

 nerves

 v1.7.15

 [image: Logo]

 Table of contents

 	Installation

 	Getting Started

 	Frequently-Asked Questions

 	Targets

 	Systems

 	Using the CLI

 	User Interfaces

 	Compiling Non-BEAM Code

 	Advanced Configuration

 	Updating Projects

 	Nerves Internals

 	Customizing Your Own Nerves System

 	Experimental features

 	Changelog

 	Modules

 	Mix.Nerves.Preflight

 	Mix.Nerves.Shell

 	Mix.Nerves.Utils

 	Nerves

 	Nerves.Artifact

 	Nerves.Artifact.BuildRunner

 	Nerves.Artifact.BuildRunners.Docker

 	Nerves.Artifact.BuildRunners.Docker.Image

 	Nerves.Artifact.BuildRunners.Docker.Utils

 	Nerves.Artifact.BuildRunners.Docker.Volume

 	Nerves.Artifact.BuildRunners.Local

 	Nerves.Artifact.Cache

 	Nerves.Artifact.Resolver

 	Nerves.Artifact.Resolvers.GithubAPI

 	Nerves.Artifact.Resolvers.URI

 	Nerves.Env

 	Nerves.Erlinit

 	Nerves.Package

 	Nerves.Package.Platform

 	Nerves.Package.Utils.Squashfs

 	Nerves.Port

 	Nerves.Release

 	Nerves.System.BR

 	Nerves.Utils

 	Nerves.Utils.File

 	Nerves.Utils.HTTPClient

 	Nerves.Utils.Proxy

 	Nerves.Utils.Shell

 	Nerves.Utils.Stream

 	Nerves.Utils.WSL

 	Mix Tasks

 	mix burn

 	mix compile.nerves_package

 	mix firmware

 	mix firmware.burn

 	mix firmware.gen.gdb

 	mix firmware.image

 	mix firmware.metadata

 	mix firmware.patch

 	mix firmware.unpack

 	mix nerves.artifact

 	mix nerves.info

Installation

Nerves requires a number of programs on your system to work. These include
Erlang, Elixir, and a few tools for packaging firmware images. Nerves is
actively used on MacOS and various Linux distributions. For Windows users, some
people have had success running Linux in a virtual machine or using the Windows
Subsystem for Linux available in Windows 10. If you have issues with any of the
tooling after following the steps below, we recommend you reach out to us in
the #nerves channel on the Elixir
Slack.
Nerves requires that the Erlang version running on your development host be
compatible with the Erlang version on the embedded target and also depends on
features added in recent versions of Elixir (>= 1.7.0). Because it can be hard
to manage these tool versions with sufficient granularity using operating system
packages, it is recommended that you use ASDF
to manage Erlang and Elixir installations. This tool works the same on its
supported platforms, so you'll find more details in the All Platforms section
below.
MacOS
The easiest installation route on MacOS is to use Homebrew.
Just run the following:
brew update
brew install fwup squashfs coreutils xz pkg-config

If you've already installed Erlang & Elixir using Homebrew, you'll need to
uninstall them to avoid clashes with the recommended ASDF installation.
brew uninstall elixir
brew uninstall erlang

Optionally, if you want to build custom Nerves Systems, you'll also need to
install Docker for Mac. After installing
Docker for Mac, you will likely want to adjust the resource limits imposed on
Docker, to allow it to successfully compile more complicated custom systems.
Click the Docker icon in the top menu bar, then click Preferences > Advanced and
allow Docker to use all of your CPUs and as much RAM as you think is reasonable
for your machine (at least 6 GB). The more resources it has access to, the
faster you can compile a custom Nerves system.
Now skip to the instructions for all platforms below.
Windows
Nerves on Windows 10 requires version 18917 (or later) with Windows Subsystem
for Linux 2 (WSL2) installed. See the WSL2 install
instructions for
more information. Once you have WSL2 support enabled you will need to install an
instance of Linux. We recommend installing Ubuntu.
Next, follow the instructions for Linux inside your WSL2 Linux installation to
finish setting up the environment.
Finally, you'll need to install fwup using Chocolatey. See the chocolatey
install guide for help installing Chocolatey on
your system. With Chocolatey installed, run the following from a Powershell:
choco install fwup /y
When running on WSL2, Nerves uses the Linux version of fwup for building the
firmware files and the Windows version of fwup for burning firmware to SD
cards. It is important that you install fwup in both environments.
Linux
First, install a few packages using your package manager:
For Debian based systems
sudo apt install build-essential automake autoconf git squashfs-tools ssh-askpass pkg-config curl

For Arch based systems
yay -S base-devel ncurses5-compat-libs openssh-askpass git squashfs-tools curl

If you're curious, squashfs-tools will be used by Nerves to create root
filesystems and ssh-askpass will be used to ask for passwords when writing to
MicroSD cards. Some Fedora and Manjaro users have reported that they had to create a symlink
from /usr/bin/ssh-askpass to /usr/bin/qt4-ssh-askpass.
Next, install the fwup utility. Nerves uses fwup to create, distribute, and
install firmware images. You can install fwup using the instructions found at
Installation Page. Installing the
pre-built .deb or .rpm files is recommended.
If you want to build custom Nerves Systems, you need a few more build tools. If
you skip this step, you'll get an error message with instructions if you ever
need to build a custom system. On Debian and Ubuntu, run the following:
sudo apt install libssl-dev libncurses5-dev bc m4 unzip cmake python

For other host Linux distributions, you will need to install equivalent
packages, but we don't have the exact list documented. If you'd like to help
out, send us an improvement to this
page
and let us know what worked for you!

Now continue to the instructions for all platforms below.
All platforms
First, install the required versions of Erlang/OTP and Elixir. We highly
recommend using ASDF since the versions in use will be under your control. See
the ASDF docs for official
documentation.
IMPORTANT: Elixir 1.11.0 and 1.11.1 do not work with Nerves. Elixir 1.11.2 and
later are fine. Elixir 1.10.x also works.
Here's a summary of the install process:
git clone https://github.com/asdf-vm/asdf.git ~/.asdf --branch v0.8.0

The following steps are for bash. If you’re using something else, do the
equivalent for your shell.
echo -e '\n. $HOME/.asdf/asdf.sh' >> ~/.bashrc
echo -e '\n. $HOME/.asdf/completions/asdf.bash' >> ~/.bashrc # optional
source ~/.bashrc
for zsh based systems run the following
echo -e '\n. $HOME/.asdf/asdf.sh' >> ~/.zshrc
echo -e '\n. $HOME/.asdf/completions/asdf.bash' >> ~/.zshrc
source ~/.zshrc

asdf plugin-add erlang
asdf plugin-add elixir

Note #1:
If on Debian or Ubuntu, you'll want to install wx before running the next line:
For Ubuntu versions before 20.04 run the next line:
sudo apt install libwxgtk3.0-dev
For Ubuntu 20.04 and up run the next line:
sudo apt install libwxgtk3.0-gtk3-dev
for arch based systems run the next line:
yay -S wxgtk2 fop jdk-openjdk unzip

Note #2:
It's possible to use different Erlang and Elixir versions with Nerves. The
latest official Nerves systems are compatible with the versions below. In
general, differences in patch releases are harmless. Nerves detects
configurations that might not work at compile time.
asdf install erlang 24.1.5
asdf install elixir 1.12.3-otp-24
asdf global erlang 24.1.5
asdf global elixir 1.12.3-otp-24

It is important to update the versions of hex and rebar used by Elixir,
even if you already had Elixir installed.
mix local.hex
mix local.rebar

If you have your own version of rebar in your path, be sure that it is
up-to-date.
You can now add the nerves_bootstrap archive to your Mix environment. This
archive allows Nerves to bootstrap the Mix environment, ensuring that your code
is properly compiled using the right cross-compiler for the target. The
nerves_bootstrap archive also includes a project generator, which you can use
to create new Nerves projects. To install the nerves_bootstrap archive:
mix archive.install hex nerves_bootstrap

Is something wrong?Edit this page on GitHub

Getting Started

Introduction
Nerves defines a new way to build embedded systems using Elixir. It is
specifically designed for embedded systems, not desktop or server systems. You
can think of Nerves as containing three parts:
Platform - a customized, minimal Buildroot-derived Linux that boots directly to the BEAM VM.
Framework - ready-to-go library of Elixir modules to get you up and running quickly.
Tooling - powerful command-line tools to manage builds, update firmware, configure devices, and more.
Taken together, the Nerves platform, framework, and tooling provide a highly specialized environment for using Elixir to build advanced embedded devices.
Common terms
In the following guides, support channels, and forums, you may hear the following terms being used.
	Term	Definition
	host	The computer on which you are editing source code, compiling, and assembling firmware
	target	The platform for which your firmware is built (for example, Raspberry Pi, Raspberry Pi 2, or Beaglebone Black)
	toolchain	The tools required to build code for the target, such as compilers, linkers, binutils, and C runtime
	system	A lean Buildroot-based Linux distribution that has been customized and cross-compiled for a particular target
	assemble	The process of combining system, application, and configuration into a firmware bundle
	firmware bundle	A single file that contains an assembled version of everything needed to burn firmware
	firmware image	Built from a firmware bundle and contains the partition table, partitions, bootloader, etc.

Creating a new Nerves app
Before you start using Nerves, it is important that you take a minute to read
the Installation Guide. It will help you get your machine
configured for running Nerves.
Let's create a new project. The nerves.new project generator can be called
from anywhere and can take either an absolute path or a relative path.
NOTE: If you've used Nerves in the past, you may have noticed that you no
longer need to specify a --target option when creating a new project. Since
Nerves Bootstrap 0.3.0, the default target is host unless you specify a
different target in your environment. This allows for more seamless
interaction with tools on your host without cross-compilers getting in the way
until you're ready to build firmware for a particular target.

mix nerves.new hello_nerves

Nerves will generate the required files and directory structure for your
application. If you chose not to fetch dependencies during project generation, you will need
to do that yourself.
As described by the project generator, the next step is to change to the project
directory, choose a target, and fetch the target-specific dependencies. Visit
the Targets Page for more information on what target name to use
for each of the boards that Nerves supports.
The target is chosen using a shell environment variable, so if you use the
export command, it will remain in effect as long as you leave that window
open. Alternatively, you can prefix each command with the environment variable.
We find that it's easiest to have two shell windows open: one remaining
defaulted to the host target and one with the desired MIX_TARGET variable
set. This allows you quick access to use host-based tooling in the former and
deploy updated firmware from the latter, all without having to modify the
MIX_TARGET variable in your shell.
REMINDER: To choose the correct target for your specific device refer to the
Targets Page

cd hello_nerves
export MIX_TARGET=rpi3
mix deps.get

OR
cd hello_nerves
MIX_TARGET=rpi3 mix deps.get

Building and deploying firmware
Once the dependencies are fetched, you can build a Nerves Firmware (a bundle
that contains a minimal Linux platform and your application, packaged as an OTP
release). The first time you ask any dependencies or your application to
compile, Nerves will fetch the System and Toolchain from one of our cache
mirrors. These artifacts are cached locally in ~/.nerves/artifacts so they
can be shared across projects.
For remote deployment information, see "How do I push firmware updates
remotely?" in the FAQ.
Create the firmware bundle
You can create the firmware bundle with the following command:
mix firmware # -OR- # MIX_TARGET=rpi3 mix firmware

This will result in a hello_nerves.fw firmware bundle file.
To create a bootable SD card, use the following command:
mix firmware.burn # -OR- # MIX_TARGET=rpi3 mix firmware.burn

This command will attempt to automatically discover the SD card inserted in your
host. This may fail to correctly detect your SD card, for example, if you have
more than one SD card inserted or you have disk images mounted. If this
happens, you can specify the intended device by passing the -d <device>
argument to the command.
For example:
mix firmware.burn -d /dev/rdisk3

NOTE: You can also use -d <filename> to specify an output file that is a raw image of the SD card.
This binary image can be burned to an SD card using fwup, dd, Win32DiskImager, or some other image copying utility.

The mix firmware.burn task uses the fwup tool internally; any extra
arguments passed to it will be forwarded along to fwup. For example, if you
are sure there is only one SD card inserted, you can also add the -y flag to
skip the confirmation that it is the correct device.
mix firmware.burn -y # -OR- # MIX_TARGET=rpi3 mix firmware.burn -y

You can read about the other supported options in the fwup documentation.
Now that you have your SD card burned, you can insert it into your device and
boot it up. For Raspberry Pi, be sure to connect it to an HDMI display and USB
keyboard so you can see it boot to the IEx console.
Connecting to your Nerves target
You can connect to an RPi0, RPi3A, and BBB with just a USB cable. These Nerves
targets can operate in Linux USB gadget mode, which means a network connection
can be made with a USB cable between your host and target. The USB cable
provides both power and network connectivity. This is a very convenient way to
work with your target device.
The RPi3B/B+ does not have USB gadget mode capability, but you can make a
network connection using either wired or wireless Ethernet.
Attach a USB cable to the RPi0 / RPi0W / RPi0WH
Connect a USB cable between your host and the RPi0 USB port closest to the
middle of the board that is labeled "USB". This USB port, via the USB cable,
will provide both power to the board and a virtual Ethernet network
connection.
If you don't see any activity lights blinking on the board after plugging in
your USB cable, something's not working right. So then, rather power up your
RPi0 using a dedicated power supply, and use your USB cable only for
communication.
Test the connection
Once the target is powered up, test the connection from your host:
ping nerves.local

Note: If this does not work it may be because your USB cable only has power
lines. You need a cable with both power and data lines, so try a different USB
cable.
Note: If Windows Device Manager/Network adapters does not have a
USB Ethernet/RNDIS Gadget device, it might be caused by
this,
so install the optional USB Ethernet/RNDIS Gadget driver to fix it.
Note: nerves.local is an mDNS address. These examples were done with a Mac
host, which has mDNS enabled by default. Linux and Windows hosts may have to
enable mDNS networking.

Make the network connection
To make a connection via the USB gadget mode virtual Ethernet interface:
ssh nerves.local

You should find yourself at the iex(hello_nerves@nerves.local)1> prompt. Enter the following command:
h Toolshed
This displays the help for the
Toolshed package, which contains
many useful commands. Go ahead and try them out to explore your target's runtime
environment.
To end your ssh connection type exit, or you can use the ssh command
<enter>~.
Wireless and wired Ethernet connections
The config/config.exs generated in a new Nerves project will setup connections
for USB and Ethernet by default. Instructions on further configuring them, or to
configure wireless connections, please refer to Configure networking or VintageNet
documentation.
Alternate connection methods
There are a couple alternate connection methods:
Gadget-mode virtual serial connection
USB gadget mode also supplies a virtual serial connection. Use it with any
terminal emulator like screen or picocom:
screen /dev/usb* 115200 # replace "usb*" with the name of your host's USB port

You should be at an iex(1)> prompt. If not, try pressing Enter a few times.
USB to TTL serial cable
In addition to the wired and wireless connection method described above, targets
without USB gadget mode can be accessed via a serial connection with a TTL
cable. The TTL cable is connected between the host USB port and a couple of
header pins on the target. We've had good luck with this
cable and the site also contains a
tutorial
on how to use it.
You will also need to modify your Nerves configuration as described in the
Using a USB Serial Console FAQ
topic.
Nerves examples
To get up and running quickly, you can check out our collection of example
projects. Be sure to set
your MIX_TARGET environment variable appropriately for the target hardware you
have. Visit the Targets Page for more information on what
target name to use for the boards that Nerves supports.
The nerves_examples repository contains several example projects to get you
started. The simplest example is Blinky, known as the "Hello World" of hardware
because all it does is blink an LED indefinitely. If you are ever curious about
project structuring or can't get something running, check out Blinky and run it
on your target to confirm that it works in the simplest case.
git clone https://github.com/nerves-project/nerves_examples
export MIX_TARGET=rpi3
cd nerves_examples/blinky
mix do deps.get, firmware, firmware.burn

Is something wrong? [Edit this page on GitHub].

Frequently-Asked Questions

This is a collection of questions that often come up as people are getting started with Nerves.
If you tried to go through the Getting Started guide or some of the example projects and got stuck, hopefully one of the following answers will help.
If not, please let us know in the #nerves channel on the Elixir-Lang Slack, or create an Issue or Pull Request to improve this documentation.
Where can persistent data be stored?
For most use cases, the /data partition is the right place to store data. It
is initialized on first boot and is not overwritten when new firmware is pushed
to the device.
The mix firmware.burn task clears it out so that partition is guaranteed to be
empty when the device boots. This is useful to ensure that the device is known
state. There's a pattern for implementing a "Reset to factory defaults" feature
by erasing the partition and rebooting.
If you're updating firmware regularly by writing to a MicroSD card, try running
mix firmware.burn --task upgrade. This won't reset the application data
partition.
Some Elixir libraries write to their priv directory by default. This won't
work since all code and the priv directories are stored in a read-only file
partition. Usually there's a way to override this default choice and specify a
path to /data for that library to use.
Factory calibration and other provisioning data is either stored in a custom
file partition or in the U-Boot environment block. The latter is accessible via
Nerves.Runtime.KV functions.
How can I apply a firmware update manually?
Assuming that you have already put a known good firmware inside "/data/known_good.fw" (perhaps with sftp) then you can run the following commands
iex> cmd("fwup -i /data/known_good.fw --apply --task upgrade " <>
 "--no-unmount -d #{Nerves.Runtime.KV.get("nerves_fw_devpath")}")
iex> reboot
How do I push firmware updates remotely?
SSH is a good default for local development and is enabled by default (via mix nerves.new) with https://github.com/nerves-project/nerves_ssh (note: previously https://github.com/nerves-project/nerves_firmware_ssh was enabled by default)
For production environments you might also want to look at https://www.nerves-hub.org/ (either hosted or self-hosted)
Using a USB Serial Console
By default on the Raspberry Pi family of targets (except for the Raspberry Pi Zero), the iex console is displayed on the screen attached to the HDMI port, which tends to be easier for new people because they can simply connect their target device to a monitor or TV.
For troubleshooting start-up issues and for more advanced development workflows, it's often desirable to connect from your development host to the target using a serial port, for example using the popular FTDI Cable.
This allows you to interact with the console of the target device using a terminal emulator (like screen) on your development host.
To override the default, you need to locate the erlinit.config for the system you're using and modify it to replace the -c option to control the console.
You can figure out what the correct value is by referring to the hardware description table in the README of your target's system repository.
For example, for the Raspberry Pi 3 target, you can find the hardware description README here and the default erlinit.config here.
	Download the default erlinit.config file from the system repository for your target.

	Place it in your project folder under rootfs_overlay/etc/erlinit.config.

