

 nerves_system_osd32mp1

 v0.10.0

 Table of contents

 	Generic OSD32MP1 Support

 	Changelog

Generic OSD32MP1 Support

[image: CircleCI]
[image: Hex version]
This is the base Nerves System configuration for the
OSD32MP1-BRK
[image: OSD32MP1-BRK]
	Feature	Description
	CPU	up to 800 mHz ARM dual Cortex-A7
	Memory	up to 1 GB DRAM
	Storage	MicroSD card
	Linux Kernel	5.4
	IEx terminal	UART ttySTM0
	GPIO, I2C, SPI	Yes - Elixir Circuits
	ADC	Yes
	PWM	Yes, but no Elixir support
	UART	ttySTM0 + more via device tree overlay
	Coprocessor	embedded M4 STM32
	Camera	None
	Ethernet	No
	WiFi	Requires USB WiFi dongle
	Bluetooth	No
	Audio	No

WARNING
This system is still considered in alpha state, expect backwards incompatible changes
to be made
Using
The most common way of using this Nerves System is create a project with mix nerves.new and to export MIX_TARGET=osd32mp1. See the Getting started
guide
for more information.
If you need custom modifications to this system for your device, clone this
repository and update as described in Making custom
systems.
Boot Jumpers
The boot jumpers on the OSD32MP1-BRK board should be set like this to boot from
Micro SDCard. Orient the board so that the USB connector is to the right of the
switch.
	label		
	0		X
	1	X	
	2		X
	WP	X	

Supported USB WiFi Devices
The base image includes drivers and firmware for Ralink RT53xx (rt2800usb
driver) and RealTek RTL8712U (r8712u driver) devices.
We are still working out which subset of all possible WiFi dongles to support in
our images. At some point, we may have the option to support all dongles and
selectively install modules at packaging time, but until then, these drivers and
their associated firmware blobs add significantly to Nerves release images.
If you are unsure what driver your WiFi dongle requires, run Debian and
configure WiFi for your device. At a shell prompt, run lsmod to see which
drivers are loaded. Running dmesg may also give a clue. When using dmesg,
reinsert the USB dongle to generate new log messages if you don't see them.
Provisioning devices
This system supports storing provisioning information in a small key-value store
outside of any filesystem. Provisioning is an optional step and reasonable
defaults are provided if this is missing.
Provisioning information can be queried using the Nerves.Runtime KV store's
Nerves.Runtime.KV.get/1
function.
Keys used by this system are:
	Key	Example Value	Description
	nerves_serial_number	"12345678"	By default, this string is used to create unique hostnames and Erlang node names.

The normal procedure would be to set these keys once in manufacturing or before
deployment and then leave them alone.
For example, to provision a serial number on a running device, run the following
and reboot:
iex> cmd("fw_setenv nerves_serial_number 12345678")
This system supports setting the serial number offline. To do this, set the
NERVES_SERIAL_NUMBER environment variable when burning the firmware. If you're
programming MicroSD cards using fwup, the commandline is:
sudo NERVES_SERIAL_NUMBER=12345678 fwup path_to_firmware.fw

Serial numbers are stored on the MicroSD card so if the MicroSD card is
replaced, the serial number will need to be reprogrammed. The numbers are stored
in a U-boot environment block. This is a special region that is separate from
the application partition so reformatting the application partition will not
lose the serial number or any other data stored in this block.
Additional key value pairs can be provisioned by overriding the default
provisioning.conf file location by setting the environment variable
NERVES_PROVISIONING=/path/to/provisioning.conf. The default provisioning.conf
will set the nerves_serial_number, if you override the location to this file,
you will be responsible for setting this yourself.

