

 nerves_ssh

 v0.3.0

 Table of contents

 	NervesSSH

 	Changelog

 	Modules

 	NervesSSH

 	NervesSSH.Exec

 	NervesSSH.Options

 	NervesSSH.UserPasswords

NervesSSH

[image: CircleCI]
[image: Hex version]
Manage an SSH daemon and its subsystems on Nerves devices. It has the following
features:
	Automatic startup of the SSH daemon on initialization
	Ability to hook the SSH daemon into a supervision tree of your choosing
	Easy setup of SSH firmware updates for Nerves
	Easy shell and exec setup for Erlang, Elixir, and LFE
	Some protection from easy-to-make mistakes that would cause ssh to not be
available

Usage
This library wraps Erlang/OTP's SSH
daemon to make it easier to use
reliably with Nerves devices.
Most importantly, it makes it possible to segment failures in other OTP
applications from terminating the daemon and it recovers from rare scenarios
where the daemon terminates without automatically restarting.
It can be started automatically as an OTP application or hooked into a
supervision tree of your creation. Most Nerves users start it automatically as
an OTP application. This is easy, but may be limiting and it requires that you
use the application environment. See the following sections for options:
Starting as an OTP application
If you're using :nerves_pack v0.4.0 or
later, you don't need to do anything except verify the :nerves_ssh
configuration in your config.exs (see below). If you are not using
:nerves_pack, add :nerves_ssh to your mix dependency list:
def deps do
 [
 {:nerves_ssh, "~> 0.1.0", targets: @all_targets}
]
end
And then include it in :shoehorn's :init list:
config :shoehorn,
 init: [:nerves_runtime, :vintage_net, :nerves_ssh]
:nerves_ssh will work if you do not add it to the :init list. However, if
your main OTP application stops, OTP may stop :nerves_ssh, and that would make
your device inaccessible via SSH.
Starting as part of one of your supervision trees
If you want to do this, make sure that you do NOT specify :nerves_ssh in your
config.exs. The :nerves_ssh key decides whether or not to automatically launch
based on this.
Then when specifying the children for your supervisor, add NervesSSH like
this:
 {NervesSSH, nerves_ssh_options}
The nerves_ssh_options should be a NervesSSH.Options struct. See the
Configuration section option fields that you may specify. Calling
NervesSSH.Options.with_defaults(my_options_list) to build the
nerves_ssh_options value is one way of getting reasonable defaults.
Configuration
NervesSSH supports the following configuration items:
	:authorized_keys - a list of SSH authorized key file string
	:user_passwords - a list of username/password tuples (stored in the
 clear!)
	:port - the TCP port to use for the SSH daemon. Defaults to 22.
	:subsystems - a list of SSH subsystems specs to start.
Defaults to SFTP and ssh_subsystem_fwup
	:system_dir - where to find host keys. Defaults to "/data/nerves_ssh"
	:shell - the language of the shell (:elixir, :erlang, :lfe, or
:disabled). Defaults to :elixir.
	:exec - the language to use for commands sent over ssh (:elixir,
:erlang, lfe, or :disabled). Defaults to :elixir.
	:iex_opts - additional options to use when starting up IEx
	:daemon_option_overrides - additional options to pass to :ssh.daemon/2.
These take precedence and are unchecked.