	Modify the -c console setting to match the value shown in the UART row of the hardware description table (rpi3 example shown):
rootfs_overlay/etc/erlinit.config
...
Specify the UART port that the shell should use.
#-c tty1
-c ttyAMA0

	Configure your project to replace this file in your firmware.
config/config.exs
use Mix.Config
config :nerves, :firmware,
 rootfs_overlay: "rootfs_overlay"

	Connect your USB serial cable to the desired UART pins (per the I/O pin-out for your particular hardware).

	On your development host, connect to the serial console.
	On Linux and Mac OS, use screen /dev/tty<device>.
You may need to specify the baud rate as well, for example: screen /dev/tty<device> 115200.
	On Windows, use the Serial option to connect to COM<device>.

Change Behavior on BEAM Failure
Similar to the previous question, we have chosen to have the device default to halting on certain kinds of failures that cause the Erlang VM to crash.
This allows you to more easily read the error and diagnose the problem during development.
For a production deployment, it's recommended that you change the behavior to restart on failure instead.
That way, in the unlikely event that your application crashes, the entire device will reload in a known-good state and continue to operate.
This setting is also configured using the erlinit.config file described above.
To have the device restart instead of hang on failure, make a copy of the erlinit.config file and make sure the --hang-on-exit option is commented out.
Uncomment to hang the board rather than rebooting when Erlang exits
#--hang-on-exit

You can also have the device drop into a shell when the Erlang VM crashes, allowing you to troubleshoot at the Linux OS level.
Optionally run a program if the Erlang VM exits
#--run-on-exit /bin/sh

Platform-Specific Hardware Support
Some target hardware has particular features that can be used from your
application, but they're not covered in the general Nerves documentation. In
general, platform-specific features will be documented in the target's system
documentation. You may also find what you need by searching
hex.pm for libraries that use that feature.
If you still don't see what you're looking for, please let us know in the #nerves channel on the Elixir-Lang Slack, or create an Issue or Pull Request to the relevant nerves_system-<target> repository.
Is something wrong?Edit this page on GitHub

Targets

Nerves supports a variety of hardware. These are called targets and are
identified by short tag names. Examples of tag names are rpi0, bbb, etc.
When building a Nerves project, set the MIX_TARGET environment variable to the
tag name. This controls which dependencies and configuration settings are used
when building your project. See the Mix
Targets documentation for
further information on this concept.
In Nerves, the term system refers to the library (usually posted to hex.pm) that
provides the bootloader, Linux kernel, C libraries, and more for a device.
Systems have names like nerves_system_rpi0. Since it's possible to create
firmware for more than one hardware device, Nerves uses the Mix target feature
to select the desired system in your project's mix.exs.
The naming of target tags is arbitrary. You can choose tags however makes the
most sense for your project. Nerves uses the convention of naming the target tag
after the system that it uses. For example, when using the Nerves new project
generator, it will set up the mix.exs to use the tag rpi0 to select the
nerves_system_rpi0 library for building for a Raspberry Pi Zero.
Supported Targets and Systems
The following table summarize officially supported hardware, the associated
system and the $MIX_TARGET tag to use.
	Target	System	Tag
	Raspberry Pi A+, B, B+	nerves_system_rpi	rpi
	Raspberry Pi Zero and Zero W	nerves_system_rpi0	rpi0
	Raspberry Pi 2	nerves_system_rpi2	rpi2
	Raspberry Pi 3A and Zero 2 W	nerves_system_rpi3a	rpi3a
	Raspberry Pi 3 B, B+	nerves_system_rpi3	rpi3
	Raspberry Pi 4	nerves_system_rpi4	rpi4
	BeagleBone Black, BeagleBone Green, BeagleBone Green Wireless, and PocketBeagle.	nerves_system_bbb	bbb
	Generic x86_64	nerves_system_x86_64	x86_64
	OSD32MP1	nerves_system_osd32mp1	osd32mp1

While the Nerves core team only officially supports the above hardware, the
community has added support for other boards. See Nerves Systems on
hex.pm
Supporting New Target Hardware
If you're trying to support a new Target, there may be quite a bit more work
involved, depending on how mature the support for that hardware is in the
Buildroot community. If you're not familiar with
Buildroot, you should learn about that first, using
the excellent training materials on their website.
If you can find an existing Buildroot configuration for your intended hardware
and you want to get it working with Nerves, you will need to make a custom
System as follows:
	Follow their procedure and confirm your target boots (independent of Nerves).

	Figure out how to get everything working with the version of Buildroot Nerves uses.
 See the NERVES_BR_VERSION variable in create-build.sh.

	Look for packages and board configs can need to be copied into your System.
	Look for patches to existing packages that are needed.

	Create a defconfig that mimics the one from step 1, and get nerves_system_br to build it.
See the section in the System documentation about customizing Nerves Systems.

NOTE: You probably want to disable any userland packages that may be included
by default to avoid distraction.

Is something wrong?Edit this page on GitHub

Systems

Using a Nerves System
When you generate a new Nerves project using the mix nerves.new task, you will
end up with something like the following in your mix.exs configuration:
 # ...
 @target System.get_env("MIX_TARGET") || "host"
 # ...
 defp deps do
 [
 {:nerves, "~> 1.3", runtime: false},
 {:shoehorn, "~> 0.4"},
 {:ring_logger, "~> 0.4"}
] ++ deps(@target)
 end

 defp deps("host"), do: []

 defp deps(target) do
 [
 {:nerves_runtime, "~> 0.6"}
] ++ system(target)
 end

 def system("rpi"), do: {:nerves_system_rpi, "~> 1.0", runtime: false}
 def system("rpi0"), do: {:nerves_system_rpi0, "~> 1.0", runtime: false}
 # ...
 def system(target), do: Mix.raise "Unknown MIX_TARGET: #{target}"
This allows Nerves to load one or more target-specific dependencies when a
MIX_TARGET system environment variable is specified. The official
nerves_system-* dependencies contain the standard Buildroot configuration for
the Nerves platform on a given hardware target and have a dependency on the
appropriate toolchain for that target. The system and toolchain also reference a
pre-compiled version of the relevant artifact so that Mix can simply download
them instead of having to compile them (which takes quite a while).
Anatomy of a Nerves System
Nerves system dependencies are a collection of configurations to be fed into
the system build platform. Currently, Nerves systems are all built using the
Buildroot platform. The project structure of a Nerves system is as follows:
nerves_system_rpi3
├── LICENSE
├── README.md
├── VERSION
├── cmdline.txt
├── config.txt
├── fwup.conf
├── linux-4.4.defconfig
├── mix.exs
├── nerves_defconfig
├── post-createfs.sh
└── rootfs-overlay
 └── etc
 └── erlinit.config
 └── fw_env.config
The mix.exs defines the toolchain and build platform, for example:
def project do
 [# ...
 nerves_package: nerves_package(),
 compilers: Mix.compilers ++ [:nerves_package],
 aliases: [loadconfig: [&bootstrap/1]]]
end
...
def nerves_package do
 [
 type: :system,
 artifact_sites: [
 {:github_releases, "nerves-project/#{@app}",
],
 platform: Nerves.System.BR,
 platform_config: [
 defconfig: "nerves_defconfig"
],
 checksum: [
 "nerves_defconfig",
 "rootfs_overlay",
 "linux-4.4.defconfig",
 "fwup.conf",
 "cmdline.txt",
 "config.txt",
 "post-createfs.sh",
 "VERSION"
]
]
end
...
defp deps do
 [
 {:nerves, "~> 1.0", runtime: false},
 {:nerves_system_br, "~> 1.0", runtime: false},
 {:nerves_toolchain_arm_unknown_linux_gnueabihf, "~> 1.0", runtime: false}
]
end
...
defp package do
 [# ...
 files: ["LICENSE", "mix.exs", "<other files>"],
 licenses: ["Apache 2.0"],
 links: %{"Github" => "https://github.com/nerves-project/nerves_system_rpi3"}]
end
Nerves systems have a few requirements in the mix file:
	The compilers must include :nerves_package compiler after Mix.compilers.
	There must be a dependency for the toolchain and the build platform.
	The package must specify all the required files so they are present when
downloading from Hex.
	The nerves_package key should contain nerves package configuration metadata as
described in the next section.

Nerves Package Configuration
The mix.exs project configuration contains a special configuration key nerves_package. This key
contains configuration information that Nerves loads before any application or
dependency code is compiled. It is used to store metadata about a package. Here
is an example from the mix.exs file for nerves_system_rpi3:
...
def project do
 [# ...
 nerves_package: nerves_package(),
 # ...
]
end
....
defp nerves_package do
 [
 type: :system,
 artifact_sites: [
 {:github_releases, "nerves-project/#{@app}"}
],
 platform: Nerves.System.BR,
 platform_config: [
 defconfig: "nerves_defconfig"
],
 checksum: package_files()
]
end
The following keys are supported:
	type: The type of Nerves Package.
 Options are: system, system_compiler, system_platform,
 system_package, toolchain, toolchain_compiler, toolchain_platform.

	artifact_sites (optional): Artifact sites specify how to download
 artifacts. Sites are tried until one works.
 Supported artifact sites:
 {:github_releases, "organization/project"}
 {:github_api, "organization/project", username: System.get_env("GITHUB_USER"), token: System.get_env("GITHUB_TOKEN"), tag: @version}
 {:prefix, "http://myserver.com/artifacts"}
 {:prefix, "file:///my_artifacts/"}
 {:prefix, "/users/my_user/artifacts/"}
 {:prefix, "http://myserver.com/artifacts", headers: [{"Authorization", "Basic 12345"}]}
 {:prefix, "http://myserver.com/artifacts", query_params: %{"id" => "1234"}}
 For official Nerves systems and toolchains, we upload the artifacts to
 GitHub Releases.
 For an artifact site that uses GitHub Releases in a private repo, create a
 personal access token
 and use :github_api with username, token, and tag options:
 {:github_api, "owner/repo", username: "skroob", token: "1234567", tag: "v0.1.0"}
 Artifact sites can pass options as a third parameter for adding headers
 or query string parameters.
 {:prefix, "https://my-organization.com",
 query_params: %{"id" => "1234567", "token" => "abcd"},
 headers: [{"Content-Type", "application/octet-stream"}]
 }
 You can also use this to add an authorization header for files behind basic auth.
 {:prefix, "http://my-organization.com/", headers: [{"Authorization", "Basic " <> System.get_env("BASIC_AUTH")}}]}

	platform: The build platform to use for the system or toolchain.

	platform_config: Configuration options for the build platform.
 In this example, the defconfig option for the Nerves.System.BR
 platform points to the Buildroot defconfig fragment file used to build the
 system.

	build_runner: Optional - The build_runner that should be used to build the artifact.
 If this key is not defined, Nerves will choose a default build_runner
 that should be used to build the artifact based on information about the host
 computer that you are building on. For example, Mac OS will use
 Nerves.Artifact.BuildRunners.Docker where as Linux will use
 Nerves.Artifact.BuildRunners.Local. Specifying a build_runner module in
 the package config could be used to force the build_runner.

	build_runner_opts: Optional - A keyword list of options to pass to the build_runner module.
 make_args: - Extra arguments to be passed to make.
 For example:
 You can configure the number of parallel jobs that Buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
 defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
 end

	checksum: The list of files for which checksums are calculated and stored
 in the artifact cache.
 This checksum is used to match the cached Nerves artifact on disk with its
 source files, so that it will be re-compiled instead of using the cache if
 the source files no longer match.

Customizing Your Own Nerves System
This document has been moved
Is something wrong?Edit this page on GitHub

Using the CLI

Nerves greets you with Elixir's IEx prompt. This prompt is your main entry point
to interacting with Elixir, your program and hardware. This chapter focuses on
Nerves-specific use of the IEx prompt.
Viewing log messages
Attaching to the logger
The Elixir console logger is
normally disabled so log messages don't print to the terminal. Instead, run
log_attach to see log messages:
iex> log_attach
{:ok, #PID<0.30684.4>}
iex> Logger.info("hello")

02:23:34.863 [info] hello
:ok
To stop log messages from being printed, run log_detach.
RingLogger
You'll frequently want to see log messages that occurred in the past. The Nerves
new project generator creates projects with
RingLogger to support this.
RingLogger is an Elixir logger
backend that
stores logs completely in memory. This is nice for embedded systems where you
don't want to wear out Flash storage by writing to it. The drawbacks are
RingLogger discards old messages and doesn't save them across reboots.
To view log messages, run RingLogger.next at the IEx prompt. Repeated calls
print newly received log messages. RingLogger.reset lets you start at the
oldest message again.
See the RingLogger docs for more information on tuning log levels, filtering
by module, and grep'ing for keywords.
Dmesg
Nerves routes Linux kernel log messages and
syslog messages to the Elixir Logger.
This means Elixir logger backends have a complete picture of the log messages
sent by the kernel, C, and BEAM programs. Sometimes, though, it's useful to
focus on the kernel messages in isolation. The dmesg helper lets you do this:
iex> dmesg
[0.000000] Booting Linux on physical CPU 0x0
[0.000000] Linux version 5.10.41 (buildroot@buildroot) (armv7-nerves-linux-gnueabihf-gcc (crosstool-NG 1.24.0.299_6729a76) 10.2.0, GNU ld (crosstool-NG 1.24.0.299_6729a76) 2.36.1) #1 PREEMPT Fri Aug 20 01:26:27 UTC 2021
[0.000000] CPU: ARMv7 Processor [413fc082] revision 2 (ARMv7), cr=10c5387d
[0.000000] CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction cache
RamoopsLogger
The RamoopsLogger is an Elixir
logger backend that records messages to a special memory region using Linux's
pstore driver. This memory region survives reboots so it's useful for
capturing log messages that happen just before an unexpected reboot. Even if you've configured a file-backed logger backend, the RamoopsLogger can sometimes capture messages that would have been lost to disk caching.
This driver is enabled in most official Nerves systems. However,
:ramoops_logger is not added to Nerves projects by default. See the
documentation for registering it with the
Elixir Logger.
Other loggers
Pretty much any logger backend in Elixir can be used with Nerves. The caveat is
that Nerves does not guarantee the following:
	Networking always works
	The application data partition (/data) is mounted

If you're using a network-based logger, check that it handles network outages
gracefully.
The application data partition is almost always available. However, on the
first boot and if severely corrupted, it will be reformatted. Since the Elixir
Logger starts very early in the boot process, it's possible for log messages to
be received before /data is ready. This is a temporary situation, but it is
important that the Logger backend not give up.
Networking
Most Nerves projects use the VintageNet
library for configuring the network. To get a quick overview of network
configuration and status, run:
iex> VintageNet.info
All interfaces: ["eth0", "lo", "wlan0", "wwan0"]
Available interfaces: ["wlan0", "wwan0"]

Interface eth0
 Type: VintageNetEthernet
 Present: true
 State: :configured (1 days, 14:59:09)
 Connection: :disconnected (1 days, 14:59:09)
 Configuration:
 %{type: VintageNetEthernet, ipv4: %{method: :dhcp}}

Interface wlan0
 Type: VintageNetWiFi
 Present: true
 State: :configured (1 days, 14:59:05)
 Connection: :internet (5:02:35)
 Addresses: 192.168.99.81/24, fe80::9a48:27ff:fedd:a10e/64
 Configuration:
 %{
 type: VintageNetWiFi,
 ipv4: %{method: :dhcp},
 vintage_net_wifi: ...
 }

Interface wwan0
 Type: VintageNetQMI
 Power: On (watchdog timeout in 59969 ms)
 Present: true
 State: :configured (14:44:50)
 Connection: :internet (14:43:51)
 Addresses: 100.101.32.76/29, fe80::8eb:885f:3fce:d37d/64
 Configuration:
 %{ ...
 }
If your muscle memory types ifconfig, that works too:
iex(2)> ifconfig
lo: flags=[:up, :loopback, :running]
 inet 127.0.0.1 netmask 255.0.0.0
 inet ::1 netmask ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff
 hwaddr 00:00:00:00:00:00

eth0: flags=[:up, :broadcast, :running, :multicast]
 hwaddr 60:64:05:4e:fb:ef

wlan0: flags=[:up, :broadcast, :running, :multicast]
 inet 192.168.99.81 netmask 255.255.255.0 broadcast 192.168.99.255
 inet fe80::9a48:27ff:fedd:a10e netmask ffff:ffff:ffff:ffff::
 hwaddr 98:48:27:dd:a1:0e

wwan0: flags=[:up, :pointtopoint, :running, :multicast]
 inet 100.101.32.76 netmask 255.255.255.248
 inet fe80::8eb:885f:3fce:d37d netmask ffff:ffff:ffff:ffff::
Another option is to run ip(8).
Nerves provides a trimmed down Busybox version of ip. For example:
iex> cmd("ip route")
default via 192.168.99.1 dev wlan0 metric 20
default via 100.101.32.77 dev wwan0 metric 30
100.101.32.72/29 dev wwan0 scope link src 100.101.32.76 metric 30
192.168.99.0/24 dev wlan0 scope link src 192.168.99.81 metric 20
See the VintageNet documentation
for more tips on debugging and adjusting network configurations.
Toolshed
Toolshed is a library of IEx
helpers that augments the ones that
Elixir provides. It's included by the Nerves new project generator.
The helpers should be available by default, but if not, run:
iex> use Toolshed
Toolshed imported. Run h(Toolshed) for more info.
:ok
If you're used to the Linux commandline, many Toolshed helpers will seem
familiar except with an Elixir twist. One difference is that you need to add
double quotes around filenames and IP addresses. The names are similar, though,
like uname, ping, uptime, date, lsof and more.
Toolshed also simplifies running shell commands. Keeping in mind that Nerves
provides a limited Linux userland, you can still run simple shell scripts and
commandline applications using cmd. For example,
iex> cmd("ls -las /")
 0 drwxr-xr-x 3 root root 97 Mar 12 2020 var
 0 drwxr-xr-x 7 root root 88 Mar 12 2020 usr
 0 drwxrwxrwt 3 root root 180 Sep 2 21:05 tmp
 0 dr-xr-xr-x 12 root root 0 Jan 1 1970 sys
...
Another useful command for checking Internet-connectivity is weather. This
sends an HTTP request to Igor Chubin's super useful wttr.in
service.
Linux shell commands
Note: Erlang contains an amazing amount of functionality, so before reaching
for Linux utilities, we highly recommend checking the Erlang
documentation.
Nerves includes a minimal version of busybox to
support running simple shell scripts and access network configuration utilities
that do not have analogs in Erlang/OTP.
To see what's available, run busybox without arguments:
iex> cmd("busybox")
BusyBox v1.33.1 () multi-call binary.
BusyBox is copyrighted by many authors between 1998-2015.
Licensed under GPLv2. See source distribution for detailed
copyright notices.

