

 nerves_pack

 v0.4.2

 Table of contents

 	Nerves Pack

 	Changelog

 	Modules

 	NervesPack

Nerves Pack
[image: Hex version]
[image: CircleCI]
A compilation of dependencies and default configuration for getting Nerves
projects up and running with minimal work. Nerves Pack is essentially a rewrite
of the older nerves_init_gadget, but makes use of new networking libraries and
updated practices.
When added to your project, the following services are enabled by default:
	Networking, using VintageNet.
	mDNS, via MdnsLite.
	SSH, via NervesSSH. Includes:	regular SSH access
	firmware updates subsystem via SSHSubsystemFwup
	SFTP subsystem
	Ability to configure more subsystems as needed

Installation
def deps do
 [
 {:nerves_pack, "~> 0.4.1"}
]
end
This will start NervesPack and all its services with your application.
However, since it controls the networking and SSH interface, it is recommended
to use it with shoehorn to start
it up separately so you still have access to your device in the event that the
main application fails. This can be done by adding shoehorn to your
config.exs:
config :shoehorn,
 init: [:nerves_runtime, :nerves_pack],
 app: Mix.Project.config()[:app]
mDNS
mDNS is an protocol that makes it easier to find the IP addresses of Nerves
devices on a LAN. nerves_pack pulls in
mdns_lite to help with this
and the default Nerves new project generator adds a default configuration that
lets you connect to your Nerves device via the names, nerves.local or
nerves-wxyz.local where wxyz are part of the device's unique identifier.
Device identifers are device-specific and can be found by typing hostname at
the IEx prompt.
If you are converting a project to use nerves_pack, here's a starter
configuration to paste into your config:
config :mdns_lite,
 # The `host` key specifies what hostnames mdns_lite advertises. `:hostname`
 # advertises the device's hostname.local. For the official Nerves systems, this
 # is "nerves-<4 digit serial#>.local". mdns_lite also advertises
 # "nerves.local" for convenience. If more than one Nerves device is on the
 # network, delete "nerves" from the list.

 host: [:hostname, "nerves"],
 ttl: 120,

 # Advertise the following services over mDNS.
 services: [
 %{
 name: "SSH Remote Login Protocol",
 protocol: "ssh",
 transport: "tcp",
 port: 22
 },
 %{
 name: "Secure File Transfer Protocol over SSH",
 protocol: "sftp-ssh",
 transport: "tcp",
 port: 22
 },
 %{
 name: "Erlang Port Mapper Daemon",
 protocol: "epmd",
 transport: "tcp",
 port: 4369
 }
]
SSH port
nerves_pack depends on
nerves_ssh. nerves_ssh
starts up an SSH server on port 22 (the default SSH port) that provides an IEx
console, SFTP, and firmware update support. See the nerves_ssh documentation
for changing the configuration.
By default, the Nerves new project generator creates projects that include your
SSH public key (from ~/.ssh/id_rsa, etc.) in your config.exs under the
nerves_ssh configuration. It is possible that your project has this
configuration under the nerves_firmware_ssh key. If so, you will receive an
error directing you to update your configuration.
The use of SSH public keys lets you log into your Nerves devices, but no one
else. See the
docs for how
to configure your keys). Usernames are ignored.
Connect by running:
ssh nerves.local
If your computer has trouble with mDNS, you may need to replace nerves.local
with the device's IP address. This is more of an issue on Windows than Linux or
OSX. See your router or use a port scanner like nmap to find the device.
To exit the SSH session, type exit or type the ssh escape sequence ~. . (See
the ssh man page for other escape sequences).
Typing Ctrl+D or logoff at the IEx prompt to exit the session won't work.
Erlang distribution
nerves_pack does not start Erlang distribution. Distribution is not hard to
enable, but it requires some thought on node naming and security.
Erlang distribution requires that the hostname part of the device's node name be
reachable from the computer that's trying to connect. Options include IP
addresses, DNS names, mDNS names or names that you put in your /etc/hosts
file. Many Nerves users use mDNS names for simplicity, but they have
limitations. You may need to adjust the following script based on your
environment.
The Nerves project generator configures
mdns_lite to advertise two hostnames:
nerves.local and nerves-1234.local. The latter one is based on the serial
number of the device. If you only have one Nerves device on the network, use
nerves.local. But, if you have many devices, figure out each hostname
from the device's serial number, either by using a mDNS discovery program or by
logging into a device via a serial console and typing hostname at the IEx
prompt.
The following uses nerves.local, but substitute for the name that you want.
Run this by ssh'ing into your Nerves device.
iex> System.cmd("epmd", ["-daemon"])
{"", 0}
iex> Node.start(:"nerves@nerves.local")
{:ok, #PID<0.26318.2>}
iex(nerves@nerves.local)> Node.set_cookie(:my_secret_cookie)
true
For a programmatic implementation, see :inet.gethostname/0 for constructing
a device-specific node name.
Now that Erlang distribution is running, try to connect to the device on your
computer.
$ iex --name me@0.0.0.0 --cookie my_secret_cookie --remsh nerves@nerves.local
Erlang/OTP 22 [erts-10.6.4] [source] [64-bit] [smp:32:32] [ds:32:32:10]
[async-threads:1] [hipe]

