

 NimblePublisher

 v0.1.3

 Table of contents

 	Modules

 	NimblePublisher

NimblePublisher

NimblePublisher is a minimal filesystem-based publishing engine with Markdown support and
code highlighting.
use NimblePublisher,
 build: Article,
 from: Application.app_dir(:app_name, "priv/articles/**/*.md"),
 as: :articles,
 highlighters: [:makeup_elixir, :makeup_erlang]
The example above will get all articles in the given directory,
call Article.build/3 for each article, passing the filename,
the metadata, and the article body, and define a module attribute
named @articles with all built articles returned by the
Article.build/3 function.
Each article in the articles directory must have the format:
%{
 title: "Hello world"
}

Body of the "Hello world" article.

This is a *markdown* document with support for code highlighters:

```elixir
IO.puts "hello world".
```
Options
	:build - the name of the module that will build each entry

	:from - a wildcard pattern where to find all entries. Files with the
.md or .markdown extension will be converted to Markdown with
Earmark. Other files will be kept as is.

	:as - the name of the module attribute to store all built entries

	:highlighters - which code highlighters to use. NimblePublisher
uses Makeup for syntax highlighting and you will need to add its
.css classes. You can generate the CSS classes by calling
Makeup.stylesheet(:vim_style, "makeup") inside iex -S mix.
You can replace :vim_style by any style of your choice
defined here.

	:earmark_options - an %Earmark.Options{} struct

	:parser - custom module with a parse/2 function that receives the file path
and content as params. It must return a 2 element tuple with attributes and body.

Examples
Let's see a complete example. First add nimble_publisher with
the desired highlighters as a dependency:
def deps do
 [
 {:nimble_publisher, "~> 0.1.0"},
 {:makeup_elixir, ">= 0.0.0"},
 {:makeup_erlang, ">= 0.0.0"}
]
end
In this example, we are building a blog. Each post stays in the
"posts" directory with the format:
/posts/YEAR/MONTH-DAY-ID.md
A typical blog post will look like this:
/posts/2020/04-17-hello-world.md
%{
 title: "Hello world!",
 author: "José Valim",
 tags: ~w(hello),
 description: "Let's learn how to say hello world"
}

This is the post.
Therefore, we will define a Post struct that expects all of the fields
above. We will also have a :date field that we will build from the
filename. Overall, it will look like this:
defmodule MyApp.Blog.Post do
 @enforce_keys [:id, :author, :title, :body, :description, :tags, :date]
 defstruct [:id, :author, :title, :body, :description, :tags, :date]

 def build(filename, attrs, body) do
 [year, month_day_id] = filename |> Path.rootname() |> Path.split() |> Enum.take(-2)
 [month, day, id] = String.split(month_day_id, "-", parts: 3)
 date = Date.from_iso8601!("#{year}-#{month}-#{day}")
 struct!(__MODULE__, [id: id, date: date, body: body] ++ Map.to_list(attrs))
 end
end
Now, we are ready to define our MyApp.Blog with NimblePublisher:
defmodule MyApp.Blog do
 alias MyApp.Blog.Post

 use NimblePublisher,
 build: Post,
 from: Application.app_dir(:my_app, "priv/posts/**/*.md"),
 as: :posts,
 highlighters: [:makeup_elixir, :makeup_erlang]

 # The @posts variable is first defined by NimblePublisher.
 # Let's further modify it by sorting all posts by descending date.
 @posts Enum.sort_by(@posts, & &1.date, {:desc, Date})

 # Let's also get all tags
 @tags @posts |> Enum.flat_map(& &1.tags) |> Enum.uniq() |> Enum.sort()

 # And finally export them
 def all_posts, do: @posts
 def all_tags, do: @tags
end
Important: Avoid injecting the @posts attribute into multiple functions,
as each call will make a complete copy of all posts. For example, if you want
to show define recent_posts() as well as all_posts(), DO NOT do this:
def all_posts, do: @posts
def recent_posts, do: Enum.take(@posts, 3)
Instead do this:
def all_posts, do: @posts
def recent_posts, do: Enum.take(all_posts(), 3)
Other helpers
You may want to define other helpers to traverse your published resources.
For example, if you want to get posts by ID or with a given tag, you can
define additional functions as shown below:
defmodule NotFoundError do
 defexception [:message, plug_status: 404]
end

def get_post_by_id!(id) do
 Enum.find(all_posts(), &(&1.id == id)) ||
 raise NotFoundError, "post with id=#{id} not found"
end

def get_posts_by_tag!(tag) do
 case Enum.filter(all_posts(), &(tag in &1.tags)) do
 [] -> raise NotFoundError, "posts with tag=#{tag} not found"
 posts -> posts
 end
end
Custom parser
You may want to define a custom function to parse the content of your files.
 use NimblePublisher,
 ...
 parser: Parser,

defmodule Parser do
 def parse(path, contents) do
 [attrs, body] = :binary.split(contents, ["\n---\n"])
 {Jason.decode!(attrs), body}
 end
end
The parse/2 function from this module receives the file path and content as params.
It must return a 2 element tuple with attributes and body.
Live reloading
If you are using Phoenix, you can enable live reloading by simply telling Phoenix to watch the “posts” directory. Open up "config/dev.exs", search for live_reload: and add this to the list of patterns:
live_reload: [
 patterns: [
 ...,
 ~r"posts/*/.*(md)$"
]
]
Learn more
	Dashbit's blog post which was the foundation for NimblePublisher
	Elixir School's lesson on using NimblePublisher, complete with Phoenix integration

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