Usage: busybox [function [arguments]...]
 or: busybox --list
 or: busybox --show SCRIPT
 or: function [arguments]...

 BusyBox is a multi-call binary that combines many common Unix
 utilities into a single executable. Most people will create a
 link to busybox for each function they wish to use and BusyBox
 will act like whatever it was invoked as.

Currently defined functions:
 [, [[, ash, base32, basename, brctl, cat, cp, cut, date, dd, devmem,
 df, dirname, dmesg, dnsd, expr, find, free, grep, halt, id, ifconfig,
 install, ip, ipaddr, iplink, ipneigh, iproute, iprule, iptunnel, kill,
 killall, ls, lsmod, mim, mkdir, mknod, mktemp, modinfo, modprobe,
 mount, mv, ntpd, pidof, ping, ping6, poweroff, ps, pwd, reboot, rm,
 rmdir, rmmod, sed, sh, sha256sum, sleep, sysctl, tail, touch, udhcpc,
 udhcpd, uevent, umount, unzip
Customizing the IEx session
The Nerves new project generator creates a default iex.exs for setting up the
prompt. You can find it in rootfs_overlay/etc/iex.exs.
The default iex.exs shows some text and loads the Toolshed helpers. See the
IEx .iex.exs docs for
more information on what can be done.
Keep the following in mind:
	Elixir evaluates the iex.exs file for the console very early in the boot
process. It's likely that networking and your OTP applications have not
started, so you may get runtime exceptions
	A common sign that a typo broke the iex.exs is that the Toolshed helpers
are not available. You can still run use Toolshed at the prompt.
	The iex.exs is stored in a read-only location so you can't update it on the
device. You can create /root/.iex.exs and customize it. Use sftp to
update or erase it if you mess it up.

Changing and disabling the console
Depending on the platform, Nerves sends the startup console to an attached
display or UART. If you find yourself taking pictures of the display to capture
error log messages, you probably want to start using the UART. That requires a
USB-to-UART cable (often called an FTDI cable) and you'll need a serial
communications program on your computer. When you ship a Nerves device, you may
want to disable the console completely.
erlinit sets up the console
before starting Erlang. The /etc/erlinit.config files in the official Nerves
systems have comments about where the console output goes. Here's an example:
 Specify where erlinit should send the IEx prompt. Only one may be enabled at
a time.
-c ttyAMA0 # UART pins on the GPIO connector
-c tty1 # HDMI output
The easiest way of changing the console location is in your config.exs. For example,
specify the following to use tty1:
config :nerves, :erlinit,
 ctty: "tty1"
To disable the console completely, set the ctty to null:
config :nerves, :erlinit,
 ctty: "null",
 alternate_exec: "/usr/bin/run_erl /tmp/ /tmp exec"
The :alternate_exec key is optional here. It calls
run_erl to log console output to a
file in /tmp. This is useful if code calls IO.puts rather than Logger.
Remote console access
Accessing the IEx prompt remotely requires additional configuration if ssh is
not available. The option that currently requires the least amount of code is to
use NervesHub. The way this works is that the
device connects to a NervesHub server and then you can log into the server, pick
a device and open a command prompt. If NervesHub is not an option, the
extty library may be useful for connecting an
IEx prompt to the transport of your choice.
Erlang and LFE prompts
While Nerves definitely has a lot of Elixir in it now, it has always been the
intention to support other BEAM languages.
The boot console is configured using your project's vm.args. The console
supplied over SSH connections is set though the application environment for
:nerves_ssh:
config :nerves_ssh,
 shell: :lfe
See the Nerves Examples for
small Erlang and LFE programs.
CLI FAQ
How do I exit an ssh session
If you're using Toolshed, type exit at the IEx prompt. Otherwise, use
ssh's magic exit sequence: <enter>~..
Why does history not work on the first boot?
Commandline history is stored on the application data partition. On the first
boot, the application data partition is unformatted and needs to be initialized.
Unfortunately, the commandline history code is one of the few pieces of code
that gets started before this happens.
Where's Bash?
Everyone asks this and it's come up since almost day one. It is probably the
most visible distinction of what it means that Nerves uses the Linux kernel but
very little of the standard Linux userland.
Since Nerves provides only a few Linux utilities, the shell prompt is not as
useful as you would expect. The projects that once provided a shell prompt have
been abandoned due to this.
Our recommendation is to spend some time working at the iex> prompt and if
you're missing a utility, check if Elixir or Erlang/OTP provide it. If they do
and it just needs an IEx helper to make it ergonomic, then please consider
contributing a new helper to Toolshed.
If having a proper Unix shell and Linux userland is critical to your
application, it may be better to not use Nerves.
Buildroot, Yocto,
Raspberry Pi OS, and other embedded Linux
projects run Erlang and Elixir too. Many Nerves-related libraries work well
outside of Nerves.
Is something wrong?Edit this page on GitHub

User Interfaces

Phoenix web interface
The Phoenix web framework makes an excellent companion to Nerves-based devices
that need to serve content over HTTP directly from the device. For example, a
device with no display might provide administration and configuration
interfaces intended to be accessed from a computer or mobile device.
Hello Phoenix is an example of structuring a project as described here.
Choosing a project structure
There are two commonly used project structures for Nerves-based devices that uses
Phoenix web interface:
	poncho project structure
	umbrella project structure

Although Nerves supports both, the preferred project structure is what we call
poncho project structure. For the reasoning behind this, please see the original
blog post describing poncho projects. The following steps assume that we use
the poncho project structure.
Using the poncho project structure, we simply use separate Mix projects,
side-by-side with path dependencies between them, in the same source code repository.
Create a poncho project
First, we generate the two new Mix projects in a containing directory:
Create a container directory called "my_app"
mkdir my_app && cd my_app

Create a Nerves firmware project called "my_app_firmware"
mix nerves.new my_app_firmware

Create a Phoenix 1.6 UI project called "my_app_ui"
mix phx.new my_app_ui --no-ecto --no-mailer

Now, we add the Phoenix-based my_app_ui project to the my_app_firmware
project as a dependency, because we want to use the my_app_firmware project
as a deployment wrapper around the my_app_ui project.
my_app/my_app_firmware/mix.exs

...
 defp deps do
 [
 # Dependencies for all targets
 {:nerves, "~> 1.7.0", runtime: false},
 # ...
 {:my_app_ui, path: "../my_app_ui", targets: @all_targets, env: Mix.env()},
 # ...
]
 end
...
We need one adjustment to the UI project's mix.exs. By default when MIX_ENV
is dev, the default Phoenix setup runs esbuild to rebuild assets as needed.
This doesn't work on target device, so we need to limit it to only run on the
host:
my_app/my_app_ui/mix.exs

 defp deps do
 [
 {:phoenix, "~> 1.6.0"},
 # ...
 {:esbuild, "~> 0.2", runtime: Mix.env() == :dev && Mix.target() == :host},
 # ...
]
 end
Configure networking
By default, the my_app_firmware project will include the nerves_pack
dependency, which simplifies the network setup and configuration process. At
runtime, nerves_pack will detect all available interfaces that have not been
configured and apply defaults for usb* and eth* interfaces.
For eth* interfaces, the device attempts to connect to the network
with DHCP using ipv4 addressing.
For usb* interfaces, it uses vintage_net_direct to run a simple DHCP server
on the device and assign the host an IP address over a USB cable.
If you want to use some other network configuration, such as wired or wireless
Ethernet, please refer to the nerves_pack documentation and the
underlying vintage_net documentation as needed.
Configure Phoenix
In order to deploy the my_app/my_app_ui Phoenix-based project along with the
Nerves-based my_app/my_app_firmware project, we need to configure our Phoenix.Endpoint
using appropriate settings for deployment on an embedded device. If
we're using a poncho project structure, we'll need to keep in mind that the
my_app/my_app_ui configuration won't be applied automatically, so we should either
import it from there or duplicate the required configuration.
Our configuration might look like this (as of Phoenix 1.6.2):
my_app_/my_app_firmware/config/target.exs

import Config

config :my_app_ui, MyAppUiWeb.Endpoint,
 url: [host: "nerves.local"],
 http: [port: 80],
 cache_static_manifest: "priv/static/cache_manifest.json",
 secret_key_base: "HEY05EB1dFVSu6KykKHuS4rQPQzSHv4F7mGVB/gnDLrIu75wE/ytBXy2TaL3A6RA",
 live_view: [signing_salt: "AAAABjEyERMkxgDh"],
 check_origin: false,
 render_errors: [view: MyAppUiWeb.ErrorView, accepts: ~w(html json), layout: false],
 pubsub_server: Ui.PubSub,
 # Start the server since we're running in a release instead of through `mix`
 server: true,
 # Nerves root filesystem is read-only, so disable the code reloader
 code_reloader: false

Use Jason for JSON parsing in Phoenix
config :phoenix, :json_library, Jason
There we have it! A Phoenix-based web application is now ready to run on our
Nerves-based embedded device. By separating the Phoenix-based project from the
Nerves-based project, we enable teams to work on the core functionality and
user interface code even without having physical hardware. We also minimize the
hardware/software integration effort by managing both the core software and the
firmware deployment infrastructure in a single poncho project.
Develop the UI
When developing the UI, we can simply run the Phoenix server from the
my_app_ui project directory:
cd path/to/my_app_ui
iex -S mix phx.server

Deploy the firmware
First we build our assets in the my_app_ui project directory and prepare them
for deployment to the firmware:
cd path/to/my_app_ui

We want to build assets on our host machine.
export MIX_TARGET=host
export MIX_ENV=dev

This needs to be repeated when you change dependencies for the UI.
mix deps.get

This needs to be repeated when you change JS or CSS files.
mix assets.deploy

When it's time to deploy firmware to our hardware, we can do it from the
my_app_firmware project directory:
cd path/to/my_app_firmware

Specify our target device.
export MIX_TARGET=rpi3
export MIX_ENV=dev

mix deps.get
mix firmware
(Connect the SD card)
mix firmware.burn

Is something wrong?Edit this page on GitHub

Compiling Non-BEAM Code

It's almost guaranteed that you'll have some code in your project that won't be
written in Elixir, Erlang, or another BEAM language. Nerves provides multiple
ways of integrating this code and the one you choose depends on many things.
Here are rules of thumb:
	Build large and complicated C and C++ projects using Buildroot by creating a
Custom system
	Build small C and C++ projects using
elixir_make
	Look for libraries like zigler for
specific languages
	When hope is lost, compile the programs outside of Nerves and include the
binaries in a priv directory. Static linking is recommended.

In a perfect world, it would be easy to use whatever language you wanted and
adding a program would be as simple as adding a reference to it to your mix deps. Sadly, that's not the case for embedded systems and sometimes an inferior
library may be preferable just because it carries fewer dependencies or is
easier to build.
Be aware of the following caveats with Nerves:
	Nerves does not use the embedded Linux init systems like systemd or
BusyBox init. Initialization is done in either an
Application.start callback
or in a GenServer so that it can be supervised.
	D-Bus is not normally enabled on Nerves. It may be enabled in a custom
system.
	X Windows is not used. Again, it may be enabled, but it is far more common to
have UI applications be fullscreen and not use a window manager.
	Only a few commands are available to shell scripts. You're encouraged to
use Elixir instead, but if that's not feasible, it's possible to add missing
commands by enabling them in Busybox in a custom system.

Before you even start, experience has shown that searching the Erlang/OTP
docs three times and skimming the
Erlang source lead to all kinds of amazing
discoveries that may not require you to port any code at all. If you do need to
port code, keep in mind that while Nerves uses the Linux kernel, it highly
favors Erlang/OTP ways of building systems and not embedded Linux ways. If you
find yourself continually fighting Nerves and missing embedded Linux, your use
case may be better met by installing Elixir on embedded Linux rather than trying
to make Nerves look more like embedded Linux. Many embedded Elixir libraries
work fine on both Nerves and embedded Linux.
Compilation environment variables
When compiling non-BEAM code, Nerves sets environment variables to
guide compilation. These environment variables are available to mix, rebar3
and any code invoked from them. For example, these are frequently used in the
Makefiles invoked by elixir_make.
	Name	Min nerves_system_br version	Description
	AR_FOR_BUILD	v1.13.1	The host's ar
	AS_FOR_BUILD	v1.13.1	The host's as
	CC	All	The path to gcc for crosscompiling to the target
	CC_FOR_BUILD	v1.13.1	The host's cc
	CFLAGS	All	Recommended C compilation flags
	CFLAGS_FOR_BUILD	v1.13.1	Recommended C compiler flags for the host
	CMAKE_TOOLCHAIN_FILE	v1.18.3	To build CMake projects, configure CMake with -DCMAKE_TOOLCHAIN_FILE="$(CMAKE_TOOLCHAIN_FILE)"
	CPPFLAGS	v1.14.5	Recommended C preprocessor flags
	CPPFLAGS_FOR_BUILD	v1.13.1	Recommended C preprocessor flags for the host
	CROSSCOMPILE	All	The path and prefix for the crosscompilers (e.g., "$CROSSCOMPILE-gcc" is the path to gcc)
	CXX	All	The path to g++ for crosscompiling to the target
	CXX_FOR_BUILD	v1.13.1	The host's g++
	CXXFLAGS	All	Recommended C++ compilation flags
	CXXFLAGS_FOR_BUILD	v1.13.1	Recommended C++ compiler flags for the host
	ERL_CFLAGS	All	Additional compilation flags for Erlang NIFs and ports
	ERL_EI_INCLUDE_DIR	All	Rebar variable for finding erl interface include files
	ERL_EI_LIBDIR	All	Rebar variable for finding erl interface libraries
	ERL_LDFLAGS	All	Additional linker flags for Erlang NIFs and ports
	ERTS_INCLUDE_DIR	All	erlang.mk variable for finding erts include files
	GCC_FOR_BUILD	v1.13.1	The host's gcc
	LD_FOR_BUILD	v1.13.1	The host's ld
	LDFLAGS	All	Recommended linker flags
	LDFLAGS_FOR_BUILD	v1.13.1	Recommended linker flags for the host
	PKG_CONFIG_SYSROOT_DIR	v1.8.5	Sysroot for using pkg-config to find libraries in the Nerves system
	PKG_CONFIG_LIBDIR	v1.8.5	Metadata for pkg-config on the target
	QMAKESPEC	v1.4.0	If Qt is available, this points to the spec file
	REBAR_TARGET_ARCH	All	Set to the binutils prefix (e.g., arm-linux-gnueabi) for rebar2
	STRIP	All	The path to strip for target binaries (Nerves strips binaries by default)
	TARGET_ABI	See below	The target ABI (e.g., gnueabihf, musl)
	TARGET_ARCH	See below	The target CPU architecture (e.g., arm, aarch64, mipsel, x86_64, riscv64)
	TARGET_CPU	See below	The target CPU (e.g., cortex_a7)
	TARGET_GCC_FLAGS	See below	Additional options to be passed to gcc. For example, enable CPU-specific features or force ASLR or stack smash protections
	TARGET_OS	See below	The target OS. Always linux for Nerves.

Also see the elixir_make
documentation
for additional environment variables that may be useful.
Target CPU, ARCH, OS, and ABI
The TARGET_* variables are optionally set by the Nerves system. All official
Nerves systems set them, but it is not mandatory for forks. These variables are
useful for guiding compilation of LLVM-based tools.
The current way of deriving their values is to use zig
and to select the combination that makes most sense for the target. To view the
options, install zig and run:
zig targets | less

These variables are defined as custom environment variables in the Nerves
system's mix.exs. For example, the following is the definition for the
Raspberry Pi Zero:
 defp nerves_package do
 [
 type: :system,
 ...
 env: [
 {"TARGET_ARCH", "arm"},
 {"TARGET_CPU", "arm1176jzf_s"},
 {"TARGET_OS", "linux"},
 {"TARGET_ABI", "gnueabihf"}
]
 ...
]
 end
While the TARGET_* environment variables are mostly geared for non-gcc
compilers, it's useful to add custom flags to gcc invocations as well. The
TARGET_GCC_FLAGS option supports this. The Nerves tooling will prepend the
contents of TARGET_GCC_FLAGS to the CFLAGS and CXXFLAGS used when
compiling NIFs and ports. This can be used to enable features like ARM NEON
support that would otherwise be off when using crosscompiler toolchain defaults.
Most users don't need to concern themselves with TARGET_GCC_FLAGS. If you are
creating a custom system, not setting TARGET_GCC_FLAGS is almost always fine,
but will result in NIFs and ports being built with generic compiler options.
Library recommendations
In general, most Elixir and Erlang libraries that include
NIFs and
ports can be made to work with
Nerves. Nerves is, however, less forgiving than normal compilation.
Three recommendations cannot be stressed enough:
First, always compile under _build. While it's much easier to compile in the
source directory, this always leads to errors where an executable compiled for
one architecture (the host) ends up being put on the target. Nerves will fail
with an error when this happens, but it causes a lot of confusion.
Second, do not have a priv directory in your source tree. While Elixir
provides a shortcut for copying files from a source priv directory to the
build output priv directory, experience has been that this feature causes
confusion when building native code. If you do have static assets that you want
in the output priv directory, add a line to your Makefile or mix.exs to
copy them.
Third, if you have the choice between using a NIF or a port to interface
external code with Erlang VM, ports offer the benefit of safety since they run
in an OS process. In other words, if the port crashes, Linux cleans up the mess.
If a NIF crashes on Nerves, the BEAM crashes and Nerves reboots the device.
The Internet has many examples of how to write
NIFs. For an example Makefile that
works well with Nerves and embedded Linux, see the circuits_i2c
Makefile.
Also consider zigler for a safer
alternative to C and C++ that works with Nerves.
Is something wrong?Edit this page on GitHub

Advanced Configuration

Target-Specific Configuration
Different target boards have different layouts for GPIO, LEDs, and more. Often,
this requires that configurations be specified per-target. In this example, we
will be looking at how to configure the LEDs for two different targets. First,
let's start by modifying our config.exs to include configs for each target.
config/config.exs

use Mix.Config

import_config "#{Mix.Project.config[:target]}.exs"
This will load a different Mix config for each target. Let's say we plan to
support targets rpi3 and bbb. These target devices have different numbers of
user-controlled LEDs and we want each to blink all of its LEDs. The
configuration files would look like this:
config/rpi3.exs

config :blinky, led_list: [:green]
config :nerves_leds, names: [green: "led0"]
config/bbb.exs

config :blinky, led_list: [:led0, :led1, :led2, :led3]

config :nerves_leds, names: [
 led0: "beaglebone:green:usr0",
 led1: "beaglebone:green:usr1",
 led2: "beaglebone:green:usr2",
 led3: "beaglebone:green:usr3"
]
Root Filesystem Overlays
Sometimes, you want to ship additional files and configurations with your
firmware. This is done by telling the firmware assembler where to find a
directory to use as an overlay on the root mount point:
config/config.exs

config :nerves, :firmware,
 rootfs_overlay: "rootfs_overlay"
This declares that the contents of the folder at rootfs_overlay in your
project root directory will be merged into the root filesystem when mix firmware is called. You can also specify a different rootfs_overlay for each
target, as shown in the previous section.
Overwriting Files in the Root Filesystem
Any files in the rootfs_overlay directory will overwrite those present in the
underlying filesystem. This can be useful if you want to change the contents of
included files in the underlying Nerves system. Let's say, for example, that you
want to change the behavior of erlinit. You can include your own
erlinit.config:
rootfs_overlay/etc/erlinit.config