Interactive Elixir (1.9.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(nerves@nerves.local)1> use Toolshed
Toolshed imported. Run h(Toolshed) for more info
:ok
iex(nerves@nerves.local)2> cat "/proc/cpuinfo"
processor : 0
model name : ARMv6-compatible processor rev 7 (v6l)
BogoMIPS : 697.95
Features : half thumb fastmult vfp edsp java tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x0
CPU part : 0xb76
CPU revision : 7

Hardware : BCM2835
Revision : 9000c1
Serial : 00000000b27aa712
Model : Raspberry Pi Zero W Rev 1.1

iex(nerves@nerves.local)6>
Optional WiFi wizard setup
When and how to start the WiFi wizard is generally very dependent on your
use-case so it's recommended that you implement the startup logic on your own.
See the vintage_net_wizard docs for
more information on use and configuration.

Changelog
v0.4.2
This allows v0.10 of the vintage_net* libraries.
Also bumps some dependencies
v0.4.1
Removes automatic mdns_lite setup and shifts this project to be dependency
and documentation driven as an example of basic Nerves project setup.
	Fixes	Fixes a dependency ordering issue for Elixir 1.11. See https://github.com/nerves-project/nerves_pack/pull/42

v0.4.0
This refactors SSH support to its own library so that projects not using
nerves_pack don't have to copy/paste the SSH code. nerves_ssh also
has several improvements to SSH support that will be easier to maintain
in a standalone project.
This also brings in the switch from nerves_firmware_ssh to
ssh_subsystem_fwup which moves firmware updates from port 8989 to an
SSH subsystem on port 22. This is a breaking change for scripts that
load firmware to Nerves devices via SSH. See the
Upgrade from NervesFirmwareSSH
doc for more details on how to handle this change.
v0.3.3
This allows v0.9 of the vintage_net* libraries.
If you wish to update the vintage_net* libraries, be sure to look at
the VintageNet v0.9.0 Changelog
as there are a few breaking changes that might need to be considered.
v0.3.2
	Enhancements
	Update ssh daemon to start with inet6

	Fixes
	Remove automatic network configuration - This would interfere with
predictable networking support and also made it impossible to deconfigure
a network interface permanently

v0.3.1
Few dependency and documentation updates.
There was a breaking change in vintage_net 0.8 for anyone implementing a
custom technology. This doesn't affect most nerves_pack users except that
the dependency here on vintage_net allows 0.8 along with 0.7.
v0.3.0
This release removes the vintage_net_wizard setup helper. It turned out that
there was enough custom configuration that it was easier to configure the WiFi
wizard on its own rather than via NervesPack. If you had been using
NervesPack to configure the wizard, please see the vintage_net_wizard
docs.
v0.2.2
	Enhancements	supervise sshd and allow port to be configured
	Fix warnings when vintage_net_wizard is optional

v0.2.1
	Enhancements	:vintage_net_wizard is now optional and using NervesPack default setup
with it requires configuration
	removes :busybox dependency since that is now included as part of the
Nerves systems

v0.2.0
	vintage_net 0.7

	Enhancements
	:vintage_net ~> 0.7 splits out networking technologies into their own
libs. Deps have been updated to use this
	WiFiWizardButton is now an opt-in so that :circuits_gpio can be a
optional dependency to allow NervesPack to work with more systems

v0.1.1
	mdns_lite 0.6.1

	vintage_net 0.6.6

	Enhancements
	With new VintageNet and MdnsLite updates, mDNS host and services can be
configured at runtime. This allows us to set basic defaults if no other
options have been configured when starting to run
	VintageNet and MdnsLite also brings in VintageNetMonitor which updates
mDNS records whenever address changes happen (polling no longer required).
This means faster mDNS response times.

v0.1.0
Initial release

NervesPack

Nerves Pack
[image: Hex version]
[image: CircleCI]
A compilation of dependencies and default configuration for getting Nerves
projects up and running with minimal work. Nerves Pack is essentially a rewrite
of the older nerves_init_gadget, but makes use of new networking libraries and
updated practices.
When added to your project, the following services are enabled by default:
	Networking, using VintageNet.
	mDNS, via MdnsLite.
	SSH, via NervesSSH. Includes:	regular SSH access
	firmware updates subsystem via SSHSubsystemFwup
	SFTP subsystem
	Ability to configure more subsystems as needed

