, 4, 5]
  ]
>
Finally, for creating vectors and matrices, a sigil notation
is available:
iex> import Nx, only: :sigils
iex> ~V[1 2 3]f32
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>

iex> import Nx, only: :sigils
iex> ~M'''
...> 1 2 3
...> 4 5 6
...> '''s32
#Nx.Tensor<
  s32[2][3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>
All other APIs accept exclusively numbers or tensors, unless
explicitly noted otherwise.
Broadcasting
Broadcasting allows operations on two tensors of different shapes
to match. For example, most often operations between tensors have
the same shape:
iex> a = Nx.tensor([1, 2, 3])
iex> b = Nx.tensor([10, 20, 30])
iex> Nx.add(a, b)
#Nx.Tensor<
  s64[3]
  [11, 22, 33]
>
Now let's imagine you want to multiply a large tensor of dimensions
1000x1000x1000 by 2. If you had to create a similarly large tensor
only to perform this operation, it would be inefficient. Therefore,
you can simply multiply this large tensor by the scalar 2, and Nx
will propagate its dimensions at the time the operation happens,
without allocating a large intermediate tensor:
iex> Nx.multiply(Nx.tensor([1, 2, 3]), 2)
#Nx.Tensor<
  s64[3]
  [2, 4, 6]
>
In practice, broadcasting is not restricted only to scalars; it
is a general algorithm that applies to all dimensions of a tensor.
When broadcasting, Nx compares the shapes of the two tensors,
starting with the trailing ones, such that:
	If the dimensions have equal size, then they are compatible

	If one of the dimensions have size of 1, it is "broadcast"
to match the dimension of the other


In case one tensor has more dimensions than the other, the missing
dimensions are considered to be of size one. Here are some examples
of how broadcast would work when multiplying two tensors with the
following shapes:
s64[3] * s64
#=> s64[3]

s64[255][255][3] * s64[3]
#=> s64[255][255][3]

s64[2][1] * s[1][2]
#=> s64[2][2]

s64[5][1][4][1] * s64[3][4][5]
#=> s64[5][3][4][5]
If any of the dimensions do not match or are not 1, an error is
raised.
Access syntax (slicing)
Nx tensors implement Elixir's access syntax. This allows developers
to slice tensors up and easily access sub-dimensions and values.
Access accepts integers:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[0]
#Nx.Tensor<
  s64[2]
  [1, 2]
>
iex> t[1]
#Nx.Tensor<
  s64[2]
  [3, 4]
>
iex> t[1][1]
#Nx.Tensor<
  s64
  4
>
If a negative index is given, it accesses the element from the back:
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[-1][-1]
#Nx.Tensor<
  s64
  4
>
Out of bound access will raise:
iex> Nx.tensor([1, 2])[2]
** (ArgumentError) index 2 is out of bounds for axis 0 in shape {2}

iex> Nx.tensor([1, 2])[-3]
** (ArgumentError) index -3 is out of bounds for axis 0 in shape {2}
The index can also be another tensor but in such cases it must be
a scalar between 0 and the dimension size. Out of bound dynamic indexes
are always clamped to the tensor dimensions:
iex> two = Nx.tensor(2)
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[two][two]
#Nx.Tensor<
  s64
  4
>
For example, a minus_one dynamic index will be clamped to zero:
iex> minus_one = Nx.tensor(-1)
iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t[minus_one][minus_one]
#Nx.Tensor<
  s64
  1
>
Access also accepts ranges. Ranges in Elixir are inclusive:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[0..1]
#Nx.Tensor<
  s64[2][2]
  [
    [1, 2],
    [3, 4]
  ]
>
Ranges can receive negative positions and they will read from
the back. In such cases, the range step must be explicitly given
and the right-side of the range must be equal or greater than
the left-side:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[1..-2//1]
#Nx.Tensor<
  s64[2][2]
  [
    [3, 4],
    [5, 6]
  ]
>
As you can see, accessing with a range does not eliminate the
accessed axis. This means that, if you try to cascade ranges,
you will always be filtering the highest dimension:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[1..-1//1] # Drop the first "row"
#Nx.Tensor<
  s64[3][2]
  [
    [3, 4],
    [5, 6],
    [7, 8]
  ]
>
iex> t[1..-1//1][1..-1//1] # Drop the first "row" twice
#Nx.Tensor<
  s64[2][2]
  [
    [5, 6],
    [7, 8]
  ]
>
Therefore, if you want to slice across multiple dimensions, you can wrap
the ranges in a list:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6], [7, 8]])
iex> t[[1..-1//1, 1..-1//1]] # Drop the first "row" and the first "column"
#Nx.Tensor<
  s64[3][1]
  [
    [4],
    [6],
    [8]
  ]
>
You can mix both ranges and integers in the list too:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
iex> t[[1..2, 2]]
#Nx.Tensor<
  s64[2]
  [6, 9]
>
If the list has less elements than axes, the remaining dimensions
are returned in full:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
iex> t[[1..2]]
#Nx.Tensor<
  s64[2][3]
  [
    [4, 5, 6],
    [7, 8, 9]
  ]
>
The access syntax also pairs nicely with named tensors. By using named
tensors, you can pass only the axis you want to slice, leaving the other
axes intact:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], names: [:x, :y])
iex> t[x: 1..2]
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [4, 5, 6],
    [7, 8, 9]
  ]
>
iex> t[x: 1..2, y: 0..1]
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [4, 5],
    [7, 8]
  ]
>
iex> t[x: 1, y: 0..1]
#Nx.Tensor<
  s64[y: 2]
  [4, 5]
>
For a more complex slicing rules, including strides, you
can always fallback to Nx.slice/4.
Backends
The Nx library has built-in support for multiple backends.
A tensor is always handled by a backend, the default backend
being Nx.BinaryBackend, which means the tensor is allocated
as a binary within the Erlang VM.
Most often backends are used to provide a completely different
implementation of tensor operations, often accelerated to the GPU.
In such cases, you want to guarantee all tensors are allocated in
the new backend. This can be done by configuring your runtime:
# config/runtime.exs
import Config
config :nx, default_backend: Lib.CustomBackend
Or by calling Nx.default_backend/1:
Nx.default_backend({Lib.CustomBackend, device: :cuda})
To implement your own backend, check the Nx.Tensor behaviour.
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          is_tensor(t)

        


          Checks whether the value is a valid numerical value.



      


  


  
    
      Functions: Aggregates
    


      
        
          all(tensor, opts \\ [])

        


          Returns a scalar tensor of value 1 if all of the
tensor values are not zero. Otherwise the value is 0.



      


      
        
          all_close(a, b, opts \\ [])

        


          Returns a scalar tensor of value 1 if all element-wise values
are within tolerance of b. Otherwise returns value 0.



      


      
        
          any(tensor, opts \\ [])

        


          Returns a scalar tensor of value 1 if any of the
tensor values are not zero. Otherwise the value is 0.



      


      
        
          argmax(tensor, opts \\ [])

        


          Returns the indices of the maximum values.



      


      
        
          argmin(tensor, opts \\ [])

        


          Returns the indices of the minimum values.



      


      
        
          mean(tensor, opts \\ [])

        


          Returns the mean for the tensor.



      


      
        
          median(tensor, opts \\ [])

        


          Returns the median for the tensor.



      


      
        
          mode(tensor, opts \\ [])

        


          Returns the mode of a tensor (the value that appears most often).



      


      
        
          product(tensor, opts \\ [])

        


          Returns the product for the tensor.



      


      
        
          reduce(tensor, acc, opts \\ [], fun)

        


          Reduces over a tensor with the given accumulator.



      


      
        
          reduce_max(tensor, opts \\ [])

        


          Returns the maximum values of the tensor.



      


      
        
          reduce_min(tensor, opts \\ [])

        


          Returns the minimum values of the tensor.



      


      
        
          standard_deviation(tensor, opts \\ [])

        


          Finds the standard deviation of a tensor.



      


      
        
          sum(tensor, opts \\ [])

        


          Returns the sum for the tensor.



      


      
        
          variance(tensor, opts \\ [])

        


          Finds the variance of a tensor.



      


      
        
          weighted_mean(tensor, weights, opts \\ [])

        


          Returns the weighted mean for the tensor and the weights.



      


  


  
    
      Functions: Backend
    


      
        
          backend_copy(tensor_or_container, backend \\ Nx.Tensor)

        


          Copies data to the given backend.



      


      
        
          backend_deallocate(tensor_or_container)

        


          Deallocates data in a device.



      


      
        
          backend_transfer(tensor_or_container, backend \\ Nx.Tensor)

        


          Transfers data to the given backend.



      


      
        
          default_backend()

        


          Gets the default backend for the current process.



      


      
        
          default_backend(backend)

        


          Sets the current process default backend to backend with the given opts.



      


      
        
          global_default_backend(backend)

        


          Sets the default backend globally.



      


  


  
    
      Functions: Conversion
    


      
        
          deserialize(data, opts \\ [])

        


          Deserializes a serialized representation of a tensor or a container
with the given options.



      


      
        
          from_numpy(file)

        


          Loads a .npy file into a tensor.



      


      
        
          from_numpy_archive(archive)

        


          Loads a .npz archive into a list of tensors.



      


      
        
          serialize(tensor_or_container, opts \\ [])

        


          Serializes the given tensor or container of tensors to iodata.



      


      
        
          to_batched(tensor, batch_size, opts \\ [])

        


          Converts the underlying tensor to a stream of tensor batches.



      


      
        
          to_batched_list(tensor, batch_size, opts \\ [])

            deprecated

        


      


      
        
          to_binary(tensor, opts \\ [])

        


          Returns the underlying tensor as a binary.



      


      
        
          to_flat_list(tensor, opts \\ [])

        


          Returns the underlying tensor as a flat list.



      


      
        
          to_heatmap(tensor, opts \\ [])

        


          Returns a heatmap struct with the tensor data.



      


      
        
          to_number(tensor)

        


          Returns the underlying tensor as a number.



      


      
        
          to_template(tensor_or_container)

        


          Converts a tensor (or tuples and maps of tensors) to tensor templates.



      


      
        
          to_tensor(t)

        


          Converts the given number (or tensor) to a tensor.



      


  


  
    
      Functions: Creation
    


      
        
          eye(n_or_tensor_or_shape, opts \\ [])

        


          Creates the identity matrix of size n.



      


      
        
          from_binary(binary, type, opts \\ [])

        


          Creates a one-dimensional tensor from a binary with the given type.



      


      
        
          iota(tensor_or_shape, opts \\ [])

        


          Creates a tensor with the given shape which increments
along the provided axis. You may optionally provide dimension
names.



      


      
        
          make_diagonal(tensor, opts \\ [])

        


          Creates a diagonal tensor from a 1D tensor.



      


      
        
          put_diagonal(tensor, diagonal, opts \\ [])

        


          Puts the individual values from a 1D diagonal into the diagonal indices
of the given 2D tensor.



      


      
        
          random_normal(tensor_or_shape, opts \\ [])

            deprecated

        


          Shortcut for random_normal(shape, 0.0, 1.0, opts).



      


      
        
          random_normal(tensor_or_shape, mu, sigma, opts \\ [])

            deprecated

        


          Returns a normally-distributed random tensor with the given shape.



      


      
        
          random_uniform(tensor_or_shape, opts \\ [])

            deprecated

        


          Shortcut for random_uniform(shape, 0.0, 1.0, opts).



      


      
        
          random_uniform(tensor_or_shape, min, max, opts \\ [])

            deprecated

        


          Returns a uniformly-distributed random tensor with the given shape.



      


      
        
          shuffle(tensor, opts \\ [])

        


          Shuffles tensor elements.



      


      
        
          sigil_M(arg, modifiers)

        


          A convenient ~M sigil for building matrices (two-dimensional tensors).



      


      
        
          sigil_V(arg, modifiers)

        


          A convenient ~V sigil for building vectors (one-dimensional tensors).



      


      
        
          take_diagonal(tensor, opts \\ [])

        


          Extracts the diagonal of batched matrices.



      


      
        
          template(shape, type, opts \\ [])

        


          Creates a tensor template.



      


      
        
          tensor(arg, opts \\ [])

        


          Builds a tensor.



      


  


  
    
      Functions: Cumulative
    


      
        
          cumulative_max(tensor, opts \\ [])

        


          Returns the cumulative maximum of elements along an axis.



      


      
        
          cumulative_min(tensor, opts \\ [])

        


          Returns the cumulative minimum of elements along an axis.



      


      
        
          cumulative_product(tensor, opts \\ [])

        


          Returns the cumulative product of elements along an axis.



      


      
        
          cumulative_sum(tensor, opts \\ [])

        


          Returns the cumulative sum of elements along an axis.



      


  


  
    
      Functions: Element-wise
    


      
        
          abs(tensor)

        


          Computes the absolute value of each element in the tensor.



      


      
        
          acos(tensor)

        


          Calculates the inverse cosine of each element in the tensor.



      


      
        
          acosh(tensor)

        


          Calculates the inverse hyperbolic cosine of each element in the tensor.



      


      
        
          add(left, right)

        


          Element-wise addition of two tensors.



      


      
        
          asin(tensor)

        


          Calculates the inverse sine of each element in the tensor.



      


      
        
          asinh(tensor)

        


          Calculates the inverse hyperbolic sine of each element in the tensor.



      


      
        
          atan2(left, right)

        


          Element-wise arc tangent of two tensors.



      


      
        
          atan(tensor)

        


          Calculates the inverse tangent of each element in the tensor.



      


      
        
          atanh(tensor)

        


          Calculates the inverse hyperbolic tangent of each element in the tensor.



      


      
        
          bitwise_and(left, right)

        


          Element-wise bitwise AND of two tensors.



      


      
        
          bitwise_not(tensor)

        


          Applies bitwise not to each element in the tensor.



      


      
        
          bitwise_or(left, right)

        


          Element-wise bitwise OR of two tensors.



      


      
        
          bitwise_xor(left, right)

        


          Element-wise bitwise XOR of two tensors.



      


      
        
          cbrt(tensor)

        


          Calculates the cube root of each element in the tensor.



      


      
        
          ceil(tensor)

        


          Calculates the ceil of each element in the tensor.



      


      
        
          clip(tensor, min, max)

        


          Clips the values of the tensor on the closed
interval [min, max].



      


      
        
          complex(real, imag)

        


          Constructs a complex tensor from two equally-shaped tensors.



      


      
        
          conjugate(tensor)

        


          Calculates the complex conjugate of each element in the tensor.



      


      
        
          cos(tensor)

        


          Calculates the cosine of each element in the tensor.



      


      
        
          cosh(tensor)

        


          Calculates the hyperbolic cosine of each element in the tensor.



      


      
        
          count_leading_zeros(tensor)

        


          Counts the number of leading zeros of each element in the tensor.



      


      
        
          divide(left, right)

        


          Element-wise division of two tensors.



      


      
        
          equal(left, right)

        


          Element-wise equality comparison of two tensors.



      


      
        
          erf(tensor)

        


          Calculates the error function of each element in the tensor.



      


      
        
          erf_inv(tensor)

        


          Calculates the inverse error function of each element in the tensor.



      


      
        
          erfc(tensor)

        


          Calculates the one minus error function of each element in the tensor.



      


      
        
          exp(tensor)

        


          Calculates the exponential of each element in the tensor.



      


      
        
          expm1(tensor)

        


          Calculates the exponential minus one of each element in the tensor.



      


      
        
          floor(tensor)

        


          Calculates the floor of each element in the tensor.



      


      
        
          greater(left, right)

        


          Element-wise greater than comparison of two tensors.



      


      
        
          greater_equal(left, right)

        


          Element-wise greater than or equal comparison of two tensors.



      


      
        
          imag(tensor)

        


          Returns the imaginary component of each entry in a complex tensor
as a floating point tensor.



      


      
        
          is_infinity(tensor)

        


          Determines if each element in tensor is Inf or -Inf.



      


      
        
          is_nan(tensor)

        


          Determines if each element in tensor is a NaN.



      


      
        
          left_shift(left, right)

        


          Element-wise left shift of two tensors.



      


      
        
          less(left, right)

        


          Element-wise less than comparison of two tensors.



      


      
        
          less_equal(left, right)

        


          Element-wise less than or equal comparison of two tensors.



      


      
        
          log1p(tensor)

        


          Calculates the natural log plus one of each element in the tensor.



      


      
        
          log(tensor)

        


          Calculates the natural log of each element in the tensor.



      


      
        
          logical_and(left, right)

        


          Element-wise logical and of two tensors.



      


      
        
          logical_not(tensor)

        


          Element-wise logical not a tensor.



      


      
        
          logical_or(left, right)

        


          Element-wise logical or of two tensors.



      


      
        
          logical_xor(left, right)

        


          Element-wise logical xor of two tensors.



      


      
        
          map(tensor, opts \\ [], fun)

        


          Maps the given scalar function over the entire
tensor.



      


      
        
          max(left, right)

        


          Element-wise maximum of two tensors.



      


      
        
          min(left, right)

        


          Element-wise minimum of two tensors.



      


      
        
          multiply(left, right)

        


          Element-wise multiplication of two tensors.



      


      
        
          negate(tensor)

        


          Negates each element in the tensor.



      


      
        
          not_equal(left, right)

        


          Element-wise not-equal comparison of two tensors.



      


      
        
          phase(tensor)

        


          Calculates the complex phase angle of each element in the tensor.
$$phase(z) = atan2(b, a), z = a + bi \in \Complex$$



      


      
        
          population_count(tensor)

        


          Computes the bitwise population count of each element in the tensor.



      


      
        
          power(left, right)

        


          Element-wise power of two tensors.



      


      
        
          quotient(left, right)

        


          Element-wise integer division of two tensors.



      


      
        
          real(tensor)

        


          Returns the real component of each entry in a complex tensor
as a floating point tensor.



      


      
        
          remainder(left, right)

        


          Element-wise remainder of two tensors.



      


      
        
          right_shift(left, right)

        


          Element-wise right shift of two tensors.



      


      
        
          round(tensor)

        


          Calculates the round (away from zero) of each element in the tensor.



      


      
        
          rsqrt(tensor)

        


          Calculates the reverse square root of each element in the tensor.



      


      
        
          select(pred, on_true, on_false)

        


          Constructs a tensor from two tensors, based on a predicate.



      


      
        
          sigmoid(tensor)

        


          Calculates the sigmoid of each element in the tensor.



      


      
        
          sign(tensor)

        


          Computes the sign of each element in the tensor.



      


      
        
          sin(tensor)

        


          Calculates the sine of each element in the tensor.



      


      
        
          sinh(tensor)

        


          Calculates the hyperbolic sine of each element in the tensor.



      


      
        
          sqrt(tensor)

        


          Calculates the square root of each element in the tensor.



      


      
        
          subtract(left, right)

        


          Element-wise subtraction of two tensors.



      


      
        
          tan(tensor)

        


          Calculates the tangent of each element in the tensor.



      


      
        
          tanh(tensor)

        


          Calculates the hyperbolic tangent of each element in the tensor.



      


  


  
    
      Functions: Indexed
    


      
        
          gather(tensor, indices)

        


          Builds a new tensor by taking individual values from the original
tensor at the given indices.



      


      
        
          indexed_add(target, indices, updates)

        


          Performs an indexed add operation on the target tensor,
adding the updates into the corresponding indices positions.



      


      
        
          indexed_put(target, indices, updates)

        


          Puts individual values from updates into the given tensor at the corresponding indices.



      


      
        
          put_slice(tensor, start_indices, slice)

        


          Puts the given slice into the given tensor at the given
start_indices.



      


      
        
          slice(tensor, start_indices, lengths, opts \\ [])

        


          Slices a tensor from start_indices with lengths.



      


      
        
          slice_along_axis(tensor, start_index, len, opts \\ [])

        


          Slices a tensor along the given axis.



      


      
        
          take(tensor, indices, opts \\ [])

        


          Takes and concatenates slices along an axis.



      


      
        
          take_along_axis(tensor, indices, opts \\ [])

        


          Takes the values from a tensor given an indices tensor, along the specified axis.



      


  


  
    
      Functions: N-dim
    


      
        
          argsort(tensor, opts \\ [])

        


          Sorts the tensor along the given axis according
to the given direction and returns the corresponding indices
of the original tensor in the new sorted positions.



      


      
        
          concatenate(tensors, opts \\ [])

        


          Concatenates tensors along the given axis.



      


      
        
          conv(tensor, kernel, opts \\ [])

        


          Computes an n-D convolution (where n >= 3) as used in neural networks.



      


      
        
          dot(t1, t2)

        


          Returns the dot product of two tensors.



      


      
        
          dot(t1, contract_axes1, t2, contract_axes2)

        


          Computes the generalized dot product between two tensors, given
the contracting axes.



      


      
        
          dot(t1, contract_axes1, batch_axes1, t2, contract_axes2, batch_axes2)

        


          Computes the generalized dot product between two tensors, given
the contracting and batch axes.



      


      
        
          fft(tensor, opts \\ [])

        


          Calculates the DFT of the given tensor.



      


      
        
          ifft(tensor, opts \\ [])

        


          Calculates the Inverse DFT of the given tensor.



      


      
        
          outer(t1, t2)

        


          Computes the outer product of two tensors.



      


      
        
          reverse(tensor, opts \\ [])

        


          Reverses the tensor in the given dimensions.



      


      
        
          sort(tensor, opts \\ [])

        


          Sorts the tensor along the given axis according
to the given direction.



      


      
        
          stack(tensors, opts \\ [])

        


          Joins a list of tensors with the same shape along a new axis.



      


  


  
    
      Functions: Shape
    


      
        
          axes(shape)

        


          Returns all of the axes in a tensor.



      


      
        
          axis_index(tensor, axis)

        


          Returns the index of the given axis in the tensor.



      


      
        
          axis_size(tensor, axis)

        


          Returns the size of a given axis of a tensor.



      


      
        
          broadcast(tensor, shape, opts \\ [])

        


          Broadcasts tensor to the given broadcast_shape.



      


      
        
          byte_size(tensor)

        


          Returns the byte size of the data in the tensor
computed from its shape and type.



      


      
        
          compatible?(left, right)

        


          Checks if two tensors have the same shape, type, and compatible names.



      


      
        
          flatten(tensor)

        


          Flattens a n-dimensional tensor to a 1-dimensional tensor.



      


      
        
          names(a)

        


          Returns all of the names in a tensor.



      


      
        
          new_axis(tensor, axis, name \\ nil)

        


          Adds a new axis of size 1 with optional name.



      


      
        
          pad(tensor, pad_value, padding_config)

        


          Pads a tensor with a given value.



      


      
        
          rank(shape)

        


          Returns the rank of a tensor.



      


      
        
          rename(tensor, names)

        


          Adds (or overrides) the given names to the tensor.



      


      
        
          reshape(tensor, new_shape, opts \\ [])

        


          Changes the shape of a tensor.



      


      
        
          shape(number)

        


          Returns the shape of the tensor as a tuple.



      


      
        
          size(shape)

        


          Returns the number of elements in the tensor.



      


      
        
          squeeze(tensor, opts \\ [])

        


          Squeezes the given size 1 dimensions out of the tensor.



      


      
        
          tile(tensor, repetitions)

        


          Creates a new tensor by repeating the input tensor
along the given axes.



      


      
        
          transpose(tensor, opts \\ [])

        


          Transposes a tensor to the given axes.



      


  


  
    
      Functions: Type
    


      
        
          as_type(tensor, type)

        


          Changes the type of a tensor.



      


      
        
          bitcast(tensor, type)

        


          Changes the type of a tensor, using a bitcast.



      


      
        
          type(tensor)

        


          Returns the type of the tensor.



      


  


  
    
      Functions: Window
    


      
        
          window_max(tensor, window_dimensions, opts \\ [])

        


          Returns the maximum over each window of size window_dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.



      


      
        
          window_mean(tensor, window_dimensions, opts \\ [])

        


          Averages over each window of size window_dimensions in the
given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.



      


      
        
          window_min(tensor, window_dimensions, opts \\ [])

        


          Returns the minimum over each window of size window_dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.



      


      
        
          window_product(tensor, window_dimensions, opts \\ [])

        


          Returns the product over each window of size window_dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.



      


      
        
          window_reduce(tensor, acc, window_dimensions, opts \\ [], fun)

        


          Reduces over each window of size dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.



      


      
        
          window_scatter_max(tensor, source, init_value, window_dimensions, opts \\ [])

        


          Performs a window_reduce to select the maximum index in each
window of the input tensor according to and scatters source tensor
to corresponding maximum indices in the output tensor.



      


      
        
          window_scatter_min(tensor, source, init_value, window_dimensions, opts \\ [])

        


          Performs a window_reduce to select the minimum index in each
window of the input tensor according to and scatters source tensor
to corresponding minimum indices in the output tensor.



      


      
        
          window_sum(tensor, window_dimensions, opts \\ [])

        


          Sums over each window of size window_dimensions in the
given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.
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      Link to this type
    
    axes()


      
       
       View Source
     


  


  

      

          @type axes() :: Nx.Tensor.axes()


      



  



  
    
      
      Link to this type
    
    axis()


      
       
       View Source
     


  


  

      

          @type axis() :: Nx.Tensor.axis()


      



  



  
    
      
      Link to this type
    
    shape()


      
       
       View Source
     


  


  

      

          @type shape() :: number() | Nx.Tensor.t() | Nx.Tensor.shape()


      



  



  
    
      
      Link to this type
    
    t()


      
       
       View Source
     


  


  

      

          @type t() :: number() | Complex.t() | Nx.Tensor.t()


      


Represents a numerical value.
Can be a plain number, a Complex number or an Nx.Tensor.
See also: is_tensor/1
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    template()


      
       
       View Source
     


  


  

      

          @type template() :: Nx.Tensor.t(%Nx.TemplateBackend{})
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      Link to this macro
    
    is_tensor(t)


      
       
       View Source
     


      (macro)

  


  

Checks whether the value is a valid numerical value.
Returns true if the value is a number, a Complex number or an Nx.Tensor.
See also: t/0
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      Link to this function
    
    all(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor of value 1 if all of the
tensor values are not zero. Otherwise the value is 0.
If the :axes option is given, it aggregates over
the given dimensions, effectively removing them.
axes: [0] implies aggregating over the highest order
dimension and so forth. If the axis is negative, then
counts the axis from the back. For example, axes: [-1]
will always aggregate all rows.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the reduced
axes to size 1.

  
  examples

  
  Examples


iex> Nx.all(Nx.tensor([0, 1, 2]))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all(Nx.tensor([[-1, 0, 1], [2, 3, 4]], names: [:x, :y]), axes: [:x])
#Nx.Tensor<
  u8[y: 3]
  [1, 0, 1]
>

iex> Nx.all(Nx.tensor([[-1, 0, 1], [2, 3, 4]], names: [:x, :y]), axes: [:y])
#Nx.Tensor<
  u8[x: 2]
  [0, 1]
>

  



    

  
    
      
      Link to this function
    
    all_close(a, b, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor of value 1 if all element-wise values
are within tolerance of b. Otherwise returns value 0.
You may set the absolute tolerance, :atol and relative tolerance
:rtol. Given tolerances, this functions returns 1 if
absolute(a - b) <= (atol + rtol * absolute(b))
is true for all elements of a and b.

  
  options

  
  Options


	:rtol - relative tolerance between numbers, as described above. Defaults to 1.0e-5
	:atol - absolute tolerance between numbers, as described above. Defaults to 1.0e-8
	:equal_nan - if false, NaN will always compare as false.
Otherwise NaN will only equal NaN. Defaults to false


  
  examples

  
  Examples


iex> Nx.all_close(Nx.tensor([1.0e10, 1.0e-7]), Nx.tensor([1.00001e10, 1.0e-8]))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all_close(Nx.tensor([1.0e-8, 1.0e-8]), Nx.tensor([1.0e-8, 1.0e-9]))
#Nx.Tensor<
  u8
  1
>
Although NaN by definition isn't equal to itself, so this implementation
also considers all NaNs different from each other by default:
iex> Nx.all_close(Nx.tensor(:nan), Nx.tensor(:nan))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all_close(Nx.tensor(:nan), Nx.tensor(0))
#Nx.Tensor<
  u8
  0
>
We can change this behavior with the :equal_nan option:
iex> t = Nx.tensor([:nan, 1])
iex> Nx.all_close(t, t, equal_nan: true) # nan == nan -> true
#Nx.Tensor<
  u8
  1
>
iex> Nx.all_close(t, t, equal_nan: false) # nan == nan -> false, default behavior
#Nx.Tensor<
  u8
  0
>
Infinities behave as expected, being "close" to themselves but not
to other numbers:
iex> Nx.all_close(Nx.tensor(:infinity), Nx.tensor(:infinity))
#Nx.Tensor<
  u8
  1
>

iex> Nx.all_close(Nx.tensor(:infinity), Nx.tensor(:neg_infinity))
#Nx.Tensor<
  u8
  0
>

iex> Nx.all_close(Nx.tensor(1.0e30), Nx.tensor(:infinity))
#Nx.Tensor<
  u8
  0
>

  



    

  
    
      
      Link to this function
    
    any(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor of value 1 if any of the
tensor values are not zero. Otherwise the value is 0.
If the :axes option is given, it aggregates over
the given dimensions, effectively removing them.
axes: [0] implies aggregating over the highest order
dimension and so forth. If the axis is negative, then
counts the axis from the back. For example, axes: [-1]
will always aggregate all rows.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the reduced
axes to size 1.

  
  examples

  
  Examples


iex> Nx.any(Nx.tensor([0, 1, 2]))
#Nx.Tensor<
  u8
  1
>

iex> Nx.any(Nx.tensor([[0, 1, 0], [0, 1, 2]], names: [:x, :y]), axes: [:x])
#Nx.Tensor<
  u8[y: 3]
  [0, 1, 1]
>

iex> Nx.any(Nx.tensor([[0, 1, 0], [0, 1, 2]], names: [:x, :y]), axes: [:y])
#Nx.Tensor<
  u8[x: 2]
  [1, 1]
>

  



    

  
    
      
      Link to this function
    
    argmax(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the indices of the maximum values.

  
  options

  
  Options


	:axis - the axis to aggregate on. If no axis is given,
returns the index of the absolute maximum value in the tensor.

	:keep_axis - whether or not to keep the reduced axis with
a size of 1. Defaults to false.

	:tie_break - how to break ties. one of :high, or :low.
default behavior is to always return the lower index.



  
  examples

  
  Examples


iex> Nx.argmax(4)
#Nx.Tensor<
  s64
  0
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]])
iex> Nx.argmax(t)
#Nx.Tensor<
  s64
  10
>
If a tensor of floats is given, it still returns integers:
iex> Nx.argmax(Nx.tensor([2.0, 4.0]))
#Nx.Tensor<
  s64
  1
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, axis: :x)
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [1, 0, 0],
    [1, 1, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [0, 0, 0],
    [0, 1, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [0, 2],
    [0, 1]
  ]
>

  
  tie-breaks

  
  Tie breaks


iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, tie_break: :low, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [0, 0, 0],
    [0, 1, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, tie_break: :high, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [0, 0, 1],
    [0, 1, 1]
  ]
>

  
  keep-axis

  
  Keep axis


iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmax(t, axis: :y, keep_axis: true)
#Nx.Tensor<
  s64[x: 2][y: 1][z: 3]
  [
    [
      [0, 0, 0]
    ],
    [
      [0, 1, 0]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    argmin(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the indices of the minimum values.

  
  options

  
  Options


	:axis - the axis to aggregate on. If no axis is given,
returns the index of the absolute minimum value in the tensor.

	:keep_axis - whether or not to keep the reduced axis with
a size of 1. Defaults to false.