Uncomment to hang the board rather than rebooting when Erlang exits
#--hang-on-exit

Enable UTF-8 filename handling in Erlang and custom inet configuration
-e LANG=en_US.UTF-8;LANGUAGE=en;ERL_INETRC=/etc/erl_inetrc;ERL_CRASH_DUMP=/root/crash.dump

Mount the application partition
-m /dev/mmcblk0p3:/root:ext4::

Erlang release search path
-r /srv/erlang

Hostname
-d "/usr/bin/boardid -b bbb -n 4"
-n nerves-%.4s

It is important to note that the entire file is replaced when you apply an
overlay, rather than merging the contents. Therefore, you should first obtain
and modify the original file. A trick for doing this is to expand the
rootfs.squashfs. You can do this using unsquashfs:
unsquashfs ~/.nerves/artifacts/<cached_system_name>/images/rootfs.squashfs

It will be expanded into the current directory under squashfs-root
Overwriting Files in the Boot Partition
Different targets have different boot partition contents. To overwrite files in
the boot partition, you will need to use your own fwup.conf file:
Copy fwup.conf to Your config/ Directory
Locate the fwup.conf files available in your deps directory
find deps -name fwup.conf
Copy the one that matches your target to the config directory.
cp deps/nerves_system_rpi0/fwup.conf config/
Also copy cmdline.txt as you'll need it below.
cp deps/nerves_system_rpi0/cmdline.txt config/

Configure Your System to Use the Copied fwup.conf
config/config.exs

config :nerves, :firmware,
 fwup_conf: "config/fwup.conf"
Make Your Changes
In your included fwup.conf file, you can use absolute paths or environment
variables to point to the location of included files.
Let's say you have a Raspberry Pi and you want to change the contents of the
cmdline.txt file. You can do this by editing the fwup.conf as follows:
fwup.conf

file-resource cmdline.txt {
 host-path = "${NERVES_APP}/config/cmdline.txt"
}

You can use the NERVES_APP environment variable to point to the root of your
Elixir app. This variable is automatically managed for you by
nerves_bootstrap.
Device Tree Overlays
To add a device tree overlay for your hardware, first define a file-resource for
the dtbo file inside fwup.conf. As with other file overlays, you can use
absolute paths or environment variables to point to the file location. For
example, to add support for a Bosch BMP280 I2C sensor on a Raspberry Pi, your new
file resource will be:
fwup.conf

file-resource i2c-sensor.dtbo {
 host-path = "${NERVES_SYSTEM}/images/rpi-firmware/overlays/i2c-sensor.dtbo"
}

Next you need make sure the dtbo file is written to the destination media on
build and update of your firmware. Add a new on-resource declaration for each
of the three firmware tasks:
fwup.conf

task complete{
 # ... look for where `on-resource` directives are already defined and add:
 on-resource i2c-sensor.dtbo {
 fat_write(${BOOT_A_PART_OFFSET}, "overlays/i2c-sensor.dtbo")
 }
}

task upgrade.a {
 # ...
 on-resource i2c-sensor.dtbo {
 fat_write(${BOOT_A_PART_OFFSET}, "overlays/i2c-sensor.dtbo")
 }
}

task upgrade.b {
 # ...
 on-resource i2c-sensor.dtbo {
 fat_write(${BOOT_B_PART_OFFSET}, "overlays/i2c-sensor.dtbo")
 }
}

Note that the BOOT_x_PART_OFFSET variable must match the partition being
written to for each task.
In order to load your new overlay, you will need to create your own
config.txt and use it instead of the default. Copy config.txt from your
target Nerves system and place it inside your project at config/config.txt.
fwup.conf now needs to be updated to use this new file. There should already be a
file-resource directive for config.txt. Find it and change the host-path
to point at the new location inside you project:
fwup.conf

file-resource config.txt {
 host-path = "${NERVES_APP}/config/config.txt"
}

At this point the overlay will be available to load inside config/config.txt
on boot. Follow the documentation for your hardware. For the Bosch BMP280 in our
example, the configuration will be:
config.txt

dtoverlay=i2c-sensor,bmp280

Partitions
Nerves firmware uses Master Boot Record (MBR) partition layout, which only
supports 4 primary partitions. By default, the root filesystem partition is
mounted in read-only mode. This prevents corruption of the root filesystem due
to "improper shutdowns". With embedded systems, it is assumed that power can be
removed from the device at any time. This could be problematic if you are
performing a write operation on the filesystem. Because the root filesystem is
read-only, we also add a read/write partition by default, called app_data and
mounted at /data (the root user's home directory). These settings are
defined in etc/erlinit.config.
 +----------------------------+
 | MBR |
 +----------------------------+
 | Firmware configuration data|
 | (formatted as uboot env) |
 +----------------------------+
 | p0*: Boot A (FAT32) |
 | zImage, bootcode.bin, |
 | config.txt, etc. |
 +----------------------------+
 | p0*: Boot B (FAT32) |
 +----------------------------+
 | p1*: Rootfs A (squashfs) |
 +----------------------------+
 | p1*: Rootfs B (squashfs) |
 +----------------------------+
 | p2: Application (EXT4) |
 +----------------------------+
More information about how the App Data partition is initialized and mounted can
be found in the documentation for nerves_runtime Filesystem
Initialization
Adding a Partition
You can enable and mount an additional read/write partition by modifying the
fwup.conf file. This strategy is typically used to define two locations where
data can be written. Let's say you want to persist some infrequently-written
configuration data and some frequently-written log data. These use-cases could
be segmented into separate partitions so that the important,
infrequently-written configuration data is not corrupted due to a loss of power
while writing the more-frequent, but less-critical, log data.
First, define a new space on the disk for the partition:
fwup.conf

(Sizes are in 512 byte blocks)
define(UBOOT_ENV_OFFSET, 16)
define(UBOOT_ENV_COUNT, 16) # 8 KB

define(BOOT_A_PART_OFFSET, 63)
define(BOOT_A_PART_COUNT, 38630)
define-eval(BOOT_B_PART_OFFSET, "${BOOT_A_PART_OFFSET} + ${BOOT_A_PART_COUNT}")
define(BOOT_B_PART_COUNT, ${BOOT_A_PART_COUNT})

Let the rootfs have room to grow up to 128 MiB and align it to the nearest 1
MB boundary
define(ROOTFS_A_PART_OFFSET, 77324)
define(ROOTFS_A_PART_COUNT, 289044)
define-eval(ROOTFS_B_PART_OFFSET, "${ROOTFS_A_PART_OFFSET} + ${ROOTFS_A_PART_COUNT}")
define(ROOTFS_B_PART_COUNT, ${ROOTFS_A_PART_COUNT})

Configuration partition
define-eval(CONFIG_PART_OFFSET, "${ROOTFS_B_PART_OFFSET} + ${ROOTFS_B_PART_COUNT}")
define(CONFIG_PART_COUNT, 1048576)

Log partition
define-eval(LOG_PART_OFFSET, "${CONFIG_PART_OFFSET} + ${CONFIG_PART_COUNT}")
define(CONFIG_PART_COUNT, 1048576)

...

In this example, we are changing the default APP_PART data partition to
CONFIG_PART and adding LOG_PART.
Next, we change the mapping to include these two new partitions:
fwup.conf

...

mbr mbr-a {
 partition 0 {
 block-offset = ${BOOT_A_PART_OFFSET}
 block-count = ${BOOT_A_PART_COUNT}
 type = 0xc # FAT32
 boot = true
 }
 partition 1 {
 block-offset = ${ROOTFS_A_PART_OFFSET}
 block-count = ${ROOTFS_A_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 2 {
 block-offset = ${CONFIG_PART_OFFSET}
 block-count = ${CONFIG_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 3 {
 block-offset = ${LOG_PART_OFFSET}
 block-count = ${LOG_PART_COUNT}
 type = 0x83 # Linux
 }
}

mbr mbr-b {
 partition 0 {
 block-offset = ${BOOT_B_PART_OFFSET}
 block-count = ${BOOT_B_PART_COUNT}
 type = 0xc # FAT32
 boot = true
 }
 partition 1 {
 block-offset = ${ROOTFS_B_PART_OFFSET}
 block-count = ${ROOTFS_B_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 2 {
 block-offset = ${CONFIG_PART_OFFSET}
 block-count = ${CONFIG_PART_COUNT}
 type = 0x83 # Linux
 }
 partition 3 {
 block-offset = ${LOG_PART_OFFSET}
 block-count = ${LOG_PART_COUNT}
 type = 0x83 # Linux
 }
}

...

This layout defines our system as follows:
+----------------------------+
| MBR |
+----------------------------+
| Firmware configuration data|
| (formatted as uboot env) |
+----------------------------+
| p0*: Boot A (FAT32) |
| zImage, bootcode.bin, |
| config.txt, etc. |
+----------------------------+
| p0*: Boot B (FAT32) |
+----------------------------+
| p1*: Rootfs A (squashfs) |
+----------------------------+
| p1*: Rootfs B (squashfs) |
+----------------------------+
| p2: Config (EXT4) |
+----------------------------+
| p3: Log (EXT4) |
+----------------------------+
Mounting the Partition
Mounting your new partition can either be handled by erlinit or by your Elixir
application. To have erlinit mount the partition for you, you will need to
supply your own erlinit.config file to set the required -m option:
Mount the configdata and logdata partitions
-m /dev/mmcblk0p3:/root:ext4::;/dev/mmcblk0p4:/mnt/log:ext4::

The other option is to handle it in your Elixir code. This can be useful if you
want to scan the disk for corruption and reformat or seed it. erlinit can only
attempt to mount the partition. You may want to see how nerves_runtime does
this for the default application data
partition,
extending it to meet your specific needs.
Overriding erlinit.config from Mix Config
Options specified in the erlinit.config file can be overridden through the
project's Mix config. This can be helpful when you want to alter a couple
options without having to maintain a copy of the entire erlinit.config
from the system. Here is an example of how you can change the ctty option
from the config/target.exs file.
config :nerves, :erlinit,
 ctty: "ttyAMA0"
Options that can only be specified once will overwrite the values specified in
the erlinit.config provided by the system. Options that can be specified
multiple times, such as mount and env will append to the original ones.
If an erlinit.config file is provided in the project's rootfs_overlay it
will override everything else.
The following is a list of all options that can be specified:
[
 boot: Path.t(),
 ctty: String.t(),
 uniqueid_exec: String.t(),
 env: String.t(),
 gid: non_neg_integer(),
 graceful_shutdown_timeout: non_neg_integer(),
 hang_on_exit: boolean(),
 hang_on_fatal: boolean(),
 mount: String.t(),
 hostname_pattern: String.t(),
 pre_run_exec: String.t(),
 poweroff_on_exit: boolean(),
 poweroff_on_fatal: boolean(),
 reboot_on_fatal: boolean(),
 release_path: String.t(),
 run_on_exit: String.t(),
 alternate_exec: binary(),
 print_timing: boolean(),
 uid: non_neg_integer(),
 update_clock: boolean(),
 verbose: boolean(),
 warn_unused_tty: boolean(),
 working_directory: Path.t(),
 shutdown_report: Path.t()
]
See erlinit for more information.
Kernel Parameters
The sysctl command is used to modify kernel parameters at runtime. Nerves
automatically loads settings from /etc/sysctl.conf at startup when using
nerves_runtime v0.11.5 or later. The format and content of
/etc/sysctl.conf follows that found in other Linux-based systems.
Default settings may be provided in your Nerves system. If a Nerves system uses
a recent enough version of
nerves_sytem_br, it will
have a minimal /etc/sysctl.conf file.
You can modify the kernel parameters for your application or custom Nerves
system by copying the default sysctl.conf file to your rootfs_overlay/etc
directory and making the desired changes. Use System.cmd/3 to run sysctl to
change settings after initialization.
Is something wrong?Edit this page on GitHub

Updating Projects

Please review this guide before updating your projects. Help is available via
the #nerves channel on the elixir-lang slack and the Elixir forum. Please file
bugs on GitHub.
Contents:
	Updating from v0.8 to v0.9
	Updating from v0.9 to v1.0.0-rc.0
	Updating from v1.0.0-rc.0 to v1.0.0-rc.2
	Updating from v1.0 to v1.3
	Updating from v1.3 to v1.4
	Updating from v1.4 to v1.5
	Updating from v1.5 to v1.6

Updating from v0.8 to v0.9
Nerves v0.9.0 contains changes that require updates to existing projects. All
users are highly encouraged to update, but if you cannot, be sure to force the
Nerves version in your mix.exs dependencies.
Update Nerves Bootstrap to v0.8.1
Nerves Bootstrap is an Elixir archive that provides a new project generator and
some logic required for the Nerves integration into mix. Nerves v0.9 requires
updates to this archive.
Install the latest Nerves Bootstrap archive by running:
mix local.nerves

or
mix archive.install hex nerves_bootstrap

Update mix.exs aliases (old)
IMPORTANT: If you're upgrading to Nerves v1.0, this step has been superseded.
Nerves requires that you add aliases to your project's mix.exs to pull in the
firmware creation and compilation logic. Previously, you needed to know
which aliases to override. Nerves v0.9 added a new alias. Rather than add this
alias, we recommend using the new alias helper in your mix.exs. To do this,
edit the target aliases function to look like this:
defp aliases(_target) do
 [
 # Add custom mix aliases here
]
 |> Nerves.Bootstrap.add_aliases()
end
This only works with nerves_bootstrap v0.7.0 and later, so if you get an
error, be sure to update your Nerves Bootstrap as described in the previous
section.
For those interested in more details, the reason behind this change was to move
precompiled artifact downloads from the mix compile step to the mix deps.get
step. That entailed adding additional logic to the deps.get step and hence an
additional alias.
Replace Bootloader with Shoehorn
During this release, we renamed one of our dependencies from bootloader to
shoehorn to prevent overloading the term bootloader in the embedded space.
This requires a few updates:
First, update the dependency by changing:
{:bootloader, "~> 0.1"}
to
{:shoehorn, "~> 0.2"}
Next, update the distillery release config in rel/config.exs. Look for the
line near the end that looks like:
plugin Bootloader.Plugin
or
plugin Bootloader
and change it to
plugin Shoehorn
Finally, change references to bootloader in your config/config.exs to
shoehorn. For example, change:
config :bootloader,
 init: [:nerves_runtime],
 app: :my_app
to
config :shoehorn,
 init: [:nerves_runtime],
 app: :my_app
Artifact checksums
Some Nerves dependencies reference a large precompiled version of their build
products to significantly reduce compilation time. These are called artifacts
and due to their size, they cannot be hosted on hex.pm. Nerves downloads these
automatically as part of the dependency resolution process. It is critical that
they match the corresponding source code and the previous method of checking
version numbers was insufficient. Nerves v0.9.0 now uses a checksum of the
projects source files. This works for all projects no matter what version
control system they use or how they are stored.
If you have created a custom Nerves system or toolchain, you will need to update
your project's mix.exs to ensure that the checksum covers the right files.
This is done using the :checksum key on the nerves_package. Since the files
that you checksum are likely identical to those published on hex.pm, we
recommend creating a package_files/0 function that's used by both.
Here's an example from nerves-project/nerves_system_rpi0:
 def nerves_package do
 [
 # ... Other Options
 checksum: package_files()
]
 end

 defp package do
 [
 files: package_files(),
 licenses: ["Apache 2.0"],
 links: %{"Github" => "https://github.com/nerves-project/#{@app}"}
]
 end

 defp package_files do
 [
 "LICENSE",
 "mix.exs",
 "nerves_defconfig",
 "README.md",
 "VERSION",
 "rootfs_overlay",
 "fwup.conf",
 "fwup-revert.conf",
 "post-createfs.sh",
 "post-build.sh",
 "cmdline.txt",
 "linux-4.4.defconfig",
 "config.txt"
]
 end
Easier artifact creation
Prior to Nerves v0.9.0, creating artifacts for Nerves systems and toolchains
required manual steps. Nerves v0.9.0 adds the nerves.artifact mix task to make
this easier. Please update your CI scripts or build instructions to use this new
method.
Nerves makes it easier to predigest artifacts for systems and toolchains
with the added mix task mix nerves.artifact <app_name>. Omitting <app_name>
will default to the app name of the parent mix project. This is useful if
you are calling mix nerves.artifact from within a custom system or toolchain
project.
For example, lets say we have a custom rpi0 system and we would like to
create an artifact. mix nerves.artifact custom_system_rpi0
This will produce a file in the current working directory with a name of the format
<app_name>-<host_tuple | portable>-<version>-<checksum><extension>
For example,
custom_system_rpi0-portable-0.11.0-17C58821DE265AC241F28A0A722DB25C447A7B5FFF5648E4D0B99EF72EB3341F.tar.gz
Artifact sites
Once you've created the artifact (or had CI create it for you),
you can then upload this to Github releases and instruct the artifact resolver
to fetch this artifact following deps.get. Update the Nerves package config
by editing the :nerves_package options of Mix.project/0 for your custom
system or toolchain to set the sites for which the artifact is available on.
This can be passed as
{:github_releases, "<organization>/<repository>"}
or specified as url / path prefixes
{:prefix, "/path/to/artifact_dir"}
{:prefix, http://artifact_server.com/artifacts}
def nerves_package do
 [
 # ... Other Options
 artifact_sites: [
 {:github_releases, "nerves-project/custom_system_rpi0"}
]
]
end
The artifact resolver will attempt to fetch from each site listed until it
successfully retrieves an artifact or it reaches the end of the list.
Updating from v0.9 to v1.0.0-rc.0
Update to Nerves Bootstrap v1.0.0-rc.0
Nerves Bootstrap is an Elixir archive that provides a new project generator and
some logic required for the Nerves integration into mix. Nerves v1.0-rc
requires updates to this archive.
Install the latest Nerves Bootstrap archive by running:
mix local.nerves

or
mix archive.install hex nerves_bootstrap

Update project dependencies
You will need to update the version string for nerves and nerves_bootstrap
in your projects to enable the usage of 1.0-rc. Open your mix.exs file and
start by updating the nerves_bootstrap archive:
 # mix.exs

 def project do
 [
 # ...
 archives: [{:nerves_bootstrap, "~> 1.0-rc"}],
]
 end
Then update the nerves dep:

