

 nerves_system_sama5d27_wlsom1_ek

 v0.4.4

 Table of contents

 	ATSAMA5D27-WLSOM1 Evaluation Kit

ATSAMA5D27-WLSOM1 Evaluation Kit

https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DM320117
[image: ATSAMA5D27-WLSOM1 Evaluation Kit image]

^{[Image credit](https://www.microchip.com/_ImagedCopy/191126-MPU-PHOTO-ATSAMA5D27-WLSOM1-EK1%20Evaluation%20Kit-Angle-5x7.jpg)}	Feature	Description
	CPU	500 MHz ARM Cortex-A5
	Memory	256M DDR2
	Storage	MicroSD
	GPIO, I2C, SPI	Yes - Elixir Circuits
	UART	ttyS0
	Ethernet	Yes
	Video	Yes
	Camera Interface	Yes - Parallel ISC

Docs
	ATSAMA5D27-WLSOM1-EK1 dev kit user guide
	ATSAMA5D27-WLSOM1 datasheet
	SAMA5D2 series datasheet

Using
The most common way of using this Nerves System is create a project with mix nerves.new and to export MIX_TARGET=sama5d27_wlsom1_ek. See the Getting started
guide
for more information.
If you need custom modifications to this system for your device, clone this
repository and update as described in Making custom
systems
GPIO
The WLSOM1 exposes four banks of GPIO: A, B, C, D. The physical GPIO
pins are numbered logically in sequence from PA0 (gpio0) to
PD31 (gpio127) when exposed via sysfs or Circuits.GPIO.
	Pin	GPIO		Pin	GPIO		Pin	GPIO		Pin	GPIO
	PA0	0		PB0	32		PC0	64		PD0	96
	PA1	1		PB1	33		PC1	65		PD1	97
	PA2	2		PB2	34		PC2	66		PD2	98
	PA3	3		PB3	35		PC3	67		PD3	99
	PA4	4		PB4	36		PC4	68		PD4	100
	PA5	5		PB5	37		PC5	69		PD5	101
	PA6	6		PB6	38		PC6	70		PD6	102
	PA7	7		PB7	39		PC7	71		PD7	103
	PA8	8		PB8	40		PC8	72		PD8	104
	PA9	9		PB9	41		PC9	73		PD9	105
	PA10	10		PB10	42		PC10	74		PD10	106
	PA11	11		PB11	43		PC11	75		PD11	107
	PA12	12		PB12	44		PC12	76		PD12	108
	PA13	13		PB13	45		PC13	77		PD13	109
	PA14	14		PB14	46		PC14	78		PD14	110
	PA15	15		PB15	47		PC15	79		PD15	111
	PA16	16		PB16	48		PC16	80		PD16	112
	PA17	17		PB17	49		PC17	81		PD17	113
	PA18	18		PB18	50		PC18	82		PD18	114
	PA19	19		PB19	51		PC19	83		PD19	115
	PA20	20		PB20	52		PC20	84		PD20	116
	PA21	21		PB21	53		PC21	85		PD21	117
	PA22	22		PB22	54		PC22	86		PD22	118
	PA23	23		PB23	55		PC23	87		PD23	119
	PA24	24		PB24	56		PC24	88		PD24	120
	PA25	25		PB25	57		PC25	89		PD25	121
	PA26	26		PB26	58		PC26	90		PD26	122
	PA27	27		PB27	59		PC27	91		PD27	123
	PA28	28		PB28	60		PC28	92		PD28	124
	PA29	29		PB29	61		PC29	93		PD29	125
	PA30	30		PB30	62		PC30	94		PD30	126
	PA31	31		PB31	63		PC31	95		PD31	127

UART
	Header	Device
	mikro BUS 1	ttyS3
	mikro BUS 2	ttyS2

Wi-Fi
The WLSOM1 contains a ATWILC3000 Wi-Fi / Bluetooth module. Wi-Fi can be enabled
by loading the kernel module.
iex> cmd "modprobe wilc-sdio"
If the Wi-Fi module is set to access point (AP) mode, it will need to be reset
if its VintageNet configuration is updated at runtime.
cmd "rmmod wilc-sdio"
cmd "modprobe wilc-sdio"
Ethernet
A unique hardware address for the eth0 interface is programmed into the QSPI
flash memory from the factory and is read set by U-Boot. Inorder to read from
the flash memory, you will need to ensure the QSPI flash is being powered by
removing the shunt from jumper J8 labeled "Disable Boot".
The hardware address of the interface can also be forced by setting the U-Boot
environment variable ethaddr. If neither of these locations are accessible,
Linux will assign a random hardware address to the interface on every boot.
Supported USB Wi-Fi Devices
The base image includes drivers and firmware for Ralink RT53xx (rt2800usb
driver) and RealTek RTL8712U (r8712u driver) devices.
We are still working out which subset of all possible Wi-Fi dongles to support
in our images. At some point, we may have the option to support all dongles and
selectively install modules at packaging time, but until then, these drivers and
their associated firmware blobs add significantly to Nerves release images.
If you are unsure what driver your Wi-Fi dongle requires, run Debian and
configure Wi-Fi for your device. At a shell prompt, run lsmod to see which
drivers are loaded. Running dmesg may also give a clue. When using dmesg,
reinsert the USB dongle to generate new log messages if you don't see them.
Provisioning devices
This system supports storing provisioning information in a small key-value store
outside of any filesystem. Provisioning is an optional step and reasonable
defaults are provided if this is missing.
Provisioning information can be queried using the Nerves.Runtime KV store's
Nerves.Runtime.KV.get/1
function.
Keys used by this system are:
	Key	Example Value	Description
	nerves_serial_number	"12345678"	By default, this string is used to create unique hostnames and Erlang node names.

The normal procedure would be to set these keys once in manufacturing or before
deployment and then leave them alone.
For example, to provision a serial number on a running device, run the following
and reboot:
iex> cmd("fw_setenv nerves_serial_number 12345678")
This system supports setting the serial number offline. To do this, set the
NERVES_SERIAL_NUMBER environment variable when burning the firmware. If you're
programming MicroSD cards using fwup, the commandline is:
sudo NERVES_SERIAL_NUMBER=12345678 fwup path_to_firmware.fw

Serial numbers are stored on the MicroSD card so if the MicroSD card is
replaced, the serial number will need to be reprogrammed. The numbers are stored
in a U-boot environment block. This is a special region that is separate from
the application partition so reformatting the application partition will not
lose the serial number or any other data stored in this block.
Additional key value pairs can be provisioned by overriding the default provisioning.conf
file location by setting the environment variable
NERVES_PROVISIONING=/path/to/provisioning.conf. The default provisioning.conf
will set the nerves_serial_number, if you override the location to this file,
you will be responsible for setting this yourself.
Hostname
By default the hostname will only include the last 4 digits of the board
identifier. If you would rather use the entire identifier, set the following
in your config/target.exs file:
config :nerves,
 erlinit: [
 uniqueid_exec: "boardid"
]

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