	:tie_break - how to break ties. one of :high, or :low.
Default behavior is to always return the lower index.



  
  examples

  
  Examples


iex> Nx.argmin(4)
#Nx.Tensor<
  s64
  0
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]])
iex> Nx.argmin(t)
#Nx.Tensor<
  s64
  4
>
If a tensor of floats is given, it still returns integers:
iex> Nx.argmin(Nx.tensor([2.0, 4.0]))
#Nx.Tensor<
  s64
  0
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, axis: :x)
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [0, 0, 0],
    [0, 0, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, axis: 1)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [1, 1, 0],
    [1, 0, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [1, 1],
    [1, 2]
  ]
>

  
  tie-breaks

  
  Tie breaks


iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, tie_break: :low, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [1, 1, 0],
    [1, 0, 0]
  ]
>

iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, tie_break: :high, axis: :y)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [1, 1, 1],
    [1, 0, 1]
  ]
>

  
  keep-axis

  
  Keep axis


iex> t = Nx.tensor([[[4, 2, 3], [1, -5, 3]], [[6, 2, 3], [4, 8, 3]]], names: [:x, :y, :z])
iex> Nx.argmin(t, axis: :y, keep_axis: true)
#Nx.Tensor<
  s64[x: 2][y: 1][z: 3]
  [
    [
      [1, 1, 0]
    ],
    [
      [1, 0, 0]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    mean(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the mean for the tensor.
If the :axes option is given, it aggregates over
that dimension, effectively removing it. axes: [0]
implies aggregating over the highest order dimension
and so forth. If the axis is negative, then counts
the axis from the back. For example, axes: [-1] will
always aggregate all rows.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the averaged
axes to size 1.

  
  examples

  
  Examples


iex> Nx.mean(Nx.tensor(42))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.mean(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  f32
  2.0
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> Nx.mean(Nx.tensor([1, 2, 3], names: [:x]), axes: [0])
#Nx.Tensor<
  f32
  2.0
>

iex> Nx.mean(Nx.tensor([1, 2, 3], type: :u8, names: [:x]), axes: [:x])
#Nx.Tensor<
  f32
  2.0
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.mean(t, axes: [:x])
#Nx.Tensor<
  f32[y: 2][z: 3]
  [
    [4.0, 5.0, 6.0],
    [7.0, 8.0, 9.0]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.mean(t, axes: [:x, :z])
#Nx.Tensor<
  f32[y: 2]
  [5.0, 8.0]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.mean(t, axes: [-1])
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [2.0, 5.0],
    [8.0, 11.0]
  ]
>

  
  keeping-axes

  
  Keeping axes


iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.mean(t, axes: [-1], keep_axes: true)
#Nx.Tensor<
  f32[x: 2][y: 2][z: 1]
  [
    [
      [2.0],
      [5.0]
    ],
    [
      [8.0],
      [11.0]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    median(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the median for the tensor.
If the :axis option is given, it aggregates over
that dimension, effectively removing it. axis: 0
implies aggregating over the highest order dimension
and so forth. If the axis is negative, then the axis will
be counted from the back. For example, axis: -1 will
always aggregate over the last dimension.
You may optionally set :keep_axis to true, which will
retain the rank of the input tensor by setting the reduced
axis to size 1.

  
  examples

  
  Examples


iex> Nx.median(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.median(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  2
>

iex> Nx.median(Nx.tensor([1, 2]))
#Nx.Tensor<
  f32
  1.5
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> Nx.median(Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y]), axis: 0)
#Nx.Tensor<
  f32[y: 3]
  [2.5, 3.5, 4.5]
>

iex> Nx.median(Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y]), axis: :y)
#Nx.Tensor<
  s64[x: 2]
  [2, 5]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> weights = Nx.tensor([[[0, 1, 2], [1, 1, 0]], [[-1, 1, -1], [1, 1, -1]]])
iex> Nx.weighted_mean(t, weights, axis: :x)
#Nx.Tensor<
  f32[y: 2][z: 3]
  [
    [7.0, 5.0, -3.0],
    [7.0, 8.0, 12.0]
  ]
>

iex> t = Nx.tensor([[[1, 2, 2], [3, 4, 2]], [[4, 5, 2], [7, 9, 2]]])
iex> Nx.median(t, axis: -1)
#Nx.Tensor<
  s64[2][2]
  [
    [2, 3],
    [4, 7]
  ]
>

  
  keeping-axis

  
  Keeping axis


iex> t = Nx.tensor([[[1, 2, 2], [3, 4, 2]], [[4, 5, 2], [7, 9, 2]]])
iex> Nx.median(t, axis: -1, keep_axis: true)
#Nx.Tensor<
  s64[2][2][1]
  [
    [
      [2],
      [3]
    ],
    [
      [4],
      [7]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    mode(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the mode of a tensor (the value that appears most often).
If the :axis option is given, it aggregates over
that dimension, effectively removing it. axis: 0
implies aggregating over the highest order dimension
and so forth. If the axis is negative, then the axis will
be counted from the back. For example, axis: -1 will
always aggregate over the last dimension.
You may optionally set :keep_axis to true, which will
retain the rank of the input tensor by setting the reduced
axis to size 1.

  
  examples

  
  Examples


iex> Nx.mode(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.mode(Nx.tensor([[1]]))
#Nx.Tensor<
  s64
  1
>

iex> Nx.mode(Nx.tensor([1, 2, 2, 3, 5]))
#Nx.Tensor<
  s64
  2
>

iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]))
#Nx.Tensor<
  s64
  1
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]), axis: 0)
#Nx.Tensor<
  s64[5]
  [1, 1, 2, 3, 1]
>

iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]), axis: 1)
#Nx.Tensor<
  s64[2]
  [2, 1]
>

iex> Nx.mode(Nx.tensor([[[[1]]]]), axis: 1)
#Nx.Tensor<
  s64[1][1][1]
  [
    [
      [1]
    ]
  ]
>

  
  keeping-axis

  
  Keeping axis


iex> Nx.mode(Nx.tensor([[1, 2, 2, 3, 5], [1, 1, 76, 8, 1]]), axis: 1, keep_axis: true)
#Nx.Tensor<
  s64[2][1]
  [
    [2],
    [1]
  ]
>

iex> Nx.mode(Nx.tensor(1), keep_axis: true)
#Nx.Tensor<
  s64[1]
  [1]
>

iex> Nx.mode(Nx.tensor([[[1]]]), keep_axis: true)
#Nx.Tensor<
  s64[1][1][1]
  [
    [
      [1]
    ]
  ]
>

iex> Nx.mode(Nx.tensor([[[[1]]]]), axis: 1, keep_axis: true)
#Nx.Tensor<
  s64[1][1][1][1]
  [
    [
      [
        [1]
      ]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    product(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the product for the tensor.
If the :axes option is given, it aggregates over
the given dimensions, effectively removing them.
axes: [0] implies aggregating over the highest order
dimension and so forth. If the axis is negative, then
counts the axis from the back. For example, axes: [-1]
will always aggregate all rows.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the multiplied
axes to size 1.

  
  examples

  
  Examples


iex> Nx.product(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.product(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  s64
  6
>

iex> Nx.product(Nx.tensor([[1.0, 2.0], [3.0, 4.0]], names: [:x, :y]))
#Nx.Tensor<
  f32
  24.0
>
Giving a tensor with low precision casts it to a higher
precision to make sure the sum does not overflow:
iex> Nx.product(Nx.tensor([[10, 20], [30, 40]], type: :u8, names: [:x, :y]))
#Nx.Tensor<
  u64
  240000
>

iex> Nx.product(Nx.tensor([[10, 20], [30, 40]], type: :s8, names: [:x, :y]))
#Nx.Tensor<
  s64
  240000
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> Nx.product(Nx.tensor([1, 2, 3], names: [:x]), axes: [0])
#Nx.Tensor<
  s64
  6
>
Same tensor over different axes combinations:
iex> t = Nx.tensor(
...>   [
...>     [
...>       [1, 2, 3],
...>       [4, 5, 6]
...>     ],
...>     [
...>       [7, 8, 9],
...>       [10, 11, 12]
...>     ]
...>   ],
...>   names: [:x, :y, :z]
...> )
iex> Nx.product(t, axes: [:x])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [7, 16, 27],
    [40, 55, 72]
  ]
>
iex> Nx.product(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [4, 10, 18],
    [70, 88, 108]
  ]
>
iex> Nx.product(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [3024, 158400]
>
iex> Nx.product(t, axes: [:z])
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [6, 120],
    [504, 1320]
  ]
>
iex> Nx.product(t, axes: [-3])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [7, 16, 27],
    [40, 55, 72]
  ]
>

  
  keeping-axes

  
  Keeping axes


iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.product(t, axes: [:z], keep_axes: true)
#Nx.Tensor<
  s64[x: 2][y: 2][z: 1]
  [
    [
      [6],
      [120]
    ],
    [
      [504],
      [1320]
    ]
  ]
>

  
  errors

  
  Errors


iex> Nx.product(Nx.tensor([[1, 2]]), axes: [2])
** (ArgumentError) given axis (2) invalid for shape with rank 2

  



    

  
    
      
      Link to this function
    
    reduce(tensor, acc, opts \\ [], fun)


      
       
       View Source
     


  


  

Reduces over a tensor with the given accumulator.
The given fun will receive two tensors and it must
return the reduced value.
The tensor may be reduced in parallel and the reducer
function can be called with arguments in any order, the
initial accumulator may be given multiples, and it may
be non-deterministic. Therefore, the reduction function
should be associative (or as close as possible to
associativity considered floats themselves are not
strictly associative).
By default, it reduces all dimensions of the tensor and
return a scalar. If the :axes option is given, it
aggregates over multiple dimensions, effectively removing
them. axes: [0] implies aggregating over the highest
order dimension and so forth. If the axis is negative,
then counts the axis from the back. For example,
axes: [-1] will always aggregate all rows.
The type of the returned tensor will be computed based on
the given tensor and the initial value. For example,
a tensor of integers with a float accumulator will be
cast to float, as done by most binary operators. You can
also pass a :type option to change this behaviour.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the reduced
axes to size 1.

  
  limitations

  
  Limitations


Given this function relies on anonymous functions, it
may not be available or efficient on all Nx backends.
Therefore, you should avoid using reduce/4 whenever
possible. Instead, use functions sum/2, reduce_max/2,
all/1, and so forth.

  
  examples

  
  Examples


iex> Nx.reduce(Nx.tensor(42), 0, fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64
  42
>

iex> Nx.reduce(Nx.tensor([1, 2, 3]), 0, fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64
  6
>

iex> Nx.reduce(Nx.tensor([[1.0, 2.0], [3.0, 4.0]]), 0, fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  f32
  10.0
>

  
  aggregating-over-axes

  
  Aggregating over axes


iex> t = Nx.tensor([1, 2, 3], names: [:x])
iex> Nx.reduce(t, 0, [axes: [:x]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64
  6
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [8, 10, 12],
    [14, 16, 18]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:y]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [5, 7, 9],
    [17, 19, 21]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x, 2]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[y: 2]
  [30, 48]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [-1]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [6, 15],
    [24, 33]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x]], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [8, 10, 12],
    [14, 16, 18]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.reduce(t, 0, [axes: [:x], keep_axes: true], fn x, y -> Nx.add(x, y) end)
#Nx.Tensor<
  s64[x: 1][y: 2][z: 3]
  [
    [
      [8, 10, 12],
      [14, 16, 18]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    reduce_max(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the maximum values of the tensor.
If the :axes option is given, it aggregates over
the given dimensions, effectively removing them.
axes: [0] implies aggregating over the highest order
dimension and so forth. If the axis is negative, then
counts the axis from the back. For example, axes: [-1]
will always aggregate all rows.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the reduced
axes to size 1.

  
  examples

  
  Examples


iex> Nx.reduce_max(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.reduce_max(Nx.tensor(42.0))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.reduce_max(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  3
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_max(t, axes: [:x])
#Nx.Tensor<
  s64[y: 3]
  [3, 1, 4]
>

iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_max(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2]
  [4, 2]
>

iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_max(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [4, 8]
>

  
  keeping-axes

  
  Keeping axes


iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_max(t, axes: [:x, :z], keep_axes: true)
#Nx.Tensor<
  s64[x: 1][y: 2][z: 1]
  [
    [
      [4],
      [8]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    reduce_min(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the minimum values of the tensor.
If the :axes option is given, it aggregates over
the given dimensions, effectively removing them.
axes: [0] implies aggregating over the highest order
dimension and so forth. If the axis is negative, then
counts the axis from the back. For example, axes: [-1]
will always aggregate all rows.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the reduced
axes to size 1.

  
  examples

  
  Examples


iex> Nx.reduce_min(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.reduce_min(Nx.tensor(42.0))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.reduce_min(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64
  1
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_min(t, axes: [:x])
#Nx.Tensor<
  s64[y: 3]
  [2, 1, 1]
>

iex> t = Nx.tensor([[3, 1, 4], [2, 1, 1]], names: [:x, :y])
iex> Nx.reduce_min(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2]
  [1, 1]
>

iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_min(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [1, 3]
>

  
  keeping-axes

  
  Keeping axes


iex> t = Nx.tensor([[[1, 2], [4, 5]], [[2, 4], [3, 8]]], names: [:x, :y, :z])
iex> Nx.reduce_min(t, axes: [:x, :z], keep_axes: true)
#Nx.Tensor<
  s64[x: 1][y: 2][z: 1]
  [
    [
      [1],
      [3]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    standard_deviation(tensor, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec standard_deviation(tensor :: Nx.Tensor.t(), opts :: Keyword.t()) ::
  Nx.Tensor.t()


      


Finds the standard deviation of a tensor.
The standard deviation is taken as the square root of the variance.
If the :ddof (delta degrees of freedom) option is given, the divisor
n - ddof is used to calculate the variance. See variance/2.

  
  examples

  
  Examples


iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]))
#Nx.Tensor<
  f32
  1.1180340051651
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]), ddof: 1)
#Nx.Tensor<
  f32
  1.29099440574646
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]), axes: [0])
#Nx.Tensor<
  f32[2]
  [1.0, 1.0]
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]), axes: [1])
#Nx.Tensor<
  f32[2]
  [0.5, 0.5]
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]), axes: [0], ddof: 1)
#Nx.Tensor<
  f32[2]
  [1.4142135381698608, 1.4142135381698608]
>

iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]), axes: [1], ddof: 1)
#Nx.Tensor<
  f32[2]
  [0.7071067690849304, 0.7071067690849304]
>

  
  keeping-axes

  
  Keeping axes


iex> Nx.standard_deviation(Nx.tensor([[1, 2], [3, 4]]), keep_axes: true)
#Nx.Tensor<
  f32[1][1]
  [
    [1.1180340051651]
  ]
>

  



    

  
    
      
      Link to this function
    
    sum(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the sum for the tensor.
If the :axes option is given, it aggregates over
the given dimensions, effectively removing them.
axes: [0] implies aggregating over the highest order
dimension and so forth. If the axis is negative, then
counts the axis from the back. For example, axes: [-1]
will always aggregate all rows.
You may optionally set :keep_axes to true, which will
retain the rank of the input tensor by setting the summed
axes to size 1.

  
  examples

  
  Examples


iex> Nx.sum(Nx.tensor(42))
#Nx.Tensor<
  s64
  42
>

iex> Nx.sum(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  s64
  6
>

iex> Nx.sum(Nx.tensor([[1.0, 2.0], [3.0, 4.0]], names: [:x, :y]))
#Nx.Tensor<
  f32
  10.0
>
Giving a tensor with low precision casts it to a higher
precision to make sure the sum does not overflow:
iex> Nx.sum(Nx.tensor([[101, 102], [103, 104]], type: :s8, names: [:x, :y]))
#Nx.Tensor<
  s64
  410
>

iex> Nx.sum(Nx.tensor([[101, 102], [103, 104]], type: :s16, names: [:x, :y]))
#Nx.Tensor<
  s64
  410
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> Nx.sum(Nx.tensor([1, 2, 3], names: [:x]), axes: [0])
#Nx.Tensor<
  s64
  6
>
Same tensor over different axes combinations:
iex> t = Nx.tensor(
...>   [
...>     [
...>       [1, 2, 3],
...>       [4, 5, 6]
...>     ],
...>     [
...>       [7, 8, 9],
...>       [10, 11, 12]
...>     ]
...>   ],
...>   names: [:x, :y, :z]
...> )
iex> Nx.sum(t, axes: [:x])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [8, 10, 12],
    [14, 16, 18]
  ]
>
iex> Nx.sum(t, axes: [:y])
#Nx.Tensor<
  s64[x: 2][z: 3]
  [
    [5, 7, 9],
    [17, 19, 21]
  ]
>
iex> Nx.sum(t, axes: [:z])
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [6, 15],
    [24, 33]
  ]
>
iex> Nx.sum(t, axes: [:x, :z])
#Nx.Tensor<
  s64[y: 2]
  [30, 48]
>
iex> Nx.sum(t, axes: [:z])
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [6, 15],
    [24, 33]
  ]
>
iex> Nx.sum(t, axes: [-3])
#Nx.Tensor<
  s64[y: 2][z: 3]
  [
    [8, 10, 12],
    [14, 16, 18]
  ]
>

  
  keeping-axes

  
  Keeping axes


iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> Nx.sum(t, axes: [:z], keep_axes: true)
#Nx.Tensor<
  s64[x: 2][y: 2][z: 1]
  [
    [
      [6],
      [15]
    ],
    [
      [24],
      [33]
    ]
  ]
>

  
  errors

  
  Errors


iex> Nx.sum(Nx.tensor([[1, 2]]), axes: [2])
** (ArgumentError) given axis (2) invalid for shape with rank 2

  



    

  
    
      
      Link to this function
    
    variance(tensor, opts \\ [])


      
       
       View Source
     


  


  

      

          @spec variance(tensor :: Nx.Tensor.t(), opts :: Keyword.t()) :: Nx.Tensor.t()


      


Finds the variance of a tensor.
The variance is the average of the squared deviations from the mean.
The mean is typically calculated as sum(tensor) / n, where n is the total
of elements. If, however, :ddof (delta degrees of freedom) is specified, the
divisor n - ddof is used instead.

  
  examples

  
  Examples


iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]))
#Nx.Tensor<
  f32
  1.25
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), ddof: 1)
#Nx.Tensor<
  f32
  1.6666666269302368
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [0])
#Nx.Tensor<
  f32[2]
  [1.0, 1.0]
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [1])
#Nx.Tensor<
  f32[2]
  [0.25, 0.25]
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [0], ddof: 1)
#Nx.Tensor<
  f32[2]
  [2.0, 2.0]
>

iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [1], ddof: 1)
#Nx.Tensor<
  f32[2]
  [0.5, 0.5]
>

  
  keeping-axes

  
  Keeping axes


iex> Nx.variance(Nx.tensor([[1, 2], [3, 4]]), axes: [1], keep_axes: true)
#Nx.Tensor<
  f32[2][1]
  [
    [0.25],
    [0.25]
  ]
>

  



    

  
    
      
      Link to this function
    
    weighted_mean(tensor, weights, opts \\ [])


      
       
       View Source
     


  


  

Returns the weighted mean for the tensor and the weights.
If the :axis option is given, it aggregates over
that dimension, effectively removing it. axis: 0
implies aggregating over the highest order dimension
and so forth. If the axis is negative, then the axis will
be counted from the back. For example, axis: -1 will
always aggregate over the last dimension.
You may optionally set :keep_axis to true, which will
retain the rank of the input tensor by setting the averaged
axis to size 1.

  
  examples

  
  Examples


iex> Nx.weighted_mean(Nx.tensor(42), Nx.tensor(2))
#Nx.Tensor<
  f32
  42.0
>

iex> Nx.weighted_mean(Nx.tensor([1, 2, 3]), Nx.tensor([3, 2, 1]))
#Nx.Tensor<
  f32
  1.6666666269302368
>

  
  aggregating-over-an-axis

  
  Aggregating over an axis


iex> Nx.weighted_mean(Nx.tensor([1, 2, 3], names: [:x]), Nx.tensor([4, 5, 6]), axis: 0)
#Nx.Tensor<
  f32
  2.133333444595337
>

iex> Nx.weighted_mean(Nx.tensor([1,2,3], type: :u8, names: [:x]), Nx.tensor([1,3,5]), axis: :x)
#Nx.Tensor<
  f32
  2.444444417953491
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> weights = Nx.tensor([[[0, 1, 2], [1, 1, 0]], [[-1, 1, -1], [1, 1, -1]]])
iex> Nx.weighted_mean(t, weights, axis: :x)
#Nx.Tensor<
  f32[y: 2][z: 3]
  [
    [7.0, 5.0, -3.0],
    [7.0, 8.0, 12.0]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> weights = Nx.tensor([[[0, 1, 2], [1, 1, 0]], [[-1, 1, -1], [1, 1, -1]]])
iex> Nx.weighted_mean(t, weights, axis: -1)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [2.6666667461395264, 4.5],
    [8.0, 9.0]
  ]
>

iex> t = Nx.iota({3,4})
iex> weights = Nx.tensor([1, 2, 3, 4])
iex> Nx.weighted_mean(t, weights, axis: 1)
#Nx.Tensor<
  f32[3]
  [2.0, 6.0, 10.0]
>

  
  keeping-axis

  
  Keeping axis


iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], names: [:x, :y, :z])
iex> weights = Nx.tensor([[[0, 1, 2], [1, 1, 0]], [[-1, 1, -1], [1, 1, -1]]])
iex> Nx.weighted_mean(t, weights, axis: -1, keep_axis: true)
#Nx.Tensor<
  f32[x: 2][y: 2][z: 1]
  [
    [
      [2.6666667461395264],
      [4.5]
    ],
    [
      [8.0],
      [9.0]
    ]
  ]
>

  


        

      

      
        
          
            
            Anchor for this section
          
Functions: Backend
        

        


    

  
    
      
      Link to this function
    
    backend_copy(tensor_or_container, backend \\ Nx.Tensor)


      
       
       View Source
     


  


  

Copies data to the given backend.
If a backend is not given, Nx.Tensor is used, which means
the given tensor backend will pick the most appropriate
backend to copy the data to.
Note this function keeps the data in the original backend.
Therefore, use this function with care, as it may duplicate
large amounts of data across backends. Generally speaking,
you may want to use backend_transfer/2, unless you explicitly
want to copy the data.
For convenience, this function accepts tensors and any container
(such as maps and tuples as defined by the Nx.Container protocol)
and recursively copies all tensors in them. This behaviour exists
as it is common to transfer data before and after defn functions.
*Note: Nx.default_backend/1 does not affect the behaviour of
this function.

  
  examples

  
  Examples


  iex> Nx.backend_copy(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
  #Nx.Tensor<
s64[2][3]
[
  [1, 2, 3],
  [4, 5, 6]
]


  



  
    
      
      Link to this function
    
    backend_deallocate(tensor_or_container)


      
       
       View Source
     


  


  

Deallocates data in a device.
It returns either :ok or :already_deallocated.
For convenience, this function accepts tensors and any container
(such as maps and tuples as defined by the Nx.Container protocol)
and deallocates all devices in them. This behaviour exists as it is
common to deallocate data after defn functions.

  



    

  
    
      
      Link to this function
    
    backend_transfer(tensor_or_container, backend \\ Nx.Tensor)


      
       
       View Source
     


  


  

Transfers data to the given backend.
This operation can be seen as an equivalent to backend_copy/3
followed by a backend_deallocate/1 on the initial tensor:
new_tensor = Nx.backend_copy(old_tensor, new_backend)
Nx.backend_deallocate(old_tensor)
If a backend is not given, Nx.Tensor is used, which means
the given tensor backend will pick the most appropriate
backend to transfer to.
For Elixir's builtin tensor, transferring to another backend
will call new_backend.from_binary(tensor, binary, opts).
Transferring from a mutable backend, such as GPU memory,
implies the data is copied from the GPU to the Erlang VM
and then deallocated from the device.
For convenience, this function accepts tensors and any container
(such as maps and tuples as defined by the Nx.Container protocol)
and transfers all tensors in them. This behaviour exists as it is
common to transfer data from tuples and maps before and after defn
functions.
*Note: Nx.default_backend/1 does not affect the behaviour of
this function.

  
  examples

  
  Examples


Transfer a tensor to an EXLA device backend, stored in the GPU:
device_tensor = Nx.backend_transfer(tensor, {EXLA.Backend, client: :cuda})
Transfer the device tensor back to an Elixir tensor:
tensor = Nx.backend_transfer(device_tensor)

  



  
    
      
      Link to this function
    
    default_backend()


      
       
       View Source
     


  


  

Gets the default backend for the current process.

  



  
    
      
      Link to this function
    
    default_backend(backend)


      
       
       View Source
     


  


  

Sets the current process default backend to backend with the given opts.
The default backend is stored only in the process dictionary.
This means if you start a separate process, such as Task,
the default backend must be set on the new process too.
This function is mostly used for scripting and testing. In your
applications, you typically set the backend in your config files:
config :nx, :default_backend, {Lib.CustomBackend, device: :cuda}

  
  examples

  
  Examples


iex> Nx.default_backend({Lib.CustomBackend, device: :cuda})
{Nx.BinaryBackend, []}
iex> Nx.default_backend()
{Lib.CustomBackend, device: :cuda}

  



  
    
      
      Link to this function
    
    global_default_backend(backend)


      
       
       View Source
     


  


  

Sets the default backend globally.
You must avoid calling this function at runtime. It is mostly
useful during scripts or code notebooks to set a default.
If you need to configure a global default backend in your
applications, you can do so in your config/*.exs files:
config :nx, :default_backend, {Lib.CustomBackend, []}
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      Link to this function
    
    deserialize(data, opts \\ [])


      
       
       View Source
     


  


  

Deserializes a serialized representation of a tensor or a container
with the given options.
It is the opposite of Nx.serialize/2.

  
  examples

  
  Examples


iex> a = Nx.tensor([1, 2, 3])
iex> serialized_a = Nx.serialize(a)
iex> Nx.deserialize(serialized_a)
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> container = {Nx.tensor([1, 2, 3]), %{b: Nx.tensor([4, 5, 6])}}
iex> serialized_container = Nx.serialize(container)
iex> {a, %{b: b}} = Nx.deserialize(serialized_container)
iex> a
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>
iex> b
#Nx.Tensor<
  s64[3]
  [4, 5, 6]
>

  



  
    
      
      Link to this function
    
    from_numpy(file)


      
       
       View Source
     


  


  

Loads a .npy file into a tensor.
An .npy file stores a single array created from Python's
NumPy library. This function can be useful for loading data
originally created or intended to be loaded from NumPy into
Elixir.

  



  
    
      
      Link to this function
    
    from_numpy_archive(archive)


      
       
       View Source
     


  


  

Loads a .npz archive into a list of tensors.
An .npz file is a zipped, possibly compressed archive containing
multiple .npy files.

  



    

  
    
      
      Link to this function
    
    serialize(tensor_or_container, opts \\ [])


      
       
       View Source
     


  


  

Serializes the given tensor or container of tensors to iodata.
You may pass a tensor, tuple, or map to serialize.
opts controls the serialization options. For example, you can choose
to compress the given tensor or container of tensors by passing a
compression level:
Nx.serialize(tensor, compressed: 9)
Compression level corresponds to compression options in :erlang.term_to_iovec/2.
iodata is a list of binaries that can be written to any io device,
such as a file or a socket. You can ensure the result is a binary by
calling IO.iodata_to_binary/1.

  
  examples

  
  Examples


iex> a = Nx.tensor([1, 2, 3])
iex> serialized_a = Nx.serialize(a)
iex> Nx.deserialize(serialized_a)
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> container = {Nx.tensor([1, 2, 3]), %{b: Nx.tensor([4, 5, 6])}}
iex> serialized_container = Nx.serialize(container)
iex> {a, %{b: b}} = Nx.deserialize(serialized_container)
iex> a
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>
iex> b
#Nx.Tensor<
  s64[3]
  [4, 5, 6]
>

  



    

  
    
      
      Link to this function
    
    to_batched(tensor, batch_size, opts \\ [])


      
       
       View Source
     


  


  

Converts the underlying tensor to a stream of tensor batches.
The first dimension (axis 0) is divided by batch_size.
In case the dimension cannot be evenly divided by
batch_size, you may specify what to do with leftover
data using :leftover. :leftover must be one of :repeat
or :discard. :repeat repeats the first n values to
make the last batch match the desired batch size. :discard
discards excess elements.

  
  examples

  
  Examples


In the examples below we immediately pipe to Enum.to_list/1
for convenience, but in practice you want to lazily traverse
the batches to avoid allocating multiple tensors at once in
certain backends:
iex> [first, second] = Nx.to_batched(Nx.iota({2, 2, 2}), 1) |> Enum.to_list()
iex> first
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [0, 1],
      [2, 3]
    ]
  ]
>
iex> second
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [4, 5],
      [6, 7]
    ]
  ]
>
If the batch size would result in uneven batches, you can repeat or discard excess data.
By default, we repeat:
iex> [first, second, third] = Nx.to_batched(Nx.iota({5, 2}, names: [:x, :y]), 2) |> Enum.to_list()
iex> first
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [0, 1],
    [2, 3]
  ]
>
iex> second
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [4, 5],
    [6, 7]
  ]
>
iex> third
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [8, 9],
    [0, 1]
  ]
>
But you can also discard:
iex> [first, second] = Nx.to_batched(Nx.iota({5, 2}, names: [:x, :y]), 2, leftover: :discard) |> Enum.to_list()
iex> first
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [0, 1],
    [2, 3]
  ]
>
iex> second
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [4, 5],
    [6, 7]
  ]
>

  



    

  
    
      
      Link to this function
    
    to_batched_list(tensor, batch_size, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use to_batched/3 instead.
    


  


  



    

  
    
      
      Link to this function
    
    to_binary(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the underlying tensor as a binary.
Warning: converting a tensor to a binary can
potentially be a very expensive operation, as it
may copy a GPU tensor fully to the machine memory.
It returns the in-memory binary representation of
the tensor in a row-major fashion. The binary is
in the system endianness, which has to be taken into
account if the binary is meant to be serialized to
other systems.

  
  options

  
  Options


	:limit - limit the number of entries represented in the binary


  
  examples

  
  Examples


iex> Nx.to_binary(1)
<<1::64-native>>

iex> Nx.to_binary(Nx.tensor([1.0, 2.0, 3.0]))
<<1.0::float-32-native, 2.0::float-32-native, 3.0::float-32-native>>

iex> Nx.to_binary(Nx.tensor([1.0, 2.0, 3.0]), limit: 2)
<<1.0::float-32-native, 2.0::float-32-native>>

  



    

  
    
      
      Link to this function
    
    to_flat_list(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the underlying tensor as a flat list.
Negative infinity (-Inf), infinity (Inf), and "not a number" (NaN)
will be represented by the atoms :neg_infinity, :infinity, and
:nan respectively.

  
  examples

  
  Examples


iex> Nx.to_flat_list(1)
[1]

iex> Nx.to_flat_list(Nx.tensor([1.0, 2.0, 3.0]))
[1.0, 2.0, 3.0]

iex> Nx.to_flat_list(Nx.tensor([1.0, 2.0, 3.0]), limit: 2)
[1.0, 2.0]
Non-finite numbers are returned as atoms:
iex> t = Nx.tensor([:neg_infinity, :nan, :infinity])
iex> Nx.to_flat_list(t)
[:neg_infinity, :nan, :infinity]

  



    

  
    
      
      Link to this function
    
    to_heatmap(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns a heatmap struct with the tensor data.
On terminals, coloring is done via ANSI colors. If ANSI
is not enabled, the tensor is normalized to show numbers
between 0 and 9.

  
  terminal-coloring

  
  Terminal coloring


Coloring is enabled by default on most Unix terminals.
It is also available on Windows consoles from Windows
10, although it must be explicitly enabled for the current
user in the registry by running the following command:
reg add HKCU\Console /v VirtualTerminalLevel /t REG_DWORD /d 1
After running the command above, you must restart your current
console.

  
  options

  
  Options


	:ansi_enabled - forces ansi to be enabled or disabled.
Defaults to IO.ANSI.enabled?/0

	:ansi_whitespace - which whitespace character to use when
printing. By default it uses "\u3000", which is a full-width
whitespace which often prints more precise shapes



  



  
    
      
      Link to this function
    
    to_number(tensor)


      
       
       View Source
     


  


  

Returns the underlying tensor as a number.
Negative infinity (-Inf), infinity (Inf), and "not a number" (NaN)
will be represented by the atoms :neg_infinity, :infinity, and
:nan respectively.
If the tensor has a dimension, it raises.

  
  examples

  
  Examples


iex> Nx.to_number(1)
1

iex> Nx.to_number(Nx.tensor([1.0, 2.0, 3.0]))
** (ArgumentError) cannot convert tensor of shape {3} to number

  



  
    
      
      Link to this function
    
    to_template(tensor_or_container)


      
       
       View Source
     


  


  

Converts a tensor (or tuples and maps of tensors) to tensor templates.
Templates are useful when you need to pass types and shapes to
operations and the data is not yet available.
For convenience, this function accepts tensors and any container
(such as maps and tuples as defined by the Nx.Container protocol)
and recursively converts all tensors to templates.

  
  examples

  
  Examples


iex> Nx.iota({2, 3}) |> Nx.to_template()
#Nx.Tensor<
  s64[2][3]
  Nx.TemplateBackend
>

iex> {int, float} = Nx.to_template({1, 2.0})
iex> int
#Nx.Tensor<
  s64
  Nx.TemplateBackend
>
iex> float
#Nx.Tensor<
  f32
  Nx.TemplateBackend
>
Although note it is impossible to perform any operation on a tensor template:
iex> t = Nx.iota({2, 3}) |> Nx.to_template()
iex> Nx.abs(t)
** (RuntimeError) cannot perform operations on a Nx.TemplateBackend tensor
To build a template from scratch, use template/3.

  



  
    
      
      Link to this function
    
    to_tensor(t)


      
       
       View Source
     


  


  

Converts the given number (or tensor) to a tensor.
The Nx API works with numbers, complex numbers, and tensors.
This function exists to normalize those values into tensors
(i.e. Nx.Tensor structs).
If your goal is to create tensors from lists, see tensor/2.
If you want to create a tensor from binary, see from_binary/3.

  


        

      

      
        
          
            
            Anchor for this section
          
Functions: Creation
        

        


    

  
    
      
      Link to this function
    
    eye(n_or_tensor_or_shape, opts \\ [])


      
       
       View Source
     


  


  

Creates the identity matrix of size n.

  
  examples

  
  Examples


iex> Nx.eye(2)
#Nx.Tensor<
  s64[2][2]
  [
    [1, 0],
    [0, 1]
  ]
>

iex> Nx.eye(3, type: :f32, names: [:height, :width])
#Nx.Tensor<
  f32[height: 3][width: 3]
  [
    [1.0, 0.0, 0.0],
    [0.0, 1.0, 0.0],
    [0.0, 0.0, 1.0]
  ]
>
The first argument can also be a shape of a square matrix:
iex> Nx.eye({1, 1})
#Nx.Tensor<
  s64[1][1]
  [
    [1]
  ]
>

  
  options

  
  Options


	:type - the type of the tensor

	:names - the names of the tensor dimensions

	:backend - the backend to allocate the tensor on. It is either
an atom or a tuple in the shape {backend, options}. This option
is ignored inside defn



  



    

  
    
      
      Link to this function
    
    from_binary(binary, type, opts \\ [])


      
       
       View Source
     


  


  

Creates a one-dimensional tensor from a binary with the given type.
If the binary size does not match its type, an error is raised.

  
  examples

  
  Examples


iex> Nx.from_binary(<<1, 2, 3, 4>>, :s8)
#Nx.Tensor<
  s8[4]
  [1, 2, 3, 4]
>
The atom notation for types is also supported:
iex> Nx.from_binary(<<12.3::float-64-native>>, :f64)
#Nx.Tensor<
  f64[1]
  [12.3]
>
An error is raised for incompatible sizes:
iex> Nx.from_binary(<<1, 2, 3, 4>>, :f64)
** (ArgumentError) binary does not match the given size

  
  options

  
  Options


	:backend - the backend to allocate the tensor on. It is either
an atom or a tuple in the shape {backend, options}. This option
is ignored inside defn


  



    

  
    
      
      Link to this function
    
    iota(tensor_or_shape, opts \\ [])


      
       
       View Source
     


  


  

Creates a tensor with the given shape which increments
along the provided axis. You may optionally provide dimension
names.
If no axis is provided, index counts up at each element.
If a tensor or a number are given, the shape and names are taken from the tensor.

  
  examples

  
  Examples


iex> Nx.iota({})
#Nx.Tensor<
  s64
  0
>

iex> Nx.iota({5})
#Nx.Tensor<
  s64[5]
  [0, 1, 2, 3, 4]
>

iex> Nx.iota({3, 2, 3}, names: [:batch, :height, :width])
#Nx.Tensor<
  s64[batch: 3][height: 2][width: 3]
  [
    [
      [0, 1, 2],
      [3, 4, 5]
    ],
    [
      [6, 7, 8],
      [9, 10, 11]
    ],
    [
      [12, 13, 14],
      [15, 16, 17]
    ]
  ]
>

iex> Nx.iota({3, 3}, axis: 1, names: [:batch, nil])
#Nx.Tensor<
  s64[batch: 3][3]
  [
    [0, 1, 2],
    [0, 1, 2],
    [0, 1, 2]
  ]
>

iex> Nx.iota({3, 3}, axis: -1)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 2],
    [0, 1, 2],
    [0, 1, 2]
  ]
>

iex> Nx.iota({3, 4, 3}, axis: 0, type: :f64)
#Nx.Tensor<
  f64[3][4][3]
  [
    [
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0]
    ],
    [
      [1.0, 1.0, 1.0],
      [1.0, 1.0, 1.0],
      [1.0, 1.0, 1.0],
      [1.0, 1.0, 1.0]
    ],
    [
      [2.0, 2.0, 2.0],
      [2.0, 2.0, 2.0],
      [2.0, 2.0, 2.0],
      [2.0, 2.0, 2.0]
    ]
  ]
>

iex> Nx.iota({1, 3, 2}, axis: 2)
#Nx.Tensor<
  s64[1][3][2]
  [
    [
      [0, 1],
      [0, 1],
      [0, 1]
    ]
  ]
>

  
  options

  
  Options


	:type - the type of the tensor

	:axis - an axis to repeat the iota over

	:names - the names of the tensor dimensions

	:backend - the backend to allocate the tensor on. It is either
an atom or a tuple in the shape {backend, options}. This option
is ignored inside defn



  



    

  
    
      
      Link to this function
    
    make_diagonal(tensor, opts \\ [])


      
       
       View Source
     


  


  

Creates a diagonal tensor from a 1D tensor.
Converse of take_diagonal/2.
The returned tensor will be a square matrix of dimensions equal
to the size of the tensor. If an offset is given, the absolute value
of the offset is added to the matrix dimensions sizes.

  
  examples

  
  Examples


  Given a 1D tensor:
iex> Nx.make_diagonal(Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4][4]
  [
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0],
    [0, 0, 0, 4]
  ]
>
  Given a 1D tensor with an offset:
iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: 1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 1, 0, 0],
    [0, 0, 2, 0],
    [0, 0, 0, 3],
    [0, 0, 0, 0]
  ]
>

iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: -1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 0, 0, 0],
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0]
  ]
>
  You can also have offsets with an abs greater than the tensor length:
iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: -4)
#Nx.Tensor<
  s64[7][7]
  [
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [1, 0, 0, 0, 0, 0, 0],
    [0, 2, 0, 0, 0, 0, 0],
    [0, 0, 3, 0, 0, 0, 0]
  ]
>

iex> Nx.make_diagonal(Nx.tensor([1, 2, 3]), offset: 4)
#Nx.Tensor<
  s64[7][7]
  [
    [0, 0, 0, 0, 1, 0, 0],
    [0, 0, 0, 0, 0, 2, 0],
    [0, 0, 0, 0, 0, 0, 3],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 0, 0]
  ]
>

  
  options

  
  Options


	:offset - offset used for making the diagonal.
Use offset > 0 for diagonals above the main diagonal,
and offset < 0 for diagonals below the main diagonal.
Defaults to 0.


  
  error-cases

  
  Error cases


iex> Nx.make_diagonal(Nx.tensor([[0, 0], [0, 1]]))
** (ArgumentError) make_diagonal/2 expects tensor of rank 1, got tensor of rank: 2

  



    

  
    
      
      Link to this function
    
    put_diagonal(tensor, diagonal, opts \\ [])


      
       
       View Source
     


  


  

Puts the individual values from a 1D diagonal into the diagonal indices
of the given 2D tensor.
See also: take_diagonal/2, make_diagonal/2.

  
  examples

  
  Examples


Given a 2D tensor and a 1D diagonal:
iex> t = Nx.broadcast(0, {4, 4})
#Nx.Tensor<
  s64[4][4]
  [
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0],
    [0, 0, 0, 0]
  ]
>
iex> Nx.put_diagonal(t, Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4][4]
  [
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0],
    [0, 0, 0, 4]
  ]
>

iex> t = Nx.broadcast(0, {4, 3})
#Nx.Tensor<
  s64[4][3]
  [
    [0, 0, 0],
    [0, 0, 0],
    [0, 0, 0],
    [0, 0, 0]
  ]
>
iex> Nx.put_diagonal(t, Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64[4][3]
  [
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3],
    [0, 0, 0]
  ]
>
Given a 2D tensor and a 1D diagonal with a positive offset:
iex> Nx.put_diagonal(Nx.broadcast(0, {4, 4}), Nx.tensor([1, 2, 3]), offset: 1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 1, 0, 0],
    [0, 0, 2, 0],
    [0, 0, 0, 3],
    [0, 0, 0, 0]
  ]
>

iex> Nx.put_diagonal(Nx.broadcast(0, {4, 3}), Nx.tensor([1, 2]), offset: 1)
#Nx.Tensor<
  s64[4][3]
  [
    [0, 1, 0],
    [0, 0, 2],
    [0, 0, 0],
    [0, 0, 0]
  ]
>
Given a 2D tensor and a 1D diagonal with a negative offset:
iex> Nx.put_diagonal(Nx.broadcast(0, {4, 4}), Nx.tensor([1, 2, 3]), offset: -1)
#Nx.Tensor<
  s64[4][4]
  [
    [0, 0, 0, 0],
    [1, 0, 0, 0],
    [0, 2, 0, 0],
    [0, 0, 3, 0]
  ]
>

iex> Nx.put_diagonal(Nx.broadcast(0, {4, 3}), Nx.tensor([1, 2, 3]), offset: -1)
#Nx.Tensor<
  s64[4][3]
  [
    [0, 0, 0],
    [1, 0, 0],
    [0, 2, 0],
    [0, 0, 3]
  ]
>

  
  options

  
  Options


	:offset - offset used for putting the diagonal.
Use offset > 0 for diagonals above the main diagonal,
and offset < 0 for diagonals below the main diagonal.
Defaults to 0.


  
  error-cases

  
  Error cases


Given an invalid tensor:
iex> Nx.put_diagonal(Nx.iota({3, 3, 3}), Nx.iota({3}))
** (ArgumentError) put_diagonal/3 expects tensor of rank 2, got tensor of rank: 3
Given invalid diagonals:
iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3, 3}))
** (ArgumentError) put_diagonal/3 expects diagonal of rank 1, got tensor of rank: 2

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({2}))
** (ArgumentError) expected diagonal tensor of length: 3, got diagonal tensor of length: 2

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3}), offset: 1)
** (ArgumentError) expected diagonal tensor of length: 2, got diagonal tensor of length: 3
Given invalid offsets:
iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3}), offset: 4)
** (ArgumentError) offset must be less than length of axis 1 when positive, got: 4

iex> Nx.put_diagonal(Nx.iota({3, 3}), Nx.iota({3}), offset: -3)
** (ArgumentError) absolute value of offset must be less than length of axis 0 when negative, got: -3

  



    

  
    
      
      Link to this function
    
    random_normal(tensor_or_shape, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use Nx.Random instead.
    