 # Run "mix help deps" to learn about dependencies.
 defp deps do
 [{:nerves, "~> 1.0-rc", runtime: false}] ++ deps(@target)
 end

You may have to set override: true if you are using other Nerves packages that
have not been updated to depend on Nerves 1.0-rc yet
If you wish to revert, you lock to a specific version using ~> 0.8.0 or = 0.8.0
Update mix.exs aliases
nerves_bootstrap 1.0-rc manages its own aliases on Application.start/1 and
is invoked by setting MIX_TARGET to value other then host. Update your
mix.exs file to add the bootstrap/1 function and change the aliases to
[loadconfig: [&bootstrap/1]]:

 # mix.exs

 def project do
 [
 # ...
 aliases: [loadconfig: [&bootstrap/1]],
]
 end

 # Starting nerves_bootstrap pulls in the Nerves hooks to mix, but only
 # if the MIX_TARGET environment variable is set.
 defp bootstrap(args) do
 Application.start(:nerves_bootstrap)
 Mix.Task.run("loadconfig", args)
 end

Updating from v1.0.0-rc.0 to v1.0.0-rc.2
Updating Provider to BuildRunner
This only applies to custom systems and host tools
Nerves v1.0.0-rc.2 renames the module Nerves.Artifact.Provider to
Nerves.Artifact.BuildRunner.
The nerves_package config allowed the package to override
provider and provider_opts. These keys have been renamed to
build_runner and build_runner_opts
For example:
 def nerves_package do
 [
 # ..
 build_runner: Nerves.Artifact.BuildRunner.Docker,
 # ..
]
 end
Updating from v1.0 to v1.3
Modify the release config
Nerves now runs as a distillery plugin instead of inside the rel/config.exs.
You will need to change your rel/config.exs. Find the section near the bottom
of the file that defines your application.
Change this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 if System.get_env("NERVES_SYSTEM") do
 set dev_mode: false
 set include_src: false
 set include_erts: System.get_env("ERL_LIB_DIR")
 set include_system_libs: System.get_env("ERL_SYSTEM_LIB_DIR")
 set vm_args: "rel/vm.args"
 end
end
To this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 plugin Nerves
end
Update shoehorn dependency
You will need to update your version of shoehorn to {:shoehorn, "~> 0.4"}.
Updating from v1.3 to v1.4
Version v1.4.0 adds support for Elixir 1.8's new built-in support for mix
targets. In Nerves, the MIX_TARGET was used to select the appropriate set of
dependencies for a device. This lets you switch between building for different
boards and your host. Elixir 1.8 pulls this support into mix and lets you
annotate dependencies for which targets they should be used.
Update your mix.exs file
The @target is no longer used. Delete it and then add @all_targets like this:
@target System.get_env("MIX_TARGET") || "host"
@all_targets [:rpi0, :rpi3, :rpi]
The @all_targets alias will be convenient when updating the dependencies in
your mix.exs. Set it to the target names that you use (in atom form). Like the
previous use of MIX_TARGET, it didn't matter what you called the targets. It
only mattered that you were consistent.
The :host target refers to compilation for your computer. It's the only
special target and is used for running non-hardware-specific unit tests.
Next, remove the following lines from the project/0 callback (yay Elixir 1.8):
 target: @target
 deps_path: "deps/#{@target}"
 build_path: "_build/#{@target}"
 lockfile: "mix.lock.#{@target}"
Change build_embedded from
build_embedded: @target != "host"
to
build_embedded: Mix.target() != :host,
The next step is to consolidate your dependencies to one deps/0 function.
Nerves previously grouped dependencies and used pattern matches to pick the
right ones for your device. Elixir 1.8 makes this unnecessary.
Now Elixir can fetch and lock your dependencies for all targets. Previously, if
you'd switch targets, your dependencies might change versions. No more!
Elixir 1.8 adds the :targets option on dependencies. Here's an example:
Before:
 # Run "mix help deps" to learn about dependencies.
 # Dependencies for all targets
 defp deps do
 [
 {:nerves, "~> 1.3", runtime: false},
 {:shoehorn, "~> 0.4"},
 {:ring_logger, "~> 0.6"},
 {:toolshed, "~> 0.2"}
] ++ deps(@target)
 end

 # Specify target specific dependencies
 defp deps("host"), do: []

 # Dependencies for all targets except :host
 defp deps(target) do
 [
 {:nerves_runtime, "~> 0.6"},
 {:nerves_init_gadget, "~> 0.4"}
] ++ system(target)
 end

 # Dependencies for specific targets
 defp system("rpi"), do: [{:nerves_system_rpi, "~> 1.5", runtime: false}]
 defp system("rpi0"), do: [{:nerves_system_rpi0, "~> 1.5", runtime: false}]
 defp system("rpi2"), do: [{:nerves_system_rpi2, "~> 1.5", runtime: false}]
 defp system("rpi3"), do: [{:nerves_system_rpi3, "~> 1.5", runtime: false}]
 defp system("bbb"), do: [{:nerves_system_bbb, "~> 2.0", runtime: false}]
 defp system("x86_64"), do: [{:nerves_system_x86_64, "~> 1.5", runtime: false}]
 defp system(target), do: Mix.raise("Unknown MIX_TARGET: #{target}")
After:
 # Run "mix help deps" to learn about dependencies.
 defp deps do
 [
 # Dependencies for all targets
 {:nerves, "~> 1.4", runtime: false},
 {:shoehorn, "~> 0.4"},
 {:ring_logger, "~> 0.6"},
 {:toolshed, "~> 0.2"},

 # Dependencies for all targets except :host
 {:nerves_runtime, "~> 0.6", targets: @all_targets},

 # Dependencies for specific targets
 {:nerves_system_rpi, "~> 1.5", runtime: false, targets: :rpi},
 {:nerves_system_rpi0, "~> 1.5", runtime: false, targets: :rpi0},
 {:nerves_system_rpi2, "~> 1.5", runtime: false, targets: :rpi2},
 {:nerves_system_rpi3, "~> 1.5", runtime: false, targets: :rpi3},
 {:nerves_system_rpi3a, "~> 1.5", runtime: false, targets: :rpi3a},
 {:nerves_system_bbb, "~> 2.0", runtime: false, targets: :bbb},
 {:nerves_system_x86_64, "~> 1.5", runtime: false, targets: :x86_64}
]
 end
Update config.exs
Accessing the MIX_TARGET is done differently now. References in your
config.exs to Mix.Project.config[:target] need to be Mix.target() now. For
example, change this:
import_config "#{Mix.Project.config[:target]}.exs
to:
import_config "#{Mix.target()}.exs"
Update application.ex
Search your Elixir code for references to Mix.Project.config()[:target]. These
need to change as well. It's not uncommon to have these in your application.ex
to decide what to start in your main supervision tree. For example, change this:
@target Mix.Project.config()[:target]
to:
@target Mix.target()
Updating from v1.4 to v1.5
Nerves v1.5 adds support for Elixir 1.9+
releases.
Previous versions of Nerves only supported
Distillery for OTP release creation.
Nerves v1.5 still supports Distillery, but it is no longer included by default.
Nerves v1.5 also still supports previous Elixir versions, so there is no need to
update to Elixir 1.9.
The most important part of the Nerves v1.5 upgrade process is to make sure that
Nerves knows whether you want to use Elixir 1.9 releases or Distillery. Please
find the subsections below that correspond to your environment.
Update nerves_bootstrap
Nerves now requires nerves_bootstrap 1.5.1 and later. Assuming that you
already have it installed, run:
mix local.nerves

nerves_bootstrap v1.6.0 and later generate Elixir 1.9-based projects. This
functionality does not affect existing projects if you are not updating your
Elixir version. However, if you cannot update Elixir and still want to create
new projects, force the nerves_bootstrap installation to ~> 1.5.0:
mix archive.install hex nerves_bootstrap "~> 1.5.0"

Update Elixir < 1.9.0 projects
If you're not updating to Elixir 1.9, then Distillery is your only option for
OTP release creation and must be explicitly specified. The following steps will
ensure that your project has the appropriate updates:
In your mix.exs, add distillery as a dependency of your project:
{:distillery, "~> 2.1"}
Distillery 2.1 moved code out of the Mix.Releases namespace. This requires a
change to your project's rel/config.exs. Open rel/config.exs and look for
the following line:
use Mix.Releases.Config
Change it to:
use Distillery.Releases.Config
Finally, check that the :shoehorn dependency is ~> 0.6:
{:shoehorn, "~> 0.6"}
Run mix deps.get and your project should continue to work.
At this point, consider updating your Nerves system to the latest to pull in
Linux, Erlang, and other C library and application updates.
Update Elixir ~> 1.9
First verify that you have nerves_bootstrap 1.6.0 or later installed:
$ mix archive
* hex-0.20.1
* nerves_bootstrap-1.6.0

The following instructions are for updating your project files to use Elixir 1.9
releases. If you must use Distillery, see the instructions above for Elixir < 1.9.0 projects.
mix.exs updates
In your project's mix.exs, make the following edits:
	Move the application name to a module attribute:
 @app :my_app
 def project do
 [
 app: @app
 # ...
]
 end

	Add release config to the project config:
 def project do
 [
 # ...
 releases: [{@app, release()}]
]
 end
 def release do
 [
 overwrite: true,
 cookie: "#{@app}_cookie",
 include_erts: &Nerves.Release.erts/0,
 steps: [&Nerves.Release.init/1, :assemble],
 strip_beams: Mix.env() == :prod
]
 end

	Update the nerves and shoehorn dependencies
 def deps
 [
 {:nerves, "~> 1.5.0", runtime: false},
 {:shoehorn, "~> 0.6"},
 # ...
]
 end

	Update the required archives:
 def project do
 [
 # ...
 archives: [nerves_bootstrap: "~> 1.6"],
]
 end

	Add preferred CLI target to the project config:
 def project do
 [
 # ...
 preferred_cli_target: [run: :host, test: :host]
]
 end

vm.args updates
Next, rename rel/vm.args to rel/vm.args.eex
Then update the line that sets the cookie to
-setcookie <%= @release.options[:cookie] %>
Erase old Distillery files
Since Distillery is no longer being used, erase any Distillery configuration
files that are still around. For most Nerves users, run the following:
rm rel/config.exs
rm rel/plugins/.gitignore

Nerves system update
Elixir 1.9+ releases are only compatible with systems that contain erlinit ~> 1.5.
If you are using an official Nerves system, then make sure that you are using
one of these versions:
nerves_system_rpi: ~> 1.8
nerves_system_rpi2: ~> 1.8
nerves_system_rpi3: ~> 1.8
nerves_system_rpi3a: ~> 1.8
nerves_system_rpi0: ~> 1.8
nerves_system_x86_64: ~> 1.8
nerves_system_bbb: ~> 2.3
If you are using a custom system, you will need to update nerves_system_br to
 a version that is >= 1.8.1.
config.exs updates
Nerves has been improving support for "host" builds of firmware projects. This
makes it possible to unit test platform-independent code on your build machine.
To take advantage of this, it's important to separate out the target-dependent
sections of the config.exs. Here's one way of doing this:
	Create a new file config/target.exs

	Move configs for applications that are only available on the target to the
target.exs file.

	Update config.exs to import target.exs if the target is not host.
 if Mix.target() != :host do
 import_config "target.exs"
 end

Updating from v1.5 to v1.6
Nerves 1.6 adds support for Elixir 1.10. In truth, only the internals of the
Nerves tooling were changed. As a result of this change, we made the decision to
drop support for Elixir 1.6 and Erlang 20. If you are still using these older
versions, you'll need to update to at least Elixir 1.7 and Erlang 21. Then
update to Nerves 1.6.
To update your projects to use Nerves 1.6, bump the :nerves dependency in your
project's mix.exs:
 defp deps do
 [
 ...
 {:nerves, "~> 1.6.0", runtime: false},
 ...
]
 end
Run mix deps.get and build as normal. You may also need to update your Nerves
system to a newer official build. Many systems have dependency requirements on
Nerves 1.5 that can be updated to Nerves 1.6 without issue. Please review the
Nerves system release notes when you upgrade.
Is something wrong?Edit this page on GitHub

Nerves Internals

The nerves bootstrapping process has several steps. Its goal is to locate
the "system", compile it, and use the compiled system to setup the cross
compile environment.
Call Tree
Below is a brief sketch of the call tree for the bootstrap. It is intended
to be a "10,000 ft" overview.
mix firmware
	alias	nerves.precompile	NERVES_PRECOMPILE = 1
	Mix.Tasks.Nerves.Env	Mix.Tasks.Deps.Loadpaths.run ["--no-compile"]
	Mix.Tasks.Deps.Compile.run ["nerves", "--include-children"]
	Nerves.Env.start()	load_packages()	Mix.Project.deps_paths	Package.config_path
	Package.load_config	build_runner()

	validate_packages()

	Mix.Tasks.Deps.Compile Nerves.Env.system.app
	Mix.Tasks.Compile.run(--no-deps-check) Only if parent == system_app
	NERVES_PRECOMPILE = 0
	Mix.Tasks.Nerves.Loadpaths.run()	Mix.task.run(nerves.env) Nerves.Env	Nerves.Env.start() ?? See above

	Nerves.Env.bootstrap()	system_path()	Nerves.Env.system()	Nerves.Artifact.dir()	System.get_env(env_var(pkg)) NERVES_SYSTEM

	toolchain_path()	Nerves.Env.toolchain()	Nerves.Artifact.dir()	System.get_env(env_var(pkg)) NERVES_TOOLCHAIN

	platform.bootstrap(pkg) Nerves.Env.system.platform ||Nerves.Env.system.config[:build_platform]	nerves_env.exs Nerves.System.BR

	deps.precompile

nerves_package
	Nerves.Env.start
	Nerves.Env.enabled? and Nerves.Artifact.stale?(package)	Nerves.Package.artifact(package, toolchain)	pkg.build_runner.artifact(pkg, toolchain, opts) [Nerves.Artifact.BuildRunners.HTTP, Nerves.Artifact.BuildRunners.Local]

	firmware

Key Files/Variables
The following are the key parts of the bootstrap. Note that NERVES_SYSTEM and
NERVES_TOOLCHAIN can be defined before running mix firmware to point to a
trusted decompressed system or toolchain. This is useful in situations where
you produce a system directly using Buildroot and want to force Nerves to use it.
NERVES_SYSTEM
	Path to the nerves_system_* folder
	Has to be defined at Nerves.Env.bootstrap() or system blows up
	Exists only if the system dependency is being included from a source other than hex.	When a system is being sourced from hex, it will attempt to place the uncompressed artifact in the global path located at ~/.nerves/artifacts or $NERVES_ARTIFACTS_DIR

NERVES_TOOLCHAIN
	Path to the toolchain
	Has to defined at Nerves.Env.bootstrap() or systems blows up

nerves_env.exs
	Sets the cross compile flags
	NERVES_SYSTEM and NERVES_TOOLCHAIN must be defined prior
	Everything thing run after will try to cross compile

nervessystem/.nerves/artifacts/nerves_system*
	"package" directory
	Gets fetched from nerves_env.exs artifact_url

Is something wrong?Edit this page on GitHub

Customizing Your Own Nerves System

Before following this guide, you should probably read about
The Anatomy of a Nerves System
For some applications, the pre-built Nerves Systems won't meet your needs. For
example, you may want to include additional Linux packages or run on hardware
that isn't in the list of Nerves-supported
targets yet. In order to make the build
process consistent across host platforms, Nerves uses a Docker container behind
the scenes to perform the build on non-Linux hosts. This makes it possible for
the steps below to apply to whatever host platform you're using for development,
as long as you have Docker for Mac or Docker for Windows installed on those
platforms.
Getting Setup to Build a System
While you could design a system from scratch, it is easiest to copy and modify
an existing one, renaming it to distinguish it from the official release. For
example, if you're targeting a Raspberry Pi 3 board, do the following:
Make sure not to forget the -b flag. Cloning/Forking directly from main is
not considered stable.
git clone https://github.com/nerves-project/nerves_system_rpi3.git custom_rpi3 -b v1.12.0

The name of the system directory is up to you, but we will call it custom_rpi3
in this example. It's recommended that you check your custom system into your
version control system before making changes. This makes it easier to merge in
upstream changes from the official systems later. For example, assuming you're
using GitHub:
After creating an empty custom_rpi3 repository in your GitHub account

cd custom_rpi3
git remote rename origin upstream
git remote add origin git@github.com:YourGitHubUserName/custom_rpi3.git
git checkout -b main
git push origin main

Next, tweak the metadata of your Mix project by updating the following:
	The module name of the mix project at the top of the file
	the value of @app to custom_rpi3
	the value of @github_organization to your GitHub user name or organization

See the Official Mix.Project document
for the structure of this file.
custom_rpi3/mix.exs
=vvv= make sure to rename the module name
defmodule NervesSystemRpi3.MixProject do
defmodule CustomRpi3.MixProject do
 use Mix.Project

 # =vvv= Rename `"nerves-project"` here to your user or ogranization name
 # @github_orgranization "nerves-project"
 @github_organization "YourGitHubUserOrOrganizationName"
 # =vvv= Rename `nerves_system_rpi3` here to `custom_rpi3`
 # @app :nerves_system_rpi3
 @app :custom_rpi3
end

=^^^= The rest of this file remains the same
Building the System
Now that the custom system directory is prepared, you just need to point to it
from your project's mix.exs. In this example, we assume that your
custom_rpi3 system directory is in the same directory as your nerves firmware
project directory, like so:
~/projects
├── custom_rpi3
└── your_project
If you are starting a new project, you can generate it to support just one
target. We will update rpi3 to custom_rpi3 next.
mix nerves.new your_project --target rpi3

 #=vvv= Update your_project/mix.exs to accept your new :custom_rpi3 target

 # ...
 @all_targets [:rpi3, :custom_rpi3]
 # =^^^^^^^^^^=

 defp deps do
 [
 # Dependencies for all targets
 # ...