Installation
def deps do
 [
 {:nerves_pack, "~> 0.4.1"}
]
end
This will start NervesPack and all its services with your application.
However, since it controls the networking and SSH interface, it is recommended
to use it with shoehorn to start
it up separately so you still have access to your device in the event that the
main application fails. This can be done by adding shoehorn to your
config.exs:
config :shoehorn,
 init: [:nerves_runtime, :nerves_pack],
 app: Mix.Project.config()[:app]
mDNS
mDNS is an protocol that makes it easier to find the IP addresses of Nerves
devices on a LAN. nerves_pack pulls in
mdns_lite to help with this
and the default Nerves new project generator adds a default configuration that
lets you connect to your Nerves device via the names, nerves.local or
nerves-wxyz.local where wxyz are part of the device's unique identifier.
Device identifers are device-specific and can be found by typing hostname at
the IEx prompt.
If you are converting a project to use nerves_pack, here's a starter
configuration to paste into your config:
config :mdns_lite,
 # The `host` key specifies what hostnames mdns_lite advertises. `:hostname`
 # advertises the device's hostname.local. For the official Nerves systems, this
 # is "nerves-<4 digit serial#>.local". mdns_lite also advertises
 # "nerves.local" for convenience. If more than one Nerves device is on the
 # network, delete "nerves" from the list.

 host: [:hostname, "nerves"],
 ttl: 120,

 # Advertise the following services over mDNS.
 services: [
 %{
 name: "SSH Remote Login Protocol",
 protocol: "ssh",
 transport: "tcp",
 port: 22
 },
 %{
 name: "Secure File Transfer Protocol over SSH",
 protocol: "sftp-ssh",
 transport: "tcp",
 port: 22
 },
 %{
 name: "Erlang Port Mapper Daemon",
 protocol: "epmd",
 transport: "tcp",
 port: 4369
 }
]
SSH port
nerves_pack depends on
nerves_ssh. nerves_ssh
starts up an SSH server on port 22 (the default SSH port) that provides an IEx
console, SFTP, and firmware update support. See the nerves_ssh documentation
for changing the configuration.
By default, the Nerves new project generator creates projects that include your
SSH public key (from ~/.ssh/id_rsa, etc.) in your config.exs under the
nerves_ssh configuration. It is possible that your project has this
configuration under the nerves_firmware_ssh key. If so, you will receive an
error directing you to update your configuration.
The use of SSH public keys lets you log into your Nerves devices, but no one
else. See the
docs for how
to configure your keys). Usernames are ignored.
Connect by running:
ssh nerves.local
If your computer has trouble with mDNS, you may need to replace nerves.local
with the device's IP address. This is more of an issue on Windows than Linux or
OSX. See your router or use a port scanner like nmap to find the device.
To exit the SSH session, type exit or type the ssh escape sequence ~. . (See
the ssh man page for other escape sequences).
Typing Ctrl+D or logoff at the IEx prompt to exit the session won't work.
Erlang distribution
nerves_pack does not start Erlang distribution. Distribution is not hard to
enable, but it requires some thought on node naming and security.
Erlang distribution requires that the hostname part of the device's node name be
reachable from the computer that's trying to connect. Options include IP
addresses, DNS names, mDNS names or names that you put in your /etc/hosts
file. Many Nerves users use mDNS names for simplicity, but they have
limitations. You may need to adjust the following script based on your
environment.
The Nerves project generator configures
mdns_lite to advertise two hostnames:
nerves.local and nerves-1234.local. The latter one is based on the serial
number of the device. If you only have one Nerves device on the network, use
nerves.local. But, if you have many devices, figure out each hostname
from the device's serial number, either by using a mDNS discovery program or by
logging into a device via a serial console and typing hostname at the IEx
prompt.
The following uses nerves.local, but substitute for the name that you want.
Run this by ssh'ing into your Nerves device.
iex> System.cmd("epmd", ["-daemon"])
{"", 0}
iex> Node.start(:"nerves@nerves.local")
{:ok, #PID<0.26318.2>}
iex(nerves@nerves.local)> Node.set_cookie(:my_secret_cookie)
true
For a programmatic implementation, see :inet.gethostname/0 for constructing
a device-specific node name.
Now that Erlang distribution is running, try to connect to the device on your
computer.
$ iex --name me@0.0.0.0 --cookie my_secret_cookie --remsh nerves@nerves.local
Erlang/OTP 22 [erts-10.6.4] [source] [64-bit] [smp:32:32] [ds:32:32:10]
[async-threads:1] [hipe]

Interactive Elixir (1.9.4) - press Ctrl+C to exit (type h() ENTER for help)
iex(nerves@nerves.local)1> use Toolshed
Toolshed imported. Run h(Toolshed) for more info
:ok
iex(nerves@nerves.local)2> cat "/proc/cpuinfo"
processor : 0
model name : ARMv6-compatible processor rev 7 (v6l)
BogoMIPS : 697.95
Features : half thumb fastmult vfp edsp java tls
CPU implementer : 0x41
CPU architecture: 7
CPU variant : 0x0
CPU part : 0xb76
CPU revision : 7

Hardware : BCM2835
Revision : 9000c1
Serial : 00000000b27aa712
Model : Raspberry Pi Zero W Rev 1.1

iex(nerves@nerves.local)6>
Optional WiFi wizard setup
When and how to start the WiFi wizard is generally very dependent on your
use-case so it's recommended that you implement the startup logic on your own.
See the vintage_net_wizard docs for
more information on use and configuration.

 !function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