  

Shortcut for random_normal(shape, 0.0, 1.0, opts).

  



    

  
    
      
      Link to this function
    
    random_normal(tensor_or_shape, mu, sigma, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use Nx.Random instead.
    


  

Returns a normally-distributed random tensor with the given shape.
The distribution has mean of mu and standard deviation of
sigma. Return type is one of {:bf, 16}, {:f, 32} or {:f, 64}.
If a tensor or a number are given, the shape is taken from the tensor.

  
  examples

  
  Examples


iex> t = Nx.random_normal({10})
iex> Nx.shape(t)
{10}
iex> Nx.type(t)
{:f, 32}

iex> t = Nx.random_normal({5, 5}, 2.0, 1.0, type: :bf16)
iex> Nx.shape(t)
{5, 5}
iex> Nx.type(t)
{:bf, 16}

iex> t = Nx.random_normal({3, 3, 3}, -1.0, 1.0, type: :f32)
iex> Nx.shape(t)
{3, 3, 3}
iex> Nx.type(t)
{:f, 32}
If given a tensor as a shape, it takes the shape, names, and default type
from the tensor:
iex> t = Nx.tensor([[1.0, 2.0], [3.0, 4.0]], names: [:batch, :data])
iex> t = Nx.random_normal(t)
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[:batch, :data]

iex> t = Nx.tensor([[1.0, 2.0], [3.0, 4.0]])
iex> t = Nx.random_normal(t, type: :f32)
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[nil, nil]
The same applies to numbers:
iex> t = Nx.random_normal(10.0)
iex> Nx.shape(t)
{}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[]
If you pass the :names option, the resulting tensor will take on those names:
iex> t = Nx.tensor([[1, 2], [3, 4]], names: [:batch, :data])
iex> t = Nx.random_normal(t, names: [:batch, nil])
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[:batch, nil]

  
  options

  
  Options


	:type - the type of the tensor

	:names - the names of the tensor dimensions

	:backend - the backend to allocate the tensor on. It is either
an atom or a tuple in the shape {backend, options}. This option
is ignored inside defn



  



    

  
    
      
      Link to this function
    
    random_uniform(tensor_or_shape, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use Nx.Random.uniform/2 instead.
    


  

Shortcut for random_uniform(shape, 0.0, 1.0, opts).

  



    

  
    
      
      Link to this function
    
    random_uniform(tensor_or_shape, min, max, opts \\ [])


      
       
       View Source
     


  


    
      This function is deprecated. Use Nx.Random.uniform/2 instead.
    


  

Returns a uniformly-distributed random tensor with the given shape.
The distribution is bounded on the semi-open interval [min, max).
If min and max are integers, then the tensor has type {:s, 64}.
Otherwise, a {:f, 64} tensor is returned. You can also pass any
valid type via the :type option.
If a tensor or a number are given, the shape and default type are
taken from them.

  
  examples

  
  Examples



  
  generating-floats

  
  Generating Floats


iex> t = Nx.random_uniform({10})
iex> for <<x::float-32-native <- Nx.to_binary(t)>> do
...>   true = x >= 0.0 and x < 1.0
...> end
iex> Nx.shape(t)
{10}
iex> Nx.type(t)
{:f, 32}

iex> t = Nx.random_uniform({5, 5}, type: :bf16)
iex> byte_size(Nx.to_binary(t))
50
iex> Nx.shape(t)
{5, 5}
iex> Nx.type(t)
{:bf, 16}

iex> t = Nx.random_uniform({5, 5}, -1.0, 1.0, type: :f64)
iex> for <<x::float-64-native <- Nx.to_binary(t)>> do
...>   true = x >= -1.0 and x < 1.0
...> end
iex> Nx.shape(t)
{5, 5}
iex> Nx.type(t)
{:f, 64}

  
  generating-integers

  
  Generating Integers


iex> t = Nx.random_uniform({10}, 5, 10, type: :u8)
iex> for <<x::8-unsigned-native <- Nx.to_binary(t)>> do
...>   true = x >= 5 and x < 10
...> end
iex> Nx.shape(t)
{10}
iex> Nx.type(t)
{:u, 8}

iex> t = Nx.random_uniform({5, 5}, -5, 5, type: :s64)
iex> for <<x::64-signed-native <- Nx.to_binary(t)>> do
...>   true = x >= -5 and x < 5
...> end
iex> Nx.shape(t)
{5, 5}
iex> Nx.type(t)
{:s, 64}

  
  tensors-as-shapes

  
  Tensors as shapes


If given a tensor as a shape, it takes the shape and names from the tensor:
iex> t = Nx.tensor([[1, 2], [3, 4]], names: [:batch, :data])
iex> t = Nx.random_uniform(t)
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[:batch, :data]

iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> t = Nx.random_uniform(t, type: :f32)
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[nil, nil]
The same applies to numbers:
iex> t = Nx.random_uniform(10)
iex> Nx.shape(t)
{}
iex> Nx.type(t)
{:f, 32}

iex> t = Nx.random_uniform(10.0)
iex> Nx.shape(t)
{}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[]
If you pass :names as an option, the resulting tensor will take on those names:
iex> t = Nx.tensor([[1, 2], [3, 4]], names: [:batch, :data])
iex> t = Nx.random_uniform(t, names: [:batch, nil])
iex> Nx.shape(t)
{2, 2}
iex> Nx.type(t)
{:f, 32}
iex> Nx.names(t)
[:batch, nil]

  
  options

  
  Options


	:type - the type of the tensor

	:names - the names of the tensor dimensions

	:backend - the backend to allocate the tensor on. It is either
an atom or a tuple in the shape {backend, options}. This option
is ignored inside defn



  



    

  
    
      
      Link to this function
    
    shuffle(tensor, opts \\ [])


      
       
       View Source
     


  


  

Shuffles tensor elements.
By default, shuffles elements within the whole tensor. When :axis
is given, shuffles the tensor along the specific axis instead.

  
  options

  
  Options


	:axis - the axis to shuffle along


  
  examples

  
  Examples


Shuffling all elements:
t = Nx.tensor([[1, 2], [3, 4], [5, 6]])
Nx.shuffle(t)
#=>
#Nx.Tensor<
  s64[3][2]
  [
    [5, 1],
    [2, 3],
    [6, 4]
  ]
>
Shuffling rows in a two-dimensional tensor:
t = Nx.tensor([[1, 2], [3, 4], [5, 6]])
Nx.shuffle(t, axis: 0)
#=>
#Nx.Tensor<
  s64[3][2]
  [
    [5, 6],
    [1, 2],
    [3, 4]
  ]
>

  



  
    
      
      Link to this macro
    
    sigil_M(arg, modifiers)


      
       
       View Source
     


      (macro)

  


  

A convenient ~M sigil for building matrices (two-dimensional tensors).

  
  examples

  
  Examples


Before using sigils, you must first import them:
import Nx, only: :sigils
Then you use the sigil to create matrices. The sigil:
~M<
  -1 0 0 1
  0 2 0 0
  0 0 3 0
  0 0 0 4
>
Is equivalent to:
Nx.tensor([
  [-1, 0, 0, 1],
  [0, 2, 0, 0],
  [0, 0, 3, 0],
  [0, 0, 0, 4]
])
If the tensor has any complex type, it defaults to c64.
If the tensor has any float type, it defaults to f32.
Otherwise, it is s64. You can specify the tensor type
as a sigil modifier:
iex> import Nx, only: :sigils
iex> ~M[0.1 0.2 0.3 0.4]f16
#Nx.Tensor<
  f16[1][4]
  [
    [0.0999755859375, 0.199951171875, 0.300048828125, 0.39990234375]
  ]
>
iex> ~M[1+1i 2-2.0i -3]
#Nx.Tensor<
  c64[1][3]
  [
    [1.0+1.0i, 2.0-2.0i, -3.0+0.0i]
  ]
>
iex> ~M[1 Inf NaN]
#Nx.Tensor<
  f32[1][3]
  [
    [1.0, Inf, NaN]
  ]
>
iex> ~M[1i Inf NaN]
#Nx.Tensor<
  c64[1][3]
  [
    [0.0+1.0i, Inf+0.0i, NaN+0.0i]
  ]
>
iex> ~M[1i Inf+2i NaN-Infi]
#Nx.Tensor<
  c64[1][3]
  [
    [0.0+1.0i, Inf+2.0i, NaN-Infi]
  ]
>

  



  
    
      
      Link to this macro
    
    sigil_V(arg, modifiers)


      
       
       View Source
     


      (macro)

  


  

A convenient ~V sigil for building vectors (one-dimensional tensors).

  
  examples

  
  Examples


Before using sigils, you must first import them:
import Nx, only: :sigils
Then you use the sigil to create vectors. The sigil:
~V[-1 0 0 1]
Is equivalent to:
Nx.tensor([-1, 0, 0, 1])
If the tensor has any complex type, it defaults to c64.
If the tensor has any float type, it defaults to f32.
Otherwise, it is s64. You can specify the tensor type
as a sigil modifier:
iex> import Nx, only: :sigils
iex> ~V[0.1 0.2 0.3 0.4]f16
#Nx.Tensor<
  f16[4]
  [0.0999755859375, 0.199951171875, 0.300048828125, 0.39990234375]
>
iex> ~V[1+1i 2-2.0i -3]
#Nx.Tensor<
  c64[3]
  [1.0+1.0i, 2.0-2.0i, -3.0+0.0i]
>
iex> ~V[1 Inf NaN]
#Nx.Tensor<
  f32[3]
  [1.0, Inf, NaN]
>
iex> ~V[1i Inf NaN]
#Nx.Tensor<
  c64[3]
  [0.0+1.0i, Inf+0.0i, NaN+0.0i]
>
iex> ~V[1i Inf+2i NaN-Infi]
#Nx.Tensor<
  c64[3]
  [0.0+1.0i, Inf+2.0i, NaN-Infi]
>

  



    

  
    
      
      Link to this function
    
    take_diagonal(tensor, opts \\ [])


      
       
       View Source
     


  


  

Extracts the diagonal of batched matrices.
Converse of make_diagonal/2.

  
  examples

  
  Examples


Given a matrix without offset:
iex> Nx.take_diagonal(Nx.tensor([
...> [0, 1, 2],
...> [3, 4, 5],
...> [6, 7, 8]
...> ]))
#Nx.Tensor<
  s64[3]
  [0, 4, 8]
>
And if given a matrix along with an offset:
iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: 1)
#Nx.Tensor<
  s64[2]
  [1, 5]
>

iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: -1)
#Nx.Tensor<
  s64[2]
  [3, 7]
>
Given batched matrix:
iex> Nx.take_diagonal(Nx.iota({3, 2, 2}))
#Nx.Tensor<
  s64[3][2]
  [
    [0, 3],
    [4, 7],
    [8, 11]
  ]
>

iex> Nx.take_diagonal(Nx.iota({3, 2, 2}), offset: -1)
#Nx.Tensor<
  s64[3][1]
  [
    [2],
    [6],
    [10]
  ]
>

  
  options

  
  Options


	:offset - offset used for extracting the diagonal.
Use offset > 0 for diagonals above the main diagonal,
and offset < 0 for diagonals below the main diagonal.
Defaults to 0.


  
  error-cases

  
  Error cases


iex> Nx.take_diagonal(Nx.tensor([0, 1, 2]))
** (ArgumentError) take_diagonal/2 expects tensor of rank 2 or higher, got tensor of rank: 1

iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: 3)
** (ArgumentError) offset must be less than length of axis 1 when positive, got: 3

iex> Nx.take_diagonal(Nx.iota({3, 3}), offset: -4)
** (ArgumentError) absolute value of offset must be less than length of axis 0 when negative, got: -4

  



    

  
    
      
      Link to this function
    
    template(shape, type, opts \\ [])


      
       
       View Source
     


  


  

Creates a tensor template.
You can't perform any operation on this tensor.
It exists exclusively to define APIs that say
a tensor with a certain type, shape, and names
is expected in the future.

  
  examples

  
  Examples


iex> Nx.template({2, 3}, :f32)
#Nx.Tensor<
  f32[2][3]
  Nx.TemplateBackend
>

iex> Nx.template({2, 3}, {:f, 32}, names: [:rows, :columns])
#Nx.Tensor<
  f32[rows: 2][columns: 3]
  Nx.TemplateBackend
>
Although note it is impossible to perform any operation on a tensor template:
iex> t = Nx.template({2, 3}, {:f, 32}, names: [:rows, :columns])
iex> Nx.abs(t)
** (RuntimeError) cannot perform operations on a Nx.TemplateBackend tensor
To convert existing tensors to templates, use to_template/1.

  



    

  
    
      
      Link to this function
    
    tensor(arg, opts \\ [])


      
       
       View Source
     


  


  

Builds a tensor.
The argument is either a number, which means the tensor is a scalar
(zero-dimensions), a list of those (the tensor is a vector) or
a list of n-lists of those, leading to n-dimensional tensors.
The tensor will be allocated in Nx.default_backend/1, unless the
:backend option is given, which overrides the default one.

  
  examples

  
  Examples


A number returns a tensor of zero dimensions:
iex> Nx.tensor(0)
#Nx.Tensor<
  s64
  0
>

iex> Nx.tensor(1.0)
#Nx.Tensor<
  f32
  1.0
>
Giving a list returns a vector (a one-dimensional tensor):
iex> Nx.tensor([1, 2, 3])
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> Nx.tensor([1.2, 2.3, 3.4, 4.5])
#Nx.Tensor<
  f32[4]
  [1.2000000476837158, 2.299999952316284, 3.4000000953674316, 4.5]
>
The type can be explicitly given. Integers and floats
bigger than the given size overflow:
iex> Nx.tensor([300, 301, 302], type: :s8)
#Nx.Tensor<
  s8[3]
  [44, 45, 46]
>
Mixed types give higher priority to floats:
iex> Nx.tensor([1, 2, 3.0])
#Nx.Tensor<
  f32[3]
  [1.0, 2.0, 3.0]
>
Boolean values are also accepted, where true is
converted to 1 and false to 0, with the type
being inferred as {:u, 8}
iex> Nx.tensor(true)
#Nx.Tensor<
  u8
  1
>

iex> Nx.tensor(false)
#Nx.Tensor<
  u8
  0
>

iex> Nx.tensor([true, false])
#Nx.Tensor<
  u8[2]
  [1, 0]
>
Multi-dimensional tensors are also possible:
iex> Nx.tensor([[1, 2, 3], [4, 5, 6]])
#Nx.Tensor<
  s64[2][3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>

iex> Nx.tensor([[1, 2], [3, 4], [5, 6]])
#Nx.Tensor<
  s64[3][2]
  [
    [1, 2],
    [3, 4],
    [5, 6]
  ]
>

iex> Nx.tensor([[[1, 2], [3, 4], [5, 6]], [[-1, -2], [-3, -4], [-5, -6]]])
#Nx.Tensor<
  s64[2][3][2]
  [
    [
      [1, 2],
      [3, 4],
      [5, 6]
    ],
    [
      [-1, -2],
      [-3, -4],
      [-5, -6]
    ]
  ]
>

  
  floats-and-complex-numbers

  
  Floats and complex numbers


Besides single-precision (32 bits), floats can also have
half-precision (16) or double-precision (64):
iex> Nx.tensor([1, 2, 3], type: :f16)
#Nx.Tensor<
  f16[3]
  [1.0, 2.0, 3.0]
>

iex> Nx.tensor([1, 2, 3], type: :f64)
#Nx.Tensor<
  f64[3]
  [1.0, 2.0, 3.0]
>
Brain-floating points are also supported:
iex> Nx.tensor([1, 2, 3], type: :bf16)
#Nx.Tensor<
  bf16[3]
  [1.0, 2.0, 3.0]
>
In all cases, the non-finite values negative infinity (-Inf),
infinity (Inf), and "not a number" (NaN) can be represented by
the atoms :neg_infinity, :infinity, and :nan respectively:
iex> Nx.tensor([:neg_infinity, :nan, :infinity])
#Nx.Tensor<
  f32[3]
  [-Inf, NaN, Inf]
>
Finally, complex numbers are also supported in tensors:
iex> Nx.tensor(Complex.new(1, -1))
#Nx.Tensor<
  c64
  1.0-1.0i
>

  
  naming-dimensions

  
  Naming dimensions


You can provide names for tensor dimensions. Names are atoms:
iex> Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>
Names make your code more expressive:
iex> Nx.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]], names: [:batch, :height, :width])
#Nx.Tensor<
  s64[batch: 1][height: 3][width: 3]
  [
    [
      [1, 2, 3],
      [4, 5, 6],
      [7, 8, 9]
    ]
  ]
>
You can also leave dimension names as nil:
iex> Nx.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]], names: [:batch, nil, nil])
#Nx.Tensor<
  s64[batch: 1][3][3]
  [
    [
      [1, 2, 3],
      [4, 5, 6],
      [7, 8, 9]
    ]
  ]
>
However, you must provide a name for every dimension in the tensor:
iex> Nx.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]]], names: [:batch])
** (ArgumentError) invalid names for tensor of rank 3, when specifying names every dimension must have a name or be nil

  
  options

  
  Options


	:type - sets the type of the tensor. If one is not given,
one is automatically inferred based on the input.

	:names - dimension names. If you wish to specify dimension
names you must specify a name for every dimension in the tensor.
Only nil and atoms are supported as dimension names.

	:backend - the backend to allocate the tensor on. It is either
an atom or a tuple in the shape {backend, options}. This option
is ignored inside defn
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      Link to this function
    
    cumulative_max(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the cumulative maximum of elements along an axis.

  
  options

  
  Options


	:axis - the axis to compare elements along. Defaults to 0
	:reverse - whether to perform accumulation in the opposite direction. Defaults to false


  
  examples

  
  Examples


iex> Nx.cumulative_max(Nx.tensor([3, 4, 2, 1]))
#Nx.Tensor<
  s64[4]
  [3, 4, 4, 4]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 1],
    [2, 3, 2],
    [2, 3, 3]
  ]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 3],
    [1, 3, 3],
    [2, 2, 3]
  ]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 3],
    [2, 3, 3],
    [2, 1, 3]
  ]
>

iex> Nx.cumulative_max(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [3, 3, 1],
    [3, 3, 2],
    [3, 3, 3]
  ]
>

  



    

  
    
      
      Link to this function
    
    cumulative_min(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the cumulative minimum of elements along an axis.

  
  options

  
  Options


	:axis - the axis to compare elements along. Defaults to 0
	:reverse - whether to perform accumulation in the opposite direction. Defaults to false


  
  examples

  
  Examples


iex> Nx.cumulative_min(Nx.tensor([3, 4, 2, 1]))
#Nx.Tensor<
  s64[4]
  [3, 3, 2, 1]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 3, 1],
    [1, 3, 1],
    [1, 1, 1]
  ]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [2, 2, 1],
    [1, 1, 1],
    [2, 1, 1]
  ]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [1, 1, 1],
    [1, 1, 2],
    [2, 1, 3]
  ]
>

iex> Nx.cumulative_min(Nx.tensor([[2, 3, 1], [1, 3, 2], [2, 1, 3]]), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [1, 1, 1],
    [1, 2, 2],
    [1, 1, 3]
  ]
>

  



    

  
    
      
      Link to this function
    
    cumulative_product(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the cumulative product of elements along an axis.

  
  options

  
  Options


	:axis - the axis to multiply elements along. Defaults to 0
	:reverse - whether to perform accumulation in the opposite direction. Defaults to false


  
  examples

  
  Examples


iex> Nx.cumulative_product(Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4]
  [1, 2, 6, 24]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 2],
    [0, 4, 10],
    [0, 28, 80]
  ]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 0, 0],
    [3, 12, 60],
    [6, 42, 336]
  ]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 28, 80],
    [18, 28, 40],
    [6, 7, 8]
  ]
>

iex> Nx.cumulative_product(Nx.iota({3, 3}), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 2, 2],
    [60, 20, 5],
    [336, 56, 8]
  ]
>

  



    

  
    
      
      Link to this function
    
    cumulative_sum(tensor, opts \\ [])


      
       
       View Source
     


  


  

Returns the cumulative sum of elements along an axis.

  
  options

  
  Options


	:axis - the axis to sum elements along. Defaults to 0
	:reverse - whether to perform accumulation in the opposite direction. Defaults to false


  
  examples

  
  Examples


iex> Nx.cumulative_sum(Nx.tensor([1, 2, 3, 4]))
#Nx.Tensor<
  s64[4]
  [1, 3, 6, 10]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 2],
    [3, 5, 7],
    [9, 12, 15]
  ]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 1)
#Nx.Tensor<
  s64[3][3]
  [
    [0, 1, 3],
    [3, 7, 12],
    [6, 13, 21]
  ]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 0, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [9, 12, 15],
    [9, 11, 13],
    [6, 7, 8]
  ]
>

iex> Nx.cumulative_sum(Nx.iota({3, 3}), axis: 1, reverse: true)
#Nx.Tensor<
  s64[3][3]
  [
    [3, 3, 2],
    [12, 9, 5],
    [21, 15, 8]
  ]
>
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      Link to this function
    
    abs(tensor)


      
       
       View Source
     


  


  

Computes the absolute value of each element in the tensor.

  
  examples

  
  Examples


iex> Nx.abs(Nx.tensor([-2, -1, 0, 1, 2], names: [:x]))
#Nx.Tensor<
  s64[x: 5]
  [2, 1, 0, 1, 2]
>

  



  
    
      
      Link to this function
    
    acos(tensor)


      
       
       View Source
     


  


  

Calculates the inverse cosine of each element in the tensor.
It is equivalent to:
$$acos(cos(z)) = z$$

  
  examples

  
  Examples


iex> Nx.acos(0.10000000149011612)
#Nx.Tensor<
  f32
  1.4706288576126099
>

iex> Nx.acos(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.4706288576126099, 1.0471975803375244, 0.4510268568992615]
>

  



  
    
      
      Link to this function
    
    acosh(tensor)


      
       
       View Source
     


  


  

Calculates the inverse hyperbolic cosine of each element in the tensor.
It is equivalent to:
$$acosh(cosh(z)) = z$$

  
  examples

  
  Examples


iex> Nx.acosh(1)
#Nx.Tensor<
  f32
  0.0
>

iex> Nx.acosh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.0, 1.316957950592041, 1.7627471685409546]
>

  



  
    
      
      Link to this function
    
    add(left, right)


      
       
       View Source
     


  


  

Element-wise addition of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the + operator
in place of this function: left + right.

  
  examples

  
  Examples



  
  adding-scalars

  
  Adding scalars


iex> Nx.add(1, 2)
#Nx.Tensor<
  s64
  3
>

iex> Nx.add(1, 2.2)
#Nx.Tensor<
  f32
  3.200000047683716
>

  
  adding-a-scalar-to-a-tensor

  
  Adding a scalar to a tensor


iex> Nx.add(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [2, 3, 4]
>

iex> Nx.add(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  s64[data: 3]
  [2, 3, 4]
>
Given a float scalar converts the tensor to a float:
iex> Nx.add(Nx.tensor([1, 2, 3], names: [:data]), 1.0)
#Nx.Tensor<
  f32[data: 3]
  [2.0, 3.0, 4.0]
>

iex> Nx.add(Nx.tensor([1.0, 2.0, 3.0], names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [2.0, 3.0, 4.0]
>

iex> Nx.add(Nx.tensor([1.0, 2.0, 3.0], type: :f32, names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [2.0, 3.0, 4.0]
>
Unsigned tensors become signed and double their size if a
negative number is given:
iex> Nx.add(Nx.tensor([0, 1, 2], type: :u8, names: [:data]), -1)
#Nx.Tensor<
  s16[data: 3]
  [-1, 0, 1]
>

  
  adding-tensors-of-the-same-shape

  
  Adding tensors of the same shape


iex> left = Nx.tensor([[1, 2], [3, 4]], names: [:x, :y])
iex> right = Nx.tensor([[10, 20], [30, 40]], names: [nil, :y])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [11, 22],
    [33, 44]
  ]
>

  
  adding-tensors-with-broadcasting

  
  Adding tensors with broadcasting


iex> left = Nx.tensor([[1], [2]], names: [nil, :y])
iex> right = Nx.tensor([[10, 20]], names: [:x, nil])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [11, 21],
    [12, 22]
  ]
>

iex> left = Nx.tensor([[10, 20]], names: [:x, nil])
iex> right = Nx.tensor([[1], [2]], names: [nil, :y])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [11, 21],
    [12, 22]
  ]
>

iex> left = Nx.tensor([[1], [2]], names: [:x, nil])
iex> right = Nx.tensor([[10, 20], [30, 40]])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[x: 2][2]
  [
    [11, 21],
    [32, 42]
  ]
>

iex> left = Nx.tensor([[1, 2]])
iex> right = Nx.tensor([[10, 20], [30, 40]])
iex> Nx.add(left, right)
#Nx.Tensor<
  s64[2][2]
  [
    [11, 22],
    [31, 42]
  ]
>

  



  
    
      
      Link to this function
    
    asin(tensor)


      
       
       View Source
     


  


  

Calculates the inverse sine of each element in the tensor.
It is equivalent to:
$$asin(sin(z)) = z$$

  
  examples

  
  Examples


iex> Nx.asin(0.10000000149011612)
#Nx.Tensor<
  f32
  0.1001674234867096
>

iex> Nx.asin(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.1001674234867096, 0.5235987901687622, 1.1197694540023804]
>

  



  
    
      
      Link to this function
    
    asinh(tensor)


      
       
       View Source
     


  


  

Calculates the inverse hyperbolic sine of each element in the tensor.
It is equivalent to:
$$asinh(sinh(z)) = z$$

  
  examples

  
  Examples


iex> Nx.asinh(1)
#Nx.Tensor<
  f32
  0.8813735842704773
>

iex> Nx.asinh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.8813735842704773, 1.4436354637145996, 1.8184465169906616]
>

  



  
    
      
      Link to this function
    
    atan2(left, right)


      
       
       View Source
     


  


  

Element-wise arc tangent of two tensors.
If a number is given, it is converted to a tensor.
It always returns a float tensor. If any of the input
tensors are not float, they are converted to f32.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.

  
  examples

  
  Examples



  
  arc-tangent-between-scalars

  
  Arc tangent between scalars


iex> Nx.atan2(1, 2)
#Nx.Tensor<
  f32
  0.46364760398864746
>

  
  arc-tangent-between-tensors-and-scalars

  
  Arc tangent between tensors and scalars


iex> Nx.atan2(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [0.7853981852531433, 1.1071487665176392, 1.249045729637146]
>

iex> Nx.atan2(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [0.7853981852531433, 0.46364760398864746, 0.32175055146217346]
>

  
  arc-tangent-between-tensors

  
  Arc tangent between tensors


iex> neg_and_pos_zero_columns = Nx.tensor([[-0.0], [0.0]], type: :f64)
iex> neg_and_pos_zero_rows = Nx.tensor([-0.0, 0.0], type: :f64)
iex> Nx.atan2(neg_and_pos_zero_columns, neg_and_pos_zero_rows)
#Nx.Tensor<
  f64[2][2]
  [
    [-3.141592653589793, -0.0],
    [3.141592653589793, 0.0]
  ]
>

  



  
    
      
      Link to this function
    
    atan(tensor)


      
       
       View Source
     


  


  

Calculates the inverse tangent of each element in the tensor.
It is equivalent to:
$$atan(tan(z)) = z$$

  
  examples

  
  Examples


iex> Nx.atan(0.10000000149011612)
#Nx.Tensor<
  f32
  0.09966865181922913
>

iex> Nx.atan(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.09966865181922913, 0.46364760398864746, 0.7328150868415833]
>

  



  
    
      
      Link to this function
    
    atanh(tensor)


      
       
       View Source
     


  


  

Calculates the inverse hyperbolic tangent of each element in the tensor.
It is equivalent to:
$$atanh(tanh(z)) = z$$

  
  examples

  
  Examples


iex> Nx.atanh(0.10000000149011612)
#Nx.Tensor<
  f32
  0.10033535212278366
>

iex> Nx.atanh(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.10033535212278366, 0.5493061542510986, 1.4722193479537964]
>

  



  
    
      
      Link to this function
    
    bitwise_and(left, right)


      
       
       View Source
     


  


  

Element-wise bitwise AND of two tensors.
Only integer tensors are supported. If a float or
complex tensor is given, an error is raised.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the &&& operator
in place of this function: left &&& right.

  
  examples

  
  Examples



  
  bitwise-and-between-scalars

  
  bitwise and between scalars


iex> Nx.bitwise_and(1, 0)
#Nx.Tensor<
  s64
  0
>

  
  bitwise-and-between-tensors-and-scalars

  
  bitwise and between tensors and scalars


iex> Nx.bitwise_and(Nx.tensor([0, 1, 2], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [0, 1, 0]
>

iex> Nx.bitwise_and(Nx.tensor([0, -1, -2], names: [:data]), -1)
#Nx.Tensor<
  s64[data: 3]
  [0, -1, -2]
>

  
  bitwise-and-between-tensors

  
  bitwise and between tensors


iex> Nx.bitwise_and(Nx.tensor([0, 0, 1, 1], names: [:data]), Nx.tensor([0, 1, 0, 1]))
#Nx.Tensor<
  s64[data: 4]
  [0, 0, 0, 1]
>

  
  error-cases

  
  Error cases


iex> Nx.bitwise_and(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    bitwise_not(tensor)


      
       
       View Source
     


  


  

Applies bitwise not to each element in the tensor.
If you're using Nx.Defn.defn/2, you can use the ~~~ operator
in place of this function: ~~~tensor.

  
  examples

  
  Examples


iex> Nx.bitwise_not(1)
#Nx.Tensor<
  s64
  -2
>

iex> Nx.bitwise_not(Nx.tensor([-1, 0, 1], type: :s8, names: [:x]))
#Nx.Tensor<
  s8[x: 3]
  [0, -1, -2]
>

iex> Nx.bitwise_not(Nx.tensor([0, 1, 254, 255], type: :u8, names: [:x]))
#Nx.Tensor<
  u8[x: 4]
  [255, 254, 1, 0]
>

  
  error-cases

  
  Error cases


iex> Nx.bitwise_not(Nx.tensor([0.0, 1.0]))
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    bitwise_or(left, right)


      
       
       View Source
     


  


  

Element-wise bitwise OR of two tensors.
Only integer tensors are supported. If a float or
complex tensor is given, an error is raised.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the ||| operator
in place of this function: left ||| right.

  
  examples

  
  Examples



  
  bitwise-or-between-scalars

  
  bitwise or between scalars


iex> Nx.bitwise_or(1, 0)
#Nx.Tensor<
  s64
  1
>

  
  bitwise-or-between-tensors-and-scalars

  
  bitwise or between tensors and scalars


iex> Nx.bitwise_or(Nx.tensor([0, 1, 2], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [1, 1, 3]
>

iex> Nx.bitwise_or(Nx.tensor([0, -1, -2], names: [:data]), -1)
#Nx.Tensor<
  s64[data: 3]
  [-1, -1, -1]
>

  
  bitwise-or-between-tensors

  
  bitwise or between tensors


iex> Nx.bitwise_or(Nx.tensor([0, 0, 1, 1], names: [:data]), Nx.tensor([0, 1, 0, 1], names: [:data]))
#Nx.Tensor<
  s64[data: 4]
  [0, 1, 1, 1]
>

  
  error-cases

  
  Error cases


iex> Nx.bitwise_or(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    bitwise_xor(left, right)