SSH host keys
SSH identifies itself to clients using a host key. Clients can record the key
and use it to detect man-in-the-middle attacks and other shenanigans on future
connections. Host keys are stored in the :system_dir (see configuration) and
named ssh_host_rsa_key, ssh_host_ed25519_key, etc.
NervesSSH will create a host key the first time it starts if one does not exist.
The key will be stored in :system_dir. Be aware that the host key is not
encrypted or protected so anyone with access to the device can get it if they
choose.
If the :system_dir is not writable, NervesSSH will create an in-memory host
key so that users can still log in. In fact, even if the file system is
writable, NervesSSH will verify the host key before using it and recreate it if
corrupt. The goal is that broken host keys to not result in a situation where
it's impossible to log into a device. Your SSH client complaining about the host
key changing will be the hint that something is wrong.
NervesSSH currently supports
Ed25519 and
RSA host keys.
If you rewrite your MicroSD cards often and don't want to get SSH client errors,
add the following to your ~/.ssh/config:
Host nerves.local
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
Authentication
It's possible to set up a number of authentication strategies with the Erlang
SSH daemon. Currently, only simple public key and username/password
authentication setups are supported by :nerves_ssh. Both of them work fine for
getting started. As needs become more sophisticated, you can pass options to
:daemon_option_overrides.
Public key authentication
Public ssh keys can be specified so that matching clients can connect. These
come from files like your ~/.ssh/id_rsa.pub or ~/.ssh/id_ecdsa.pub that were
created when you created your ssh keys. If you haven't done this, the
following
article
may be helpful. Here's an example that uses the application config:
config :nerves_ssh,
 authorized_keys: [
 "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAAAgQDBCdMwNo0xOE86il0DB2Tq4RCv07XvnV7W1uQBlOOE0ZZVjxmTIOiu8XcSLy0mHj11qX5pQH3Th6Jmyqdj",
 "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQCaf37TM8GfNKcoDjoewa6021zln4GvmOiXqW6SRpF61uNWZXurPte1u8frrJX1P/hGxCL7YN3cV6eZqRiF"
]
Here's another way that may work well for you that avoids needing to commit your
keys:
config :nerves_ssh,
 authorized_keys: [
 File.read!(Path.join(System.user_home!, ".ssh/id_rsa.pub"))
]
See NervesSSH.add_authorized_key/1 and NervesSSH.remove_authorized_key/1
for managing public keys at runtime.
Username/password authentication
The SSH console uses public key authentication by default, but it can be
configured for usernames and passwords via the :user_passwords key. This has
the form [{"username", "password"}, ...]. Keep in mind that passwords are
stored in the clear. This is not recommended for most situations.
config :nerves_ssh,
 user_passwords: [
 {"username", "password"}
]
You can use NervesSSH.add_user/2 and NervesSSH.remove_user/1 for managing
credentials at runtime, but they are not saved to disk so restarting NervesSSH
will cause them to be lost (such as a reboot or daemon crash)
Upgrade from NervesFirmwareSSH
If you are migrating from :nerves_firmware_ssh, or updating to :nerves_pack >= 0.4.0, you will need to make a few changes to your existing project.
	Generate a upload.sh script by running mix firmware.gen.script (if you
don't already have one)
	This is necessary because you will no longer have access to your old
mix upload command because nerves_firmware_ssh is being removed from
the project.

	Change all :nerves_firmware_ssh config values to :nerves_ssh. A command
like this would probably do the trick:
 grep -RIl nerves_firmware_ssh config/ | xargs sed -i 's/nerves_firmware_ssh/nerves_ssh/g'

	Compile your new firmware that includes :nerves_ssh (or updated
:nerves_pack)
	NOTE Compiling your new firmware for the first time will generate a
warning about the old upload.sh script still being around. You can
ignore that this one time because you will need it for uploading to an
existing device still using port 8989.

	Upload your new firmware with :nerves_ssh using the old upload.sh
script (or whatever other method you have been using for OTA firmware
updates)

	After the new firmware with :nerves_ssh is on the device, then you'll need
to generate the new upload.sh script with mix firmware.gen.script, or see
SSHSubsystemFwup for
other supported options

Goals
	[X] Support public key authentication
	[X] Support username/password authentication
	[X] Device generated server certificate and key
	[] Device generated username/password

Changelog

v0.3.0
NervesSSH now requires Elixir >= 1.10 and OTP >=23
	New features	Support for adding authorized public keys at runtime
	Authorized public keys are also saved/read from authorized_keys file
	Support for adding user credentials at runtime
	Server host key is now generated on device if missing rather than
relying on hard-coded host key provided by this lib. This should not
be a breaking change, though you may be prompted to trust the new
host key if StrictHostKeyChecking yes is set in your ~/.ssh/config

v0.2.3
	New features	Initial support for using scp to copy files. Not all scp features work,
but uploading and downloading individual files does. Thanks to Connor Rigby
and Binary Noggin for this feature.

v0.2.2
	Improvements	Fix a deprecation warning on OTP 24.0.1 and later
	Add support for LFE shells. LFE must be a dependency of your project for
this to work.

v0.2.1
	Improvements	Raise an error at compile-time if the application environment looks like
it's using the :nerves_firmware_ssh key instead of the :nerves_ssh one.

v0.2.0
This update makes using the application environment optional. If you don't have
any settings for :nerves_ssh in your config.exs, :nerves_ssh won't start.
You can then add {NervesSSH, your_options} to the supervision tree of your
choice.
v0.1.0
Initial release