 # Dependencies for specific targets
 {:nerves_system_rpi3, "~> 1.6", runtime: false, targets: :rpi},
 {:custom_rpi3, path: "../custom_rpi3", runtime: false, targets: :custom_rpi3, nerves: [compile: true]}, # <===
]
 end
NOTE: Including the nerves: [compile: true] option in your dependency will cause the system to be compiled
automatically. If you don't want this behavior, remove this option and you will need to manually compile the
system via the mix compile task before building firmware with it

Set your MIX_TARGET to refer to your custom system and build your firmware.
cd ~/projects/your_project
export MIX_TARGET=custom_rpi3
mix deps.get
mix firmware

This process will take quite a bit longer than a normal firmware build (15 to 30
minutes) the first time. When it finishes, you will have confirmed that you can
successfully build an equivalent of the official rpi3 system. After your
custom system has been built, you can modify your application and re-build
firmware normally. The custom system will only re-build if you make changes to
the system source project itself.
Buildroot Package Configuration
Because Buildroot can only be used from Linux, Nerves provides an abstraction
layer called the Nerves system configuration shell that allows the same
procedure to be used on Linux and non-Linux development hosts by using a
Linux-based Docker container on non-Linux platforms. To access this environment,
run the mix nerves.system.shell task from the custom system source directory.
$ mix deps.get
Mix environment
 MIX_TARGET: custom_rpi3
 MIX_ENV: dev

Running dependency resolution...
Dependency resolution completed:
<-SNIP->
* Getting nerves (Hex package)
 Checking package (https://repo.hex.pm/tarballs/nerves-1.3.0.tar)
<-SNIP->

$ mix nerves.system.shell
Mix environment
 MIX_TARGET: custom_rpi3
 MIX_ENV: dev

==> nerves
Compiling 25 files (.ex)
Generated nerves app

 Preparing Nerves Shell

Creating build directory...
Cleaning up...
Nerves /nerves/build >

Once at the Nerves /nerves/build > shell prompt, the workflow for customizing
a Nerves system is the same as when using Buildroot outside of Nerves, using
make menuconfig and make savedefconfig. Remember that this is effectively a
sub-shell on both Linux and non-Linux platforms, so when you're finished
updating the configuration and optionally re-building the system "manually", you
can get back to your normal shell by typing exit or pressing CTRL+D.
The main package configuration workflows are divided into three categories,
depending on what you want to configure:
	Select base packages by running make menuconfig
	Modify the Linux kernel and kernel modules with make linux-menuconfig
	Enable more command line utilities using make busybox-menuconfig

NOTE: You can build the system "manually" using make from inside the system
configuration shell if you want to iterate quickly while trying out different
changes. When you're ready to try out the system in your project, exit the shell
and have mix firmware take care of the re-build for you from your project
directory. Please be aware that Buildroot does not handle incremental
compilation well, so it's recommended that you always run make clean before
make unless you're experienced with Buildroot and understand when you can skip
the make clean step.

When you quit from the menuconfig interface, the changes are stored
temporarily. To save them back to your system source directory, follow the
appropriate steps below:
	After make menuconfig:
 Run make savedefconfig to update the nerves_defconfig in your System.

	After make linux-menuconfig:
 Once done with configuring the kernel, you can save the Linux config to the
 default configuration file using make linux-update-defconfig. The destination
 file is linux-4.9.defconfig in your project's root (or whatever the kernel
 version is you're working with).
NOTE: If your system doesn't contain a custom Linux configuration yet,
you'll need to update the Buildroot configuration (using make menuconfig)
to point to the new Linux defconfig in your system directory. The path is
usually something like $(NERVES_DEFCONFIG_DIR)/linux-x.y_defconfig.

	After make busybox-menuconfig:
 Unfortunately, there's not currently an easy way to save a BusyBox defconfig.
 What you have to do instead is save the full BusyBox config and configure it
 to be included in your nerves_defconfig.
 Assuming you're using the Nerves System Shell via Docker on a non-Linux host
 and your custom system source directory is called custom_rpi3, you'll need
 to do something like the following (the version identifiers might be
 different for you).
 cp build/busybox-1.27.2/.config /nerves/env/custom_rpi3/busybox_defconfig

 Like the Linux configuration, the Buildroot configuration will need to be
 updated to point to the custom config if it isn't already. This can be done
 via make menuconfig and navigating to Target Packages and finding the
 Additional BusyBox configuration fragment files option under the
 BusyBox package, which should already be enabled and already have a base
 configuration specified. If you're following along with this example, the
 correct configuration value should look like this:
 ${NERVES_DEFCONFIG_DIR}/busybox_defconfig

The Buildroot user manual can be
very helpful, especially if you need to add a package. The various Nerves system
repositories have examples of many common use cases, so check them out as well.
Adding a custom Buildroot Package
If you have a non-Elixir program that's too complicated to compile with
elixir_make and not included in
Buildroot, you'll need to add instructions for how to build it to your system.
This is called a "custom Buildroot package" and the process to add one in a
Nerves System is nearly the same as in Buildroot. This is documented in the
Adding new package
chapter of the Buildroot manual. The main difference with Nerves is the
directory.
As you go through this process, please consider whether it makes sense to
contributor your package upstream to Buildroot.
A Nerves System will need the following files in the root of the custom system
directory:
	Config.in - Includes each package's Config.in file
	external.mk - Includes each package's <package-name>.mk file
	packages - Directory containing your custom package directories

Each directory inside the packages directory should contain two things:
	Config.in - Defines package information
	<package-name>.mk - Defines how a package is built.

So if you wanted to build a package libfoo, first create the Config.in and
external.mk files at the base directory of your system.
/Config.in:
menu "Custom Packages"

source "$NERVES_DEFCONFIG_DIR/packages/libfoo/Config.in"

endmenu
/external.mk:
include $(sort $(wildcard $(NERVES_DEFCONFIG_DIR)/packages/*/*.mk))
Then create the package directory and package files:
mkdir -p packages/libfoo
touch packages/libfoo/Config.in
touch packages/libfoo/libfoo.mk

At this point, you should follow the Official Buildroot documentation for what
should be added to these files. Often the easiest route is to find a similar
package in Buildroot and copy/paste the contains with appropriate renaming.
Creating an Artifact
Building a Nerves system can require a lot of system resources and often takes a
long time to complete. Once you are satisfied with the configuration of your
Nerves system and you are ready to make a release, you can create an artifact.
An artifact is a pre-compiled version of your Nerves system that can be
retrieved when calling mix deps.get. Artifacts will attempt to be retrieved
using one of the helpers specified in the artifact_sites list in
the nerves_package config.
There are currently three different helpers:
	{:github_releases, "organization/repo"}
	{:github_api, "organization/repo", username: "", token: "", tag: ""}
	{:prefix, "url", opts \\ []}

artifact_sites only declare the path of the location to the artifact. This is
because the name of the artifact is defined by Nerves and used to download the
correct one. The artifact name for a Nerves system follows the structure
<name>-portable-<version>-<checksum>.tar.gz. The checksum at the end of the
file is calculated based off the contents of the files and directories
specified in the checksum list in the nerves_package configuration. It is
important to note that if you modify contents of any of the checksum files or
directories after creating the artifact, the artifact will not match and will
not be used. Therefore, you first need to define the artifact_sites before
creating the artifact.
To construct a artifact, simply build the project and call mix nerves.artifact
from within the directory of your custom Nerves system. For example, if your
system name is custom_rpi3 and the version is 0.1.0 you will see a file
similar to custom_rpi3-portable-0.1.0-ABCDEF0.tar.gz in your current working
directory. This file should be placed in the location specified by the
artifact_sites. If you are using the Github Releases helper, you will need
to create a release from your tag on Github and then upload the file.
Now, instead of using a :path dependency in your main project, you can use a
:github dependency to make it easier to share with others.
Update the `custom_rpi3` dep in your `deps/0` function.
{:custom_rpi3, github: "YourGitHubUserName/custom_rpi3", runtime: false, targets: :custom_rpi3}
You can also publish the system package to hex.
You should not need to change anything in the mix.exs file at this point to
do so.
mix hex.publish
Back in your main project, update deps:
make sure you check the version here.
{:custom_rpi3, "~> 1.7", runtime: false, targets: :custom_rpi3}
Custom System Maintenance
After customizing a Nerves System, creating artifacts, and publishing the
package, you will probably want to keep track of the latest updates to the
original system. Assuming you followed the git section in the Getting
Started section, you will have a remote
called upstream. Check this by doing:
$ git remote -v
origin git@github.com:YourGitHubUserName/custom_rpi3.git (fetch)
origin git@github.com:YourGitHubUserName/custom_rpi3.git (push)
upstream https://github.com/nerves-project/nerves_system_rpi3.git (fetch)
upstream https://github.com/nerves-project/nerves_system_rpi3.git (push)
When you are ready to update your system (for example, after Nerves publishes a
new version), you can just merge the upstream changes in. For example, if you
started with nerves_system_rpi3 at v1.7.1, when v1.7.2 gets published,
you can do the following to upgrade your custom system:
git fetch --all
git merge upstream/main
Solve any merge conflicts
git push origin main

You can also use the GitHub interface to do this:
https://github.com/YourGitHubUserName/custom_rpi3/compare/main...nerves-project:main?expand=1
Is something wrong?Edit this page on GitHub

Experimental features

The features described in this document are experimental. They are under
consideration and or actively being developed.
Firmware patches
Firmware update files (.fw) contain everything your target needs to boot and
run your application. Commonly, this single file package will contain your root
filesystem, the Linux kernel, a bootloader, and some extra files and metadata
specific to your target. Packaging all these files together provides a convenient
and reliable means of distributing firmware that can be used to boot new devices
as well as upgrade existing ones. Unfortunately, this mechanism is not conducive
to applying updates to devices that use expensive metered network connections
where the cost of every byte counts. This problem can be alleviated with firmware
patches.
A firmware patch file's content structure is identical to that of a regular
firmware update file, it contains your root file system, the Linux kernel, and
so on. The main difference is that the contents of these files are no longer a
bit for bit representation but instead the delta between two known versions of
firmware. Currently, the system will only apply patches to the root file system,
but there are plans to support other files. It is important to note that in order
to generate a firmware patch file, you will need to supply two full firmware
update files, the firmware that the target is updating from (currently running)
and the firmware the device will be updating to (the desired new firmware).
Attempting to apply a firmware patch to a target that is not running the "from"
firmware will result in returning an error when attempting to apply it.
Generating and applying firmware patch files will require that your host machine
and your target have fwup >= 1.6.0 installed.
Preparing your Nerves system
Firmware update patches will require modifications to the fwup.conf of your
Nerves system. These updates must be applied in full to a running target before
it is capable of applying firmware update patches.
In your fwup.conf, find the references to rootfs.img, in typical systems
there will be 4 references.
	file-resource:
Unchanged
	Inside the complete task:
Unchanged. When writing a complete firmware on to a new device. A patch
cannot be applied on the target.
	Inside the upgrade.a task:
When new firmware is written in to firmware slot a.
	Inside the upgrade.b task:
When new firmware is written in to firmware slot b.

We only need to modify the actions taken in the upgrade.a and upgrade.b steps.
Change the reference in the upgrade.a task:
on-resource rootfs.img { raw_write(${ROOTFS_A_PART_OFFSET}) }
To:
on-resource rootfs.img {
 delta-source-raw-offset=${ROOTFS_B_PART_OFFSET}
 delta-source-raw-count=${ROOTFS_B_PART_COUNT}
 raw_write(${ROOTFS_A_PART_OFFSET})
}
Change the reference in the upgrade.b task:
on-resource rootfs.img { raw_write(${ROOTFS_B_PART_OFFSET}) }
To:
on-resource rootfs.img {
 delta-source-raw-offset=${ROOTFS_A_PART_OFFSET}
 delta-source-raw-count=${ROOTFS_A_PART_COUNT}
 raw_write(${ROOTFS_B_PART_OFFSET})
}
You'll also need to ensure that your system is being build using
nerves_system_br >= 1.11.2. This will be in your mix dependencies. If you
attempt to apply a firmware patch to a device that does not support it, you
will receive an error similar to the following:
Running fwup...
fwup: Upgrading partition B
fwup: File 'rootfs.img' isn't expected size (7373 vs 49201152) and xdelta3 patch support not enabled on it. (Add delta-source-raw-offset or delta-source-raw-count at least)

Preparing your project
Generating a root filesystem patch requires a bit comparison between two root
file systems. We use xdelta3 and provide it the "from" and "to" SquashFS files.
SquashFS will compress the root filesystem structure and data by default. The
resulting patch file size is often quite higher compared to the expected source
modification size due to the bit for bit comparison being inefficient when
comparing compressed data. SquashFS can be configured to disable compression,
allowing us to create more efficient patches. Disabling SquashFS compression
allows us to create more effective patches. Add the following mksquashfs_flags
to your project's mix config.
Customize non-Elixir parts of the firmware. See
https://hexdocs.pm/nerves/advanced-configuration.html for details.

config :nerves, :firmware,
 rootfs_overlay: "rootfs_overlay",
 mksquashfs_flags: ["-noI", "-noId", "-noD", "-noF", "-noX"]
Patch sizes can also be optimized by configuring the build system's
source_date_epoch date. This will help with reproducible builds by preventing
timestamps modifications from affecting the output bit representation.
Set the SOURCE_DATE_EPOCH date for reproducible builds.
See https://reproducible-builds.org/docs/source-date-epoch/ for more information

config :nerves, source_date_epoch: "1596027629"
Testing firmware patches locally
Create a new project using mix nerves.new <project name> and apply the steps
listed in the Preparing your project section. Then, choose a target, in this
example, I will be using a Raspberry Pi Zero W rpi0 and building an app
called test_patch.
export MIX_TARGET=rpi0
mix deps.get

Create your initial firmware and burn it to an SD card
mix firmware.burn

Connect the SD card and power on the device by connecting a micro USB cable to
the host USB port on the Raspberry Pi. You can ssh into the device at
nerves.local and you should get an IEX prompt.
ssh nerves.local

Interactive Elixir (1.10.4) - press Ctrl+C to exit (type h() ENTER for help)
Toolshed imported. Run h(Toolshed) for more info.
RingLogger is collecting log messages from Elixir and Linux. To see the
messages, either attach the current IEx session to the logger:

 RingLogger.attach

or print the next messages in the log:

 RingLogger.next

iex(1)> TestPatch.hello
:world

Make some changes to the function. Open lib/<app_name>.ex and modify the
hello/0 function.
def hello do
 :patched
end
Now lets generate a patch firmware.
mix firmware.patch
You should see output similar to the following:
Finished generating patch firmware

Source
test_patch/_build/rpi0_dev/nerves/images/test_patch.fw
uuid: 6cf7f75f-eb93-5a91-e28c-fd414602b6e7"

size: 22079567 bytes

Target
nerves-project/tests/test_patch/_build/rpi0_dev/nerves/images/patch/target.fw
uuid: 69752f24-291f-5f00-4ad3-ca359017009f"

size: 22077072 bytes

Patch
test_patch/_build/rpi0_dev/nerves/images/patch.fw
size: 4425660 bytes
Lets update the device using the patch file.
mix upload --firmware /path/to/test_patch/_build/rpi0_dev/nerves/images/patch.fw

The size difference between the Target output firmware size 22077072 and the
patched firmware size 4425660 has a pretty significant size reduction. For
such a small change, we might expect more. A lot of this size come from the
files that are also included in the firmware that are not currently being patched
such as the Linux kernel and other files that do not change frequently.
We anticipate that all other files will offer similar support, but we started
with the first most impactful file, the SquashFS root filesystem, so we can begin
testing this workflow using devices.
Nerves package environment variables
Packages can provide custom system environment variables to be exported when
Nerves.Env.bootstrap/0 is called. The initial use case for this feature is to
export system specific information for llvm-based tools. Here is an example from
nerves_system_rpi0
 defp nerves_package do
 [
 # ...
 env: [
 {"TARGET_ARCH", "arm"},
 {"TARGET_CPU", "arm1176jzf_s"},
 {"TARGET_OS", "linux"},
 {"TARGET_ABI", "gnueabi"}
]
 # ...
]
 end
Is something wrong?Edit this page on GitHub

Changelog

v1.7.15
	Bug fix	Fix TARGET_GCC_FLAGS issue that inadvertently removed CFLAGS options on
Nerves systems that used it.

v1.7.14
	Improvements	Unset environment variables set by Erlang that can confuse some C/C++
libraries when building.
	Add experimental support for TARGET_GCC_FLAGS for enabling CPU-specific
features in NIFs and ports via Nerves package definitions. This is similar
in intent to TARGET_CPU, etc.

v1.7.13
	Improvements	Verify the remote website when downloading artifacts. This fixes the warning
about unverified HTTPS connections.
	Fix error message printout when Nerves toolchain builds fail

v1.7.12
	Improvements	Allow Elixir 1.13.0-rc.0 to be used to build projects. It looks like it
works fine and doesn't cause issues with Nerves.
	Add message after the build completes to let you know what to do next.

v1.7.11
	Bug fixes	Don't set xattrs when running mix firmware.unpack. This fixes filesystem
permission errors during extraction for some users.

v1.7.10
	Improvements	Update mix firmware.unpack to be more flexible with input firmware and
output directories. If you're using mix firmware.unpack in a script, you
may need to update the script.
	Reduce C compiler build prints

v1.7.9
	Improvements	Add helper script generator for using gdb to analyze core dumps. Nerves
systems ship with debug symbols (target images have these stripped) that can
be used to get stack traces and more from core dumps from the Erlang VM and
other C/C++ programs. See the Debugging C in Nerves blog
post for an example.
	Support the new :limits option in erlinit so that it's possible to set the
core dump limits (i.e., enable core dumps) before Erlang starts.

v1.7.8
	Bug fixes	Fix toolchain downloads when using Erlang/OTP 24 on Apple M1 macs.

v1.7.7
	Bug fixes	Fix compiler version check error when using Erlang/OTP 24

v1.7.6
	Enhancements	Update supported Elixir version to include 1.12

v1.7.5
	Bug fixes	Fixes an issue where query parameters would be percent-encoded twice.
Packages that use query_params argument option to artifact_sites could
be impacted. For example, packages storing build artifacts in AWS S3
require the X-Amz-Credential query parameter key whose value
includes the reserved character /. This symbol is double encoded to
%252F. This failed on systems with Erlang OTP-23.2 and above.
See https://github.com/nerves-project/nerves/issues/604 for additional context.

v1.7.4
	Experimental features	Packages can provide custom system environment variables to be exported.
The initial use case for this feature is to export system specific
information for llvm-based tools.

v1.7.3
	Bug fixes
	Fixes a hang when downloading artifacts from GitHub. The hang looked like
this and affected artifact downloads from public GitHub repositories:
Resolving Nerves artifacts...
 Resolving nerves_toolchain_xyz
 => Trying https:...

v1.7.2
	Bug fixes	Fix Elixir semver requirements to produce warnings on unsupported versions.
	Produce better errors on HTTP timeouts

v1.7.1
	Enhancements	Documentation and docker improvements for Windows Subsystem for Linux 2

v1.7.0
Nerves 1.7.0 removes support for creating OTP releases using Distillery and
only supports using Elixir releases. As a result, the minimum supported version
of Elixir is now version 1.9.
Official Nerves systems now support applying firmware using patches. This
greatly reduces the amount of data that required to push firmware updates
to devices. The minimum requirement for fwup has been updated to 1.8
to enable support for this feature.
	Bug fixes	Pass all unspecified erlinit args to the generator instead of silently
ignoring them.
	Use host CC when compiling the port.

v1.6.5
	Bug fixes	Fix issues with executing system commands on non mac hosts.

v1.6.4
	Experimental features
	Added mix firmware.patch to locally create firmware patch files for
feature testing. This feature is under development.
See the experimental features doc for more info.