      
       
       View Source
     


  


  

Element-wise bitwise XOR of two tensors.
Only integer tensors are supported. If a float or complex
tensor is given, an error is raised.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.

  
  examples

  
  Examples



  
  bitwise-xor-between-scalars

  
  Bitwise xor between scalars


iex> Nx.bitwise_xor(1, 0)
#Nx.Tensor<
  s64
  1
>

  
  bitwise-xor-and-between-tensors-and-scalars

  
  Bitwise xor and between tensors and scalars


iex> Nx.bitwise_xor(Nx.tensor([1, 2, 3], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [3, 0, 1]
>

iex> Nx.bitwise_xor(Nx.tensor([-1, -2, -3], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [-3, -4, -1]
>

  
  bitwise-xor-between-tensors

  
  Bitwise xor between tensors


iex> Nx.bitwise_xor(Nx.tensor([0, 0, 1, 1]), Nx.tensor([0, 1, 0, 1], names: [:data]))
#Nx.Tensor<
  s64[data: 4]
  [0, 1, 1, 0]
>

  
  error-cases

  
  Error cases


iex> Nx.bitwise_xor(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    cbrt(tensor)


      
       
       View Source
     


  


  

Calculates the cube root of each element in the tensor.
It is equivalent to:
$$cbrt(z) = z^{\frac{1}{3}}$$

  
  examples

  
  Examples


iex> Nx.cbrt(1)
#Nx.Tensor<
  f32
  1.0
>

iex> Nx.cbrt(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.0, 1.2599210739135742, 1.4422495365142822]
>

  



  
    
      
      Link to this function
    
    ceil(tensor)


      
       
       View Source
     


  


  

Calculates the ceil of each element in the tensor.
If a non-floating tensor is given, it is returned as is.
If a floating tensor is given, then we apply the operation,
but keep its type.

  
  examples

  
  Examples


iex> Nx.ceil(Nx.tensor([-1, 0, 1], names: [:x]))
#Nx.Tensor<
  s64[x: 3]
  [-1, 0, 1]
>

iex> Nx.ceil(Nx.tensor([-1.5, -0.5, 0.5, 1.5], names: [:x]))
#Nx.Tensor<
  f32[x: 4]
  [-1.0, 0.0, 1.0, 2.0]
>

  



  
    
      
      Link to this function
    
    clip(tensor, min, max)


      
       
       View Source
     


  


  

Clips the values of the tensor on the closed
interval [min, max].
You can pass a tensor to min or max as long
as the tensor has a scalar shape.

  
  examples

  
  Examples


iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
iex> Nx.clip(t, 2, 4)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [2, 2, 3],
    [4, 4, 4]
  ]
>

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
iex> Nx.clip(t, 2.0, 3)
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [2.0, 2.0, 3.0],
    [3.0, 3.0, 3.0]
  ]
>

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y])
iex> Nx.clip(t, Nx.tensor(2.0), Nx.max(1.0, 3.0))
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [2.0, 2.0, 3.0],
    [3.0, 3.0, 3.0]
  ]
>

iex> t = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], names: [:x, :y])
iex> Nx.clip(t, 2, 6.0)
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [2.0, 2.0, 3.0],
    [4.0, 5.0, 6.0]
  ]
>

iex> t = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], type: :f32, names: [:x, :y])
iex> Nx.clip(t, 1, 4)
#Nx.Tensor<
  f32[x: 2][y: 3]
  [
    [1.0, 2.0, 3.0],
    [4.0, 4.0, 4.0]
  ]
>

  



  
    
      
      Link to this function
    
    complex(real, imag)


      
       
       View Source
     


  


  

Constructs a complex tensor from two equally-shaped tensors.
Does not accept complex tensors as inputs.

  
  examples

  
  Examples


iex> Nx.complex(Nx.tensor(1), Nx.tensor(2))
#Nx.Tensor<
  c64
  1.0+2.0i
>

iex> Nx.complex(Nx.tensor([1, 2]), Nx.tensor([3, 4]))
#Nx.Tensor<
  c64[2]
  [1.0+3.0i, 2.0+4.0i]
>

  



  
    
      
      Link to this function
    
    conjugate(tensor)


      
       
       View Source
     


  


  

Calculates the complex conjugate of each element in the tensor.
If $$z = a + bi = r e^\theta$$, $$conjugate(z) = z^* = a - bi =  r e^{-\theta}$$

  
  examples

  
  Examples


 iex> Nx.conjugate(Complex.new(1, 2))
 #Nx.Tensor<
   c64
   1.0-2.0i
 >

 iex> Nx.conjugate(1)
 #Nx.Tensor<
   c64
   1.0+0.0i
 >

 iex> Nx.conjugate(Nx.tensor([Complex.new(1, 2), Complex.new(2, -4)]))
 #Nx.Tensor<
   c64[2]
   [1.0-2.0i, 2.0+4.0i]
 >

  



  
    
      
      Link to this function
    
    cos(tensor)


      
       
       View Source
     


  


  

Calculates the cosine of each element in the tensor.
It is equivalent to:
$$cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$

  
  examples

  
  Examples


iex> Nx.cos(1)
#Nx.Tensor<
  f32
  0.5403022766113281
>

iex> Nx.cos(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.5403022766113281, -0.416146844625473, -0.9899924993515015]
>

  



  
    
      
      Link to this function
    
    cosh(tensor)


      
       
       View Source
     


  


  

Calculates the hyperbolic cosine of each element in the tensor.
It is equivalent to:
$$cosh(z) = \frac{e^z + e^{-z}}{2}$$

  
  examples

  
  Examples


iex> Nx.cosh(1)
#Nx.Tensor<
  f32
  1.5430806875228882
>

iex> Nx.cosh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.5430806875228882, 3.762195587158203, 10.067662239074707]
>

  



  
    
      
      Link to this function
    
    count_leading_zeros(tensor)


      
       
       View Source
     


  


  

Counts the number of leading zeros of each element in the tensor.

  
  examples

  
  Examples


iex> Nx.count_leading_zeros(1)
#Nx.Tensor<
  s64
  63
>

iex> Nx.count_leading_zeros(-1)
#Nx.Tensor<
  s64
  0
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 0xF, 0xFF, 0xFFFF], names: [:x]))
#Nx.Tensor<
  s64[x: 4]
  [64, 60, 56, 48]
>

iex> Nx.count_leading_zeros(Nx.tensor([0xF000000000000000, 0x0F00000000000000], names: [:x]))
#Nx.Tensor<
  s64[x: 2]
  [0, 4]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 0xF, 0xFF, 0xFFFF], type: :s32, names: [:x]))
#Nx.Tensor<
  s32[x: 4]
  [32, 28, 24, 16]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 0xF, 0xFF, 0xFFFF], type: :s16, names: [:x]))
#Nx.Tensor<
  s16[x: 4]
  [16, 12, 8, 0]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 1, 2, 4, 8, 16, 32, 64, -1, -128], type: :s8, names: [:x]))
#Nx.Tensor<
  s8[x: 10]
  [8, 7, 6, 5, 4, 3, 2, 1, 0, 0]
>

iex> Nx.count_leading_zeros(Nx.tensor([0, 1, 2, 4, 8, 16, 32, 64, 128], type: :u8, names: [:x]))
#Nx.Tensor<
  u8[x: 9]
  [8, 7, 6, 5, 4, 3, 2, 1, 0]
>

  
  error-cases

  
  Error cases


iex> Nx.count_leading_zeros(Nx.tensor([0.0, 1.0]))
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    divide(left, right)


      
       
       View Source
     


  


  

Element-wise division of two tensors.
If a number is given, it is converted to a tensor.
It always returns a float tensor. If any of the input
tensors are not float, they are converted to f32.
Division by zero raises, but it may trigger undefined
behaviour on some compilers.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the / operator
in place of this function: left / right.

  
  examples

  
  Examples



  
  dividing-scalars

  
  Dividing scalars


iex> Nx.divide(1, 2)
#Nx.Tensor<
  f32
  0.5
>

  
  dividing-tensors-and-scalars

  
  Dividing tensors and scalars


iex> Nx.divide(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  f32[data: 3]
  [1.0, 2.0, 3.0]
>

iex> Nx.divide(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [1.0, 0.5, 0.3333333432674408]
>

  
  dividing-tensors

  
  Dividing tensors


iex> left = Nx.tensor([[1], [2]], names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], names: [nil, :y])
iex> Nx.divide(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [0.10000000149011612, 0.05000000074505806],
    [0.20000000298023224, 0.10000000149011612]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :s8)
iex> right = Nx.tensor([[10, 20]], type: :s8, names: [:x, :y])
iex> Nx.divide(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [0.10000000149011612, 0.05000000074505806],
    [0.20000000298023224, 0.10000000149011612]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :f32, names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], type: :f32, names: [nil, :y])
iex> Nx.divide(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [0.10000000149011612, 0.05000000074505806],
    [0.20000000298023224, 0.10000000149011612]
  ]
>

  



  
    
      
      Link to this function
    
    equal(left, right)


      
       
       View Source
     


  


  

Element-wise equality comparison of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the == operator
in place of this function: left == right.

  
  examples

  
  Examples



  
  comparison-of-scalars

  
  Comparison of scalars


iex> Nx.equal(1, 2)
#Nx.Tensor<
  u8
  0
>

  
  comparison-of-tensors-and-scalars

  
  Comparison of tensors and scalars


iex> Nx.equal(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [1, 0, 0]
>

  
  comparison-of-tensors

  
  Comparison of tensors


iex> left = Nx.tensor([1, 2, 3], names: [:data])
iex> right = Nx.tensor([1, 2, 5])
iex> Nx.equal(left, right)
#Nx.Tensor<
  u8[data: 3]
  [1, 1, 0]
>

iex> left = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], names: [:x, nil])
iex> right = Nx.tensor([1, 2, 3])
iex> Nx.equal(left, right)
#Nx.Tensor<
  u8[x: 2][3]
  [
    [1, 1, 1],
    [0, 0, 0]
  ]
>

  



  
    
      
      Link to this function
    
    erf(tensor)


      
       
       View Source
     


  


  

Calculates the error function of each element in the tensor.
It is equivalent to:
$$erf(z) = \frac{2}{\sqrt{\pi}} \int_{0}^{z} e^{-t^2}dt$$

  
  examples

  
  Examples


iex> Nx.erf(1)
#Nx.Tensor<
  f32
  0.8427007794380188
>

iex> Nx.erf(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.8427007794380188, 0.9953222870826721, 0.9999778866767883]
>

  



  
    
      
      Link to this function
    
    erf_inv(tensor)


      
       
       View Source
     


  


  

Calculates the inverse error function of each element in the tensor.
It is equivalent to:
$$erf\text{\textunderscore}inv(erf(z)) = z$$

  
  examples

  
  Examples


iex> Nx.erf_inv(0.10000000149011612)
#Nx.Tensor<
  f32
  0.08885598927736282
>

iex> Nx.erf_inv(Nx.tensor([0.10000000149011612, 0.5, 0.8999999761581421], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.08885598927736282, 0.4769362807273865, 1.163087010383606]
>

  



  
    
      
      Link to this function
    
    erfc(tensor)


      
       
       View Source
     


  


  

Calculates the one minus error function of each element in the tensor.
It is equivalent to:
$$erfc(z) = 1 - erf(z)$$

  
  examples

  
  Examples


iex> Nx.erfc(1)
#Nx.Tensor<
  f32
  0.15729920566082
>

iex> Nx.erfc(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.15729920566082, 0.004677734803408384, 2.2090496713644825e-5]
>

  



  
    
      
      Link to this function
    
    exp(tensor)


      
       
       View Source
     


  


  

Calculates the exponential of each element in the tensor.
It is equivalent to:
$$exp(z) = e^z$$

  
  examples

  
  Examples


iex> Nx.exp(1)
#Nx.Tensor<
  f32
  2.7182817459106445
>

iex> Nx.exp(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [2.7182817459106445, 7.389056205749512, 20.08553695678711]
>

  



  
    
      
      Link to this function
    
    expm1(tensor)


      
       
       View Source
     


  


  

Calculates the exponential minus one of each element in the tensor.
It is equivalent to:
$$expm1(z) = e^z - 1$$

  
  examples

  
  Examples


iex> Nx.expm1(1)
#Nx.Tensor<
  f32
  1.718281865119934
>

iex> Nx.expm1(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.718281865119934, 6.389056205749512, 19.08553695678711]
>

  



  
    
      
      Link to this function
    
    floor(tensor)


      
       
       View Source
     


  


  

Calculates the floor of each element in the tensor.
If a non-floating tensor is given, it is returned as is.
If a floating tensor is given, then we apply the operation,
but keep its type.

  
  examples

  
  Examples


iex> Nx.floor(Nx.tensor([-1, 0, 1], names: [:x]))
#Nx.Tensor<
  s64[x: 3]
  [-1, 0, 1]
>

iex> Nx.floor(Nx.tensor([-1.5, -0.5, 0.5, 1.5], names: [:x]))
#Nx.Tensor<
  f32[x: 4]
  [-2.0, -1.0, 0.0, 1.0]
>

  



  
    
      
      Link to this function
    
    greater(left, right)


      
       
       View Source
     


  


  

Element-wise greater than comparison of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the > operator
in place of this function: left > right.

  
  examples

  
  Examples



  
  comparison-of-scalars

  
  Comparison of scalars


iex> Nx.greater(1, 2)
#Nx.Tensor<
  u8
  0
>

  
  comparison-of-tensors-and-scalars

  
  Comparison of tensors and scalars


iex> Nx.greater(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [0, 0, 0]
>

  
  comparison-of-tensors

  
  Comparison of tensors


iex> left = Nx.tensor([1, 2, 3], names: [:data])
iex> right = Nx.tensor([1, 2, 2])
iex> Nx.greater(left, right)
#Nx.Tensor<
  u8[data: 3]
  [0, 0, 1]
>

iex> left = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], names: [:x, :y])
iex> right = Nx.tensor([1, 2, 3])
iex> Nx.greater(left, right)
#Nx.Tensor<
  u8[x: 2][y: 3]
  [
    [0, 0, 0],
    [1, 1, 1]
  ]
>

  



  
    
      
      Link to this function
    
    greater_equal(left, right)


      
       
       View Source
     


  


  

Element-wise greater than or equal comparison of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the >= operator
in place of this function: left >= right.

  
  examples

  
  Examples



  
  comparison-of-scalars

  
  Comparison of scalars


iex> Nx.greater_equal(1, 2)
#Nx.Tensor<
  u8
  0
>

  
  comparison-of-tensors-and-scalars

  
  Comparison of tensors and scalars


iex> Nx.greater_equal(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [1, 0, 0]
>

  
  comparison-of-tensors

  
  Comparison of tensors


iex> left = Nx.tensor([1, 2, 3], names: [:data])
iex> right = Nx.tensor([1, 2, 2])
iex> Nx.greater_equal(left, right)
#Nx.Tensor<
  u8[data: 3]
  [1, 1, 1]
>

iex> left = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], names: [:x, :y])
iex> right = Nx.tensor([1, 2, 3])
iex> Nx.greater_equal(left, right)
#Nx.Tensor<
  u8[x: 2][y: 3]
  [
    [1, 1, 1],
    [1, 1, 1]
  ]
>

  



  
    
      
      Link to this function
    
    imag(tensor)


      
       
       View Source
     


  


  

Returns the imaginary component of each entry in a complex tensor
as a floating point tensor.

  
  examples

  
  Examples


iex> Nx.imag(Complex.new(1, 2))
#Nx.Tensor<
  f32
  2.0
>

iex> Nx.imag(Nx.tensor(1))
#Nx.Tensor<
  f32
  0.0
>

iex> Nx.imag(Nx.tensor(1, type: :bf16))
#Nx.Tensor<
  bf16
  0.0
>

iex> Nx.imag(Nx.tensor([Complex.new(1, 2), Complex.new(2, -4)]))
#Nx.Tensor<
  f32[2]
  [2.0, -4.0]
>

  



  
    
      
      Link to this function
    
    is_infinity(tensor)


      
       
       View Source
     


  


  

Determines if each element in tensor is Inf or -Inf.
For complex tensors, if either of the components is infinity,
the entry is deemed infinity as well.

  
  examples

  
  Examples


iex> Nx.is_infinity(Nx.tensor([:infinity, :nan, :neg_infinity, 1, 0]))
#Nx.Tensor<
  u8[5]
  [1, 0, 1, 0, 0]
>

iex> Nx.is_infinity(Nx.tensor([:infinity, 1, Complex.new(0, :infinity), :neg_infinity]))
#Nx.Tensor<
  u8[4]
  [1, 0, 1, 1]
>

iex> Nx.is_infinity(Nx.tensor([1, 0]))
#Nx.Tensor<
  u8[2]
  [0, 0]
>

  



  
    
      
      Link to this function
    
    is_nan(tensor)


      
       
       View Source
     


  


  

Determines if each element in tensor is a NaN.
For complex tensors, if either of the components is NaN,
the entry is deemed NaN as well.

  
  examples

  
  Examples


iex> Nx.is_nan(Nx.tensor([:nan, 1, 0]))
#Nx.Tensor<
  u8[3]
  [1, 0, 0]
>

iex> Nx.is_nan(Nx.tensor([:nan, :infinity, Complex.new(0, :nan)]))
#Nx.Tensor<
  u8[3]
  [1, 0, 1]
>

iex> Nx.is_nan(Nx.tensor([1, 0]))
#Nx.Tensor<
  u8[2]
  [0, 0]
>

  



  
    
      
      Link to this function
    
    left_shift(left, right)


      
       
       View Source
     


  


  

Element-wise left shift of two tensors.
Only integer tensors are supported. If a float or complex
tensor is given, an error is raised. If the right side
is negative, it will raise, but it may trigger undefined
behaviour on some compilers.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible. If the number of
shifts are negative, Nx's default backend will raise,
but it may trigger undefined behaviour in other backends.
If you're using Nx.Defn.defn/2, you can use the <<< operator
in place of this function: left <<< right.

  
  examples

  
  Examples



  
  left-shift-between-scalars

  
  Left shift between scalars


iex> Nx.left_shift(1, 0)
#Nx.Tensor<
  s64
  1
>

  
  left-shift-between-tensors-and-scalars

  
  Left shift between tensors and scalars


iex> Nx.left_shift(Nx.tensor([1, 2, 3], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [4, 8, 12]
>

  
  left-shift-between-tensors

  
  Left shift between tensors


iex> left = Nx.tensor([1, 1, -1, -1], names: [:data])
iex> right = Nx.tensor([1, 2, 3, 4], names: [:data])
iex> Nx.left_shift(left, right)
#Nx.Tensor<
  s64[data: 4]
  [2, 4, -8, -16]
>

  
  error-cases

  
  Error cases


iex> Nx.left_shift(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    less(left, right)


      
       
       View Source
     


  


  

Element-wise less than comparison of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the < operator
in place of this function: left < right.

  
  examples

  
  Examples



  
  comparison-of-scalars

  
  Comparison of scalars


iex> Nx.less(1, 2)
#Nx.Tensor<
  u8
  1
>

  
  comparison-of-tensors-and-scalars

  
  Comparison of tensors and scalars


iex> Nx.less(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [0, 1, 1]
>

  
  comparison-of-tensors

  
  Comparison of tensors


iex> Nx.less(Nx.tensor([1, 2, 1]), Nx.tensor([1, 2, 2], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [0, 0, 1]
>

iex> Nx.less(Nx.tensor([[1.0, 2.0, 3.0], [4.0, 2.0, 1.0]], names: [:x, :y]), Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  u8[x: 2][y: 3]
  [
    [0, 0, 0],
    [0, 0, 1]
  ]
>

  



  
    
      
      Link to this function
    
    less_equal(left, right)


      
       
       View Source
     


  


  

Element-wise less than or equal comparison of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the <= operator
in place of this function: left <= right.

  
  examples

  
  Examples



  
  comparison-of-scalars

  
  Comparison of scalars


iex> Nx.less_equal(1, 2)
#Nx.Tensor<
  u8
  1
>

  
  comparison-of-tensors-and-scalars

  
  Comparison of tensors and scalars


iex> Nx.less_equal(1, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [1, 1, 1]
>

  
  comparison-of-tensors

  
  Comparison of tensors


iex> left = Nx.tensor([1, 2, 3], names: [:data])
iex> right = Nx.tensor([1, 2, 2])
iex> Nx.less_equal(left, right)
#Nx.Tensor<
  u8[data: 3]
  [1, 1, 0]
>

iex> left = Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
iex> right = Nx.tensor([1, 2, 3], names: [:y])
iex> Nx.less_equal(left, right)
#Nx.Tensor<
  u8[2][y: 3]
  [
    [1, 1, 1],
    [0, 0, 0]
  ]
>

  



  
    
      
      Link to this function
    
    log1p(tensor)


      
       
       View Source
     


  


  

Calculates the natural log plus one of each element in the tensor.
It is equivalent to:
$$log1p(z) = log(z + 1)$$

  
  examples

  
  Examples


iex> Nx.log1p(1)
#Nx.Tensor<
  f32
  0.6931471824645996
>

iex> Nx.log1p(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.6931471824645996, 1.0986123085021973, 1.3862943649291992]
>

  



  
    
      
      Link to this function
    
    log(tensor)


      
       
       View Source
     


  


  

Calculates the natural log of each element in the tensor.
It is equivalent to:
$$log(z) = ln(z),\quad \text{if z} \in \Reals$$
$$log(z) = ln(r) + i\theta,\quad\text{if }z = re^{i\theta} \in \Complex$$

  
  examples

  
  Examples


iex> Nx.log(1)
#Nx.Tensor<
  f32
  0.0
>

iex> Nx.log(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.0, 0.6931471824645996, 1.0986123085021973]
>

  



  
    
      
      Link to this function
    
    logical_and(left, right)


      
       
       View Source
     


  


  

Element-wise logical and of two tensors.
Zero is considered false, any other number is considered
true.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the and operator
in place of this function: left and right.

  
  examples

  
  Examples


iex> Nx.logical_and(1, Nx.tensor([-1, 0, 1], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [1, 0, 1]
>

iex> left = Nx.tensor([-1, 0, 1], names: [:data])
iex> right = Nx.tensor([[-1], [0], [1]])
iex> Nx.logical_and(left, right)
#Nx.Tensor<
  u8[3][data: 3]
  [
    [1, 0, 1],
    [0, 0, 0],
    [1, 0, 1]
  ]
>

iex> left = Nx.tensor([-1.0, 0.0, 1.0], names: [:data])
iex> right = Nx.tensor([[-1], [0], [1]])
iex> Nx.logical_and(left, right)
#Nx.Tensor<
  u8[3][data: 3]
  [
    [1, 0, 1],
    [0, 0, 0],
    [1, 0, 1]
  ]
>

  



  
    
      
      Link to this function
    
    logical_not(tensor)


      
       
       View Source
     


  


  

Element-wise logical not a tensor.
Zero is considered false, any other number is considered
true.
If you're using Nx.Defn.defn/2, you can use the not operator
in place of this function: not tensor.

  
  examples

  
  Examples


iex> Nx.logical_not(Nx.tensor([-1, 0, 1], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [0, 1, 0]
>

iex> Nx.logical_not(Nx.tensor([-1.0, 0.0, 1.0], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [0, 1, 0]
>

  



  
    
      
      Link to this function
    
    logical_or(left, right)


      
       
       View Source
     


  


  

Element-wise logical or of two tensors.
Zero is considered false, any other number is considered
true.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the or operator
in place of this function: left or right.

  
  examples

  
  Examples


iex> Nx.logical_or(0, Nx.tensor([-1, 0, 1], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [1, 0, 1]
>

iex> left = Nx.tensor([-1, 0, 1], names: [:data])
iex> right = Nx.tensor([[-1], [0], [1]])
iex> Nx.logical_or(left, right)
#Nx.Tensor<
  u8[3][data: 3]
  [
    [1, 1, 1],
    [1, 0, 1],
    [1, 1, 1]
  ]
>

iex> left = Nx.tensor([-1.0, 0.0, 1.0], names: [:data])
iex> right = Nx.tensor([[-1], [0], [1]])
iex> Nx.logical_or(left, right)
#Nx.Tensor<
  u8[3][data: 3]
  [
    [1, 1, 1],
    [1, 0, 1],
    [1, 1, 1]
  ]
>

  



  
    
      
      Link to this function
    
    logical_xor(left, right)


      
       
       View Source
     


  


  

Element-wise logical xor of two tensors.
Zero is considered false, any other number is considered
true.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.

  
  examples

  
  Examples


iex> Nx.logical_xor(0, Nx.tensor([-1, 0, 1], names: [:data]))
#Nx.Tensor<
  u8[data: 3]
  [1, 0, 1]
>

iex> left = Nx.tensor([-1, 0, 1], names: [:data])
iex> right = Nx.tensor([[-1], [0], [1]])
iex> Nx.logical_xor(left, right)
#Nx.Tensor<
  u8[3][data: 3]
  [
    [0, 1, 0],
    [1, 0, 1],
    [0, 1, 0]
  ]
>

iex> left = Nx.tensor([-1.0, 0.0, 1.0], names: [:data])
iex> right = Nx.tensor([[-1], [0], [1]])
iex> Nx.logical_xor(left, right)
#Nx.Tensor<
  u8[3][data: 3]
  [
    [0, 1, 0],
    [1, 0, 1],
    [0, 1, 0]
  ]
>

  



    

  
    
      
      Link to this function
    
    map(tensor, opts \\ [], fun)


      
       
       View Source
     


  


  

Maps the given scalar function over the entire
tensor.
The type of the returned tensor will be of the same type
as the input tensor, unless the :type option is given.
Therefore, you may need to explicitly cast the tensor to
avoid errors. For example, if you have an integer tensor
and you convert it to a float, as below, it will fail:
tensor = Nx.tensor([[1, 2, 3], [4, 5, 6]]),
Nx.map(tensor, fn x -> Nx.multiply(x, 1.0) end)
You need to explicitly pass the output type in such cases:
iex> tensor = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.map(tensor, [type: :f32], fn x -> Nx.multiply(x, 1.0) end)
#Nx.Tensor<
  f32[2][3]
  [
    [1.0, 2.0, 3.0],
    [4.0, 5.0, 6.0]
  ]
>

  
  limitations

  
  Limitations


Given this function relies on anonymous functions, it
may not be available or efficient on all Nx backends.
Therefore, you should avoid using map/2 whenever possible
and use other functions in the Nx module to achieve the
desired result.

  
  examples

  
  Examples


iex> Nx.map(Nx.tensor([[1, 2, 3], [4, 5, 6]]), fn x -> Nx.add(x, 1) end)
#Nx.Tensor<
  s64[2][3]
  [
    [2, 3, 4],
    [5, 6, 7]
  ]
>

iex> Nx.map(Nx.tensor(1), fn x -> Nx.add(x, 1) end)
#Nx.Tensor<
  s64
  2
>

iex> Nx.map(Nx.tensor([[1, 2, 3], [4, 5, 6]]), [type: :f64], fn x -> Nx.add(x, 1) end)
#Nx.Tensor<
  f64[2][3]
  [
    [2.0, 3.0, 4.0],
    [5.0, 6.0, 7.0]
  ]
>

  



  
    
      
      Link to this function
    
    max(left, right)


      
       
       View Source
     


  


  

Element-wise maximum of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the max/2 function
in place of this function: max(left, right).

  
  examples

  
  Examples



  
  max-between-scalars

  
  Max between scalars


iex> Nx.max(1, 2)
#Nx.Tensor<
  s64
  2
>

  
  max-between-tensors-and-scalars

  
  Max between tensors and scalars


iex> Nx.max(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [1, 2, 3]
>

iex> Nx.max(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [1.0, 2.0, 3.0]
>

  
  max-between-tensors

  
  Max between tensors


iex> left = Nx.tensor([[1], [2]], names: [:x, :y])
iex> right = Nx.tensor([[10, 20]])
iex> Nx.max(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [10, 20],
    [10, 20]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :s8, names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], type: :s8)
iex> Nx.max(left, right)
#Nx.Tensor<
  s8[x: 2][2]
  [
    [10, 20],
    [10, 20]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :f32, names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], type: :f32, names: [nil, :y])
iex> Nx.max(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [10.0, 20.0],
    [10.0, 20.0]
  ]
>

  



  
    
      
      Link to this function
    
    min(left, right)


      
       
       View Source
     


  


  

Element-wise minimum of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the min/2 function
in place of this function: min(left, right).

  
  examples

  
  Examples



  
  min-between-scalars

  
  Min between scalars


iex> Nx.min(1, 2)
#Nx.Tensor<
  s64
  1
>

  
  min-between-tensors-and-scalars

  
  Min between tensors and scalars


iex> Nx.min(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [1, 1, 1]
>

iex> Nx.min(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [1.0, 1.0, 1.0]
>

  
  min-between-tensors

  
  Min between tensors


iex> left = Nx.tensor([[1], [2]], names: [:x, nil])
iex> right = Nx.tensor([[10, 20]])
iex> Nx.min(left, right)
#Nx.Tensor<
  s64[x: 2][2]
  [
    [1, 1],
    [2, 2]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :s8, names: [:x, :y])
iex> right = Nx.tensor([[10, 20]], type: :s8)
iex> Nx.min(left, right)
#Nx.Tensor<
  s8[x: 2][y: 2]
  [
    [1, 1],
    [2, 2]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :f32, names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], type: :f32, names: [nil, :y])
iex> Nx.min(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [1.0, 1.0],
    [2.0, 2.0]
  ]
>

  



  
    
      
      Link to this function
    
    multiply(left, right)


      
       
       View Source
     


  


  

Element-wise multiplication of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the * operator
operator in place of this function as left * right.

  
  examples

  
  Examples



  
  multiplying-scalars

  
  Multiplying scalars


iex> Nx.multiply(1, 2)
#Nx.Tensor<
  s64
  2
>

  
  multiplying-tensors-and-scalars

  
  Multiplying tensors and scalars


iex> Nx.multiply(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [1, 2, 3]
>

iex> Nx.multiply(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [1.0, 2.0, 3.0]
>

  
  multiplying-tensors

  
  Multiplying tensors


iex> left = Nx.tensor([[1], [2]], names: [:x, :y])
iex> right = Nx.tensor([[10, 20]], names: [:x, :y])
iex> Nx.multiply(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [10, 20],
    [20, 40]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :s8, names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], type: :s8, names: [nil, :y])
iex> Nx.multiply(left, right)
#Nx.Tensor<
  s8[x: 2][y: 2]
  [
    [10, 20],
    [20, 40]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :f32, names: [nil, :y])
iex> right = Nx.tensor([[10, 20]], type: :f32, names: [:x, nil])
iex> Nx.multiply(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [10.0, 20.0],
    [20.0, 40.0]
  ]
>

  



  
    
      
      Link to this function
    
    negate(tensor)


      
       
       View Source
     


  


  

Negates each element in the tensor.
If you're using Nx.Defn.defn/2, you can use the - unary operator
in place of this function: -tensor.

  
  examples

  
  Examples


iex> Nx.negate(1)
#Nx.Tensor<
  s64
  -1
>

iex> Nx.negate(Nx.tensor([-1, 0, 1]))
#Nx.Tensor<
  s64[3]
  [1, 0, -1]
>

iex> Nx.negate(Nx.tensor([1.0, 2.0, 3.0], type: :f32))
#Nx.Tensor<
  f32[3]
  [-1.0, -2.0, -3.0]
>
If an unsigned tensor is given, it works as bitwise_not:
iex> Nx.negate(Nx.tensor([0, 1, 2], type: :u8, names: [:x]))
#Nx.Tensor<
  u8[x: 3]
  [0, 255, 254]
>

  



  
    
      
      Link to this function
    
    not_equal(left, right)


      
       
       View Source
     


  


  

Element-wise not-equal comparison of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the != operator
in place of this function: left != right.

  
  examples

  
  Examples



  
  comparison-of-scalars

  
  Comparison of scalars


iex> Nx.not_equal(1, 2)
#Nx.Tensor<
  u8
  1
>

  
  comparison-of-tensor-and-scalar

  
  Comparison of tensor and scalar


iex> Nx.not_equal(Nx.tensor([1, 2, 3], names: [:data]), Nx.tensor(1))
#Nx.Tensor<
  u8[data: 3]
  [0, 1, 1]
>

  
  comparison-of-tensors

  
  Comparison of tensors


iex> left = Nx.tensor([1, 1, 2])
iex> right = Nx.tensor([1, 2, 3], names: [:data])
iex> Nx.not_equal(left, right)
#Nx.Tensor<
  u8[data: 3]
  [0, 1, 1]
>

iex> left = Nx.tensor([[1, 4, 2], [4, 5, 6]], names: [:x, :y])
iex> right = Nx.tensor([[1, 3, 2], [4, 2, 1]], names: [:x, :y])
iex> Nx.not_equal(left, right)
#Nx.Tensor<
  u8[x: 2][y: 3]
  [
    [0, 1, 0],
    [0, 1, 1]
  ]
>

  



  
    
      
      Link to this function
    
    phase(tensor)


      
       
       View Source
     


  


  

Calculates the complex phase angle of each element in the tensor.
$$phase(z) = atan2(b, a), z = a + bi \in \Complex$$

  
  examples

  
  Examples


 iex> Nx.phase(Complex.new(1, 2))
 #Nx.Tensor<
   f32
   1.1071487665176392
 >

 iex> Nx.phase(1)
 #Nx.Tensor<
   f32
   0.0
 >

 iex> import Nx, only: [sigil_V: 2]
 iex> Nx.phase(~V[1+2i -2+1i])
 #Nx.Tensor<
   f32[2]
   [1.1071487665176392, 2.677945137023926]
 >

  



  
    
      
      Link to this function
    
    population_count(tensor)


      
       
       View Source
     


  


  

Computes the bitwise population count of each element in the tensor.

  
  examples

  
  Examples


iex> Nx.population_count(1)
#Nx.Tensor<
  s64
  1
>

iex> Nx.population_count(-128)
#Nx.Tensor<
  s64
  57
>

iex> Nx.population_count(Nx.tensor([0, 1, 254, 255], names: [:x]))
#Nx.Tensor<
  s64[x: 4]
  [0, 1, 7, 8]
>

iex> Nx.population_count(Nx.tensor([0, 1, 126, 127, -1, -127, -128], type: :s8, names: [:x]))
#Nx.Tensor<
  s8[x: 7]
  [0, 1, 6, 7, 8, 2, 1]
>

  
  error-cases

  
  Error cases


iex> Nx.population_count(Nx.tensor([0.0, 1.0]))
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    power(left, right)


      
       
       View Source
     


  


  

Element-wise power of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If both tensors are integers and the exponent is
negative, it will raise, but it may trigger undefined
behaviour on some compilers.

  
  examples

  
  Examples



  
  power-of-scalars

  
  Power of scalars


iex> Nx.power(2, 4)
#Nx.Tensor<
  s64
  16
>

  
  power-of-tensors-and-scalars

  
  Power of tensors and scalars


iex> Nx.power(Nx.tensor([1, 2, 3], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [1, 4, 9]
>

iex> Nx.power(2, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [2.0, 4.0, 8.0]
>

  
  power-of-tensors

  
  Power of tensors


iex> Nx.power(Nx.tensor([[2], [3]], names: [:x, nil]), Nx.tensor([[4, 5]], names: [nil, :y]))
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [16, 32],
    [81, 243]
  ]
>