NervesSSH

This library wraps Erlang/OTP's SSH
daemon to make it easier to use
reliably with Nerves devices.
Most importantly, it makes it possible to segment failures in other OTP
applications from terminating the daemon and it recovers from rare scenarios
where the daemon terminates without automatically restarting.
It can be started automatically as an OTP application or hooked into a
supervision tree of your creation. Most Nerves users start it automatically as
an OTP application. This is easy, but may be limiting and it requires that you
use the application environment. See the following sections for options:
Starting as an OTP application
If you're using :nerves_pack v0.4.0 or
later, you don't need to do anything except verify the :nerves_ssh
configuration in your config.exs (see below). If you are not using
:nerves_pack, add :nerves_ssh to your mix dependency list:
def deps do
 [
 {:nerves_ssh, "~> 0.1.0", targets: @all_targets}
]
end
And then include it in :shoehorn's :init list:
config :shoehorn,
 init: [:nerves_runtime, :vintage_net, :nerves_ssh]
:nerves_ssh will work if you do not add it to the :init list. However, if
your main OTP application stops, OTP may stop :nerves_ssh, and that would make
your device inaccessible via SSH.
Starting as part of one of your supervision trees
If you want to do this, make sure that you do NOT specify :nerves_ssh in your
config.exs. The :nerves_ssh key decides whether or not to automatically launch
based on this.
Then when specifying the children for your supervisor, add NervesSSH like
this:
 {NervesSSH, nerves_ssh_options}
The nerves_ssh_options should be a NervesSSH.Options struct. See the
Configuration section option fields that you may specify. Calling
NervesSSH.Options.with_defaults(my_options_list) to build the
nerves_ssh_options value is one way of getting reasonable defaults.
Configuration
NervesSSH supports the following configuration items:
	:authorized_keys - a list of SSH authorized key file string
	:user_passwords - a list of username/password tuples (stored in the
 clear!)
	:port - the TCP port to use for the SSH daemon. Defaults to 22.
	:subsystems - a list of SSH subsystems specs to start.
Defaults to SFTP and ssh_subsystem_fwup
	:system_dir - where to find host keys. Defaults to "/data/nerves_ssh"
	:shell - the language of the shell (:elixir, :erlang, :lfe, or
:disabled). Defaults to :elixir.
	:exec - the language to use for commands sent over ssh (:elixir,
:erlang, lfe, or :disabled). Defaults to :elixir.
	:iex_opts - additional options to use when starting up IEx
	:daemon_option_overrides - additional options to pass to :ssh.daemon/2.
These take precedence and are unchecked.

SSH host keys
SSH identifies itself to clients using a host key. Clients can record the key
and use it to detect man-in-the-middle attacks and other shenanigans on future
connections. Host keys are stored in the :system_dir (see configuration) and
named ssh_host_rsa_key, ssh_host_ed25519_key, etc.
NervesSSH will create a host key the first time it starts if one does not exist.
The key will be stored in :system_dir. Be aware that the host key is not
encrypted or protected so anyone with access to the device can get it if they
choose.
If the :system_dir is not writable, NervesSSH will create an in-memory host
key so that users can still log in. In fact, even if the file system is
writable, NervesSSH will verify the host key before using it and recreate it if
corrupt. The goal is that broken host keys to not result in a situation where
it's impossible to log into a device. Your SSH client complaining about the host
key changing will be the hint that something is wrong.
NervesSSH currently supports
Ed25519 and
RSA host keys.
If you rewrite your MicroSD cards often and don't want to get SSH client errors,
add the following to your ~/.ssh/config:
Host nerves.local
 UserKnownHostsFile /dev/null
 StrictHostKeyChecking no
Authentication
It's possible to set up a number of authentication strategies with the Erlang
SSH daemon. Currently, only simple public key and username/password
authentication setups are supported by :nerves_ssh. Both of them work fine for
getting started. As needs become more sophisticated, you can pass options to
:daemon_option_overrides.
Public key authentication
Public ssh keys can be specified so that matching clients can connect. These
come from files like your ~/.ssh/id_rsa.pub or ~/.ssh/id_ecdsa.pub that were
created when you created your ssh keys. If you haven't done this, the
following
article
may be helpful. Here's an example that uses the application config:
config :nerves_ssh,
 authorized_keys: [
 "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAAAgQDBCdMwNo0xOE86il0DB2Tq4RCv07XvnV7W1uQBlOOE0ZZVjxmTIOiu8XcSLy0mHj11qX5pQH3Th6Jmyqdj",
 "ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQCaf37TM8GfNKcoDjoewa6021zln4GvmOiXqW6SRpF61uNWZXurPte1u8frrJX1P/hGxCL7YN3cV6eZqRiF"
]
Here's another way that may work well for you that avoids needing to commit your
keys:
config :nerves_ssh,
 authorized_keys: [
 File.read!(Path.join(System.user_home!, ".ssh/id_rsa.pub"))
]
See NervesSSH.add_authorized_key/1 and NervesSSH.remove_authorized_key/1
for managing public keys at runtime.
Username/password authentication
The SSH console uses public key authentication by default, but it can be
configured for usernames and passwords via the :user_passwords key. This has
the form [{"username", "password"}, ...]. Keep in mind that passwords are
stored in the clear. This is not recommended for most situations.
config :nerves_ssh,
 user_passwords: [
 {"username", "password"}
]
You can use NervesSSH.add_user/2 and NervesSSH.remove_user/1 for managing
credentials at runtime, but they are not saved to disk so restarting NervesSSH
will cause them to be lost (such as a reboot or daemon crash)
Upgrade from NervesFirmwareSSH
If you are migrating from :nerves_firmware_ssh, or updating to :nerves_pack >= 0.4.0, you will need to make a few changes to your existing project.
	Generate a upload.sh script by running mix firmware.gen.script (if you
don't already have one)
	This is necessary because you will no longer have access to your old
mix upload command because nerves_firmware_ssh is being removed from
the project.