Changelog

This project does NOT follow semantic versioning. The version increases as
follows:
	Major version updates are breaking updates to the build infrastructure.
These should be very rare.
	Minor version updates are made for every major Buildroot release. This
may also include Erlang/OTP and Linux kernel updates. These are made four
times a year shortly after the Buildroot releases.
	Patch version updates are made for Buildroot minor releases, Erlang/OTP
releases, and Linux kernel updates. They're also made to fix bugs and add
features to the build infrastructure.

v0.10.0
This release updates to Buildroot 2022.02.1 and OTP 25.0. While this should be
an easy update for most projects, many programs have been updated. Please review
the changes in the updated dependencies for details.
	Updated dependencies	nerves_system_br v1.19.0
	Buildroot 2022.02.1. Also see Buildroot 2022.02
	Erlang/OTP 25.0

v0.9.4
This release bumps Erlang to 24.3.2 and should be a low risk upgrade from the
previous release.
	Updated dependencies	nerves_system_br v1.18.6

v0.9.3
This is a Buildroot and Erlang bug and security fix release. It should be a low
risk upgrade from the previous release.
	Updated dependencies	nerves_system_br v1.18.5

v0.9.2
This is a Buildroot and Erlang bug fix release. It should be a low risk upgrade
from the previous release.
	Updated dependencies
	nerves_system_br v1.18.4

	Changes
	Specify CPU-specific flags when compiling NIFs and ports. This fixes an
issue where some optimizations could not be enabled in NIFs even though it
should be possible to have them. E.g., ARM NEON support for CPUs that have
it.

v0.9.1
	Updated dependencies
	nerves_system_br v1.18.3

	Changes
	Programs that use OpenMP will run now. The OpenMP shared library
(libgomp.so) was supplied by the toolchain, but not copied.

v0.9.0
This release updates to Buildroot 2021.11 and OTP 24.2. If you have made a
custom system, please review the nerves_system_br release
notes.
	Updated dependencies
	nerves_system_br v1.18.2
	Buildroot 2021.11
	Erlang/OTP 24.2
	GCC 10.3

	Improvements
	Support for the dl.nerves-project.org backup site. Due to a GitHub outage
in November, there was a 2 day period of failing builds since some packages
could not be downloaded. We implemented the backup site to prevent this in
the future. This update is in the nerves_defconfig.
	Use new build ORB on CircleCI. This ORB will shorten build times to fit in
CircleCI's new free tier limits. Please update if building your own systems.

v0.8.3
	Updated dependencies	nerves_system_br v1.17.4
	Buildroot 2021.08.2
	Erlang/OTP 24.1.7.

v0.8.2
	Updated dependencies	nerves_system_br v1.17.3
	Erlang/OTP 24.1.4.

v0.8.1
This is a security/bug fix patch release. It should be safe to update for
everyone.
	Updated dependencies
	nerves_system_br v1.17.1
	Buildroot 2021.08.1
	Erlang/OTP 24.1.2

	Improvements
	Include software versioning and licensing info (see legal-info directory in
artifact)

v0.8.0
This release updates to Buildroot 2021.08 and OTP 24.1. If you have made a
custom system off this one, please review the nerves_system_br v1.17.0 release
notes.
	Updated dependencies	nerves_system_br v1.17.0
	Buildroot 2021.08
	Erlang/OTP 24.1

v0.7.2
This release updates Erlang/OTP from 24.0.3 to 24.0.5 and Buildroot from 2021.05
to 2021.05.1. Both of these are security/bug fix updates. This is expected to be
a safe upgrade from v1.16.1 for all users.
	Updated dependencies
	nerves_system_br v1.16.4
	Erlang/OTP 24.0.5

	Improvements
	Beta support for using a runtime.exs script for runtime configuration.
	Added a provision task to the fwup.config to enable re-provisioning a
MicroSD card without changing its contents.
	Adds a default /etc/sysctl.conf that enables use of ICMP in Erlang. This
requires nerves_runtime v0.11.5 or later to automatically load the sysctl
variables. With it using :gen_udp to send/receive ICMP will "just work".
It also makes it easier to add other sysctl variables if needed.

v0.7.1
This release updates Nerves Toolchains to v1.4.3 and OTP 24.0.3. It should be safe for everyone to apply.
	Updated dependencies	nerves_system_br v1.16.1
	Erlang/OTP 24.0.3
	nerves toolchains v1.4.3

v0.7.0
This release updates to Buildroot 2021.05 and OTP 24.0.2. If you have made a
custom system off this one, please review the nerves_system_br v1.16.0 release
notes.
	Updated dependencies
	nerves_system_br v1.16.0
	Buildroot 2021.05
	Erlang/OTP 24.0.2