  



  
    
      
      Link to this function
    
    quotient(left, right)


      
       
       View Source
     


  


  

Element-wise integer division of two tensors.
If a number is given, it is converted to a tensor.
It always returns an integer tensor. Input tensors and
numbers must be integer types. Division by zero raises,
but it may trigger undefined behaviour on some compilers.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.

  
  caveat-for-grad

  
  Caveat for grad


The grad operation is not supported for quotient/2.
Since integer division is, by definition, a closed operation
for the set of integers and grad involves floating points,
grad is undefined.
If you need to support gradients, you might consider using
floor division, but beware of precision errors caused by
floating points:
a |> Nx.divide(b) |> Nx.floor()

  
  examples

  
  Examples



  
  integer-dividing-scalars

  
  Integer dividing scalars


iex> Nx.quotient(11, 2)
#Nx.Tensor<
  s64
  5
>

  
  integer-dividing-tensors-and-scalars

  
  Integer dividing tensors and scalars


iex> Nx.quotient(Nx.tensor([2, 4, 5], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [1, 2, 2]
>

iex> Nx.quotient(10, Nx.tensor([1, 2, 3], names: [:data]))
#Nx.Tensor<
  s64[data: 3]
  [10, 5, 3]
>

  
  dividing-tensors

  
  Dividing tensors


iex> left = Nx.tensor([[10, 20]], names: [nil, :y])
iex> right = Nx.tensor([[1], [2]], names: [:x, nil])
iex> Nx.quotient(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [10, 20],
    [5, 10]
  ]
>

iex> left = Nx.tensor([[10, 20]], type: :s8, names: [:x, :y])
iex> right = Nx.tensor([[1], [2]], type: :s8)
iex> Nx.quotient(left, right)
#Nx.Tensor<
  s8[x: 2][y: 2]
  [
    [10, 20],
    [5, 10]
  ]
>

iex> left = Nx.tensor([[10, 20]], type: :u8, names: [:x, :y])
iex> right = Nx.tensor([[1], [2]], type: :u32)
iex> Nx.quotient(left, right)
#Nx.Tensor<
  u32[x: 2][y: 2]
  [
    [10, 20],
    [5, 10]
  ]
>

  



  
    
      
      Link to this function
    
    real(tensor)


      
       
       View Source
     


  


  

Returns the real component of each entry in a complex tensor
as a floating point tensor.

  
  examples

  
  Examples


iex> Nx.real(Complex.new(1, 2))
#Nx.Tensor<
  f32
  1.0
>

iex> Nx.real(Nx.tensor(1))
#Nx.Tensor<
  f32
  1.0
>

iex> Nx.real(Nx.tensor(1, type: :bf16))
#Nx.Tensor<
  bf16
  1.0
>

iex> Nx.real(Nx.tensor([Complex.new(1, 2), Complex.new(2, -4)]))
#Nx.Tensor<
  f32[2]
  [1.0, 2.0]
>

  



  
    
      
      Link to this function
    
    remainder(left, right)


      
       
       View Source
     


  


  

Element-wise remainder of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the rem/2 function
in place of this function: rem(left, right).

  
  examples

  
  Examples



  
  remainder-of-scalars

  
  Remainder of scalars


iex> Nx.remainder(1, 2)
#Nx.Tensor<
  s64
  1
>

  
  remainder-of-tensors-and-scalars

  
  Remainder of tensors and scalars


iex> Nx.remainder(Nx.tensor([1, 2, 3], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [1, 0, 1]
>

iex> Nx.remainder(2, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [0.0, 0.0, 2.0]
>

  
  remainder-of-tensors

  
  Remainder of tensors


iex> left = Nx.tensor([[10], [20]], names: [:x, :y])
iex> right = Nx.tensor([[3, 4]], names: [nil, :y])
iex> Nx.remainder(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [1, 2],
    [2, 0]
  ]
>

  
  remainder-involving-negative-values

  
  Remainder involving negative values


If given a negative value as the right operand, the operation
will return the negative image of the remainder.
For the example below, note that in modulo-10, adding 20 shouldn't
change the result, but in this case it does because the sign changes.
iex> left = Nx.tensor(-11, type: :s8)
iex> right = Nx.tensor(10, type: :u8)
iex> Nx.remainder(left, right)
#Nx.Tensor<
  s16
  -1
>
iex> Nx.remainder(Nx.add(left, Nx.tensor(20, type: :s8)), right)
#Nx.Tensor<
  s16
  9
>
iex> positive_left = Nx.tensor(9, type: :u8)
iex> Nx.remainder(positive_left, right)
#Nx.Tensor<
  u8
  9
>
iex> Nx.remainder(Nx.add(positive_left, Nx.tensor(20, type: :u8)), right)
#Nx.Tensor<
  u8
  9
>

  



  
    
      
      Link to this function
    
    right_shift(left, right)


      
       
       View Source
     


  


  

Element-wise right shift of two tensors.
Only integer tensors are supported. If a float or complex
tensor is given, an error is raised. If the right side
is negative, it will raise, but it may trigger undefined
behaviour on some compilers.
It performs an arithmetic shift if the tensor is made of
signed integers, it performs a logical shift otherwise.
In other words, it preserves the sign for signed integers.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible. If the number of
shifts are negative, Nx's default backend will raise,
but it may trigger undefined behaviour in other backends.
If you're using Nx.Defn.defn/2, you can use the >>> operator
in place of this function: left >>> right.

  
  examples

  
  Examples



  
  right-shift-between-scalars

  
  Right shift between scalars


iex> Nx.right_shift(1, 0)
#Nx.Tensor<
  s64
  1
>

  
  right-shift-between-tensors-and-scalars

  
  Right shift between tensors and scalars


iex> Nx.right_shift(Nx.tensor([2, 4, 8], names: [:data]), 2)
#Nx.Tensor<
  s64[data: 3]
  [0, 1, 2]
>

  
  right-shift-between-tensors

  
  Right shift between tensors


iex> left = Nx.tensor([16, 32, -64, -128], names: [:data])
iex> right = Nx.tensor([1, 2, 3, 4])
iex> Nx.right_shift(left, right)
#Nx.Tensor<
  s64[data: 4]
  [8, 8, -8, -8]
>

  
  error-cases

  
  Error cases


iex> Nx.right_shift(Nx.tensor([0, 0, 1, 1]), 1.0)
** (ArgumentError) bitwise operators expect integer tensors as inputs and outputs an integer tensor, got: {:f, 32}

  



  
    
      
      Link to this function
    
    round(tensor)


      
       
       View Source
     


  


  

Calculates the round (away from zero) of each element in the tensor.
If a non-floating tensor is given, it is returned as is.
If a floating tensor is given, then we apply the operation,
but keep its type.

  
  examples

  
  Examples


iex> Nx.round(Nx.tensor([-1, 0, 1], names: [:x]))
#Nx.Tensor<
  s64[x: 3]
  [-1, 0, 1]
>

iex> Nx.round(Nx.tensor([-1.5, -0.5, 0.5, 1.5], names: [:x]))
#Nx.Tensor<
  f32[x: 4]
  [-2.0, -1.0, 1.0, 2.0]
>

  



  
    
      
      Link to this function
    
    rsqrt(tensor)


      
       
       View Source
     


  


  

Calculates the reverse square root of each element in the tensor.
It is equivalent to:
$$rsqrt(z) = \frac{1}{\sqrt{z}}$$

  
  examples

  
  Examples


iex> Nx.rsqrt(1)
#Nx.Tensor<
  f32
  1.0
>

iex> Nx.rsqrt(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.0, 0.7071067690849304, 0.5773502588272095]
>

  



  
    
      
      Link to this function
    
    select(pred, on_true, on_false)


      
       
       View Source
     


  


  

Constructs a tensor from two tensors, based on a predicate.
The resulting tensor is built by evaluating each element of
pred and returning either the corresponding element from
on_true or on_false.
pred must either be 1 or 0 or a tensor of predicates
with a shape that matches the largest shape between s1 or s2.
If the shape of on_true or on_false do not match the shape of
pred, attempts to broadcast both so they match the shape of pred.

  
  examples

  
  Examples


When the first argument is a scalar:
iex> Nx.select(1, Nx.tensor([1, 2, 3], names: [:x]), Nx.tensor([4, 5, 6], names: [:x]))
#Nx.Tensor<
  s64[x: 3]
  [1, 2, 3]
>

iex> Nx.select(0, Nx.tensor([1, 2, 3], names: [:y]), Nx.tensor([4, 5, 6], names: [:y]))
#Nx.Tensor<
  s64[y: 3]
  [4, 5, 6]
>

iex> Nx.select(0, Nx.tensor([[1, 2]], names: [:x, :y]), Nx.tensor([[3], [4]], names: [:x, :y]))
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [3, 3],
    [4, 4]
  ]
>
When the first argument is a tensor:
iex> Nx.select(Nx.tensor([0, 1, 0], names: [:x]), Nx.tensor([1, 2, 3], names: [:y]), Nx.tensor([4, 5, 6], names: [:z]))
#Nx.Tensor<
  s64[x: 3]
  [4, 2, 6]
>

iex> x = Nx.tensor([2, 4, 6], names: [:x])
iex> y = Nx.tensor([3, 2, 1])
iex> Nx.select(Nx.greater(x, y), Nx.tensor([2, 4, 6], names: [:i]), Nx.tensor([1, 3, 5], names: [:j]))
#Nx.Tensor<
  s64[x: 3]
  [1, 4, 6]
>

iex> x = Nx.tensor([2, 4, 6, 8, 10], names: [:x])
iex> y = Nx.tensor([1, 6, 2, 11, 2], names: [:x])
iex> Nx.select(Nx.greater(x, y), Nx.tensor(2), Nx.tensor([1, 3, 5, 7, 9], names: [:x]))
#Nx.Tensor<
  s64[x: 5]
  [2, 3, 2, 7, 2]
>
If the tensor has other values, any non-zero value is considered true:
iex> Nx.select(Nx.tensor([0, 1, 2], type: :u8), Nx.tensor([0, 0, 0]), Nx.tensor([1, 1, 1]))
#Nx.Tensor<
  s64[3]
  [1, 0, 0]
>

iex> Nx.select(Nx.tensor([0, 1, 0]), Nx.tensor([1, 1, 1]), Nx.tensor([2.0, 2.0, 2.0]))
#Nx.Tensor<
  f32[3]
  [2.0, 1.0, 2.0]
>

  



  
    
      
      Link to this function
    
    sigmoid(tensor)


      
       
       View Source
     


  


  

Calculates the sigmoid of each element in the tensor.
It is equivalent to:
$$sigmoid(z) = \frac{1}{1 + e^{-z}}$$

  
  examples

  
  Examples


iex> Nx.sigmoid(1)
#Nx.Tensor<
  f32
  0.7310585975646973
>

iex> Nx.sigmoid(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.7310585975646973, 0.8807970881462097, 0.9525741338729858]
>

  



  
    
      
      Link to this function
    
    sign(tensor)


      
       
       View Source
     


  


  

Computes the sign of each element in the tensor.
If a number is less than zero, it returns -1.
If a number is more than zero, it returns 1.
Otherwise it returns zero (which may either be
positive or negative for floats).

  
  examples

  
  Examples


iex> Nx.sign(Nx.tensor([-2, -1, 0, 1, 2], names: [:x]))
#Nx.Tensor<
  s64[x: 5]
  [-1, -1, 0, 1, 1]
>

  



  
    
      
      Link to this function
    
    sin(tensor)


      
       
       View Source
     


  


  

Calculates the sine of each element in the tensor.
It is equivalent to:
$$sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$$

  
  examples

  
  Examples


iex> Nx.sin(1)
#Nx.Tensor<
  f32
  0.8414709568023682
>

iex> Nx.sin(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.8414709568023682, 0.9092974066734314, 0.14112000167369843]
>

  



  
    
      
      Link to this function
    
    sinh(tensor)


      
       
       View Source
     


  


  

Calculates the hyperbolic sine of each element in the tensor.
It is equivalent to:
$$sinh(z) = \frac{e^z - e^{-z}}{2}$$

  
  examples

  
  Examples


iex> Nx.sinh(1)
#Nx.Tensor<
  f32
  1.175201177597046
>

iex> Nx.sinh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.175201177597046, 3.6268603801727295, 10.017874717712402]
>

  



  
    
      
      Link to this function
    
    sqrt(tensor)


      
       
       View Source
     


  


  

Calculates the square root of each element in the tensor.
It is equivalent to:
$$sqrt(z) = \sqrt{z}$$

  
  examples

  
  Examples


iex> Nx.sqrt(1)
#Nx.Tensor<
  f32
  1.0
>

iex> Nx.sqrt(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.0, 1.4142135381698608, 1.7320507764816284]
>

  



  
    
      
      Link to this function
    
    subtract(left, right)


      
       
       View Source
     


  


  

Element-wise subtraction of two tensors.
If a number is given, it is converted to a tensor.
It will broadcast tensors whenever the dimensions do
not match and broadcasting is possible.
If you're using Nx.Defn.defn/2, you can use the - operator
in place of this function: left - right.

  
  examples

  
  Examples



  
  subtracting-scalars

  
  Subtracting scalars


iex> Nx.subtract(1, 2)
#Nx.Tensor<
  s64
  -1
>

  
  subtracting-tensors-and-scalars

  
  Subtracting tensors and scalars


iex> Nx.subtract(Nx.tensor([1, 2, 3], names: [:data]), 1)
#Nx.Tensor<
  s64[data: 3]
  [0, 1, 2]
>

iex> Nx.subtract(1, Nx.tensor([1.0, 2.0, 3.0], names: [:data]))
#Nx.Tensor<
  f32[data: 3]
  [0.0, -1.0, -2.0]
>

  
  subtracting-tensors

  
  Subtracting tensors


iex> left = Nx.tensor([[1], [2]], names: [:x, :y])
iex> right = Nx.tensor([[10, 20]], names: [:x, :y])
iex> Nx.subtract(left, right)
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [-9, -19],
    [-8, -18]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :s8, names: [:x, nil])
iex> right = Nx.tensor([[10, 20]], type: :s8, names: [nil, :y])
iex> Nx.subtract(left, right)
#Nx.Tensor<
  s8[x: 2][y: 2]
  [
    [-9, -19],
    [-8, -18]
  ]
>

iex> left = Nx.tensor([[1], [2]], type: :f32, names: [nil, :y])
iex> right = Nx.tensor([[10, 20]], type: :f32, names: [:x, nil])
iex> Nx.subtract(left, right)
#Nx.Tensor<
  f32[x: 2][y: 2]
  [
    [-9.0, -19.0],
    [-8.0, -18.0]
  ]
>

  



  
    
      
      Link to this function
    
    tan(tensor)


      
       
       View Source
     


  


  

Calculates the tangent of each element in the tensor.
It is equivalent to:
$$tan(z) = \frac{sin(z)}{cos(z)}$$

  
  examples

  
  Examples


iex> Nx.tan(1)
#Nx.Tensor<
  f32
  1.5574077367782593
>

iex> Nx.tan(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [1.5574077367782593, -2.185039758682251, -0.14254654943943024]
>

  



  
    
      
      Link to this function
    
    tanh(tensor)


      
       
       View Source
     


  


  

Calculates the hyperbolic tangent of each element in the tensor.
It is equivalent to:
$$sinh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

  
  examples

  
  Examples


iex> Nx.tanh(1)
#Nx.Tensor<
  f32
  0.7615941762924194
>

iex> Nx.tanh(Nx.tensor([1, 2, 3], names: [:x]))
#Nx.Tensor<
  f32[x: 3]
  [0.7615941762924194, 0.9640275835990906, 0.9950547814369202]
>
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      Link to this function
    
    gather(tensor, indices)


      
       
       View Source
     


  


  

Builds a new tensor by taking individual values from the original
tensor at the given indices.
The last dimension in indices must have the same size as the tensor
rank, think of it as one value per axis.

  
  examples

  
  Examples


iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> Nx.gather(t, Nx.tensor([[1, 1], [0, 1], [1, 0]]))
#Nx.Tensor<
  s64[3]
  [4, 2, 3]
>

iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> Nx.gather(t, Nx.tensor([[[1, 1], [0, 0]], [[1, 0], [0, 1]]]))
#Nx.Tensor<
  s64[2][2]
  [
    [4, 1],
    [3, 2]
  ]
>

iex> t = Nx.tensor([[[1, 2], [11, 12]], [[101, 102], [111, 112]]])
iex> Nx.gather(t, Nx.tensor([[0, 0, 0], [0, 1, 1], [1, 1, 1]]))
#Nx.Tensor<
  s64[3]
  [1, 12, 112]
>

  
  error-cases

  
  Error cases


iex> Nx.gather(Nx.tensor([[1, 2], [3, 4]]), Nx.tensor([[0, 0]], type: :f32))
** (ArgumentError) indices must be an integer tensor, got {:f, 32}

  



  
    
      
      Link to this function
    
    indexed_add(target, indices, updates)


      
       
       View Source
     


  


  

Performs an indexed add operation on the target tensor,
adding the updates into the corresponding indices positions.
This operation is the grad for gather/2 and gather-like operations such as
take/3 and take_along_axis/3.
indices must be a fully qualified tensor of shape {n, Nx.rank(target)}, with n
being an arbitrary number of indices, while updates must have a compatible {n} shape.
See also: indexed_add/3, gather/2, take/3, take_along_axis/3

  
  examples

  
  Examples


iex> t = Nx.iota({1, 2, 3})
#Nx.Tensor<
  s64[1][2][3]
  [
    [
      [0, 1, 2],
      [3, 4, 5]
    ]
  ]
>
iex> indices = Nx.tensor([[0, 0, 0], [0, 1, 1], [0, 0, 0], [0, 0, 2], [0, 1, 2]])
iex> updates = Nx.tensor([1, 3, 1, -2, 5])
iex> Nx.indexed_add(t, indices, updates)
#Nx.Tensor<
  s64[1][2][3]
  [
    [
      [2, 1, 0],
      [3, 7, 10]
    ]
  ]
>
Type promotions should happen automatically, with the resulting type being the combination
of the target type and the updates type.
iex> Nx.indexed_add(Nx.tensor([1.0]), Nx.tensor([[0], [0]]), Nx.tensor([1, 1]))
#Nx.Tensor<
  f32[1]
  [3.0]
>

iex> Nx.indexed_add(Nx.tensor([1]), Nx.tensor([[0], [0]]), Nx.tensor([1.0, 1.0]))
#Nx.Tensor<
  f32[1]
  [3.0]
>

iex> Nx.indexed_add(Nx.tensor([1], type: :s32), Nx.tensor([[0], [0]]), Nx.tensor([1, 1], type: :s64))
#Nx.Tensor<
  s64[1]
  [3]
>

  
  error-cases

  
  Error cases


iex> Nx.indexed_add(Nx.tensor([[1], [2]]), Nx.tensor([[[1, 2, 3]]]), Nx.tensor([0]))
** (ArgumentError) indices must be a rank 2 tensor, got: 3

iex> Nx.indexed_add(Nx.tensor([[1], [2]]), Nx.tensor([[1, 2]]), Nx.tensor([[0]]))
** (ArgumentError) updates must be a rank 1 tensor, got: 2

iex> Nx.indexed_add(Nx.tensor([[1], [2]]), Nx.tensor([[1, 2, 3]]), Nx.tensor([0]))
** (ArgumentError) expected indices to have shape {*, 2}, got: {1, 3}

iex> Nx.indexed_add(Nx.tensor([[1], [2]]), Nx.tensor([[1, 2]]), Nx.tensor([0, 1]))
** (ArgumentError) expected updates tensor to match the first axis of indices tensor with shape {1, 2}, got {2}

  



  
    
      
      Link to this function
    
    indexed_put(target, indices, updates)


      
       
       View Source
     


  


  

Puts individual values from updates into the given tensor at the corresponding indices.
indices must be a fully qualified tensor of shape {n, Nx.rank(target)}, with n
being an arbitrary number of indices, while updates must have a compatible {n} shape.
In case of repeating indices, the result is non-determinstic, since the operation happens
in parallel when running on devices such as the GPU.
See also: indexed_add/3, put_slice/3.

  
  examples

  
  Examples


iex> Nx.indexed_put(Nx.tensor([0, 0, 0]), Nx.tensor([[1], [2]]), Nx.tensor([2, 4]))
#Nx.Tensor<
  s64[3]
  [0, 2, 4]
>

iex> Nx.indexed_put(Nx.tensor([0, 0, 0]), Nx.tensor([[1], [2], [1]]), Nx.tensor([3, 4, 2]))
#Nx.Tensor<
  s64[3]
  [0, 2, 4]
>

iex> t = Nx.iota({1, 2, 3})
#Nx.Tensor<
  s64[1][2][3]
  [
    [
      [0, 1, 2],
      [3, 4, 5]
    ]
  ]
>
iex> indices = Nx.tensor([[0, 0, 0], [0, 1, 1], [0, 0, 2]])
iex> updates = Nx.tensor([1, 3, -2])
iex> Nx.indexed_put(t, indices, updates)
#Nx.Tensor<
  s64[1][2][3]
  [
    [
      [1, 1, -2],
      [3, 3, 5]
    ]
  ]
>
Type promotions should happen automatically, with the resulting type being the combination
of the target type and the updates type.
iex> Nx.indexed_put(Nx.tensor([1.0]), Nx.tensor([[0]]), Nx.tensor([3]))
#Nx.Tensor<
  f32[1]
  [3.0]
>

iex> Nx.indexed_put(Nx.tensor([1]), Nx.tensor([[0]]), Nx.tensor([3.0]))
#Nx.Tensor<
  f32[1]
  [3.0]
>

iex> Nx.indexed_put(Nx.tensor([1], type: :s32), Nx.tensor([[0]]), Nx.tensor([3], type: :s64))
#Nx.Tensor<
  s64[1]
  [3]
>

  
  error-cases

  
  Error cases


iex> Nx.indexed_put(Nx.tensor([[1], [2]]), Nx.tensor([[[1, 2, 3]]]), Nx.tensor([0]))
** (ArgumentError) indices must be a rank 2 tensor, got: 3

iex> Nx.indexed_put(Nx.tensor([[1], [2]]), Nx.tensor([[1, 2]]), Nx.tensor([[0]]))
** (ArgumentError) updates must be a rank 1 tensor, got: 2

iex> Nx.indexed_put(Nx.tensor([[1], [2]]), Nx.tensor([[1, 2, 3]]), Nx.tensor([0]))
** (ArgumentError) expected indices to have shape {*, 2}, got: {1, 3}

iex> Nx.indexed_put(Nx.tensor([[1], [2]]), Nx.tensor([[1, 2]]), Nx.tensor([0, 1]))
** (ArgumentError) expected updates tensor to match the first axis of indices tensor with shape {1, 2}, got {2}

  



  
    
      
      Link to this function
    
    put_slice(tensor, start_indices, slice)


      
       
       View Source
     


  


  

Puts the given slice into the given tensor at the given
start_indices.
The given slice must be of the same rank as tensor. Each axis
must be less than or equal to the size to the equivalent axis
in the tensor.
The number of elements in start_indices should match the
rank of the tensor.
See also: indexed_add/3, put_slice/3.

  
  examples

  
  Examples


iex> t = Nx.tensor([0, 1, 2, 3, 4])
iex> Nx.put_slice(t, [2], Nx.tensor([5, 6]))
#Nx.Tensor<
  s64[5]
  [0, 1, 5, 6, 4]
>

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.put_slice(t, [0, 1], Nx.tensor([[7, 8], [9, 10]]))
#Nx.Tensor<
  s64[2][3]
  [
    [1, 7, 8],
    [4, 9, 10]
  ]
>
Similar to slice/3, dynamic start indexes are also supported:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.put_slice(t, [Nx.tensor(0), Nx.tensor(1)], Nx.tensor([[10.0, 11.0]]))
#Nx.Tensor<
  f32[2][3]
  [
    [1.0, 10.0, 11.0],
    [4.0, 5.0, 6.0]
  ]
>
Also similar to slice/3, if start_index + slice_dimension > dimension,
the start index will be clipped in order to put the whole slice:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.put_slice(t, [1, 1], Nx.tensor([[7, 8], [9, 10]]))
#Nx.Tensor<
  s64[2][3]
  [
    [1, 7, 8],
    [4, 9, 10]
  ]
>

  



    

  
    
      
      Link to this function
    
    slice(tensor, start_indices, lengths, opts \\ [])


      
       
       View Source
     


  


  

Slices a tensor from start_indices with lengths.
You can optionally provide a stride to specify the amount
of stride in each dimension.
Both start indices and lengths must match the rank of the
input tensor shape. All start indexes must be greater than
or equal to zero. All lengths must be strictly greater than
zero. If start_index + length exceeds the tensor dimension,
the start_index will be clipped in order to guarantee the
length is the requested one. See the "Clipping" section below.
It is possible for start_indices to be a list of tensors.
However, lengths must always be a list of integers. If you
want to specify a tensor as the list of indices, see take/3.
If the :strides is given, it must be strictly greater than zero.
The resulting tensor will have the shape of length unless
:strides are given.
It is not possible to slice in reverse. See gather/2,
slice_along_axis/4, take/3, and take_along_axis/3 for other ways
to retrieve values from a tensor.

  
  examples

  
  Examples


iex> Nx.slice(Nx.tensor([1, 2, 3, 4, 5, 6]), [0], [3])
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> Nx.slice(Nx.tensor([1, 2, 3, 4, 5, 6]), [0], [6], strides: [2])
#Nx.Tensor<
  s64[3]
  [1, 3, 5]
>

iex> Nx.slice(Nx.tensor([[1, 2], [3, 4], [5, 6]]), [0, 0], [3, 2], strides: [2, 1])
#Nx.Tensor<
  s64[2][2]
  [
    [1, 2],
    [5, 6]
  ]
>
Strides can also be a number that applies to all dimensions:
iex> t = Nx.tensor([[1, 2], [3, 4], [5, 6]])
iex> Nx.slice(t, [0, 0], [3, 2], strides: 2)
#Nx.Tensor<
  s64[2][1]
  [
    [1],
    [5]
  ]
>
A more complex example:
iex> t = Nx.iota({900})
iex> t = Nx.reshape(t, {2, 15, 30})
iex> Nx.slice(t, [0, 4, 11], [2, 3, 9], strides: [2, 1, 3])
#Nx.Tensor<
  s64[1][3][3]
  [
    [
      [131, 134, 137],
      [161, 164, 167],
      [191, 194, 197]
    ]
  ]
>

  
  tensors-as-start_indices

  
  Tensors as start_indices


The start_indices list can be made of scalar tensors:
iex> Nx.slice(Nx.tensor([[1, 2, 3], [4, 5, 6]]), [Nx.tensor(1), Nx.tensor(2)], [1, 1])
#Nx.Tensor<
  s64[1][1]
  [
    [6]
  ]
>

iex> t = Nx.tensor([
...>   [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
...>   [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
...>   [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
...>   [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
...>   [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
...>   [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
...> ])
iex> Nx.slice(t, [Nx.tensor(0), Nx.tensor(0)], [6, 7], strides: [5, 3])
#Nx.Tensor<
  f32[2][3]
  [
    [0.0, 0.0, 0.0],
    [1.0, 1.0, 1.0]
  ]
>

  
  clipping

  
  Clipping


slice/3 will always guarantee the return tensor has the
given lengths. See the following example:
iex> Nx.slice(Nx.iota({3, 3}), [2, 2], [1, 1])
#Nx.Tensor<
  s64[1][1]
  [
    [8]
  ]
>
In the example above, start_index + length <= dimension,
so there is no clipping. However, if the start_index + length
is to exceed the dimension, the index will be clipped in order
to guarantee the given lengths:
iex> Nx.slice(Nx.iota({3, 3}), [2, 2], [2, 2])
#Nx.Tensor<
  s64[2][2]
  [
    [4, 5],
    [7, 8]
  ]
>
This also applies when the start index is given by tensors:
iex> Nx.slice(Nx.iota({3, 3}), [Nx.tensor(2), Nx.tensor(2)], [2, 2])
#Nx.Tensor<
  s64[2][2]
  [
    [4, 5],
    [7, 8]
  ]
>

  
  error-cases

  
  Error cases


iex> Nx.slice(Nx.tensor([[1, 2, 3], [4, 5, 6]]), [Nx.tensor([1, 2]), Nx.tensor(1)], [1, 1])
** (ArgumentError) index must be scalar, got shape {2} for axis 0

iex> Nx.slice(Nx.tensor([[1, 2, 3], [4, 5, 6]]), [Nx.tensor(1.0), Nx.tensor(0)], [1, 1])
** (ArgumentError) index must be integer type, got {:f, 32} for axis 0

  



    

  
    
      
      Link to this function
    
    slice_along_axis(tensor, start_index, len, opts \\ [])


      
       
       View Source
     


  


  

Slices a tensor along the given axis.
You can optionally provide a stride to specify the amount
of stride in along the given dimension.
Start index must be greater than or equal to zero. It can be an
integer or a scalar tensor. Length must be strictly greater than
zero. start_index + length must not exceed the respective tensor
dimension.
The axis will be normalized with the dimensions and names of the
given tensor.
If the :strides is given, it must be strictly greater than zero.
It is not possible to slice in reverse. See gather/2, slice/3,
take/3, and take_along_axis/3 for other ways to retrieve values
from a tensor.

  
  options

  
  Options


	:axis - The axis along which to take the values from. Defaults to 0.
	:strides - The stride to slice the axis along of. Defaults to 1.


  
  examples

  
  Examples


iex> Nx.slice_along_axis(Nx.iota({5, 2}), 1, 2, axis: 0)
#Nx.Tensor<
  s64[2][2]
  [
    [2, 3],
    [4, 5]
  ]
>

iex> Nx.slice_along_axis(Nx.iota({2, 5}), 1, 2, axis: 1)
#Nx.Tensor<
  s64[2][2]
  [
    [1, 2],
    [6, 7]
  ]
>

iex> Nx.slice_along_axis(Nx.iota({2, 5}, names: [:x, :y]), 0, 1, axis: :x)
#Nx.Tensor<
  s64[x: 1][y: 5]
  [
    [0, 1, 2, 3, 4]
  ]
>

iex> Nx.slice_along_axis(Nx.iota({2, 5}, names: [:x, :y]), Nx.tensor(0), 1, axis: :x)
#Nx.Tensor<
  s64[x: 1][y: 5]
  [
    [0, 1, 2, 3, 4]
  ]
>

iex> Nx.slice_along_axis(Nx.iota({2, 5}), 0, 3, axis: -1, strides: 2)
#Nx.Tensor<
  s64[2][2]
  [
    [0, 2],
    [5, 7]
  ]
>

  



    

  
    
      
      Link to this function
    
    take(tensor, indices, opts \\ [])


      
       
       View Source
     


  


  

Takes and concatenates slices along an axis.
Intuitively speaking, take/3 reorders tensor slices along
the given axis based on the given indices, possibly duplicating
and removing slices.
Passing a multi-dimensional indices tensor only affects the
resulting shape. Specifically, the given axis in the input shape
gets replaced with the indices shape.
See gather/2, slice/3, slice_along_axis/4, and take_along_axis/3
for other ways to retrieve values from a tensor.

  
  options

  
  Options


	:axis - an axis to take tensor slices over. Defaults to 0.


  
  examples

  
  Examples


iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> Nx.take(t, Nx.tensor([1, 0, 1]))
#Nx.Tensor<
  s64[3][2]
  [
    [3, 4],
    [1, 2],
    [3, 4]
  ]
>

iex> t = Nx.tensor([[1, 2], [3, 4]])
iex> Nx.take(t, Nx.tensor([1, 0, 1]), axis: 1)
#Nx.Tensor<
  s64[2][3]
  [
    [2, 1, 2],
    [4, 3, 4]
  ]
>


iex> t = Nx.tensor([[1, 2], [3, 4]], names: [:x, :y])
iex> Nx.take(t, Nx.tensor([1, 0, 1]), axis: :y)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [2, 1, 2],
    [4, 3, 4]
  ]
>

iex> t = Nx.tensor([[[1, 2], [11, 12]], [[101, 102], [111, 112]]])
iex> Nx.take(t, Nx.tensor([1, 0, 1]), axis: 1)
#Nx.Tensor<
  s64[2][3][2]
  [
    [
      [11, 12],
      [1, 2],
      [11, 12]
    ],
    [
      [111, 112],
      [101, 102],
      [111, 112]
    ]
  ]
>
Multi-dimensional indices tensor:
iex> t = Nx.tensor([[1, 2], [11, 12]])
iex> Nx.take(t, Nx.tensor([[0, 0], [1, 1], [0, 0]]), axis: 1)
#Nx.Tensor<
  s64[2][3][2]
  [
    [
      [1, 1],
      [2, 2],
      [1, 1]
    ],
    [
      [11, 11],
      [12, 12],
      [11, 11]
    ]
  ]
>

iex> t = Nx.tensor([[[1, 2], [11, 12]], [[101, 102], [111, 112]]])
iex> Nx.take(t, Nx.tensor([[0, 0, 0], [1, 1, 1], [0, 0, 0]]), axis: 1)
#Nx.Tensor<
  s64[2][3][3][2]
  [
    [
      [
        [1, 2],
        [1, 2],
        [1, 2]
      ],
      [
        [11, 12],
        [11, 12],
        [11, 12]
      ],
      [
        [1, 2],
        [1, 2],
        [1, 2]
      ]
    ],
    [
      [
        [101, 102],
        [101, 102],
        [101, 102]
      ],
      [
        [111, 112],
        [111, 112],
        [111, 112]
      ],
      [
        [101, 102],
        [101, 102],
        [101, 102]
      ]
    ]
  ]
>

  
  error-cases

  
  Error cases


iex> Nx.take(Nx.tensor([[1, 2], [3, 4]]), Nx.tensor([1, 0, 1], type: :f32))
** (ArgumentError) indices must be an integer tensor, got {:f, 32}

  



    

  
    
      
      Link to this function
    
    take_along_axis(tensor, indices, opts \\ [])
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Takes the values from a tensor given an indices tensor, along the specified axis.
The indices shape must be the same as the tensor's shape, with the exception for
the axis dimension, which can have arbitrary size. The returned tensor will have the
same shape as the indices tensor.
See gather/2, slice/3, slice_along_axis/4, and take/3 for other ways to retrieve
values from a tensor.

  
  options

  
  Options


	:axis - The axis along which to take the values from. Defaults to 0.


  
  examples

  
  Examples


iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.take_along_axis(t, Nx.tensor([[0, 0, 2, 2, 1, 1], [2, 2, 1, 1, 0, 0]]), axis: 1)
#Nx.Tensor<
  s64[2][6]
  [
    [1, 1, 3, 3, 2, 2],
    [6, 6, 5, 5, 4, 4]
  ]
>