	Change all :nerves_firmware_ssh config values to :nerves_ssh. A command
like this would probably do the trick:
 grep -RIl nerves_firmware_ssh config/ | xargs sed -i 's/nerves_firmware_ssh/nerves_ssh/g'

	Compile your new firmware that includes :nerves_ssh (or updated
:nerves_pack)
	NOTE Compiling your new firmware for the first time will generate a
warning about the old upload.sh script still being around. You can
ignore that this one time because you will need it for uploading to an
existing device still using port 8989.

	Upload your new firmware with :nerves_ssh using the old upload.sh
script (or whatever other method you have been using for OTA firmware
updates)

	After the new firmware with :nerves_ssh is on the device, then you'll need
to generate the new upload.sh script with mix firmware.gen.script, or see
SSHSubsystemFwup for
other supported options

Goals
	[X] Support public key authentication
	[X] Support username/password authentication
	[X] Device generated server certificate and key
	[] Device generated username/password

 Anchor for this section

 Summary

 Functions

 add_authorized_key(key)

 Add an SSH public key to the authorized keys

 add_user(user, password)

 Add a user credential to the SSH daemon

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 configuration()

 Read the configuration options

 info()

 Return information on the running ssh daemon.

 remove_authorized_key(key)

 Remove an SSH public key from the authorized keys

 remove_user(user)

 Remove a user credential from the SSH daemon

 Anchor for this section

Functions

 Link to this function

 add_authorized_key(key)

 View Source

 Specs

 add_authorized_key(String.t()) :: :ok

Add an SSH public key to the authorized keys
This will also attempt to save the key in {USER_DIR}/authorized_keys

 Link to this function

 add_user(user, password)

 View Source

 Specs

 add_user(String.t(), String.t() | nil) :: :ok

Add a user credential to the SSH daemon
Setting password to "" or nil will effectively be passwordless
authentication for this user

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 configuration()

 View Source

 Specs

 configuration() :: NervesSSH.Options.t()

Read the configuration options

 Link to this function

 info()

 View Source

 Specs

 info() :: {:ok, keyword()} | {:error, :bad_daemon_ref}

Return information on the running ssh daemon.
See ssh.daemon_info/1.

 Link to this function

 remove_authorized_key(key)

 View Source

 Specs

 remove_authorized_key(String.t()) :: :ok

Remove an SSH public key from the authorized keys
This will also attempt to remove the key in {USER_DIR}/authorized_keys

 Link to this function

 remove_user(user)

 View Source

 Specs

 remove_user(String.t()) :: :ok

Remove a user credential from the SSH daemon

NervesSSH.Exec

This module contains helper methods for running commands over SSH

 Anchor for this section

 Summary

 Functions

 run_elixir(cmd)

 Run one Elixir command coming over ssh

 run_lfe(cmd)

 Run one LFE command coming over ssh

 Anchor for this section

Functions

 Link to this function

 run_elixir(cmd)

 View Source

 Specs

 run_elixir(charlist()) :: {:ok, binary()} | {:error, binary()}

Run one Elixir command coming over ssh

 Link to this function

 run_lfe(cmd)

 View Source

 Specs

 run_lfe(charlist()) :: {:ok, iolist()} | {:error, binary()}

Run one LFE command coming over ssh

NervesSSH.Options

Defines option for running the SSH daemon.
The following fields are available:
	:authorized_keys - a list of SSH authorized key file string
	:port - the TCP port to use for the SSH daemon. Defaults to 22.
	:subsystems - a list of SSH subsystems specs to start. Defaults to SFTP and ssh_subsystem_fwup
	:user_dir - where to find authorized_keys file
	:system_dir - where to find host keys
	:shell - the language of the shell (:elixir, :erlang, :lfe or :disabled). Defaults to :elixir.
	:exec - the language to use for commands sent over ssh (:elixir, :erlang, or :disabled). Defaults to :elixir.
	:iex_opts - additional options to use when starting up IEx
	:user_passwords - a list of username/password tuples (stored in the clear!)
	:daemon_option_overrides - additional options to pass to :ssh.daemon/2. These take precedence and are unchecked.