	Added :mksquashfs_flags to the nerves firmware config to allow passing
additional flags to the mksquashfs call that produces the final rootfs.
If you are experimenting with creating patchable firmware, you should
use this feature to disable squashfs compression.
config :nerves, :firmware
 mksquashfs_flags: ["-noI", "-noD", "-noF", "-noX"]

	Bug fixes
	Replace calls to System.cmd with a Nerves.Port.cmd. This code was
provided by muontrap and is used to clean up spawned system processes
when the vm exits.
This fixes issues with the docker build runner executing multiple times
and multiple calls to mix firmware after breaking out of the VM before
the first call finishes.
	Fix issue where SD card detection may fail while calling mix burn whenfwup
returns additional fields.
	Clean the release directory when calling mix firmware. This prevents
OTP releases from accumulating unnecessary libraries and OTP applications
over time.

v1.6.3
	Bug fixes	Fix required key validation on github_api resolver.

v1.6.2
	Bug fixes
	Improve error message returned when calling mix firmware when the local
system artifact cannot be found and possibly needs to be built.

	GitHub API artifact resolver will no longer raise if missing required opts.
The GitHub API artifact resolver is useful when you want to enable access
to artifacts added to GitHub releases in private GitHub repositories.
Fetching an artifact from a private GitHub repo requires the passing
username, token, tag as options. If any of these options were omitted,
the resolver would raise and prevent compilation from continuing.
This is problematic when you are trying to actually compile the system
in CI. Artifact resolvers should make a best effort on downloading the
artifacts, and return {:error, reason} if they are unsuccessful. This
will allow the system to fall back to performing a compile.

v1.6.1
	Enhancements	Updated documentation to reflect changes in nerves_bootstrap 1.8
Updates references to nerves_init_gadget and replace with nerves_pack.
This change shifts new projects and main documentation to promote the use of
vintage_net for device networking.
	Bump the host installed fwup version requirement to ~> 1.5.

v1.6.0
Nerves 1.6.0 adds support for Elixir 1.10.
As part of the update to Elixir 1.10, it became more difficult to support old
Elixir and Erlang versions. Therefore, Nerves 1.6.0 requires at least Elixir
v1.7.0 and Erlang/OTP 21. If your project requires an older version of Elixir or
Erlang/OTP you can pin the version of nerves to an older version.
For example, set your nerves dependency in your mix.exs to:
{:nerves, "~> 1.5.0", runtime: false},
	Enhancements	Add support for aarch64 host architecture.
	Add mix firmware.metadata for listing firmware metadata values.

v1.5.4
	Enhancements
	Add mix firmware.unpack to unpack generated .fw files. This is useful
to inspect the contents of the target root filesystem and other .fw info
on the host.
	Update mix burn to accept the path to a .fw file with --firmware | -i.

	Bug fixes
	Invoke mix firmware when calling mix firmware.image. This matches the
behavior of mix firmware.burn.
	Fix issue with artifact base_dir expansion. This fixes an issue where mix
would attempt to resolve the nerves dependency artifacts even though they
have already been downloaded.
	Always generate erlinit.config, even if there are no config override in
mix config. This fixes an issue where removing overrides from mix config
would not update the erlinit.config.

v1.5.3
	Bug fixes	Fix various erlinit option parsing/formatting issues.

v1.5.2
	Enhancements
	erlinit.config options can be overridden using the application config now.
For example, in your config.exs you can now add:
config :nerves, :erlinit,
 ctty: "ttyAMA0"

	Nerves tooling now supports setting the SOURCE_DATE_EPOCH environment
variable for reproducible builds during compilation via :source_date_epoch
in your application config. This removes timestamp differences between
builds. See reproducible-builds.org for more information.

	Windows Subsystem for Linux improvements

	Support XDG_DATA_HOME. If XDG_DATA_HOME is set, Nerves will now store its
data under that directory.

	Bug fixes
	Do not require sudo on mix burn if already privileged.
	Keep all boot scripts. Previously, extraneous boot scripts from the OTP
release process were removed. Keeping them makes it possible to start
Erlang slave nodes and support use cases where triggers at device boot
time launch different scripts.

v1.5.1
	Bug fixes	Update compiler check on mix firmware to use the system OTP version
when recommending an Elixir install.
	Check if using Distillery when calling mix nerves.release.init.
This is no longer required for Elixir 1.9+ releases.

v1.5.0
Updating to Nerves v1.5.0 requires modifications to your project
See the project update guide to learn how to migrate your project.
	Enhancements
	Added support for Elixir 1.9+ releases.

	Bug fixes
	Do not include empty priv directories when constructing rootfs
priorities.

v1.4.5
	Enhancements
	Updated docs.

	Bug fixes
	Updated the requirement for distillery to ~> 2.0.12. This fixes an issue
where nerves would downgrade to 1.4.0 when updating shoehorn.
	Empty priv directories are not added to the squashfs sort ordering list.

v1.4.4
	Bug fixes	This improves the path fix in v1.4.3 (see
https://github.com/nerves-project/nerves/issues/389) to cover the local
build runner as well.

v1.4.3
	Bug fixes
	Raise an exception if the artifact cache fails to create a directory

	Fixes ArgumentError when using OTP >= 21.3.0 and calling mix nerves.system.shell

	Fixes issue with mix nerves.system.shell using asdf >= 0.7.0 where the
path would contain :: and Buildroot would raise the error:
You seem to have the current working directory in your
PATH environment variable. This doesn't work.
support/dependencies/dependencies.mk:21: recipe for target 'dependencies' failed

v1.4.2
	Improvements	Generate rootfs.priorities file. This is used internally when constructing
the squashfs filesystem to arrange the contents in the order the files are
loaded at runtime which improves boot performance.

v1.4.1
	Improvements	Improve error message when artifacts can't be found

v1.4.0
Version v1.4.0 adds support for Elixir 1.8's new built-in support for mix
targets. In Nerves, the MIX_TARGET was used to select the appropriate set of
dependencies for a device. This lets you switch between building for different
boards and your host. Elixir 1.8 pulls this support into mix and lets you
annotate dependencies for which targets they should be used.
See the project update guide to learn how to migrate your project.
v1.3.4
	Bug fixes	Fixed issue where specifying build_runner_opts without build_runner
would prevent build_runner_opts from being set.
	Allow http_opts to be merged in from the artifact site opts. This fixes
an issue with downloading artifacts from github enterprise by specifying
[autoredirect: true] in the artifact site opts.

v1.3.3
	Bug fixes	Lock dependency on distillery to 2.0.10 to work around:
https://github.com/bitwalker/distillery/issues/585

v1.3.2
	Bug fixes	Improved handling for burning firmware with Windows Subsystem for Linux.
	mix nerves.deps.get will raise if a download was incomplete or corrupt
after trying all resolvers.
	mix firmware.burn will call mix firmware to ensure the firmware is the
latest.
	mix burn was added to allow for burning the latest built firmware without
calling mix firmware.

v1.3.1
	Bug fixes	Fix fwup invocations for NixOS users
	Add --verbose option on mix firmware to help debug OTP release
generation
	Force users to run Elixir 1.7.3 or later if using Elixir 1.7. This avoids
a known issue in Elixir 1.7.2 and Distillery 2.0.
	Remove unused cookies in default rel/config.exs files

v1.3.0
This version adds support for Elixir ~> 1.7 which requires updates to your
Mix project.
Modify the release config
It is required to modify the rel/config.exs file.
Change this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 if System.get_env("NERVES_SYSTEM") do
 set dev_mode: false
 set include_src: false
 set include_erts: System.get_env("ERL_LIB_DIR")
 set include_system_libs: System.get_env("ERL_SYSTEM_LIB_DIR")
 set vm_args: "rel/vm.args"
 end
end
To this:
release :my_app do
 set version: current_version(:my_app)
 plugin Shoehorn
 plugin Nerves
end
Update shoehorn
You will need to update your version of shoehorn to {:shoehorn, "~> 0.4"}.
v1.2.1
	Enhancements	Update minimum required version for fwup to at least 1.2.5

v1.2.0
	Enhancements
	Added ability to override provisioning.conf in the project mix config.
This can be done by setting the key provisioning.
Example:
 config :nerves, :firmware,
 provisioning: "config/provisioning.conf"
 # or delegate it to an app that sets nerves_provisioning: "path/to/file"
 config :nerves, :firmware,
 provisioning: :nerves_hub

	Bug Fixes
	Fix issue with setting provisioning environment variables when calling
mix firmware.burn on Linux systems. Environment variables prefixed with
NERVES_ and the variable SERIAL_NUMBER will be copied into the environment.

v1.1.1
	Enhancements
	Updated docs to bump required versions of tools.

	Bug Fixes
	Docker build runner	Use the version of the nerves_system_br as the tag for the docker image
to pull by default.
	Create and set the user id and group id in the docker entrypoint.
This fixes issues with building buildroot packages that require
access to the users home folder.

v1.1.0
	Enhancements
	mix firmware.burn can run within Windows Subsystem for Linux
	Added make_args to build_runner_opts

For example:
 You can configure the number of parallel jobs that buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
 # mix.exs
 defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
 end

v1.0.1
	Enhancements	General documentation updates.

	Bug fixes	Do not fetch artifacts on deps.get if they are overridden using environment
variables like NERVES_SYSTEM=/path/to/system.

v1.0.0
	Bug Fixes	Nerves.Artifact.BuildRunners.Docker was running as root and caused file
permission issues with the deps directory of the root mix project.
The Docker build runner now executes as the same user id and group id as
the host.

v1.0.0-rc.2
This version renames the module Nerves.Artifact.Provider to
Nerves.Artifact.BuildRunner. This change should only affect custom systems
and host tools that override the defaults in nerves_package config.
	Enhancements	Allow specifying multiple rootfs_overlay directories in the config.
	Automatically remove corrupt files from the download directory.
	Updated System documentation.

	Bug Fixes	Check the download directory before attempting to download the artifact.
	Changed the host tool check to use System.find_executable("command") instead of
calling out to System.cmd("which", ["command"]). This addressed an issue with
NodeJS breaking anything that called into which resulting in an obscure error.

v1.0.0-rc.1
This rc contains documentation cleanup and updates through out.
	Enhancements
	Support forwarding the ssh-agent through Docker for the Nerves system shell.

	Allow headers and query params to be passed to the :prefix artifact_sites
helper.
Example:
{:prefix, "https://my_server.com/", headers: [{"Authorization", "Basic 1234"}]}
{:prefix, "https://my_server.com/", query_params: %{"id" => "1234"}}

	Added github_apito artifact_sites for accessing release artifacts on private
github repositories.
Example:
{:github_api, "owner/repo", username: "skroob", token: "1234567", tag: "v0.1.0"}

	Bug Fixes
	Disable the nerves_package compiler if the NERVES_ENV_DISABLED is set.
This makes it easier to execute mix tasks without building the system.
Example:
NERVES_ENV_DISABLED=1 mix docs

v1.0.0-rc.0
Nerves no longer automatically compiles any nerves_package that is missing its
pre-compiled artifact. This turned out to rarely be desired and caused
unexpectedly long compilation times when things like the Linux kernel or gcc got
compiled.
When a pre-compiled artifact is missing, Nerves will now tell you what your
options are to resolve this. It could be retrying mix deps.get to download it
again. If you want to force compilation to happen, add a :nerves option for
the desired package in your top level project:
 {:nerves_system_rpi0, "~> 1.0-rc", nerves: [compile: true]}
	Bug Fixes	Mix raises a more informative error if the nerves_package compiler
attempts to run and the nerves_bootstrap application has not been
started. This also produces more informative errors when trying to
compile from the top of an umbrella.

v0.11.0
	Bug Fixes	Including the entire artifact checksum in artifact download file name was causing issues with
file encryption libraries. Fixed by changing the artifact download name to only
use the first 7 of the artifact checksum.

v0.10.1
	Bug Fixes	Ensure the artifact cache dir is clean and created before putting artifacts.

v0.10.0
	Enhancements
	Call bootstrap/1 on any package that defines a platform
	Added Nerves.Utils.File.tar helper for creating archives
	Only apply the host tuple portable to packages with type system
	Packages other then toolchains and systems can override their artifact
paths using an env var of their app name. For example. a package called
:host_tool would be able to override the artifact path by setting
HOST_TOOL in the environment.
	Allow any package that declares a provider to create an artifact.
	Fixed up test fixtures and added integration test.

	Bug Fixes
	Do not raise when trying to make a directory when putting an artifact in
the global cache.
	Ensure the Nerves environment has been started when calling nerves artifact

v0.9.4
	Bug Fixes	Fix artifact archiver to use Artifact.download_name/1 instead of
Artifact.name/1. Fixes issues with the Docker provider and
mix nerves.artifact
	Fix issue with nerves.system.shell not rendering properly

v0.9.3
	Bug Fixes	Artifact download_path should use download_name. This was causing a
mismatch between dl files from buildroot and the resolver causing it to
have to download them twice
	Fixed issue with compiling certain nerves packages when calling
mix deps.compile

v0.9.2
	Bug Fixes	Fixed issue where env var artifact path overides were being calculated
instead of honored.

v0.9.1
	Bug Fixes	Fixed issue with artifact default path containing duplicate names
	Nerves.Env.host_os can be set from $HOST_OS for use with canadian
cross compile
	Nerves.Env.host_arch can be set from $HOST_ARCH for use with canadian
cross compile
	mkdir -p on Artifact.base_dir before trying to link to build path
artifacts
	raise if artifact_urls are not binaries.

v0.9.0
	Update Notes

Starting in Nerves v0.9.0, artifacts will no longer be fetched during mix compile. Artifact archives are intended to be fetched following mix deps.get.
To handle this, you will need to update your installed version of
nerves_bootstrap by calling mix nerves.local. After updating
nerves_bootstrap, you should update your mix.exs file to add the new
required mix aliases found there. A helper function is available named
Nerves.Bootstrap.add_aliases that you can pipe your existing aliases to like
this:
 defp aliases(_target) do
 [
 # Add custom mix aliases here
]
 |> Nerves.Bootstrap.add_aliases()
 end
Also, update your nerves dependency to:
{:nerves, "~> 0.9", runtime: false}
	API Changes
	Moved Nerves.Package.Providers to Nerves.Artifact.Providers
	Moved Nerves.Package.Providers.HTTP to Nerves.Artifact.Resolver
	Nerves.Artifact.Resolver no longer implements the
Nerves.Artifact.Provider behaviour.

	Enhancements
	Added Mix task nerves.artifact.get. Use to fetch the artifact archive from an
artifact_url location. Once downloaded its checksum will be checked against
artifact_checksum from the nerves_package config in mix.exs. The Mix task
nerves.deps.get will recursively call nerves.artifact.get to fetch archives.

	Added Mix task nerves.artifact. This task will produce the
artifact archive file which are used when calling nerves.artifact.get.

	Nerves packages can override the Provider in the nerves_package config
in mix.exs using the keys provider and provider_opts. This is
useful to force a package to build using a specific provider like
Nerves.Artifact.Providers.Docker. See the package configuration docs
for more information.

	Added artifact_sites to the nerves_package config. Artifact sites
are helpers that are useful for cleanly specifying locations where artifacts
can be fetched. If you are hosting your artifacts using Github releases
you can specify it like this:
artifact_sites: [
 {:github_releases, "organization/project"}
]
You can also specify your own custom server location by using the :prefix
helper by passing a url or file path:
artifact_sites: [
 {:prefix, "/path/to/artifacts"}
 {:prefix, "https://my_bucket.s3-east.amazonaws.com/artifacts"}
]
Artifact sites will be tried in order until one successfully downloads the
artifact.

	Bug Fixes
	Fixed issue with Nerves.Utils.HTTPResolver crashing when missing the
content-disposition and content-length headers.
	Run integrity check on tar files to validate they are not corrupted on
download.

v0.8.3
	Bug Fixes
	Revert plugin Nerves in new project generator until
the fix can be made in distillery.
This issue was causing the release to contain compiled
libraries from the host instead of the target.
The error would look similar to this
Got:
ELF 64-bit LSB relocatable, x86-64, version 1
If binary, expecting:
ELF 32-bit LSB executable, ARM, EABI5 version 1, interpreter /lib/ld-linux.so.3, for GNU/Linux 4.1.39
You can fix this by updating and regenerating the new project.

v0.8.2
	Enhancements
	Added contributing guide
	Improved error messages when NERVES_SYSTEM or NERVES_TOOLCHAIN are unset.

	Bug Fixes
	Don't override the output_dir in the Distillery Plugin.

v0.8.1
	Bug Fixes
	Fixed an error in the Nerves Distillery plugin that was causing the following error message:
Plugin failed: no function clause matching in IO.chardata_to_string/1

v0.8.0
	Enhancements
	Removed legacy compiler key from the package struct. The nerves_package compiler will be chosen by default.
	Simplified the distillery release config by making Nerves a distillery plugin
	Skip archival phase when making firmware.
	Allow the progress bar to be disabled for use in CI systems by setting NERVES_LOG_DISABLE_PROGRESS_BAR=1
	Deprecate nerves.exs. The contents of nerves.exs files have been moved into mix.exs under the project key nerves_package

	Bug Fixes
	raise an exception when the artifact build encounters an error

v0.7.5
	Enhancements
	Docker	Reduced the image size by optimizing docker file.
	Images are pulled from Docker Hub instead of building locally.
	Containers are transient and build files are stored in docker volumes.
	NERVES_BR_DL_DIR is mounted as a host volume instead of a docker volume.

	Bug Fixes
	Docker	Fixed issue where moving the project location on the host would require
the container to be force deleted.

v0.7.4
	Bug Fixes	Make sure the path NERVES_DL_DIR exists before writing artifacts to it.

v0.7.3
	Enhancements	[mix firmware.image] remove the need to pass an image name. Default to the app name.
	[mix] added shortdocs to all mix tasks.
	[fwup] bumped requirement to ~> 0.15 and support 1.0.0 pre release.
	Cache downloads to ~/.nerves/dl or $NERVES_DL_DIR if defined.

v0.7.2
	Bug Fixes	Fixed issue where nerves.system.shell would hang and load improperly.