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.take_along_axis(t, Nx.tensor([[0, 1, 1], [1, 0, 0], [0, 1, 0]]), axis: 0)
#Nx.Tensor<
  s64[3][3]
  [
    [1, 5, 6],
    [4, 2, 3],
    [1, 5, 3]
  ]
>
The indices returned from Nx.argsort/2 can be used with Nx.take_along_axis/3 to
produce the sorted tensor (or to sort more tensors according to the same criteria).
iex> tensor = Nx.tensor([[[1, 2], [3, 4], [5, 6]]])
#Nx.Tensor<
  s64[1][3][2]
  [
    [
      [1, 2],
      [3, 4],
      [5, 6]
    ]
  ]
>
iex> idx1 = Nx.argsort(tensor, axis: 1, direction: :desc)
#Nx.Tensor<
  s64[1][3][2]
  [
    [
      [2, 2],
      [1, 1],
      [0, 0]
    ]
  ]
>
iex> Nx.take_along_axis(tensor, idx1, axis: 1)
#Nx.Tensor<
  s64[1][3][2]
  [
    [
      [5, 6],
      [3, 4],
      [1, 2]
    ]
  ]
>
iex> idx2 = Nx.argsort(tensor, axis: 2, direction: :desc)
#Nx.Tensor<
  s64[1][3][2]
  [
    [
      [1, 0],
      [1, 0],
      [1, 0]
    ]
  ]
>
iex> Nx.take_along_axis(tensor, idx2, axis: 2)
#Nx.Tensor<
  s64[1][3][2]
  [
    [
      [2, 1],
      [4, 3],
      [6, 5]
    ]
  ]
>

  
  error-cases

  
  Error cases


iex> tensor = Nx.iota({3, 3})
iex> idx = Nx.tensor([[2.0], [1.0], [2.0]], type: :f32)
iex> Nx.take_along_axis(tensor, idx, axis: 1)
** (ArgumentError) indices must be an integer tensor, got {:f, 32}
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Sorts the tensor along the given axis according
to the given direction and returns the corresponding indices
of the original tensor in the new sorted positions.
If no axis is given, defaults to 0.

  
  options

  
  Options


	:axis - The name or number of the corresponding axis on which the sort
should be applied
	:direction - Can be :asc or :desc. Defaults to :asc


  
  examples

  
  Examples


iex> Nx.argsort(Nx.tensor([16, 23, 42, 4, 8, 15]))
#Nx.Tensor<
  s64[6]
  [3, 4, 5, 0, 1, 2]
>

iex> t = Nx.tensor([[3, 1, 7], [2, 5, 4]], names: [:x, :y])
iex> Nx.argsort(t, axis: :x)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 0, 1],
    [0, 1, 0]
  ]
>

iex> t = Nx.tensor([[3, 1, 7], [2, 5, 4]], names: [:x, :y])
iex> Nx.argsort(t, axis: :y)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 0, 2],
    [0, 2, 1]
  ]
>

iex> t = Nx.tensor([[3, 1, 7], [2, 5, 4]], names: [:x, :y])
iex> Nx.argsort(t, axis: :y, direction: :asc)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 0, 2],
    [0, 2, 1]
  ]
>
Same tensor sorted over different axes:
iex> t = Nx.tensor(
...>   [
...>     [
...>       [4, 5, 2],
...>       [2, 5, 3],
...>       [5, 0, 2]
...>     ],
...>     [
...>       [1, 9, 8],
...>       [2, 1, 3],
...>       [2, 1, 4]
...>     ]
...>   ],
...>   names: [:x, :y, :z]
...> )
iex> Nx.argsort(t, axis: :x)
#Nx.Tensor<
  s64[x: 2][y: 3][z: 3]
  [
    [
      [1, 0, 0],
      [0, 1, 0],
      [1, 0, 0]
    ],
    [
      [0, 1, 1],
      [1, 0, 1],
      [0, 1, 1]
    ]
  ]
>
iex> Nx.argsort(t, axis: :y)
#Nx.Tensor<
  s64[x: 2][y: 3][z: 3]
  [
    [
      [1, 2, 0],
      [0, 0, 2],
      [2, 1, 1]
    ],
    [
      [0, 1, 1],
      [1, 2, 2],
      [2, 0, 0]
    ]
  ]
>
iex> Nx.argsort(t, axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 3][z: 3]
  [
    [
      [2, 0, 1],
      [0, 2, 1],
      [1, 2, 0]
    ],
    [
      [0, 2, 1],
      [1, 0, 2],
      [1, 0, 2]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    concatenate(tensors, opts \\ [])


      
       
       View Source
     


  


  

Concatenates tensors along the given axis.
If no axis is provided, defaults to 0.
All tensors must have the same rank and all of their
dimension sizes but the concatenated dimension must match.
If tensors are named, the names must be able to be merged.
If tensors with mixed types are given, the types will
be merged to a higher type and all of the tensors will
be cast to the higher type before concatenating.

  
  examples

  
  Examples


iex> Nx.concatenate([Nx.tensor([1, 2, 3])])
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> Nx.concatenate([Nx.tensor([1, 2, 3]), Nx.tensor([4, 5, 6])])
#Nx.Tensor<
  s64[6]
  [1, 2, 3, 4, 5, 6]
>

iex> t1 = Nx.iota({2, 2, 2}, names: [:x, :y, :z], type: :f32)
iex> t2 = Nx.iota({1, 2, 2}, names: [:x, :y, :z], type: :u8)
iex> t3 = Nx.iota({1, 2, 2}, names: [:x, :y, :z], type: :s64)
iex> Nx.concatenate([t1, t2, t3], axis: :x)
#Nx.Tensor<
  f32[x: 4][y: 2][z: 2]
  [
    [
      [0.0, 1.0],
      [2.0, 3.0]
    ],
    [
      [4.0, 5.0],
      [6.0, 7.0]
    ],
    [
      [0.0, 1.0],
      [2.0, 3.0]
    ],
    [
      [0.0, 1.0],
      [2.0, 3.0]
    ]
  ]
>

iex> t1 = Nx.iota({1, 3, 2}, names: [:x, :y, :z])
iex> t2 = Nx.iota({1, 1, 2}, names: [:x, :y, :z])
iex> t3 = Nx.iota({1, 2, 2}, names: [:x, :y, :z])
iex> Nx.concatenate([t1, t2, t3], axis: :y)
#Nx.Tensor<
  s64[x: 1][y: 6][z: 2]
  [
    [
      [0, 1],
      [2, 3],
      [4, 5],
      [0, 1],
      [0, 1],
      [2, 3]
    ]
  ]
>

iex> t1 = Nx.iota({2, 1, 4}, names: [:x, :y, :z])
iex> t2 = Nx.iota({2, 1, 1}, names: [:x, :y, :z])
iex> t3 = Nx.iota({2, 1, 3}, names: [:x, :y, :z])
iex> Nx.concatenate([t1, t2, t3], axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 1][z: 8]
  [
    [
      [0, 1, 2, 3, 0, 0, 1, 2]
    ],
    [
      [4, 5, 6, 7, 1, 3, 4, 5]
    ]
  ]
>

iex> t1 = Nx.iota({2, 1, 4}, names: [:x, :y, :z])
iex> Nx.concatenate([t1], axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 1][z: 4]
  [
    [
      [0, 1, 2, 3]
    ],
    [
      [4, 5, 6, 7]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    conv(tensor, kernel, opts \\ [])
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Computes an n-D convolution (where n >= 3) as used in neural networks.
This function can be thought of as sliding an n-D
kernel across the input, producing a new tensor that
has the same number of elements as the number of valid
windows in the input tensor. Each element is the result
of summing the element-wise products in the window across
each input channel.
The ranks of both input and kernel must match. By
default, both input and kernel are expected to have shapes
of the following form:
	input - {batch_size, input_channels, input_d0, ..., input_dn}
	kernel - {output_channels, input_channels, kernel_d0, ..., kernel_dn}

Where input_d0...input_dn and kernel_d0...kernel_dn represent
an arbitrary number of spatial dimensions. You can alter this configuration
using one of the *_permutation configuration options. Permutations
are input, kernel, and output specifications for the layout of the
convolution. For example, if your input tensor is configured with
"channels last", you can specify the input permutation with:
Nx.conv(img, kernel, input_permutation: [0, 3, 1, 2])
Permutations expect configurations that specify the location of
dimensions in the following orders:
	input_permutation - [batch_dim, input_channel_dim, ...spatial_dims...]
	kernel_permutation - [output_channel_dim, input_channel_dim, ...spatial_dims...]
	output_permutation - [batch_dim, output_channel_dim, ...spatial_dims...]

Using named tensors, it's a bit easier to see how permutations
help you configure the convolution. Given input tensor with names
[:batch, :height, :width, :channels] (channels last) and kernel
tensor with names [:input, :output, :height, :width], you can
configure the convolution with the following permutations:
Nx.conv(img, kernel,
  input_permutation: [:batch, :channels, :height, :width],
  kernel_permutation: [:output, :input, :height, :width],
  output_permutation: [:batch, :channels, :height, :width]
)
Notice that output_permutation is normalized with respect to
the input permutation names. We cannot guarantee that every
permutation is supported in every backend or compiler.
To configure how the window slides along the input tensor, you
can specify :strides. :strides must be a positive integer
or tuple of positive integers for each spatial dimension
in the input and kernel. For each spatial dimension, the
window will slide by the configuration specified in :strides.
As an example, for a 2-D convolution with strides: [2, 1],
the window will slide 2 positions along the first spatial
dimension until it reaches the end of the dimension and then
1 position along the second spatial dimension.
You may specify a padding configuration using :padding,
which will zero-pad the input tensor. Acceptable padding
configurations are:
	:valid - no padding
	:same - pad input spatial dimensions such that they
will remain unchanged in the output tensor
	[{d0_hi, d0_lo}, ..., {dn_hi, dn_lo}] - a general padding
configuration of edge high and edge low padding values. You
may only specify padding for the edges of spatial dimensions
of the input tensor. Padding values may be negative.

You can dilate convolutions by setting :input_dilation or
:kernel_dilation. Both :input_dilation and :kernel_dilation
must either be positive integers or tuples of positive integers
for each spatial dimension in the input and kernel tensors. Dilations
can be thought of as applying dilation - 1 interior padding to the
input or kernel tensor.
You can split both the input and kernel tensor into feature groups
using :feature_group_size. This will split both the input and kernel
tensor channels and compute a grouped convolution. The size of the
kernel input feature channels times the size of the feature group must
match the size of the input tensor feature channels. Additionally,
the size of the kernel output feature channels must be evenly divisible
by the group size.
You can also split the input tensor along the batch dimension by
specifying :batch_group_size. This will compute a grouped convolution
in the same way as with :feature_group_size, however, the input
tensor will be split into groups along the batch dimension.

  
  examples

  
  Examples


iex> left = Nx.iota({9})
iex> left = Nx.reshape(left, {1, 1, 3, 3})
iex> right = Nx.iota({4})
iex> right = Nx.reshape(right, {4, 1, 1, 1})
iex> Nx.conv(left, right, strides: [1, 1])
#Nx.Tensor<
  f32[1][4][3][3]
  [
    [
      [
        [0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0],
        [0.0, 0.0, 0.0]
      ],
      [
        [0.0, 1.0, 2.0],
        [3.0, 4.0, 5.0],
        [6.0, 7.0, 8.0]
      ],
      [
        [0.0, 2.0, 4.0],
        [6.0, 8.0, 10.0],
        [12.0, 14.0, 16.0]
      ],
      [
        [0.0, 3.0, 6.0],
        [9.0, 12.0, 15.0],
        [18.0, 21.0, 24.0]
      ]
    ]
  ]
>

iex> left = Nx.iota({9})
iex> left = Nx.reshape(left, {1, 1, 3, 3})
iex> right = Nx.iota({8})
iex> right = Nx.reshape(right, {4, 1, 2, 1})
iex> Nx.conv(left, right, strides: 2, padding: :same, kernel_dilation: [2, 1])
#Nx.Tensor<
  f32[1][4][2][2]
  [
    [
      [
        [3.0, 5.0],
        [0.0, 0.0]
      ],
      [
        [9.0, 15.0],
        [6.0, 10.0]
      ],
      [
        [15.0, 25.0],
        [12.0, 20.0]
      ],
      [
        [21.0, 35.0],
        [18.0, 30.0]
      ]
    ]
  ]
>
Complex tensors are also supported:
iex> left = Nx.tensor([[[Complex.new(1, 1), 2, Complex.new(3, -3)]]])
iex> right = Nx.tensor([[[1, Complex.new(0, 2), Complex.new(0, 3)]]])
iex> Nx.conv(left, right, padding: [{2, 2}])
#Nx.Tensor<
  c64[1][1][5]
  [
    [
      [-3.0+3.0i, -2.0+8.0i, 10.0+14.0i, 8.0+6.0i, 3.0-3.0i]
    ]
  ]
>
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Returns the dot product of two tensors.
Given a and b, computes the dot product according to
the following rules:
	If both a and b are scalars, it is equivalent to a * b.

	If a is a scalar and b is a tensor, it is equivalent to Nx.multiply(a, b).

	If a is a tensor and b is a scalar, it is equivalent to Nx.multiply(a, b).

	If both a and b are 1-D tensors (vectors), it is the sum of the element-wise
product between a and b. The lengths of a and b must be equal.

	If both a and b are 2-D tensors (matrices), it is equivalent to matrix-multiplication.

	If either a or b is a 1-D tensor, and the other is an n-D tensor, it is the
sum of the element-wise product along the last axis of a or b. The length of the
1-D tensor must match the last dimension of the n-D tensor.

	If a is an n-D tensor and b is an m-D tensor, it is the sum of the element-wise
product along the last axis of a and the second-to-last axis of b. The last dimension
of a must match the second-to-last dimension of b.


For a more general dot function where you control which axes contract,
see dot/4.

  
  examples

  
  Examples



  
  dot-product-of-scalars

  
  Dot product of scalars


iex> Nx.dot(5, 5)
#Nx.Tensor<
  s64
  25
>

iex> Nx.dot(-2.0, 5.0)
#Nx.Tensor<
  f32
  -10.0
>

iex> Nx.dot(2, 2.0)
#Nx.Tensor<
  f32
  4.0
>

  
  dot-product-of-vectors

  
  Dot product of vectors


iex> Nx.dot(Nx.tensor([1, 2, 3]), Nx.tensor([4, 5, 6]))
#Nx.Tensor<
  s64
  32
>

iex> Nx.dot(Nx.tensor([2.0, 4.0, 3.0, 5.0]), Nx.tensor([1.0, 2.0, 3.0, 4.0]))
#Nx.Tensor<
  f32
  39.0
>

iex> Nx.dot(Nx.tensor([1.0, 2.0, 3.0]), Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  f32
  14.0
>

  
  dot-product-of-matrices

  
  Dot product of matrices


iex> left = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:i, :j])
iex> right = Nx.tensor([[7, 8], [9, 10], [11, 12]], names: [:x, :y])
iex> Nx.dot(left, right)
#Nx.Tensor<
  s64[i: 2][y: 2]
  [
    [58, 64],
    [139, 154]
  ]
>

iex> left = Nx.tensor([[10.0, 13.0, 14.0, 15.0], [59.0, 20.0, 10.0, 30.0]], names: [:i, :j])
iex> right = Nx.tensor([[2.0, 4.0], [5.0, 1.0], [6.0, 8.0], [9.0, 10.0]], names: [:x, :y])
iex> Nx.dot(left, right)
#Nx.Tensor<
  f32[i: 2][y: 2]
  [
    [304.0, 315.0],
    [548.0, 636.0]
  ]
>

iex> left = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:i, :j])
iex> right = Nx.tensor([[7.0, 8.0], [9.0, 10.0], [11.0, 12.0]], names: [:x, :y])
iex> Nx.dot(left, right)
#Nx.Tensor<
  f32[i: 2][y: 2]
  [
    [58.0, 64.0],
    [139.0, 154.0]
  ]
>

  
  dot-product-of-vector-and-n-d-tensor

  
  Dot product of vector and n-d tensor


iex> left = Nx.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], names: [:i, :j, :k])
iex> right = Nx.tensor([5, 10], names: [:x])
iex> Nx.dot(left, right)
#Nx.Tensor<
  s64[i: 2][j: 2]
  [
    [25, 55],
    [85, 115]
  ]
>

iex> left = Nx.tensor([5, 10], names: [:x])
iex> right = Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:i, :j])
iex> Nx.dot(left, right)
#Nx.Tensor<
  s64[j: 3]
  [45, 60, 75]
>

iex> left = Nx.tensor([[[[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]]]], names: [:shard, :batch, :x, :y, :z])
iex> right = Nx.tensor([2.0, 2.0], names: [:data])
iex> Nx.dot(left, right)
#Nx.Tensor<
  f32[shard: 1][batch: 1][x: 2][y: 2]
  [
    [
      [
        [6.0, 14.0],
        [22.0, 30.0]
      ]
    ]
  ]
>

  
  dot-product-of-n-d-and-m-d-tensor

  
  Dot product of n-D and m-D tensor


iex> left = Nx.tensor([[[1, 2, 3], [4, 5, 6], [7, 8, 9]], [[1, 2, 3], [4, 5, 6], [7, 8, 9]]], names: [:x, :y, :z])
iex> right = Nx.tensor([[[1, 2, 3], [3, 4, 5], [5, 6, 7]]], names: [:i, :j, :k])
iex> Nx.dot(left, right)
#Nx.Tensor<
  s64[x: 2][y: 3][i: 1][k: 3]
  [
    [
      [
        [22, 28, 34]
      ],
      [
        [49, 64, 79]
      ],
      [
        [76, 100, 124]
      ]
    ],
    [
      [
        [22, 28, 34]
      ],
      [
        [49, 64, 79]
      ],
      [
        [76, 100, 124]
      ]
    ]
  ]
>

  
  error-cases

  
  Error Cases


iex> Nx.dot(Nx.tensor([1, 2, 3]), Nx.tensor([1, 2]))
** (ArgumentError) dot/zip expects shapes to be compatible, dimension 0 of left-side (3) does not equal dimension 0 of right-side (2)
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Computes the generalized dot product between two tensors, given
the contracting axes.
This is equivalent to calling Nx.dot/6 with no batching dimensions:
Nx.dot(t1, contract_axes1, [], t2, contract_axes2, [])

  
  examples

  
  Examples


iex> t1 = Nx.tensor([[1, 2], [3, 4]], names: [:x, :y])
iex> t2 = Nx.tensor([[10, 20], [30, 40]], names: [:height, :width])
iex> Nx.dot(t1, [0], t2, [0])
#Nx.Tensor<
  s64[y: 2][width: 2]
  [
    [100, 140],
    [140, 200]
  ]
>

iex> t1 = Nx.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0]])
iex> t2 = Nx.tensor([[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]])
iex> Nx.dot(t1, [0, 1], t2, [1, 0])
#Nx.Tensor<
  f32
  50.0
>

  



  
    
      
      Link to this function
    
    dot(t1, contract_axes1, batch_axes1, t2, contract_axes2, batch_axes2)
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Computes the generalized dot product between two tensors, given
the contracting and batch axes.
The dot product is computed by multiplying the values from t1
given by contract_axes1 against the values from t2 given by
contract_axes2, considering batch axes of batch_axes1 and
batch_axes2. For instance, the first axis in contract_axes1
will be matched against the first axis in contract_axes2 and
so on. The axes given by contract_axes1 and contract_axes2
are effectively removed from the final tensor, which is why they
are often called the contraction axes.
If no contracting axes are given, the final product works like
Nx.outer/2.
Specifying batch axes will compute a vectorized dot product
along the given batch dimensions. The length of batch_axes1
and batch_axes2 must match. Additionally, batch_axes1 and
batch_axes2 must be a list of successive dimension numbers,
where each batch axis matches the dimension of the corresponding
batch axis in the other input.
The contracting axes must be dot-product compatible and the
batch dimensions must always have the same number of elements.

  
  examples

  
  Examples



  
  contracting-along-axes

  
  Contracting along axes


iex> t1 = Nx.tensor([[1, 2], [3, 4]], names: [:x, :y])
iex> t2 = Nx.tensor([[10, 20], [30, 40]], names: [:height, :width])
iex> Nx.dot(t1, [0], [], t2, [0], [])
#Nx.Tensor<
  s64[y: 2][width: 2]
  [
    [100, 140],
    [140, 200]
  ]
>
iex> Nx.dot(t1, [0], [], t2, [1], [])
#Nx.Tensor<
  s64[y: 2][height: 2]
  [
    [70, 150],
    [100, 220]
  ]
>
iex> Nx.dot(t1, [1], [], t2, [0], [])
#Nx.Tensor<
  s64[x: 2][width: 2]
  [
    [70, 100],
    [150, 220]
  ]
>
iex> Nx.dot(t1, [1], [], t2, [1], [])
#Nx.Tensor<
  s64[x: 2][height: 2]
  [
    [50, 110],
    [110, 250]
  ]
>
iex> Nx.dot(t1, [0, 1], [], t2, [0, 1], [])
#Nx.Tensor<
  s64
  300
>
If no axes are given, it works like outer/2:
iex> t1 = Nx.tensor([[1, 2], [3, 4]])
iex> t2 = Nx.tensor([[10, 20], [30, 40]])
iex> Nx.dot(t1, [], [], t2, [], [])
#Nx.Tensor<
  s64[2][2][2][2]
  [
    [
      [
        [10, 20],
        [30, 40]
      ],
      [
        [20, 40],
        [60, 80]
      ]
    ],
    [
      [
        [30, 60],
        [90, 120]
      ],
      [
        [40, 80],
        [120, 160]
      ]
    ]
  ]
>

  
  dot-product-between-two-batched-tensors

  
  Dot product between two batched tensors


iex> u = Nx.tensor([[[1]], [[2]]])
iex> v = Nx.tensor([[[3]], [[4]]])
iex> Nx.dot(u, [2], [0], v, [2], [0])
#Nx.Tensor<
  s64[2][1][1]
  [
    [
      [3]
    ],
    [
      [8]
    ]
  ]
>

iex> u = Nx.tensor([[[1, 1]], [[2, 2]]])
iex> v = Nx.tensor([[[3], [3]], [[4], [4]]])
iex> Nx.dot(u, [2], [0], v, [1], [0])
#Nx.Tensor<
  s64[2][1][1]
  [
    [
      [6]
    ],
    [
      [16]
    ]
  ]
>

  
  error-cases

  
  Error cases


iex> u = Nx.tensor([[[1, 1]], [[2, 2]]])
iex> v = Nx.tensor([[[3], [3]], [[4], [4]]])
iex> Nx.dot(u, [2], [0], v, [1], [])
** (ArgumentError) right tensor must be batched if left tensor is batched

iex> u = Nx.tensor([[[1, 1]], [[2, 2]]])
iex> v = Nx.tensor([[[3], [3]], [[4], [4]]])
iex> Nx.dot(u, [2], [], v, [1], [0])
** (ArgumentError) left tensor must be batched if right tensor is batched

iex> u = Nx.tensor([[[1, 1]], [[2, 2]]])
iex> v = Nx.tensor([[[3], [3]], [[4], [4]]])
iex> Nx.dot(u, [2], [1], v, [1], [0])
** (ArgumentError) invalid dot batch axis for the left tensor, batch axes must be successive dimensions starting from 0, got [1]

iex> u = Nx.tensor([[[1, 1]], [[2, 2]]])
iex> v = Nx.tensor([[[3], [3]], [[4], [4]]])
iex> Nx.dot(u, [2], [0], v, [1], [1])
** (ArgumentError) invalid dot batch axis for the right tensor, batch axes must be successive dimensions starting from 0, got [1]

iex> u = Nx.tensor([[[1, 1]], [[2, 2]]])
iex> v = Nx.tensor([[[3], [3]], [[4], [4]]])
iex> Nx.dot(u, [0], [0], v, [1], [0])
** (ArgumentError) dot batch axes for left tensor ([0]) cannot be in contract axes ([0])

iex> u = Nx.tensor([[[1, 1]], [[2, 2]]])
iex> v = Nx.tensor([[[3], [3]], [[4], [4]]])
iex> Nx.dot(u, [2], [0], v, [0], [0])
** (ArgumentError) dot batch axes for right tensor ([0]) cannot be in contract axes ([0])
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Calculates the DFT of the given tensor.

  
  options

  
  Options


	:eps - Threshold which backends can use for cleaning-up results. Defaults to 1.0e-10.
	:length - Either a positive integer or :power_of_two. Will pad or slice the tensor
accordingly. :power_of_two will automatically pad to the next power of two.


  
  examples

  
  Examples


iex> Nx.fft(Nx.tensor([1, 1, 0, 0]))
#Nx.Tensor<
  c64[4]
  [2.0+0.0i, 1.0-1.0i, 0.0+0.0i, 1.0+1.0i]
>

iex> Nx.fft(Nx.tensor([1, 1, 0, 0, 0]))
#Nx.Tensor<
  c64[5]
  [2.0+0.0i, 1.3090169429779053-0.9510565400123596i, 0.19098301231861115-0.5877852439880371i, 0.19098301231861115+0.5877852439880371i, 1.3090169429779053+0.9510565400123596i]
>

iex> Nx.fft(Nx.tensor([1, 1, 1, 0, 1, 1]))
#Nx.Tensor<
  c64[6]
  [5.0+0.0i, 1.0+0.0i, -1.0+0.0i, 1.0+0.0i, -1.0+0.0i, 1.0+0.0i]
>
Padding and slicing can be introduced through :length:
iex> Nx.fft(Nx.tensor([1, 1]), length: 4)
#Nx.Tensor<
  c64[4]
  [2.0+0.0i, 1.0-1.0i, 0.0+0.0i, 1.0+1.0i]
>

iex> Nx.fft(Nx.tensor([1, 1, 0]), length: :power_of_two)
#Nx.Tensor<
  c64[4]
  [2.0+0.0i, 1.0-1.0i, 0.0+0.0i, 1.0+1.0i]
>

iex> Nx.fft(Nx.tensor([1, 1, 0, 0, 2, 3]), length: 4)
#Nx.Tensor<
  c64[4]
  [2.0+0.0i, 1.0-1.0i, 0.0+0.0i, 1.0+1.0i]
>
If an N-dimensional tensor is passed, the DFT is applied to its last axis:
iex> Nx.fft(Nx.tensor([[1, 1, 0, 0, 2, 3], [1, 0, 0, 0, 2, 3]]), length: 4)
#Nx.Tensor<
  c64[2][4]
  [
    [2.0+0.0i, 1.0-1.0i, 0.0+0.0i, 1.0+1.0i],
    [1.0+0.0i, 1.0+0.0i, 1.0+0.0i, 1.0+0.0i]
  ]
>

  
  error-cases

  
  Error Cases


iex> Nx.fft(Nx.tensor([1, 1]), length: :invalid)
** (RuntimeError) expected an integer or :power_of_two as length, got: :invalid

  



    

  
    
      
      Link to this function
    
    ifft(tensor, opts \\ [])


      
       
       View Source
     


  


  

Calculates the Inverse DFT of the given tensor.

  
  options

  
  Options


	:eps - Threshold which backends can use for cleaning-up results. Defaults to 1.0e-10.
	:length - Either a positive integer or :power_of_two. Will pad or slice the tensor
accordingly. :power_of_two will automatically pad to the next power of two.


  
  examples

  
  Examples


iex> Nx.ifft(Nx.tensor([2, Complex.new(1, -1), 0, Complex.new(1, 1)]))
#Nx.Tensor<
  c64[4]
  [1.0+0.0i, 1.0+0.0i, 0.0+0.0i, 0.0+0.0i]
>

iex> Nx.ifft(Nx.tensor([5, 1, -1, 1, -1, 1]))
#Nx.Tensor<
  c64[6]
  [1.0+0.0i, 1.0+0.0i, 1.0+0.0i, 0.0+0.0i, 1.0+0.0i, 1.0+0.0i]
>
Padding and slicing can be introduced through :length:
iex> Nx.ifft(Nx.tensor([1, 1]), length: 4)
#Nx.Tensor<
  c64[4]
  [0.5+0.0i, 0.25+0.25i, 0.0+0.0i, 0.25-0.25i]
>

iex> Nx.ifft(Nx.tensor([1, 1, 0]), length: :power_of_two)
#Nx.Tensor<
  c64[4]
  [0.5+0.0i, 0.25+0.25i, 0.0+0.0i, 0.25-0.25i]
>

iex> Nx.ifft(Nx.tensor([1, 1, 0, 0, 2, 3]), length: 4)
#Nx.Tensor<
  c64[4]
  [0.5+0.0i, 0.25+0.25i, 0.0+0.0i, 0.25-0.25i]
>
If an N-dimensional tensor is passed, the Inverse DFT is applied to its last axis:
iex> Nx.ifft(Nx.tensor([[1, 1, 0, 0, 2, 3], [1, 0, 0, 0, 2, 3]]), length: 4)
#Nx.Tensor<
  c64[2][4]
  [
    [0.5+0.0i, 0.25+0.25i, 0.0+0.0i, 0.25-0.25i],
    [0.25+0.0i, 0.25+0.0i, 0.25+0.0i, 0.25+0.0i]
  ]
>

  
  error-cases

  
  Error Cases


iex> Nx.ifft(Nx.tensor([1, 1]), length: :invalid)
** (RuntimeError) expected an integer or :power_of_two as length, got: :invalid

  



  
    
      
      Link to this function
    
    outer(t1, t2)


      
       
       View Source
     


  


  

Computes the outer product of two tensors.
The output is always a two-dimensional tensor.

  
  examples

  
  Examples


iex> Nx.outer(Nx.tensor([1, 2, 3], names: [:x]), 100)
#Nx.Tensor<
  s64[x: 3][1]
  [
    [100],
    [200],
    [300]
  ]
>

iex> Nx.outer(Nx.tensor([1, 2, 3], names: [:x]), Nx.tensor([10, 20], names: [:y]))
#Nx.Tensor<
  s64[x: 3][y: 2]
  [
    [10, 20],
    [20, 40],
    [30, 60]
  ]
>

iex> Nx.outer(Nx.tensor([[1, 2], [3, 4]], names: [:x, :y]), Nx.tensor([10, 20, 30], names: [:z]))
#Nx.Tensor<
  s64[x: 4][z: 3]
  [
    [10, 20, 30],
    [20, 40, 60],
    [30, 60, 90],
    [40, 80, 120]
  ]
>

  



    

  
    
      
      Link to this function
    
    reverse(tensor, opts \\ [])


      
       
       View Source
     


  


  

Reverses the tensor in the given dimensions.
If no axes are provided, reverses every axis.
You can pass either names or numbers for the reverse
dimensions. Dimensions must be unique, but they do not
have to be successive.

  
  examples

  
  Examples


iex> Nx.reverse(Nx.tensor([1, 2, 3]))
#Nx.Tensor<
  s64[3]
  [3, 2, 1]
>

iex> Nx.reverse(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
#Nx.Tensor<
  s64[2][3]
  [
    [6, 5, 4],
    [3, 2, 1]
  ]
>

iex> Nx.reverse(Nx.tensor([1, 2, 3], names: [:x]), axes: [:x])
#Nx.Tensor<
  s64[x: 3]
  [3, 2, 1]
>

iex> Nx.reverse(Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y]), axes: [:x])
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [4, 5, 6],
    [1, 2, 3]
  ]
>

iex> Nx.reverse(Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:x, :y]), axes: [:y])
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [3, 2, 1],
    [6, 5, 4]
  ]
>

iex> Nx.reverse(Nx.iota({2, 2, 2}, type: :f32, names: [:x, :y, :z]), axes: [:x, :z])
#Nx.Tensor<
  f32[x: 2][y: 2][z: 2]
  [
    [
      [5.0, 4.0],
      [7.0, 6.0]
    ],
    [
      [1.0, 0.0],
      [3.0, 2.0]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    sort(tensor, opts \\ [])


      
       
       View Source
     


  


  

Sorts the tensor along the given axis according
to the given direction.
If no axis is given, defaults to 0.

  
  options

  
  Options


	:axis - The name or number of the corresponding axis on which the sort
should be applied
	:direction - Can be :asc or :desc. Defaults to :asc


  
  examples

  
  Examples


iex> Nx.sort(Nx.tensor([16, 23, 42, 4, 8, 15]))
#Nx.Tensor<
  s64[6]
  [4, 8, 15, 16, 23, 42]
>

iex> t = Nx.tensor([[3, 1, 7], [2, 5, 4]], names: [:x, :y])
iex> Nx.sort(t, axis: :x)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [2, 1, 4],
    [3, 5, 7]
  ]
>

iex> t = Nx.tensor([[3, 1, 7], [2, 5, 4]], names: [:x, :y])
iex> Nx.sort(t, axis: :y)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 3, 7],
    [2, 4, 5]
  ]
>

iex> t = Nx.tensor([[3, 1, 7], [2, 5, 4]], names: [:x, :y])
iex> Nx.sort(t, axis: :y, direction: :asc)
#Nx.Tensor<
  s64[x: 2][y: 3]
  [
    [1, 3, 7],
    [2, 4, 5]
  ]
>

iex> t = Nx.tensor(
...>   [
...>     [[4, 5], [2, 5], [5, 0]],
...>     [[1, 9], [2, 1], [2, 1]],
...>     [[0, -1], [-1, 0], [0, -1]],
...>     [[-1, 0], [0, -1], [-1, 0]]
...>   ],
...>   names: [:x, :y, :z]
...> )
iex> Nx.sort(t, axis: :x)
#Nx.Tensor<
  s64[x: 4][y: 3][z: 2]
  [
    [
      [-1, -1],
      [-1, -1],
      [-1, -1]
    ],
    [
      [0, 0],
      [0, 0],
      [0, 0]
    ],
    [
      [1, 5],
      [2, 1],
      [2, 0]
    ],
    [
      [4, 9],
      [2, 5],
      [5, 1]
    ]
  ]
>
Same tensor sorted over different axes:
iex> t = Nx.tensor(
...>   [
...>     [
...>       [4, 5, 2],
...>       [2, 5, 3],
...>       [5, 0, 2]
...>     ],
...>     [
...>       [1, 9, 8],
...>       [2, 1, 3],
...>       [2, 1, 4]
...>     ]
...>   ],
...>   names: [:x, :y, :z]
...> )
iex> Nx.sort(t, axis: :x)
#Nx.Tensor<
  s64[x: 2][y: 3][z: 3]
  [
    [
      [1, 5, 2],
      [2, 1, 3],
      [2, 0, 2]
    ],
    [
      [4, 9, 8],
      [2, 5, 3],
      [5, 1, 4]
    ]
  ]
>
iex> Nx.sort(t, axis: :y)
#Nx.Tensor<
  s64[x: 2][y: 3][z: 3]
  [
    [
      [2, 0, 2],
      [4, 5, 2],
      [5, 5, 3]
    ],
    [
      [1, 1, 3],
      [2, 1, 4],
      [2, 9, 8]
    ]
  ]
>
iex> Nx.sort(t, axis: :z)
#Nx.Tensor<
  s64[x: 2][y: 3][z: 3]
  [
    [
      [2, 4, 5],
      [2, 3, 5],
      [0, 2, 5]
    ],
    [
      [1, 8, 9],
      [1, 2, 3],
      [1, 2, 4]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    stack(tensors, opts \\ [])


      
       
       View Source
     


  


  

Joins a list of tensors with the same shape along a new axis.

  
  options

  
  Options


	:axis - optional index of the axis along which the tensors are stacked. Defaults to 0.
	:name - optional name for the added dimension. Defaults to an unnamed axis.