	Improvements
	This release now contains debug symbols and includes the Build-ID in the
ELF headers. This makes it easier to get stack traces from C programs. As
before, the Nerves tooling strips all symbols from firmware images, so this
won't make programs bigger.
	Enable compile-time wpa_supplicant options to support WPA3, mesh
networking, WPS and autoscan.

v0.6.1
This is a security/bug fix release that updates to Buildroot 2021.02.1 and OTP
23.3.1. It should be safe for everyone to apply.
	Updated dependencies	nerves_system_br v1.15.1
	Buildroot 2021.02
	Erlang/OTP 23.3.1

v0.6.0
This release updates to Buildroot 2021.02 and OTP 23.2.7. If you have made a
custom system off this one, please review the nerves_system_br v1.15.0 release
notes.
The Nerves toolchain has also been updated to v1.4.2. This brings in Linux 4.14
headers to enable use of cdev and eBPF. This won't affect most users.
	Updated dependencies	nerves_system_br v1.15.0
	Buildroot 2021.02
	Erlang/OTP 23.2.7
	nerves toolchains v1.4.2

v0.5.0
This release updates to Buildroot 2020.11.2, GCC 10.2 and OTP 23.2.4.
When migrating custom systems based, please be aware of the following important
changes:
	There's a new getrandom syscall that is made early in BEAM startup. This has
the potential to block the BEAM before Nerves can start rngd to provide
entropy. We have not seen this issue here, but have updated erlinit.config
for the time being as a precaution.

	The GCC 10.2.0 toolchain has a different name that calls out "nerves" as the
vendor and the naming is now more consistent with other toolchain providers.

	Experimental support for tooling that requires more information about the
target has been added. The initial support focuses on zigler.

	Updated dependencies
	nerves_system_br: bump to v1.14.4
	Buildroot 2020.11.2
	Erlang/OTP 23.2.4
	Nerves toolchains 1.4.1

v0.4.3
This is a bug fix release and contains no major changes.
	Updated dependencies	nerves_system_br: bump to v1.13.7
	Erlang/OTP 23.1.5

v0.4.2
This release includes a patch release update to
Buildroot 2020.08.2.
	Updated dependencies	nerves_system_br: bump to v1.13.5
	erlinit 1.9.0

v0.4.1
	Updated dependencies
	nerves_system_br: bump to v1.13.4
	Erlang/OTP 23.1.4
	boardid 1.10.0

	Improvements
	Enabled reproducible builds in Buildroot to remove some timestamp and build
path differences in firmware images. This helps delta firmware updates.

v0.4.0
This release updates to Buildroot
2020.08 and OTP 23.1.1.
	Updated dependencies
	nerves_system_br: bump to v1.13.2
	Erlang/OTP 23.1.1
	erlinit 1.8.0
	nerves 1.7.0

	New features
	Added support for updating the root filesystem using firmware patches.
See the firmware patch docs for more information.

v0.3.2
This release updates to Buildroot
2020.05.1
and OTP 23.0.3 which are both bug fix releases.
	Updated dependencies
	nerves_system_br: bump to v1.12.4
	Erlang/OTP 23.0.3
	nerves_heart v0.3.0

	New features
	The /data directory now exists for storing application-specific data. It
is currently a symlink to /root. Using /data will eventually be
encouraged over /root even though currently there is no advantage. This
change makes it possible to start migrating paths in applications and
libraries.

	Fixes
	Fixed old references to the -Os compiler flag. All C/C++ code will default
to using -O2 now.

v0.3.1
	Fixes	Remove nerves_system_linter from hex package. This fixes mix dependency
errors in projects that reference systems with different
nerves_system_linter dependency specs.

v0.3.0
This release updates the system to use Buildroot 2020.05 and Erlang/OTP 23.
Please see the respective release notes for updates and deprecations in both
projects for changes that may affect your application.
	New features
	Enable WiFi mesh support in the 802.11 stack

	Updated dependencies
	nerves_system_br v1.12.0
	Erlang/OTP 23.0.2

v0.2.0
	Updated dependencies	nerves_system_linter v0.4.0

v0.1.0
	Initial release	nerves_system_br v1.11.4
	Erlang 22.3.4.1
	fwup 1.7.0

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