 Anchor for this section

 Summary

 Types

 language()

 t()

 Functions

 add_authorized_key(opts, key)

 Add an authorized key

 add_user(opts, user, password)

 Add user credential to SSH options

 daemon_options(opts)

 Return :ssh.daemon_options()

 decode_authorized_keys(opts)

 Decode the authorized keys into Erlang public key format

 load_authorized_keys(opts)

 Load authorized keys from the authorized_keys file

 new(opts \\ [])

 Convert keyword options to the NervesSSH.Options

 remove_authorized_key(opts, key)

 Remove an authorized key

 remove_user(opts, user)

 Remove user credential from SSH options

 sanitize(opts)

 Go through the options and fix anything that might crash

 save_authorized_keys(opts)

 Save the authorized keys to authorized_keys file

 with_defaults(opts \\ [])

 Create a new NervesSSH.Options and fill in defaults

 Anchor for this section

Types

 Link to this type

 language()

 View Source

 Specs

 language() :: :elixir | :erlang | :lfe | :disabled

 Link to this type

 t()

 View Source

 Specs

 t() :: %NervesSSH.Options{
 authorized_keys: [String.t()],
 daemon_option_overrides: keyword(),
 decoded_authorized_keys: [:public_key.public_key()],
 exec: language(),
 iex_opts: keyword(),
 port: non_neg_integer(),
 shell: language(),
 subsystems: [:ssh.subsystem_spec()],
 system_dir: Path.t(),
 user_dir: Path.t(),
 user_passwords: [{String.t(), String.t()}]
}

 Anchor for this section

Functions

 Link to this function

 add_authorized_key(opts, key)

 View Source

 Specs

 add_authorized_key(t(), String.t()) :: t()

Add an authorized key

 Link to this function

 add_user(opts, user, password)

 View Source

 Specs

 add_user(t(), String.t(), String.t() | nil) :: t()

Add user credential to SSH options

 Link to this function

 daemon_options(opts)

 View Source

 Specs

 daemon_options(t()) :: :ssh.daemon_options()

Return :ssh.daemon_options()

 Link to this function

 decode_authorized_keys(opts)

 View Source

 Specs

 decode_authorized_keys(t()) :: t()

Decode the authorized keys into Erlang public key format

 Link to this function

 load_authorized_keys(opts)

 View Source

 Specs

 load_authorized_keys(t()) :: t()

Load authorized keys from the authorized_keys file

 Link to this function

 new(opts \\ [])

 View Source

 Specs

 new(keyword()) :: t()

Convert keyword options to the NervesSSH.Options

 Link to this function

 remove_authorized_key(opts, key)

 View Source

 Specs

 remove_authorized_key(t(), String.t()) :: t()

Remove an authorized key

 Link to this function

 remove_user(opts, user)

 View Source

 Specs

 remove_user(t(), String.t()) :: t()

Remove user credential from SSH options

 Link to this function

 sanitize(opts)

 View Source

 Specs

 sanitize(t()) :: t()

Go through the options and fix anything that might crash
The goal is to make options "always work" since it is painful to
debug typo's, etc. that cause the ssh daemon to not start.

 Link to this function

 save_authorized_keys(opts)

 View Source

 Specs

 save_authorized_keys(t()) :: :ok | {:error, File.posix()}

Save the authorized keys to authorized_keys file

 Link to this function

 with_defaults(opts \\ [])

 View Source

 Specs

 with_defaults(keyword()) :: t()

Create a new NervesSSH.Options and fill in defaults

NervesSSH.UserPasswords

Default module used for checking User/Password combinations
This will allow 3 attempts to login with a username and password
and then send SSH_MSG_DISCONNECT

 Anchor for this section

 Summary

 Functions

 check(user, password, ip, attempt)

 Anchor for this section

Functions

 Link to this function

 check(user, password, ip, attempt)

 View Source

 Specs

 check(
 :erlang.string(),
 :erlang.string(),
 :ssh.ip_port(),
 :undefined | non_neg_integer()
) ::
 boolean() | :disconnect | {boolean(), non_neg_integer()}

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