  
  examples

  
  Examples


iex> Nx.stack([1, 2, 3])
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> Nx.stack([Nx.tensor([1, 2, 3]), Nx.tensor([4, 5, 6])])
#Nx.Tensor<
  s64[2][3]
  [
    [1, 2, 3],
    [4, 5, 6]
  ]
>

iex> t1 = Nx.iota({2, 1, 4})
iex> t2 = Nx.iota({2, 1, 4})
iex> t3 = Nx.iota({2, 1, 4})
iex> Nx.stack([t1, t2, t3], axis: -1)
#Nx.Tensor<
  s64[2][1][4][3]
  [
    [
      [
        [0, 0, 0],
        [1, 1, 1],
        [2, 2, 2],
        [3, 3, 3]
      ]
    ],
    [
      [
        [4, 4, 4],
        [5, 5, 5],
        [6, 6, 6],
        [7, 7, 7]
      ]
    ]
  ]
>

iex> t1 = Nx.iota({2, 1, 4})
iex> t2 = Nx.iota({2, 1, 4})
iex> t3 = Nx.iota({2, 1, 4})
iex> Nx.stack([t1, t2, t3], axis: 1)
#Nx.Tensor<
  s64[2][3][1][4]
  [
    [
      [
        [0, 1, 2, 3]
      ],
      [
        [0, 1, 2, 3]
      ],
      [
        [0, 1, 2, 3]
      ]
    ],
    [
      [
        [4, 5, 6, 7]
      ],
      [
        [4, 5, 6, 7]
      ],
      [
        [4, 5, 6, 7]
      ]
    ]
  ]
>

iex> Nx.stack([Nx.tensor(1), Nx.tensor(2)], name: :x)
#Nx.Tensor<
  s64[x: 2]
  [1, 2]
>
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      Link to this function
    
    axes(shape)


      
       
       View Source
     


  


  

Returns all of the axes in a tensor.
If a shape is given, it returns the axes for the given shape.

  
  examples

  
  Examples


iex> Nx.axes(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
[0, 1]

iex> Nx.axes(1)
[]

iex> Nx.axes({1, 2, 3})
[0, 1, 2]

  



  
    
      
      Link to this function
    
    axis_index(tensor, axis)


      
       
       View Source
     


  


  

Returns the index of the given axis in the tensor.

  
  examples

  
  Examples


iex> Nx.axis_index(Nx.iota({100, 10, 20}), 0)
0

iex> Nx.axis_index(Nx.iota({100, 10, 20}), -1)
2

iex> Nx.axis_index(Nx.iota({100, 10, 20}, names: [:batch, :x, :y]), :x)
1

  
  error-cases

  
  Error cases


iex> Nx.axis_index(Nx.iota({100, 10, 20}), 3)
** (ArgumentError) given axis (3) invalid for shape with rank 3

iex> Nx.axis_index(Nx.iota({100, 10, 20}, names: [:batch, :x, :y]), :z)
** (ArgumentError) key :z not found in tensor with names [:batch, :x, :y]

  



  
    
      
      Link to this function
    
    axis_size(tensor, axis)


      
       
       View Source
     


  


  

Returns the size of a given axis of a tensor.
It accepts either an atom as the name or an integer as the axis.
It raises if the axis/name does not exist.

  
  examples

  
  Examples


iex> Nx.axis_size(Nx.iota({100, 10, 20}), 0)
100

iex> Nx.axis_size(Nx.iota({100, 10, 20}, names: [:batch, :x, :y]), :y)
20

  



    

  
    
      
      Link to this function
    
    broadcast(tensor, shape, opts \\ [])


      
       
       View Source
     


  


  

Broadcasts tensor to the given broadcast_shape.
The new shape is either a tuple or a tensor which we will
retrieve the current shape from. The broadcast shape must
be of equal or higher rank than the current shape.
An optional :axes can be given to customize how broadcasting
happens. axes must be a list with the same length as the
tensor shape. Each axis in the list maps to the dimension
in the broadcast shape that must match. For example, an axis
of [1, 2] says the 0 dimension of the tensor matches to
the 1 dimension of the broadcast shape and the 1 dimension
of the tensor matches the 2 dimension of the broadcast shape.
Each matching dimension must either be 1, for implicit
broadcasting, or match the dimension in the broadcast shape.
Broadcasting is destructive with respect to names. You can
optionally provide new :names for the new tensor. If you
pass a tensor with named dimensions, the new tensor will
inherit names from that tensor.

  
  examples

  
  Examples



  
  without-axes

  
  Without axes



  
  examples-1

  
  Examples


iex> Nx.broadcast(1, {1, 2, 3})
#Nx.Tensor<
  s64[1][2][3]
  [
    [
      [1, 1, 1],
      [1, 1, 1]
    ]
  ]
>

iex> Nx.broadcast(Nx.tensor([[1], [2]], names: [:x, :y]), Nx.tensor([[10, 20], [30, 40]], names: [:i, :j]))
#Nx.Tensor<
  s64[i: 2][j: 2]
  [
    [1, 1],
    [2, 2]
  ]
>

iex> Nx.broadcast(Nx.tensor([[1, 2]], names: [:x, :y]), Nx.tensor([[10, 20], [30, 40]], names: [:i, :j]))
#Nx.Tensor<
  s64[i: 2][j: 2]
  [
    [1, 2],
    [1, 2]
  ]
>
Note that, even if there is no broadcasting because the
shape is the same, names are discarded if none are given:
iex> Nx.broadcast(Nx.iota({2, 2}, names: [:x, :y]), {2, 2})
#Nx.Tensor<
  s64[2][2]
  [
    [0, 1],
    [2, 3]
  ]
>

iex> Nx.broadcast(Nx.iota({2, 2}, names: [:x, :y]), {2, 2}, names: [:i, :j])
#Nx.Tensor<
  s64[i: 2][j: 2]
  [
    [0, 1],
    [2, 3]
  ]
>

  
  with-axes

  
  With axes


Using the default broadcast rules, we cannot broadcast a
tensor of shape (3) to the shape (3, 2), because the lower
dimensions must match. But with Nx.broadcast/3 we can
configure how the dimensions match:
iex> t = Nx.tensor([1, 2, 3])
iex> Nx.broadcast(t, {3, 2}, axes: [0], names: [:x, :y])
#Nx.Tensor<
  s64[x: 3][y: 2]
  [
    [1, 1],
    [2, 2],
    [3, 3]
  ]
>
Or a more complex example:
iex> t = Nx.tensor([1, 2, 3])
iex> Nx.broadcast(t, {2, 3, 2}, axes: [1], names: [:x, :y, :z])
#Nx.Tensor<
  s64[x: 2][y: 3][z: 2]
  [
    [
      [1, 1],
      [2, 2],
      [3, 3]
    ],
    [
      [1, 1],
      [2, 2],
      [3, 3]
    ]
  ]
>

  



  
    
      
      Link to this function
    
    byte_size(tensor)


      
       
       View Source
     


  


  

Returns the byte size of the data in the tensor
computed from its shape and type.

  
  examples

  
  Examples


iex> Nx.byte_size(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
48
iex> Nx.byte_size(Nx.tensor([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]))
24
iex> Nx.byte_size(Nx.tensor([[1, 2, 3], [4, 5, 6]], type: :u8))
6
iex> Nx.byte_size(1)
8

  



  
    
      
      Link to this function
    
    compatible?(left, right)


      
       
       View Source
     


  


  

Checks if two tensors have the same shape, type, and compatible names.
The data in the tensor is ignored.
For convenience, this function accepts tensors and any container
(such as maps and tuples as defined by the Nx.Container protocol)
and recursively compares them, observing their container data
structures are also the same.

  
  examples

  
  Examples


iex> Nx.compatible?(Nx.iota({3, 2}), Nx.iota({3, 2}))
true

iex> Nx.compatible?(Nx.iota({3, 2}), Nx.iota({3, 2}, names: [:rows, :columns]))
true

iex> Nx.compatible?(
...>   Nx.iota({3, 2}, names: [:rows, nil]),
...>   Nx.iota({3, 2}, names: [nil, :columns])
...> )
true

iex> Nx.compatible?(
...>   Nx.iota({3, 2}, names: [:foo, :bar]),
...>   Nx.iota({3, 2}, names: [:rows, :columns])
...> )
false

iex> Nx.compatible?(Nx.iota({3, 2}), Nx.iota({2, 3}))
false

iex> Nx.compatible?(Nx.iota({2, 2}), Nx.iota({2, 2}, type: :f32))
false
Using collections:
iex> Nx.compatible?({Nx.iota({3, 2}), {1, 2}}, {Nx.iota({3, 2}), {3, 4}})
true

iex> Nx.compatible?(%{foo: Nx.iota({3, 2})}, %{foo: Nx.iota({3, 2})})
true

iex> Nx.compatible?(%{foo: Nx.iota({3, 2})}, %{bar: Nx.iota({3, 2})})
false

  



  
    
      
      Link to this function
    
    flatten(tensor)


      
       
       View Source
     


  


  

Flattens a n-dimensional tensor to a 1-dimensional tensor.
Flattening only changes the tensor metadata, it doesn't
copy the underlying structure.
Flatten is a destructive operation with respect to names.

  
  examples

  
  Examples


iex> t = Nx.iota({2, 2, 2, 2})
#Nx.Tensor<
  s64[2][2][2][2]
  [
    [
      [
        [0, 1],
        [2, 3]
      ],
      [
        [4, 5],
        [6, 7]
      ]
    ],
    [
      [
        [8, 9],
        [10, 11]
      ],
      [
        [12, 13],
        [14, 15]
      ]
    ]
  ]
>
iex> Nx.flatten(t)
#Nx.Tensor<
  s64[16]
  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>
And if the tensor is already 1-dimensional:
iex> t = Nx.iota({16})
#Nx.Tensor<
  s64[16]
  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>
iex> Nx.flatten(t)
#Nx.Tensor<
  s64[16]
  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
>

  



  
    
      
      Link to this function
    
    names(a)


      
       
       View Source
     


  


  

Returns all of the names in a tensor.

  
  examples

  
  Examples


iex> Nx.names(Nx.tensor([[1, 2, 3], [4, 5, 6]], names: [:batch, :data]))
[:batch, :data]

iex> Nx.names(Nx.tensor([1, 2, 3]))
[nil]

iex> Nx.names(5)
[]

  



    

  
    
      
      Link to this function
    
    new_axis(tensor, axis, name \\ nil)


      
       
       View Source
     


  


  

Adds a new axis of size 1 with optional name.

  
  examples

  
  Examples


iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.new_axis(t, 0, :new)
#Nx.Tensor<
  s64[new: 1][2][3]
  [
    [
      [1, 2, 3],
      [4, 5, 6]
    ]
  ]
>
iex> Nx.new_axis(t, 1, :new)
#Nx.Tensor<
  s64[2][new: 1][3]
  [
    [
      [1, 2, 3]
    ],
    [
      [4, 5, 6]
    ]
  ]
>
iex> Nx.new_axis(t, 2, :new)
#Nx.Tensor<
  s64[2][3][new: 1]
  [
    [
      [1],
      [2],
      [3]
    ],
    [
      [4],
      [5],
      [6]
    ]
  ]
>
Axis can also be negative, which will start from the back:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.new_axis(t, -1, :new)
#Nx.Tensor<
  s64[2][3][new: 1]
  [
    [
      [1],
      [2],
      [3]
    ],
    [
      [4],
      [5],
      [6]
    ]
  ]
>

  



  
    
      
      Link to this function
    
    pad(tensor, pad_value, padding_config)


      
       
       View Source
     


  


  

Pads a tensor with a given value.
You must specify a padding configuration. A padding
configuration is a list of tuples consisting of
{pad_width_low, pad_width_high, pad_width_interior}
for each dimension in the input tensor. The padding
configuration must be of the same length as the tensor shape.
Padding widths can be negative. If they are negative,
the tensor is clipped on either end according to the
padding width. Interior padding widths cannot be negative.

  
  examples

  
  Examples


iex> Nx.pad(Nx.tensor(1), 0, [])
#Nx.Tensor<
  s64
  1
>

iex> Nx.pad(Nx.tensor([1, 2, 3], names: [:data]), 0, [{1, 1, 0}])
#Nx.Tensor<
  s64[data: 5]
  [0, 1, 2, 3, 0]
>

iex> Nx.pad(Nx.tensor([[1, 2, 3], [4, 5, 6]]), 0, [{0, 0, 1}, {0, 0, 1}])
#Nx.Tensor<
  s64[3][5]
  [
    [1, 0, 2, 0, 3],
    [0, 0, 0, 0, 0],
    [4, 0, 5, 0, 6]
  ]
>

iex> Nx.pad(Nx.tensor([[1, 2, 3], [4, 5, 6]]), 0, [{1, 1, 0}, {1, 1, 0}])
#Nx.Tensor<
  s64[4][5]
  [
    [0, 0, 0, 0, 0],
    [0, 1, 2, 3, 0],
    [0, 4, 5, 6, 0],
    [0, 0, 0, 0, 0]
  ]
>

iex> tensor = Nx.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
iex> Nx.pad(tensor, 0, [{0, 2, 0}, {1, 1, 0}, {1, 0, 0}])
#Nx.Tensor<
  s64[4][4][3]
  [
    [
      [0, 0, 0],
      [0, 1, 2],
      [0, 3, 4],
      [0, 0, 0]
    ],
    [
      [0, 0, 0],
      [0, 5, 6],
      [0, 7, 8],
      [0, 0, 0]
    ],
    [
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0]
    ],
    [
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0]
    ]
  ]
>

iex> tensor = Nx.tensor([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])
iex> Nx.pad(tensor, 0, [{1, 0, 0}, {1, 1, 0}, {0, 1, 0}])
#Nx.Tensor<
  s64[3][4][3]
  [
    [
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0]
    ],
    [
      [0, 0, 0],
      [1, 2, 0],
      [3, 4, 0],
      [0, 0, 0]
    ],
    [
      [0, 0, 0],
      [5, 6, 0],
      [7, 8, 0],
      [0, 0, 0]
    ]
  ]
>

iex> tensor = Nx.tensor([[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0], [7.0, 8.0]]])
iex> Nx.pad(tensor, 0.0, [{1, 2, 0}, {1, 0, 0}, {0, 1, 0}])
#Nx.Tensor<
  f32[5][3][3]
  [
    [
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0]
    ],
    [
      [0.0, 0.0, 0.0],
      [1.0, 2.0, 0.0],
      [3.0, 4.0, 0.0]
    ],
    [
      [0.0, 0.0, 0.0],
      [5.0, 6.0, 0.0],
      [7.0, 8.0, 0.0]
    ],
    [
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0]
    ],
    [
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0],
      [0.0, 0.0, 0.0]
    ]
  ]
>

iex> Nx.pad(Nx.tensor([0, 1, 2, 3, 0]), 0, [{-1, -1, 0}])
#Nx.Tensor<
  s64[3]
  [1, 2, 3]
>

iex> tensor = Nx.tensor([
...>   [[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]],
...>   [[0, 0, 0], [1, 2, 0], [3, 4, 0], [0, 0, 0]],
...>   [[0, 0, 0], [5, 6, 0], [7, 8, 0], [0, 0, 0]]
...> ])
iex> Nx.pad(tensor, 0, [{-1, 0, 0}, {-1, -1, 0}, {0, -1, 0}])
#Nx.Tensor<
  s64[2][2][2]
  [
    [
      [1, 2],
      [3, 4]
    ],
    [
      [5, 6],
      [7, 8]
    ]
  ]
>

iex> tensor = Nx.tensor([[0, 1, 2, 3], [0, 4, 5, 6]])
iex> Nx.pad(tensor, 0, [{0, 0, 0}, {-1, 1, 0}])
#Nx.Tensor<
  s64[2][4]
  [
    [1, 2, 3, 0],
    [4, 5, 6, 0]
  ]
>

iex> tensor = Nx.tensor([[0, 1, 2], [3, 4, 5]], type: :f32)
iex> Nx.pad(tensor, 0, [{-1, 2, 0}, {1, -1, 0}])
#Nx.Tensor<
  f32[3][3]
  [
    [0.0, 3.0, 4.0],
    [0.0, 0.0, 0.0],
    [0.0, 0.0, 0.0]
  ]
>

  



  
    
      
      Link to this function
    
    rank(shape)
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Returns the rank of a tensor.
If a tuple is given as a shape, it computes the rank
of the given tuple.

  
  examples

  
  Examples


iex> Nx.rank(Nx.tensor(1))
0

iex> Nx.rank(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
2

iex> Nx.rank(1)
0

iex> Nx.rank({1, 2, 3})
3

  



  
    
      
      Link to this function
    
    rename(tensor, names)


      
       
       View Source
     


  


  

Adds (or overrides) the given names to the tensor.

  
  examples

  
  Examples


iex> Nx.rename(Nx.iota({2, 3}), [:foo, :bar])
#Nx.Tensor<
  s64[foo: 2][bar: 3]
  [
    [0, 1, 2],
    [3, 4, 5]
  ]
>

  



    

  
    
      
      Link to this function
    
    reshape(tensor, new_shape, opts \\ [])


      
       
       View Source
     


  


  

Changes the shape of a tensor.
The new shape is either a tuple or a tensor which we will
retrieve the current shape from. The shapes must be compatible:
the product of each dimension in the shape must be equal.
You may specify one of the dimensions as :auto. Nx will compute
the size of the dimension based on the original shape and new shape.
Reshaping only changes the tensor metadata, it doesn't copy
the underlying structure.
Reshape is a destructive operation with respect to names. You
can optionally provide :names for each of the dimensions
in the reshaped tensor. If you do not provide :names, they
will be taken from the tensor the shape is taken from or
all of the dimension names will be set to nil.

  
  examples

  
  Examples


iex> t = Nx.tensor([1, 2, 3, 4], names: [:x])
iex> Nx.reshape(t, {2, 2}, names: [:x, :y])
#Nx.Tensor<
  s64[x: 2][y: 2]
  [
    [1, 2],
    [3, 4]
  ]
>
The shape can also be an existing tensor:
iex> shape = Nx.tensor([[0], [0], [0], [0]], names: [:x, :y])
iex> Nx.reshape(Nx.tensor([1, 2, 3, 4]), shape)
#Nx.Tensor<
  s64[x: 4][y: 1]
  [
    [1],
    [2],
    [3],
    [4]
  ]
>
Even a scalar can be transformed into a 3-dimensional tensor:
iex> t = Nx.tensor(1)
iex> Nx.reshape(t, {1, 1, 1}, names: [:x, :y, :z])
#Nx.Tensor<
  s64[x: 1][y: 1][z: 1]
  [
    [
      [1]
    ]
  ]
>
You can use :auto to infer dimension sizes. This is useful when you
don't know the size some dimension should be ahead of time:
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> Nx.reshape(t, {:auto, 2}, names: [:x, :y])
#Nx.Tensor<
  s64[x: 3][y: 2]
  [
    [1, 2],
    [3, 4],
    [5, 6]
  ]
>

  



  
    
      
      Link to this function
    
    shape(number)


      
       
       View Source
     


  


  

Returns the shape of the tensor as a tuple.
The size of this tuple gives the rank of the tensor.
If a shape as a tuple is given, it returns the shape itself.

  
  examples

  
  Examples


iex> Nx.shape(Nx.tensor(1))
{}

iex> Nx.shape(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
{2, 3}

iex> Nx.shape(1)
{}

iex> Nx.shape({1, 2, 3})
{1, 2, 3}

  



  
    
      
      Link to this function
    
    size(shape)


      
       
       View Source
     


  


  

Returns the number of elements in the tensor.
If a tuple is given, it returns the number of elements in a tensor with that shape.

  
  examples

  
  Examples


iex> Nx.size(Nx.tensor([[1, 2, 3], [4, 5, 6]]))
6

iex> Nx.size(1)
1

iex> Nx.size({1, 2, 3, 2})
12

  



    

  
    
      
      Link to this function
    
    squeeze(tensor, opts \\ [])


      
       
       View Source
     


  


  

Squeezes the given size 1 dimensions out of the tensor.
If no axes are given, squeezes all size 1 dimensions
from the tensor.
While this is equivalent to a reshape which eliminates
the size 1 axes, squeeze preserves important information
about which axes were squeezed out which can then be used
later on in transformations.

  
  examples

  
  Examples


iex> Nx.squeeze(Nx.tensor([[[[[1]]]]]))
#Nx.Tensor<
  s64
  1
>

iex> Nx.squeeze(Nx.tensor([[[[1]]], [[[2]]]], names: [:x, :y, :z, :i]))
#Nx.Tensor<
  s64[x: 2]
  [1, 2]
>

iex> Nx.squeeze(Nx.tensor([[1, 2, 3]], names: [:x, :y]), axes: [:x])
#Nx.Tensor<
  s64[y: 3]
  [1, 2, 3]
>

iex> Nx.squeeze(Nx.tensor([[1], [2]], names: [:x, :y]), axes: [:y])
#Nx.Tensor<
  s64[x: 2]
  [1, 2]
>

  
  error-cases

  
  Error cases


iex> Nx.squeeze(Nx.tensor([[1, 2, 3], [4, 5, 6]]), axes: [1])
** (ArgumentError) cannot squeeze dimensions whose sizes are not 1, got 3 for dimension 1

iex> Nx.squeeze(Nx.tensor([[[[[1]]]]]), axes: [0, 0])
** (ArgumentError) axes [0, 0] must be unique integers between 0 and 4

  



  
    
      
      Link to this function
    
    tile(tensor, repetitions)


      
       
       View Source
     


  


  

Creates a new tensor by repeating the input tensor
along the given axes.
If the tensor has less dimensions than the repetitions given,
the tensor will grow in dimensionality.
If the tensor has more dimensions than the repetitions given,
tiling is done from the rightmost dimensions (i.e. if the input
shape is {1,2,3} and repetitions = [2], the result is the same
as if repetitions = [1,1,2]).

  
  examples

  
  Examples


iex> a = Nx.tensor([0, 1, 2])
iex> Nx.tile(a, [2])
#Nx.Tensor<
  s64[6]
  [0, 1, 2, 0, 1, 2]
>
iex> Nx.tile(a, [1, 2])
#Nx.Tensor<
  s64[1][6]
  [
    [0, 1, 2, 0, 1, 2]
  ]
>
iex> Nx.tile(a, [2, 2])
#Nx.Tensor<
  s64[2][6]
  [
    [0, 1, 2, 0, 1, 2],
    [0, 1, 2, 0, 1, 2]
  ]
>
iex> Nx.tile(a, [2, 1])
#Nx.Tensor<
  s64[2][3]
  [
    [0, 1, 2],
    [0, 1, 2]
  ]
>
iex> Nx.tile(a, [2, 1, 2])
#Nx.Tensor<
  s64[2][1][6]
  [
    [
      [0, 1, 2, 0, 1, 2]
    ],
    [
      [0, 1, 2, 0, 1, 2]
    ]
  ]
>

iex> b = Nx.tensor([[1,2],[3,4]])
iex> Nx.tile(b, [2])
#Nx.Tensor<
  s64[2][4]
  [
    [1, 2, 1, 2],
    [3, 4, 3, 4]
  ]
>
iex> Nx.tile(b, [2, 1])
#Nx.Tensor<
  s64[4][2]
  [
    [1, 2],
    [3, 4],
    [1, 2],
    [3, 4]
  ]
>
iex> Nx.tile(b, [1, 2])
#Nx.Tensor<
  s64[2][4]
  [
    [1, 2, 1, 2],
    [3, 4, 3, 4]
  ]
>

iex> c = Nx.tensor([1,2,3,4])
iex> Nx.tile(c, [4,1])
#Nx.Tensor<
  s64[4][4]
  [
    [1, 2, 3, 4],
    [1, 2, 3, 4],
    [1, 2, 3, 4],
    [1, 2, 3, 4]
  ]
>

  
  error-cases

  
  Error cases


iex> Nx.tile(Nx.tensor([1,2]), 1.0)
** (ArgumentError) repetitions must be a list of integers, got: 1.0

iex> Nx.tile(Nx.tensor([1,2]), [1, 1.0])
** (ArgumentError) repetitions must be a list of integers, got: [1, 1.0]

iex> Nx.tile(Nx.tensor([1,2]), nil)
** (ArgumentError) repetitions must be a list of integers, got: nil

  



    

  
    
      
      Link to this function
    
    transpose(tensor, opts \\ [])
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Transposes a tensor to the given axes.
If no axes are given, the default behavior is to
reverse the order of the original tensor's axes.
The axes is a list of integers or dimension names
containing how the new dimensions must be ordered.
The highest dimension is zero.

  
  examples

  
  Examples


iex> Nx.transpose(Nx.tensor(1))
#Nx.Tensor<
  s64
  1
>

iex> Nx.transpose(Nx.iota({2, 3, 4}, names: [:x, :y, :z]))
#Nx.Tensor<
  s64[z: 4][y: 3][x: 2]
  [
    [
      [0, 12],
      [4, 16],
      [8, 20]
    ],
    [
      [1, 13],
      [5, 17],
      [9, 21]
    ],
    [
      [2, 14],
      [6, 18],
      [10, 22]
    ],
    [
      [3, 15],
      [7, 19],
      [11, 23]
    ]
  ]
>

iex> Nx.transpose(Nx.tensor(1), axes: [])
#Nx.Tensor<
  s64
  1
>

iex> Nx.transpose(Nx.iota({2, 3, 4}, names: [:batch, :x, :y]), axes: [2, 1, :batch])
#Nx.Tensor<
  s64[y: 4][x: 3][batch: 2]
  [
    [
      [0, 12],
      [4, 16],
      [8, 20]
    ],
    [
      [1, 13],
      [5, 17],
      [9, 21]
    ],
    [
      [2, 14],
      [6, 18],
      [10, 22]
    ],
    [
      [3, 15],
      [7, 19],
      [11, 23]
    ]
  ]
>

iex> Nx.transpose(Nx.iota({2, 3, 4}, names: [:batch, :x, :y]), axes: [:y, :batch, :x])
#Nx.Tensor<
  s64[y: 4][batch: 2][x: 3]
  [
    [
      [0, 4, 8],
      [12, 16, 20]
    ],
    [
      [1, 5, 9],
      [13, 17, 21]
    ],
    [
      [2, 6, 10],
      [14, 18, 22]
    ],
    [
      [3, 7, 11],
      [15, 19, 23]
    ]
  ]
>

iex> Nx.transpose(Nx.iota({2, 3, 4}, names: [:batch, :x, :y]), axes: [:batch, :y, :x])
#Nx.Tensor<
  s64[batch: 2][y: 4][x: 3]
  [
    [
      [0, 4, 8],
      [1, 5, 9],
      [2, 6, 10],
      [3, 7, 11]
    ],
    [
      [12, 16, 20],
      [13, 17, 21],
      [14, 18, 22],
      [15, 19, 23]
    ]
  ]
>

  
  errors

  
  Errors


iex> Nx.transpose(Nx.iota({2, 2}, names: [:batch, :x]), axes: [:batch])
** (ArgumentError) expected length of permutation (1) to match rank of shape (2)

iex> Nx.transpose(Nx.iota({2, 2}), axes: [1, 2])
** (ArgumentError) given axis (2) invalid for shape with rank 2
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      Link to this function
    
    as_type(tensor, type)


      
       
       View Source
     


  


  

Changes the type of a tensor.
Note conversion between float and integers truncates the
result. Consider using round/1, floor/1, or ceil/1
before casting from float to integer to guarantee consistent
behavior.
Casting from a higher precision may lead to an overflow
or underflow, which is platform and compiler dependent
behaviour.
Casting of non-finite types to integer types are handled
such as:
	negative infinity becomes the minimum value for said type
	positive infinity becomes the maximum value for said type
	nan becomes zero


  
  examples

  
  Examples


iex> Nx.as_type(Nx.tensor([0, 1, 2], names: [:data]), :f32)
#Nx.Tensor<
  f32[data: 3]
  [0.0, 1.0, 2.0]
>

iex> Nx.as_type(Nx.tensor([0.0, 1.0, 2.0], names: [:data]), :bf16)
#Nx.Tensor<
  bf16[data: 3]
  [0.0, 1.0, 2.0]
>

iex> Nx.as_type(Nx.tensor([0.0, 1.0, 2.0], names: [:data]), :s64)
#Nx.Tensor<
  s64[data: 3]
  [0, 1, 2]
>
Casting numbers as complex will return the corresponding complex with 0 imaginary component:
iex> Nx.as_type(Nx.tensor([1, -2]), :c64)
#Nx.Tensor<
  c64[2]
  [1.0+0.0i, -2.0+0.0i]
>
Casting complex numbers will return their real parts as the target type:
iex> Nx.as_type(Nx.tensor([Complex.new(1, 2), Complex.new(0, 3), Complex.new(4, 5)]), :f64)
#Nx.Tensor<
  f64[3]
  [1.0, 0.0, 4.0]
>

iex> Nx.as_type(Nx.tensor([Complex.new(-1, 2), Complex.new(-2, 3), Complex.new(3, -4)]), :s64)
#Nx.Tensor<
  s64[3]
  [-1, -2, 3]
>
Casting of non-finite values to integer types convert to pre-determined
integer values:
iex> non_finite = Nx.tensor([:infinity, :nan, :neg_infinity])
iex> Nx.as_type(non_finite, :u8)
#Nx.Tensor<
  u8[3]
  [255, 0, 0]
>
iex> Nx.as_type(non_finite, :s32)
#Nx.Tensor<
  s32[3]
  [2147483647, 0, -2147483648]
>
Non-finite values between float types are preserved:
iex> non_finite = Nx.tensor([:infinity, :nan])
iex> Nx.as_type(non_finite, :f64)
#Nx.Tensor<
  f64[2]
  [Inf, NaN]
>
iex> Nx.as_type(non_finite, :f16)
#Nx.Tensor<
  f16[2]
  [Inf, NaN]
>

  



  
    
      
      Link to this function
    
    bitcast(tensor, type)
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Changes the type of a tensor, using a bitcast.
The width of input tensor's type must match the width
of the output type. bitcast/1 does not change the
underlying tensor data, but instead changes how
the tensor data is viewed.
Machines with different floating-point representations
will give different results.
For complex numbers, the last axis will change in size
depending on whether you are upcasting or downcasting.

  
  examples

  
  Examples


iex> t = Nx.bitcast(Nx.tensor([0, 0, 0], names: [:data], type: :s32), :f32)
#Nx.Tensor<
  f32[data: 3]
  [0.0, 0.0, 0.0]
>
iex> Nx.bitcast(t, :s32)
#Nx.Tensor<
  s32[data: 3]
  [0, 0, 0]
>

  
  error-cases

  
  Error cases


iex> Nx.bitcast(Nx.tensor([0, 1, 2], names: [:data], type: :s16), :f32)
** (ArgumentError) input type width must match new type width, got input type {:s, 16} and output type {:f, 32}

iex> Nx.bitcast(Nx.tensor([0], type: :c64), :s64)
** (ArgumentError) Nx.bitcast/2 does not support complex inputs

iex> Nx.bitcast(Nx.tensor([0], type: :s64), :c64)
** (ArgumentError) Nx.bitcast/2 does not support complex inputs
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Returns the type of the tensor.
See Nx.Type for more information.

  
  examples

  
  Examples


iex> Nx.type(Nx.tensor([1, 2, 3]))
{:s, 64}

iex> Nx.type(Nx.tensor([1, 2, 3], type: :f32))
{:f, 32}

iex> Nx.type(1)
{:s, 64}

iex> Nx.type(1.0)
{:f, 32}
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Returns the maximum over each window of size window_dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.
You may optionally specify :strides which is a tuple
of non-zero steps to take along each axis between
each window.
You may also optionally specify :padding which is either
one of :valid (no padding) or :same (pad so output shape
is the same as input shape) or a general padding configuration
for each dimension in the input tensor. Your padding configuration
cannot include any negative pad values. You may only specify
padding for the high and low edges of the given dimension. Pads
with the minimum value for the type of the given tensor.

  
  examples

  
  Examples


iex> Nx.window_max(Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]), {1, 2, 1})
#Nx.Tensor<
  s64[2][1][3]
  [
    [
      [4, 5, 6]
    ],
    [
      [4, 5, 6]
    ]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
iex> Nx.window_max(t, {2, 2, 1}, strides: [1, 2, 3], padding: [{0, 1}, {2, 0}, {1, 1}])
#Nx.Tensor<
  s64[2][2][2]
  [
    [
      [-9223372036854775808, -9223372036854775808],
      [-9223372036854775808, 6]
    ],
    [
      [-9223372036854775808, -9223372036854775808],
      [-9223372036854775808, 6]
    ]
  ]
>

iex> t = Nx.tensor([[[4.0, 2.0, 3.0], [2.0, 5.0, 6.5]], [[1.2, 2.2, 3.2], [4.0, 5.0, 6.2]]])
iex> Nx.window_max(t, {2, 1, 1}, strides: [2, 1, 1], padding: [{1, 1}, {0, 0}, {1, 1}])
#Nx.Tensor<
  f32[2][2][5]
  [
    [
      [-Inf, 4.0, 2.0, 3.0, -Inf],
      [-Inf, 2.0, 5.0, 6.5, -Inf]
    ],
    [
      [-Inf, 1.2000000476837158, 2.200000047683716, 3.200000047683716, -Inf],
      [-Inf, 4.0, 5.0, 6.199999809265137, -Inf]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: :valid, window_dilations: [1, 2, 2]]
iex> Nx.window_max(t, {1, 1, 2}, opts)
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [4, 3],
      [4, 7]
    ]
  ]
>
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Averages over each window of size window_dimensions in the
given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.
You may optionally specify :strides which is a tuple
of non-zero steps to take along each axis between
each window.
You may also optionally specify :padding which is either
one of :valid (no padding) or :same (pad so output shape
is the same as input shape) or a general padding configuration
for each dimension in the input tensor. Your padding configuration
cannot include any negative pad values. You may only specify
padding for the high and low edges of the given dimension. Pads
with 0.

  
  examples

  
  Examples


iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
iex> Nx.window_mean(t, {1, 2, 1})
#Nx.Tensor<
  f32[2][1][3]
  [
    [
      [2.5, 3.5, 4.5]
    ],
    [
      [2.5, 3.5, 4.5]
    ]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
iex> Nx.window_mean(t, {2, 2, 1}, strides: [1, 2, 3], padding: [{0, 1}, {2, 0}, {1, 1}])
#Nx.Tensor<
  f32[2][2][2]
  [
    [
      [0.0, 0.0],
      [0.0, 4.5]
    ],
    [
      [0.0, 0.0],
      [0.0, 2.25]
    ]
  ]
>

iex> t = Nx.tensor([[[4.0, 2.0, 3.0], [2.0, 5.0, 6.5]], [[1.2, 2.2, 3.2], [4.0, 5.0, 6.2]]])
iex> Nx.window_mean(t, {2, 1, 1}, strides: [2, 1, 1], padding: [{1, 1}, {0, 0}, {1, 1}])
#Nx.Tensor<
  f32[2][2][5]
  [
    [
      [0.0, 2.0, 1.0, 1.5, 0.0],
      [0.0, 1.0, 2.5, 3.25, 0.0]
    ],
    [
      [0.0, 0.6000000238418579, 1.100000023841858, 1.600000023841858, 0.0],
      [0.0, 2.0, 2.5, 3.0999999046325684, 0.0]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: :valid, window_dilations: [1, 2, 1]]
iex> Nx.window_mean(t, {1, 1, 2}, opts)
#Nx.Tensor<
  f32[1][2][3]
  [
    [
      [3.0, 1.5, 2.0],
      [3.0, 1.5, 4.0]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: :valid, window_dilations: [1, 2, 2]]
iex> Nx.window_mean(t, {1, 1, 2}, opts)
#Nx.Tensor<
  f32[1][2][2]
  [
    [
      [2.5, 2.5],
      [2.5, 4.5]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    window_min(tensor, window_dimensions, opts \\ [])


      
       
       View Source
     


  


  

Returns the minimum over each window of size window_dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.
You may optionally specify :strides which is a tuple
of non-zero steps to take along each axis between
each window.
You may also optionally specify :padding which is either
one of :valid (no padding) or :same (pad so output shape
is the same as input shape) or a general padding configuration
for each dimension in the input tensor. Your padding configuration
cannot include any negative pad values. You may only specify
padding for the high and low edges of the given dimension. Pads
with the maximum value for the type of the given tensor.

  
  examples

  
  Examples


iex> Nx.window_min(Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]), {1, 2, 1})
#Nx.Tensor<
  s64[2][1][3]
  [
    [
      [1, 2, 3]
    ],
    [
      [1, 2, 3]
    ]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
iex> Nx.window_min(t, {2, 2, 1}, strides: [1, 2, 3], padding: [{0, 1}, {2, 0}, {1, 1}])
#Nx.Tensor<
  s64[2][2][2]
  [
    [
      [9223372036854775807, 9223372036854775807],
      [9223372036854775807, 3]
    ],
    [
      [9223372036854775807, 9223372036854775807],
      [9223372036854775807, 3]
    ]
  ]
>

iex> t = Nx.tensor([[[4.0, 2.0, 3.0], [2.0, 5.0, 6.5]], [[1.2, 2.2, 3.2], [4.0, 5.0, 6.2]]])
iex> Nx.window_min(t, {2, 1, 1}, strides: [2, 1, 1], padding: [{1, 1}, {0, 0}, {1, 1}])
#Nx.Tensor<
  f32[2][2][5]
  [
    [
      [Inf, 4.0, 2.0, 3.0, Inf],
      [Inf, 2.0, 5.0, 6.5, Inf]
    ],
    [
      [Inf, 1.2000000476837158, 2.200000047683716, 3.200000047683716, Inf],
      [Inf, 4.0, 5.0, 6.199999809265137, Inf]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: :valid, window_dilations: [1, 2, 2]]
iex> Nx.window_min(t, {1, 1, 2}, opts)
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [1, 2],
      [1, 2]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    window_product(tensor, window_dimensions, opts \\ [])


      
       
       View Source
     


  


  

Returns the product over each window of size window_dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.
The rank of the input tensor and the window dimensions must
match.
You may optionally specify :strides which is a tuple
of non-zero steps to take along each axis between
each window.
You may also optionally specify :padding which is either
one of :valid (no padding) or :same (pad so output shape
is the same as input shape) or a general padding configuration
for each dimension in the input tensor. Your padding configuration
cannot include any negative pad values. You may only specify
padding for the high and low edges of the given dimension. Pads
with 1.

  
  examples

  
  Examples


iex> Nx.window_product(Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]]), {1, 2, 1})
#Nx.Tensor<
  s64[2][1][3]
  [
    [
      [4, 10, 18]
    ],
    [
      [4, 10, 18]
    ]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
iex> Nx.window_product(t, {2, 2, 1}, strides: [1, 2, 3], padding: [{0, 1}, {2, 0}, {1, 1}])
#Nx.Tensor<
  s64[2][2][2]
  [
    [
      [1, 1],
      [1, 324]
    ],
    [
      [1, 1],
      [1, 18]
    ]
  ]
>

iex> t = Nx.tensor([[[4.0, 2.0, 3.0], [2.0, 5.0, 6.5]], [[1.2, 2.2, 3.2], [4.0, 5.0, 6.2]]])
iex> Nx.window_product(t, {2, 1, 1}, strides: [2, 1, 1], padding: [{1, 1}, {0, 0}, {1, 1}])
#Nx.Tensor<
  f32[2][2][5]
  [
    [
      [1.0, 4.0, 2.0, 3.0, 1.0],
      [1.0, 2.0, 5.0, 6.5, 1.0]
    ],
    [
      [1.0, 1.2000000476837158, 2.200000047683716, 3.200000047683716, 1.0],
      [1.0, 4.0, 5.0, 6.199999809265137, 1.0]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: :valid, window_dilations: [1, 2, 2]]
iex> Nx.window_product(t, {1, 1, 2}, opts)
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [4, 6],
      [4, 14]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    window_reduce(tensor, acc, window_dimensions, opts \\ [], fun)


      
       
       View Source
     


  


  

Reduces over each window of size dimensions
in the given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.
The rank of the input tensor and the window dimensions must
match.
You may optionally specify :strides which is a tuple
of non-zero steps to take along each axis between
each window.
You may also optionally specify :padding which is either
one of :valid (no padding) or :same (pad so output shape
is the same as input shape) or a general padding configuration
for each dimension in the input tensor. Your padding configuration
cannot include any negative pad values. You may only specify
padding for the high and low edges of the given dimension. The
padding value is equal to the initial value passed to acc.
The initial value must be a number or a scalar shaped tensor.

  
  examples

  
  Examples


iex> init_value = Nx.Constants.min_finite(:s64)
iex> t = Nx.tensor([[1, 2, 3, 4], [4, 5, 6, 7], [7, 8, 9, 10], [11, 12, 13, 14]])
iex> Nx.window_reduce(t, init_value, {2, 2}, fn x, acc -> Nx.max(x, acc) end)
#Nx.Tensor<
  s64[3][3]
  [
    [5, 6, 7],
    [8, 9, 10],
    [12, 13, 14]
  ]
>

iex> init_value = Nx.Constants.min_finite(:s64)
iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
iex> opts = [padding: :same, strides: [1, 1]]
iex> Nx.window_reduce(t, init_value, {2, 2}, opts, fn x, acc -> Nx.max(x, acc) end)
#Nx.Tensor<
  s64[3][3]
  [
    [5, 6, 6],
    [8, 9, 9],
    [8, 9, 9]
  ]
>

iex> t = Nx.tensor([[1, 2, 3], [4, 5, 6]])
iex> opts = [padding: :same, strides: [1, 1]]
iex> Nx.window_reduce(t, 0, {1, 2}, opts, fn x, acc -> Nx.add(x, acc) end)
#Nx.Tensor<
  s64[2][3]
  [
    [3, 5, 3],
    [9, 11, 6]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [padding: :valid, strides: [2, 1, 1], window_dilations: [1, 1, 2]]
iex> Nx.window_reduce(t, 0, {1, 1, 2}, opts, fn x, acc -> Nx.add(x, acc) end)
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [5, 5],
      [5, 9]
    ]
  ]
>

  



    

  
    
      
      Link to this function
    
    window_scatter_max(tensor, source, init_value, window_dimensions, opts \\ [])


      
       
       View Source
     


  


  

Performs a window_reduce to select the maximum index in each
window of the input tensor according to and scatters source tensor
to corresponding maximum indices in the output tensor.
Output tensor is initialized as a full tensor with values
init_value. If indices overlap, adds overlapping source values.
The shape of the source tensor must match the valid windows in the
input tensor. This means the shape of the source tensor must match
the shape of the input tensor after a window_reduce op with padding
padding and strides strides.
This function is the gradient of window_max.

  
  examples

  
  Examples


iex> t = Nx.tensor([
...>   [7, 2, 5, 3, 10, 2],
...>   [3, 8, 9, 3, 4, 2],
...>   [1, 5, 7, 5, 6, 1],
...>   [0, 6, 2, 7, 2, 8]
...> ])
iex> opts = [strides: [2, 3], padding: :valid]
iex> Nx.window_scatter_max(t, Nx.tensor([[2, 6], [3, 1]]), 0, {2, 3}, opts)
#Nx.Tensor<
  s64[4][6]
  [
    [0, 0, 0, 0, 6, 0],
    [0, 0, 2, 0, 0, 0],
    [0, 0, 3, 0, 0, 0],
    [0, 0, 0, 0, 0, 1]
  ]
>

iex> t = Nx.tensor([
...>   [7, 2, 5, 3, 8],
...>   [3, 8, 9, 3, 4],
...>   [1, 5, 7, 5, 6],
...>   [0, 6, 2, 10, 2]
...> ])
iex> opts = [strides: [2, 2], padding: :valid]
iex> Nx.window_scatter_max(t, Nx.tensor([[2, 6], [3, 1]]), 0, {2, 3}, opts)
#Nx.Tensor<
  s64[4][5]
  [
    [0, 0, 0, 0, 0],
    [0, 0, 8, 0, 0],
    [0, 0, 3, 0, 0],
    [0, 0, 0, 1, 0]
  ]
>

  



    

  
    
      
      Link to this function
    
    window_scatter_min(tensor, source, init_value, window_dimensions, opts \\ [])


      
       
       View Source
     


  


  

Performs a window_reduce to select the minimum index in each
window of the input tensor according to and scatters source tensor
to corresponding minimum indices in the output tensor.
Output tensor is initialized as a full tensor with values
init_value. If indices overlap, adds overlapping source values.
The shape of the source tensor must match the valid windows in the
input tensor. This means the shape of the source tensor must match
the shape of the input tensor after a window_reduce op with padding
padding and strides strides.
This function is the gradient of window_min.

  
  examples

  
  Examples


iex> t = Nx.tensor([
...>   [7, 2, 5, 3, 10, 2],
...>   [3, 8, 9, 3, 4, 2],
...>   [1, 5, 7, 5, 6, 1],
...>   [0, 6, 2, 7, 2, 8]
...> ])
iex> opts = [strides: [2, 3], padding: :valid]
iex> Nx.window_scatter_min(t, Nx.tensor([[2, 6], [3, 1]]), 0, {2, 3}, opts)
#Nx.Tensor<
  s64[4][6]
  [
    [0, 2, 0, 0, 0, 0],
    [0, 0, 0, 0, 0, 6],
    [0, 0, 0, 0, 0, 1],
    [3, 0, 0, 0, 0, 0]
  ]
>

iex> t = Nx.tensor([
...>   [7, 2, 5, 3, 8],
...>   [3, 8, 9, 3, 4],
...>   [1, 5, 7, 5, 6],
...>   [0, 6, 2, 10, 2]
...> ])
iex> opts = [strides: [2, 2], padding: :valid]
iex> Nx.window_scatter_min(t, Nx.tensor([[2, 6], [3, 1]]), 0, {2, 3}, opts)
#Nx.Tensor<
  s64[4][5]
  [
    [0, 2, 0, 0, 0],
    [0, 0, 0, 6, 0],
    [0, 0, 0, 0, 0],
    [3, 0, 0, 0, 1]
  ]
>

  



    

  
    
      
      Link to this function
    
    window_sum(tensor, window_dimensions, opts \\ [])


      
       
       View Source
     


  


  

Sums over each window of size window_dimensions in the
given tensor, producing a tensor that contains the same
number of elements as valid positions of the window.
You may optionally specify :strides which is a tuple
of non-zero steps to take along each axis between
each window.
You may also optionally specify :padding which is either
one of :valid (no padding) or :same (pad so output shape
is the same as input shape) or a general padding configuration
for each dimension in the input tensor. Your padding configuration
cannot include any negative pad values. You may only specify
padding for the high and low edges of the given dimension. Pads
with 0.

  
  examples

  
  Examples


iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
iex> Nx.window_sum(t, {1, 2, 1})
#Nx.Tensor<
  s64[2][1][3]
  [
    [
      [5, 7, 9]
    ],
    [
      [5, 7, 9]
    ]
  ]
>

iex> t = Nx.tensor([[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]])
iex> Nx.window_sum(t, {2, 2, 1}, strides: [1, 2, 3], padding: [{0, 1}, {2, 0}, {1, 1}])
#Nx.Tensor<
  s64[2][2][2]
  [
    [
      [0, 0],
      [0, 18]
    ],
    [
      [0, 0],
      [0, 9]
    ]
  ]
>

iex> t = Nx.tensor([[[4.0, 2.0, 3.0], [2.0, 5.0, 6.5]], [[1.2, 2.2, 3.2], [4.0, 5.0, 6.2]]])
iex> Nx.window_sum(t, {2, 1, 1}, strides: [2, 1, 1], padding: [{1, 1}, {0, 0}, {1, 1}])
#Nx.Tensor<
  f32[2][2][5]
  [
    [
      [0.0, 4.0, 2.0, 3.0, 0.0],
      [0.0, 2.0, 5.0, 6.5, 0.0]
    ],
    [
      [0.0, 1.2000000476837158, 2.200000047683716, 3.200000047683716, 0.0],
      [0.0, 4.0, 5.0, 6.199999809265137, 0.0]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: :valid, window_dilations: [1, 2, 1]]
iex> Nx.window_sum(t, {1, 1, 2}, opts)
#Nx.Tensor<
  s64[1][2][3]
  [
    [
      [6, 3, 4],
      [6, 3, 8]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: :valid, window_dilations: [1, 2, 2]]
iex> Nx.window_sum(t, {1, 1, 2}, opts)
#Nx.Tensor<
  s64[1][2][2]
  [
    [
      [5, 5],
      [5, 9]
    ]
  ]
>

iex> t = Nx.tensor([[[4, 2, 1, 3], [4, 2, 1, 7]], [[1, 2, 5, 7], [1, 8, 9, 2]]])
iex> opts = [strides: [2, 1, 1], padding: [{2, 1}, {3, 1}, {1, 0}], window_dilations: [1, 2, 2]]
iex> Nx.window_sum(t, {2, 1, 2}, opts)
#Nx.Tensor<
  s64[2][6][3]
  [
    [
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0]
    ],
    [
      [0, 0, 0],
      [0, 0, 0],
      [0, 0, 0],
      [4, 11, 14],
      [10, 15, 19],
      [0, 0, 0]
    ]
  ]
>

  


        

      



  

    
Nx.Constants 
    



      
Common constants used in computations.

      


      
        
          
            
            Anchor for this section
          
          Summary
        


  
    
      Functions
    


      
        
          i(opts \\ [])

        


          Returns the imaginary constant.



      


      
        
          infinity()

        


          Returns infinity in f32.



      


      
        
          infinity(type, opts \\ [])

        


          Returns infinity.



      


      
        
          max(type, opts \\ [])

        


          Returns a scalar tensor with the maximum value for the given type.



      


      
        
          max_finite(type, opts \\ [])

        


          Returns a scalar tensor with the maximum finite value for the given type.



      


      
        
          min(type, opts \\ [])

        


          Returns a scalar tensor with the minimum value for the given type.



      


      
        
          min_finite(type, opts \\ [])

        


          Returns a scalar tensor with the minimum finite value for the given type.



      


      
        
          nan()

        


          Returns infinity in f32.



      


      
        
          nan(type, opts \\ [])

        


          Returns NaN (Not a Number).



      


      
        
          neg_infinity()

        


          Returns infinity in f32.



      


      
        
          neg_infinity(type, opts \\ [])

        


          Returns negative infinity.



      


      
        
          smallest_positive_normal(type, opts \\ [])

        


          Returns a scalar tensor with the maximum finite value for the given type.



      


  


      


      
        
          
            
            Anchor for this section
          
Functions
        

        


    

  
    
      
      Link to this function
    
    i(opts \\ [])


      
       
       View Source
     


  


  

Returns the imaginary constant.
Accepts the same options as Nx.tensor/2

  
  examples

  
  Examples


iex> Nx.Constants.i()
#Nx.Tensor<
  c64
  0.0+1.0i
>

iex> Nx.Constants.i(type: {:c, 128})
#Nx.Tensor<
  c128
  0.0+1.0i
>

  
  error-cases

  
  Error cases


iex> Nx.Constants.i(type: {:f, 32})
** (ArgumentError) invalid type for complex number. Expected {:c, 64} or {:c, 128}, got: {:f, 32}

  



  
    
      
      Link to this function
    
    infinity()


      
       
       View Source
     


  


  

Returns infinity in f32.

  



    

  
    
      
      Link to this function
    
    infinity(type, opts \\ [])


      
       
       View Source
     


  


  

Returns infinity.

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.infinity({:bf, 16})
#Nx.Tensor<
  bf16
  Inf
>

iex> Nx.Constants.infinity({:f, 16})
#Nx.Tensor<
  f16
  Inf
>

iex> Nx.Constants.infinity({:f, 32})
#Nx.Tensor<
  f32
  Inf
>

iex> Nx.Constants.infinity({:f, 64})
#Nx.Tensor<
  f64
  Inf
>

  



    

  
    
      
      Link to this function
    
    max(type, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor with the maximum value for the given type.
It is infinity for floating point tensors.

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.max({:u, 8})
#Nx.Tensor<
  u8
  255
>

iex> Nx.Constants.max({:f, 32})
#Nx.Tensor<
  f32
  Inf
>

  



    

  
    
      
      Link to this function
    
    max_finite(type, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor with the maximum finite value for the given type.

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.max_finite({:u, 8})
#Nx.Tensor<
  u8
  255
>

iex> Nx.Constants.max_finite({:s, 16})
#Nx.Tensor<
  s16
  32677
>

iex> Nx.Constants.max_finite({:f, 32})
#Nx.Tensor<
  f32
  3.4028234663852886e38
>

  



    

  
    
      
      Link to this function
    
    min(type, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor with the minimum value for the given type.
It is negative infinity for floating point tensors.

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.min({:u, 8})
#Nx.Tensor<
  u8
  0
>

iex> Nx.Constants.min({:f, 32})
#Nx.Tensor<
  f32
  -Inf
>

  



    

  
    
      
      Link to this function
    
    min_finite(type, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor with the minimum finite value for the given type.

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.min_finite({:u, 8})
#Nx.Tensor<
  u8
  0
>

iex> Nx.Constants.min_finite({:s, 16})
#Nx.Tensor<
  s16
  -32678
>

iex> Nx.Constants.min_finite({:f, 32})
#Nx.Tensor<
  f32
  -3.4028234663852886e38
>

  



  
    
      
      Link to this function
    
    nan()


      
       
       View Source
     


  


  

Returns infinity in f32.

  



    

  
    
      
      Link to this function
    
    nan(type, opts \\ [])


      
       
       View Source
     


  


  

Returns NaN (Not a Number).

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.nan({:bf, 16})
#Nx.Tensor<
  bf16
  NaN
>

iex> Nx.Constants.nan({:f, 16})
#Nx.Tensor<
  f16
  NaN
>

iex> Nx.Constants.nan({:f, 32})
#Nx.Tensor<
  f32
  NaN
>

iex> Nx.Constants.nan({:f, 64})
#Nx.Tensor<
  f64
  NaN
>

  



  
    
      
      Link to this function
    
    neg_infinity()


      
       
       View Source
     


  


  

Returns infinity in f32.

  



    

  
    
      
      Link to this function
    
    neg_infinity(type, opts \\ [])


      
       
       View Source
     


  


  

Returns negative infinity.

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.neg_infinity({:bf, 16})
#Nx.Tensor<
  bf16
  -Inf
>

iex> Nx.Constants.neg_infinity({:f, 16})
#Nx.Tensor<
  f16
  -Inf
>

iex> Nx.Constants.neg_infinity({:f, 32})
#Nx.Tensor<
  f32
  -Inf
>

iex> Nx.Constants.neg_infinity({:f, 64})
#Nx.Tensor<
  f64
  -Inf
>

  



    

  
    
      
      Link to this function
    
    smallest_positive_normal(type, opts \\ [])


      
       
       View Source
     


  


  

Returns a scalar tensor with the maximum finite value for the given type.

  
  options

  
  Options


	:backend - a backend to allocate the tensor on.


  
  examples

  
  Examples


iex> Nx.Constants.smallest_positive_normal({:f, 64})
#Nx.Tensor<
  f64
  2.2250738585072014e-308
>

iex> Nx.Constants.smallest_positive_normal({:f, 32})
#Nx.Tensor<
  f32
  1.1754943508222875e-38
>

iex> Nx.Constants.smallest_positive_normal({:f, 16})
#Nx.Tensor<
  f16
  6.103515625e-5
>

iex> Nx.Constants.smallest_positive_normal(:bf16)
#Nx.Tensor<
  bf16
  1.1754943508222875e-38
>

iex> Nx.Constants.smallest_positive_normal({:s, 32})
** (ArgumentError) only floating types are supported, got: {:s, 32}
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Numerical functions.
A numerical function is a subset of Elixir tailored for
numerical computations. For example, the following function:
defmodule MyModule do
  import Nx.Defn

  defn softmax(t) do
    Nx.exp(t) / Nx.sum(Nx.exp(t))
  end
end
will work with scalars, vector, matrices, and n-dimensional
tensors. Depending on your compiler of choice, the code can even
be JIT-compiled and run either on the CPU or GPU.
To support these features, defn is a subset of Elixir. It
replaces Elixir's Kernel by Nx.Defn.Kernel. Nx.Defn.Kernel
provides tensor-aware operators, such as +, -, etc, while
also preserving many high-level constructs known to Elixir
developers, such as pipe operator, aliases, conditionals,
pattern-matching, the access syntax, and more:
For example, the code above can also be written as:
defmodule MyModule do
  import Nx.Defn

  defn softmax(t) do
    t
    |> Nx.exp(t)
    |> then(& &1 / Nx.sum(&1))
  end
end
Please consult Nx.Defn.Kernel for a complete reference.
Operators
defn attempts to keep as close to the Elixir semantics as
possible but that's not achievable. For example, mathematical
and bitwise operators (+, -, &&&, <<<, etc.) in Elixir
work on numbers, which means mapping them to tensors is
straight-forward and they largely preserve the same semantics,
except they are now multi-dimensional.
On the other hand, the logical operators and, or, and not
work with booleans in Elixir (true and false), which map
to 0 and 1 in defn.
Therefore, when working with logical operators inside defn,
0 is considered false and all other numbers are considered
true, which is represented as the number 1. For example, in
defn, 0 and 1 as well as 0 and 2 return 0, while
1 and 1 or 1 and -1 will return 1.
The same semantics apply to conditional expressions inside defn,
such as if, while, etc.
JIT compilers
The power of Nx.Defn is given by its compilers. The default
compiler is Nx.Defn.Evaluator, which evalutes the code.
You can use jit/3 to compile a function on the fly using a
different compiler, such as EXLA:
fun = Nx.Defn.jit(&MyModule.softmax/1, compiler: EXLA)
fun.(my_tensor)
The above will return an anonymous function that optimizes,
compiles, and run softmax on the fly on the CPU (or the GPU)
if available.
You can also change the default compiler for all numerical
definitions (defn) by setting the default options. This can
be done in your config/*.exs files as follows:
config :nx, :default_defn_options, compiler: EXLA
Now calling MyModule.softmax(my_tensor) will use EXLA even
without wrapping it in jit/2.
However, note that compilation may be quite time consuming on
the first invocation, that's why it is often preferred to use
the compiler: EXLA option when calling the functions in this
module instead. EXLA, in particular, also exports a EXLA.jit/2
function for convenience.
defn functions are compiled when they are invoked, based on
the type and shapes of the tensors given as arguments. The
compilation is then cached based on the tensors shapes and types.
Calling the same function with a tensor of different values but
same shape and type means no recompilation is performed.
For those interested in writing custom compilers, see Nx.Defn.Compiler.
Invoking custom Elixir code
Inside defn you can only call other defn functions and
the functions in the Nx module. However, it is possible
to use transforms, defined with either deftransform or
deftransformp to invoke any Elixir code.
You can call code which was defined with deftransform from another module:
defmodule MyRemoteModule do
  import Nx.Defn

  deftransform remote_elixir_code(value) do
    IO.inspect(value)
  end
end

defn add_and_mult(a, b, c) do
  res = a * b + c
  MyRemoteModule.remote_elixir_code(res)
end
You can also define and call a private transform defined through deftransformp:
defn add_and_mult(a, b, c) do
  res = a * b + c
  custom_elixir_code(res)
end

deftransformp custom_elixir_code(value), do: IO.inspect(value)
For example, the two code snippets invoke IO.inspect/1, which is
not a defn function, with the value of res. This is useful
as it allows developers to transform defn code to optimize,
add new properties, and so on.
The only difference between using deftransform and deftransformp is
wether you want to expose and share the code with other modules, just
like def and defp.
Transforms can also be used to manipulate Elixir data structures,
such as options. defn expects all inputs to be tensors, with the
exception of a default argument (declared with \\) which will be
treated as options.
For example, imagine you want to support options where the :axis
key is required. While you can't invoke Keyword directly, you
can do it via a transform:
defn sum_axis(t, opts \\ []) do
  opts = keyword!(opts, [:axis])
  axis = get_axis(opts)
  Nx.sum(t, axes: [axis])
end

deftransformp get_axis(opts), do: Keyword.fetch!(opts, :axis)
Inputs and outputs types
Nx and defn expect the arguments to be numbers, tensors,
or one composite data type that implements Nx.LazyContainer.
Tuples and maps implement Nx.LazyContainer by default.
As previously described, defn are cached based on the shape,
type, and names of the input tensors, but not their values.
defn also accepts two special arguments: functions (or tuples
of functions) and lists (most commonly as keyword lists). Those
values are passed as is to numerical definitions and cached as
a whole. For this reason, you must never capture tensors in
functions or pass tensors in keyword lists.
When numbers are given as arguments, they are always immediately
converted to tensors on invocation. If you want to keep numbers
as is or if you want to pass any other value to numerical definitions,
they must be given as keyword lists.
Default arguments
defn functions support default arguments. They are typically used
as options. For example, imagine you want to create a function named
zeros, which returns a tensor of zeroes with a given type and shape.
It could be implemented like this:
defn zeros(opts \\ []) do
  opts = keyword!(opts, type: {:f, 32}, shape: {})
  Nx.broadcast(Nx.tensor(0, type: opts[:type]), opts[:shape])
end
The function above accepts opts which are then validated and given
default values via the keyword!/2 function. Note that while it is
possible to access options via the Access syntax, such as opts[:shape],
it is not possible to directly call functions in the Keyword module
inside defn. To freely manipulate any Elixir value inside defn,
you have to use transforms, as described in the "Invoking custom Elixir
code" section.
Important! When it comes to JIT compilation, each different set of
options (as well as anonymous functions) will lead to a different
compilation of the numerical function.
Furthermore, if tensors are given through keyword lists, they won't
be cached effectively. Tensors in defn are cached based on their shape
and type, not their value, but this is not true if the tensor is given
via a default argument or captured by an anonymous function. For this
reason, it is extremely discouraged to pass tensors through anonymous
functions and default arguments.

Working with maps and structs
While Nx supports maps in defn, you must be careful if your numerical
definitions are receiving maps and returning maps. For example, imagine
this code:
defn update_a(map) do
  %{map | a: Nx.add(map.a, 1)}
end
The following code increments the value under the key :a
by 1. However, because the function receives the whole map and
returns the whole map, it means if the map has 120 keys, the
whole map will be copied to the CPU/GPU, and then brought back.
However, if you do this instead:
defn update_a(map) do
  Nx.add(map.a, 1)
end
And then update the map on Elixir, outside of defn:
%{map | a: update_a(map)}
Nx will only send the parts of the map that matters.
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          compile(fun, template_args, opts \\ [])

        


          Compiles the given anonymous function with the given tensor shapes.



      


      
        
          debug_expr(fun, opts \\ [])

        


          Wraps an anonymous function to return its underlying defn expression.



      


      
        
          debug_expr_apply(fun, args, opts \\ [])

        


          Invokes the anonymous function to return its underlying defn expression.



      


      
        
          default_options()

        


          Gets the default options for the current process.



      


      
        
          default_options(options)

        


          Sets the default options for defn in the current process.



      


      
        
          defn(call, list)

        


          Defines a public numerical function.



      


      
        
          defnp(call, list)

        


          Defines a private numerical function.



      


      
        
          deftransform(call)

        


          Can be used to define bodiless clauses for multi-clause transforms.



      


      
        
          deftransform(call, list)

        


          Defines a transform that executes the given fun with arg
when building defn expressions.



      


      
        
          deftransformp(call)

        


          Private function version for deftransform/1



      


      
        
          deftransformp(call, list)

        


          Private function version for deftransform/2



      


      
        
          global_default_options(options)

        


          Sets the default options globally.



      


      
        
          grad(fun)

        


          Receives an anonymous function and returns a new anonymous function
that returns the gradient of the input function when invoked.



      


      
        
          grad(var_or_vars, fun)

        


          Computes the gradient of the given var on fun.



      


      
        
          jit(fun, opts \\ [])

        


          Wraps an anonymous function with just-in-time compilation.



      


      
        
          jit(fun, args, opts)

            deprecated

        


      


      
        
          jit_apply(fun, args, opts \\ [])

        


          Invokes the anonymous function with just-in-time compilation.



      


      
        
          jit_or_apply(fun, args, opts \\ [])

            deprecated

        


      


      
        
          stream(fun, args, opts \\ [])

        


          Starts streaming the given anonymous function with just-in-time
compilation.



      


      
        
          value_and_grad(fun)

        


          Receives an anonymous function and returns a new anonymous function
that returns the value and gradient of the input function when invoked.



      


      
        
          value_and_grad(var_or_vars, fun, transform \\ & &1)

        


          Computes the value and gradient of the given var on fun
with an optional data transformation.
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      Link to this function
    
    compile(fun, template_args, opts \\ [])


      
       
       View Source
     


  


  

Compiles the given anonymous function with the given tensor shapes.
While jit/2 compiles a function just-in time based on the
input shapes, this function precompiles the given anonymous
function based on the input shapes. This can be beneficial for
large numerical definitions, where the cache mechanism in jit/2
may take miliseconds.
For example, take the following definition:
defn softmax(t), do: Nx.exp(t) / Nx.sum(Nx.exp(t))
You can jit and then apply it as:
fun = Nx.Defn.compile(&softmax/1, [Nx.template({3}, {:s, 64})], compiler: EXLA)
fun.(Nx.tensor([1, 2, 3]))
You can also pass a mixture of templates and options when
compiling a function. In such cases, you must only pass
the inputs when invoking the compiled function, as the options
will already be embedded in its compiled value:
fun = Nx.Defn.compile(&Nx.sum/2, [Nx.template({2, 2}, {:s, 64}), [axes: [1]]])
fun.(Nx.iota({2, 2}))
If the input tensors do not match the shape of the tensors
given on compilation, it will raise.

  
  options

  
  Options


	:compiler - the compiler for the JIT compilation

	:hooks - a map of hooks to execute. See Nx.Defn.Kernel.hook/3



  



    

  
    
      
      Link to this function
    
    debug_expr(fun, opts \\ [])
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Wraps an anonymous function to return its underlying defn expression.
Warning
This function must be invoked for debugging purposes only.


  
  options

  
  Options


	:hooks - a map of hooks to execute. See Nx.Defn.Kernel.hook/3


  



    

  
    
      
      Link to this function
    
    debug_expr_apply(fun, args, opts \\ [])


      
       
       View Source
     


  


  

Invokes the anonymous function to return its underlying defn expression.
Warning
This function must be invoked for debugging purposes only.

It accepts the same options as debug_expr/2.

  



  
    
      
      Link to this function
    
    default_options()
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Gets the default options for the current process.

  



  
    
      
      Link to this function
    
    default_options(options)
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Sets the default options for defn in the current process.
The options defined here apply to all future invocations of
defn done by the current process. It also applies to calls
to the jit/3 and stream/3 functions in this module.
The default options are stored only in the process dictionary
and override any global options. This means if you start a
separate process, such as Task, the default options must be
set on the new process too.
This function is mostly used for scripting and testing. In your
applications, you typically set the default options in your
config files:
  config :nx, :default_defn_options, [compiler: EXLA, client: :cuda]

  



  
    
      
      Link to this macro
    
    defn(call, list)
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      (macro)

  


  

Defines a public numerical function.

  



  
    
      
      Link to this macro
    
    defnp(call, list)


      
       
       View Source
     


      (macro)

  


  

Defines a private numerical function.
Private numerical functions are always inlined by
their callers at compilation time. This happens to
all local function calls within defn.

  



  
    
      
      Link to this macro
    
    deftransform(call)
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      (macro)

  


  

Can be used to define bodiless clauses for multi-clause transforms.
See also: deftransform/2

  
  examples

  
  Examples


deftransform foo(bar, baz \ 1)
deftransform foo(bar, 1), do: bar
deftransform foo(bar, baz), do: bar + baz

  



  
    
      
      Link to this macro
    
    deftransform(call, list)
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      (macro)

  


  

Defines a transform that executes the given fun with arg
when building defn expressions.

  
  example

  
  Example


Take the following defn expression:
defn tanh_power(a, b) do
  Nx.tanh(a) + Nx.power(b, 2)
end
Let's see a trivial example, which is to use IO.inspect/1 to
print a tensor expression at definition time:
defn tanh_power(a, b) do
  Nx.tanh(a) + Nx.power(b, 2) |> my_inspect()
end

deftransformp my_inspect(expr), do: IO.inspect(expr)
Or:
defn tanh_power(a, b) do
  res = Nx.tanh(a) + Nx.power(b, 2)
  my_inspect(res)
  res
end
When invoked in both cases, it will print the expression being built
by defn:
#Nx.Defn.Expr<
  parameter a
  parameter c
  b = tanh [ a ] ()
  d = power [ c, 2 ] ()
  e = add [ b, d ] ()
>
Although, for convenience, you might use print_expr/2 instead.

  



  
    
      
      Link to this macro
    
    deftransformp(call)
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      (macro)

  


  

Private function version for deftransform/1

  



  
    
      
      Link to this macro
    
    deftransformp(call, list)


      
       
       View Source
     


      (macro)

  


  

Private function version for deftransform/2

  



  
    
      
      Link to this function
    
    global_default_options(options)


      
       
       View Source
     


  


  

Sets the default options globally.
The options defined here apply to all future invocations of
defn. It also applies to calls to the jit/3 and stream/3
functions in this module.
You must avoid calling this function at runtime. It is mostly
useful during scripts or code notebooks to set a default.
If you need to configure a global default options in your
applications, you can do so in your config/*.exs files:
config :nx, :default_defn_options, [compiler: EXLA, client: :cuda]
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Receives an anonymous function and returns a new anonymous function
that returns the gradient of the input function when invoked.

  
  examples

  
  Examples


iex> fun = Nx.Defn.grad(fn x -> Nx.sin(x) end)
iex> fun.(Nx.tensor(0))
#Nx.Tensor<
  f32
  1.0
>
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    grad(var_or_vars, fun)
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Computes the gradient of the given var on fun.
The result of the grad function must be a scalar tensor.
If a non-scalar tensor is given, it is assumed the additional
dimensions are batch dimensions.

  
  examples

  
  Examples


defn tanh_grad(t) do
  grad(t, &Nx.tanh/&1)
end
To differentiate on multiple vars, pass a tuple as first argument:
defn tanh_power_grad(a, b) do
  grad({a, b}, fn {a, b} -> Nx.tanh(a) + Nx.power(b, 2) end)
end
var_or_vars can be any Nx.Container with one or multiple
tensors.

  



    

  
    
      
      Link to this function
    
    jit(fun, opts \\ [])


      
       
       View Source
     


  


  

Wraps an anonymous function with just-in-time compilation.
Once invoked, the wrapped anonymous function will perform just
in time compilation with the configured compiler. For example,
take the following definition:
defn softmax(t), do: Nx.exp(t) / Nx.sum(Nx.exp(t))
You can jit and then apply it as:
fun = Nx.Defn.jit(&softmax/1, compiler: EXLA)
fun.(Nx.tensor([1, 2, 3]))

  
  options

  
  Options


	:compiler - the compiler for the JIT compilation

	:hooks - a map of hooks to execute. See Nx.Defn.Kernel.hook/3

	:on_conflict - what to do if a JIT compilation is already in place.
It may be :raise (the default), :force (forces a new JIT compilation),
or :reuse (reuses the exiting JIT compilation). It is not recommended
to set the :compiler option when reusing.
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    jit(fun, args, opts)
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      This function is deprecated. Use jit/2 instead.
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    jit_apply(fun, args, opts \\ [])
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