	Enhancements	Deprecated the rootfs_additions configuration option, to be superseded by
the rootfs_overlay option, which matches the convention used by the
Buildroot community.

v0.7.1
	Bug Fixes	The nerves.system.shell Mix task should not do make clean by default.

	Enhancements	The "Customizing Your Own Nerves System" documentation has been updated to
include the mix nerves.system.shell functionality, including a blurb to
recommend running a clean build any time it's not working as expected.

0.7.0
	Bug Fixes	Try to include the parent project when loading Nerves packages
	Better error message from the Docker provider when Docker is not installed
	Delete system artifact directories only when instructed by mix nerves.clean on Linux.
This prevents triggering a full rebuild for every change made to a custom system.

	Enhancements	Added support for the new nerves.system.shell task, provided by
nerves_bootstrap, to Nerves.Package.Providers.Docker and
Nerves.Package.Providers.Local, which provides a consistent way to
configure a Buildroot-based Nerves system on both OSX and Linux. This
replaces the nerves.shell Mix task, which had not been fully implemented.
	mix firmware.burn no longer asks for your password if using Linux and have
 read/write permissions on the SD card device.

0.6.1
	Bug Fixes	Docker Provider: Fix version parsing issue when major, minor, or patch contains leading zeros.

0.6.0
	Bug Fixes	Require Nerves Packages to have a version

	Enhancements	Propagate Mix.Project.config settings into the firmware metadata
	Removed checksum from docker container name. Docker provider now only builds changes
	Added Nerves.Env.clean for cleaning package providers

0.5.2
	BugFixes	Handle redirects manually as a fix to OTP 19.3 caused by ERL-316

0.5.1
	BugFixes	Handle redirects manually as a fix to OTP 19.3 caused by ERL-316

0.5.0
	Bug Fixes	:nocache the HTTP provider if the download list is empty
	return an error when tar is unsuccessful at decompressing an artifact
	return :error for any error in downloading artifacts
	clean up temp files after downloading artifacts
	expand path before comparing for dep type: Fixes path deps in umbrella
	clean up artifact dir before copying new artifact

	Enhancements	changed console output for higher visibility Nerves compiler messages
	added ability to specify the images_path in the Mix.Project config
	changed default images_path to #{build_path}/nerves/images
	updated docs to reflect changes made to project structure
	added mix nerves.info task. Can be used to gain information about the Nerves env

0.4.8
	Bug Fixes	removed --silent from mix release.clean for compatibility with :distillery ~> 1.2.0

0.4.7
	Bug Fixes	[Providers.Local] Fix return error on non zero exit status code
	Fixed IO stream split to handle ANSI code case regression

0.4.6
	Bug Fixes	fix artifact http download manager to take as long as it needs unless idle for more than 2 minutes.
	[Providers.Docker] Fixed IO stream parsing to handle occasions where ANSI codes are not being passed.
	loosened dependency on distillery

0.4.5
	Bug Fixes	catch exits from mix release.clean when calling mix firmware

0.4.4
	Bug Fixes	return an {:error, message} response from the http provider when a resource is not found

0.4.3
	Enhancements
	Mix will display a progress bar, percentage, and total / expected bytes when downloading artifacts.
	Added task mix firmware.image my_app.img for producing images for use with applications like dd
	Silenced output from distillery which would contain misleading information for the nerves project

	Bug Fixes
	Docker provider could potentially produce application id's that were invalid

0.4.2
	Bug Fixes	Fixed issue where artifact paths could not be set by system env var
	Mix Task nerves.release.init was failing due to missing template. Include priv in hex package files.

0.4.1
	Bug Fixes	Do not stop the Nerves.Env at the end of the package compiler. This would cause the packages to resolve the wrong dep type.
	Fixed issue where remote artifacts would not be globally cached
	Fixed issue with package compiler where it would always force systems to be built

0.4.0
	Enhancements	Improved test suite
	Added documentation for modules
	Consolidated the Nerves Environment to the Nerves package

0.4.0-rc.0
	Enhancements	Consolidated compilers into nerves_package.
	Removed dependency for nerves_system
	Removed dependency for nerves_toolchain
	Added Docker provider for building custom systems on machines other than linux

0.3.4
	Bug Fixes	Fixed regression with mix firmware.burn to allow prompts

	Enhancements	Added ability to override task in mix firmware.burn. You can now pass -t or --task to perform upgrade or anything else. Default is complete

0.3.3
	Bug Fixes	Updated nerves.precompile / loadpaths to support Elixir 1.3.x aliases.

	Enhancements	Removed dependency on porcelain

0.3.2
	Bug Fixes	Support for elixir 1.3.0-dev
	Invoke nerves.loadpaths on preflight of mix firmware and mix firmware.burn. Fixes ERROR: It looks like the system hasn't been built!

0.3.1
	Enhancements	Perform host tool checks before executing scripts

0.3.0
	Enhancements	Added nerves_bootstrap archive
	mix firmware Create firmware bundles from mix
	mix firmware.burn Burn Firmware bundles to SD cards

0.2.0
	Enhancements	Added support for 0.4.0 system paths

Mix.Nerves.Preflight

 Anchor for this section

 Summary

 Functions

 check!()

 ensure_available!(executable, opts \\ [])

 ensure_fwup_version!(fwup_bin \\ "fwup", vsn_requirement \\ "~> 1.8")

 Anchor for this section

Functions

 Link to this function

 check!()

 View Source

 Link to this function

 ensure_available!(executable, opts \\ [])

 View Source

 Link to this function

 ensure_fwup_version!(fwup_bin \\ "fwup", vsn_requirement \\ "~> 1.8")

 View Source

Mix.Nerves.Shell

 Anchor for this section

 Summary

 Functions

 open(command, initial_input \\ [])

 Anchor for this section

Functions

 Link to this function

 open(command, initial_input \\ [])

 View Source

Mix.Nerves.Utils

 Anchor for this section

 Summary

 Functions

 bytes_to_gigabytes(bytes)

 check_nerves_system_is_set!()

 check_nerves_toolchain_is_set!()

 debug_info(msg)

 mix_target()

 parse_otp_version(vsn)

 Parse OTP versions

 prompt_dev()

 sanitize_path()

 Return the sanitized version of the PATH variable

 set_provisioning(app)

 shell(cmd, args, opts \\ [])

 Anchor for this section

Functions

 Link to this function

 bytes_to_gigabytes(bytes)

 View Source

 Link to this function

 check_nerves_system_is_set!()

 View Source

 Specs

 check_nerves_system_is_set!() :: String.t()

 Link to this function

 check_nerves_toolchain_is_set!()

 View Source

 Specs

 check_nerves_toolchain_is_set!() :: String.t()

 Link to this function

 debug_info(msg)

 View Source

 Link to this function

 mix_target()

 View Source

 Specs

 mix_target() :: atom()

 Link to this function

 parse_otp_version(vsn)

 View Source

 Specs

 parse_otp_version(String.t()) :: {:error, String.t()} | {:ok, Version.t()}

Parse OTP versions
OTP versions can have anywhere from 2 to 5 parts. Normalize this into
a 3-part version for convenience. This is a lossy operation, but it
doesn't matter because the checks aren't needed in this project.
iex> {:ok, version} = Mix.Nerves.Utils.parse_otp_version("24.2")
iex> version
#Version<24.2.0>

iex> {:ok, version} = Mix.Nerves.Utils.parse_otp_version("23.3.4")
iex> version
#Version<23.3.4>

iex> {:ok, version} = Mix.Nerves.Utils.parse_otp_version("18.3.4.1.1")
iex> version
#Version<18.3.4>

iex> {:ok, version} = Mix.Nerves.Utils.parse_otp_version("23.0-rc1")
iex> version
#Version<23.0.0-rc1>

iex> Mix.Nerves.Utils.parse_otp_version("invalid")
{:error, "Unexpected OTP version: \"invalid\""}

 Link to this function

 prompt_dev()

 View Source

 Link to this function

 sanitize_path()

 View Source

 Specs

 sanitize_path() :: binary()

Return the sanitized version of the PATH variable
This removes empty PATH entries to avoid tool confusion.

 Link to this function

 set_provisioning(app)

 View Source

 Link to this function

 shell(cmd, args, opts \\ [])

 View Source

Nerves

 Anchor for this section

 Summary

 Functions

 elixir_version()

 otp_release()

 system_requirements(elixir_version \\ nil, otp_release \\ nil)

 version()

 Anchor for this section

Functions

 Link to this function

 elixir_version()

 View Source

 Link to this function

 otp_release()

 View Source

 Link to this function

 system_requirements(elixir_version \\ nil, otp_release \\ nil)

 View Source

 Link to this function

 version()

 View Source

Nerves.Artifact

Package artifacts are the product of compiling a package with a
specific toolchain.

 Anchor for this section

 Summary

 Functions

 archive(pkg, toolchain, opts)

 Produces an archive of the package artifact which can be fetched when
calling nerves.artifact.get.

 base_dir()

 Get the base dir for where an artifact for a package should be stored.

 build(pkg, toolchain)

 Builds the package and produces an See Nerves.Artifact
for more information.

 build_path(pkg)

 Get the path to where the artifact is built

 build_path_link(pkg)

 Get the path where the global artifact will be linked to.
This path is typically a location within build_path, but can be
vary on different build platforms.

 build_runner(config)

 checksum(pkg, opts \\ [])

 Produce a base16 encoded checksum for the package from the list of files
and expanded folders listed in the checksum config key.

 clean(pkg)

 Cleans the artifacts for the package build_runners of all packages.

 dir(pkg)

 The full path to the artifact.

 download_name(pkg, opts \\ [])

 Get the artifact download name

 download_path(pkg)

 Get the path to where the artifact archive is downloaded to.

 env_var(pkg)

 Determine the environment variable which would be set to override the path.

 env_var?(pkg)

 Check to see if the artifact path is being set from the system env.

 expand_sites(pkg)

 Expands the sites helpers from artifact_sites in the nerves_package config.

 ext(arg1)

 Determines the extension for an artifact based off its type.
Toolchains use xz compression.

 host_tuple(arg1)

 Get the host_tuple for the package. Toolchains are specifically build to run
on a host for a target. Other packages are host agnostic for now. They are
marked as portable.

 name(pkg)

 Get the artifact name

 parse_download_name(name)

 stale?(pkg)

 Determines if the artifact for a package is stale and needs to be rebuilt.

 Anchor for this section

Functions

 Link to this function

 archive(pkg, toolchain, opts)

 View Source

Produces an archive of the package artifact which can be fetched when
calling nerves.artifact.get.

 Link to this function

 base_dir()

 View Source

 Specs

 base_dir() :: String.t()

Get the base dir for where an artifact for a package should be stored.
The directory for artifacts will be found in the directory returned
by Nerves.Env.data_dir/0 (i.e. "/home/fhunleth/.nerves/artifacts/").
This location can be overriden by the environment variable NERVES_ARTIFACTS_DIR.

 Link to this function

 build(pkg, toolchain)

 View Source

 Specs

 build(Nerves.Package.t(), Nerves.Package.t()) :: :ok

Builds the package and produces an See Nerves.Artifact
for more information.

 Link to this function

 build_path(pkg)

 View Source

 Specs

 build_path(Nerves.Package.t()) :: binary()

Get the path to where the artifact is built

 Link to this function

 build_path_link(pkg)

 View Source

Get the path where the global artifact will be linked to.
This path is typically a location within build_path, but can be
vary on different build platforms.

 Link to this function

 build_runner(config)

 View Source

 Link to this function

 checksum(pkg, opts \\ [])

 View Source

Produce a base16 encoded checksum for the package from the list of files
and expanded folders listed in the checksum config key.

 Link to this function

 clean(pkg)

 View Source

 Specs

 clean(Nerves.Package.t()) :: :ok | {:error, term()}

Cleans the artifacts for the package build_runners of all packages.

 Link to this function

 dir(pkg)

 View Source

 Specs

 dir(Nerves.Package.t()) :: String.t()

The full path to the artifact.

 Link to this function

 download_name(pkg, opts \\ [])

 View Source

Get the artifact download name

 Link to this function

 download_path(pkg)

 View Source

Get the path to where the artifact archive is downloaded to.

 Link to this function

 env_var(pkg)

 View Source

 Specs

 env_var(Nerves.Package.t()) :: String.t()

Determine the environment variable which would be set to override the path.

 Link to this function

 env_var?(pkg)

 View Source

 Specs

 env_var?(Nerves.Package.t()) :: boolean()

Check to see if the artifact path is being set from the system env.

 Link to this function

 expand_sites(pkg)

 View Source

Expands the sites helpers from artifact_sites in the nerves_package config.
Artifact sites can pass options as a third parameter for adding headers
or query string parameters. For example, if you are trying to resolve
artifacts hosted in a private Github repo, use :github_api and
pass a user, tag, and personal access token into the sites helper:
{:github_api, "owner/repo", username: "skroob", token: "1234567", tag: "v0.1.0"}
Or pass query parameters for the URL:
{:prefix, "https://my-organization.com", query_params: %{"id" => "1234567", "token" => "abcd"}}
You can also use this to add an authorization header for files behind basic auth.
{:prefix, "http://my-organization.com/", headers: [{"Authorization", "Basic " <> System.get_env("BASIC_AUTH")}}]}

 Link to this function

 ext(arg1)

 View Source

 Specs

 ext(Nerves.Package.t()) :: String.t()

Determines the extension for an artifact based off its type.
Toolchains use xz compression.

 Link to this function

 host_tuple(arg1)

 View Source

Get the host_tuple for the package. Toolchains are specifically build to run
on a host for a target. Other packages are host agnostic for now. They are
marked as portable.

 Link to this function

 name(pkg)

 View Source

 Specs

 name(Nerves.Package.t()) :: String.t()

Get the artifact name

 Link to this function

 parse_download_name(name)

 View Source

 Link to this function

 stale?(pkg)

 View Source

 Specs

 stale?(Nerves.Package.t()) :: boolean()

Determines if the artifact for a package is stale and needs to be rebuilt.

Nerves.Artifact.BuildRunner behaviour

Defines the Nerves build runner behaviour
A build runner is a module that can take package source and produce
artifacts.

 Anchor for this section

 Summary

 Types

 archive_result()

 build_result()

 clean_result()

 Callbacks

 archive(package, toolchain, opts)

 build(package, toolchain, opts)

 clean(package)

 Anchor for this section

Types

 Link to this type

 archive_result()

 View Source

 Specs

 archive_result() :: {:ok, path :: String.t()} | {:error, reason :: term()}

 Link to this type

 build_result()

 View Source

 Specs

 build_result() :: {:ok, build_path :: String.t()} | {:error, reason :: term()}

 Link to this type

 clean_result()

 View Source

 Specs

 clean_result() :: :ok | {:error, reason :: term()}

 Anchor for this section

Callbacks

 Link to this callback

 archive(package, toolchain, opts)

 View Source

 Specs

 archive(package :: Nerves.Package.t(), toolchain :: atom(), opts :: term()) ::
 archive_result()

 Link to this callback

 build(package, toolchain, opts)

 View Source

 Specs

 build(package :: Nerves.Package.t(), toolchain :: atom(), opts :: term()) ::
 build_result()

 Link to this callback

 clean(package)

 View Source

 Specs

 clean(package :: Nerves.Package.t()) :: clean_result()

Nerves.Artifact.BuildRunners.Docker

Produce an artifact for a package using Docker.
The Nerves Docker artifact build_runner will use docker to create the artifact
for the package. The output in Mix will be limited to the headlines from the
process and the full build log can be found in the file build.log located
root of the package path.
Images
Docker containers will be created based off the image that is loaded.
By default, containers will use the default image
nervesproject/nerves_system_br:latest. Sometimes additional host tools
are required to build a package. Therefore, packages can provide their own
images by specifying it in the package config under :build_runner_config.
the file is specified as a tuple {"path/to/Dockerfile", tag_name}.
Example:
build_runner_config: [
 docker: {"Dockerfile", "my_system:0.1.0"}
]
Volumes and Cache
Nerves will mount several volumes to the container for use in building
the artifact.
Mounted from the host:
	/nerves/env/<package.name> - The package being built.
	/nerves/env/platform - The package platform package.
	/nerves/host/artifacts - The host artifact directory.

Nerves will also mount the host NERVES_DL_DIR to save downloaded assets the
build platform requires for producing the artifact.
This is mounted at /nerves/dl. This volume can significantly reduce build
times but has potential for corruption. If you suspect that your build is
failing due to a faulty downloaded cached data, you can manually mount
the offending container and remove the file from this location or delete the
entire directory.
Nerves uses a docker volume to attach the build files. The volume name is
defined as the package name and a unique id that is stored at
ARTIFACT_DIR/.docker_id. The build directory is mounted to the container at
/nerves/build and is configured as the current working directory.
Cleanup
Periodically, you may want to destroy all unused volumes to clean up.
Please refer to the Docker documentation for more information on how to
do this.
When the build_runner is finished, the artifact is decompressed on the host at
the packages defined artifact directory.

 Anchor for this section

 Summary

 Functions

 archive(pkg, toolchain, opts)

 Callback implementation for Nerves.Artifact.BuildRunner.archive/3.

 build(pkg, toolchain, opts)

 Create an artifact for the package

 clean(pkg)

 Callback implementation for Nerves.Artifact.BuildRunner.clean/1.

 parse_docker_version(vsn)

 system_shell(pkg)

 Connect to a system configuration shell in a Docker container

 Anchor for this section

Functions

 Link to this function

 archive(pkg, toolchain, opts)

 View Source

 Specs

 archive(Nerves.Package.t(), Nerves.Package.t(), term()) :: :ok

Callback implementation for Nerves.Artifact.BuildRunner.archive/3.

 Link to this function

 build(pkg, toolchain, opts)

 View Source

 Specs

 build(Nerves.Package.t(), Nerves.Package.t(), term()) :: :ok

Create an artifact for the package
Opts:
 make_args: - Extra arguments to be passed to make.
 For example:
 You can configure the number of parallel jobs that buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
mix.exs
defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
end

 Link to this function

 clean(pkg)

 View Source

Callback implementation for Nerves.Artifact.BuildRunner.clean/1.

 Link to this function

 parse_docker_version(vsn)

 View Source

 Link to this function

 system_shell(pkg)

 View Source

 Specs

 system_shell(Nerves.Package.t()) :: :ok

Connect to a system configuration shell in a Docker container

Nerves.Artifact.BuildRunners.Docker.Image

 Anchor for this section

 Summary

 Functions

 create(dockerfile, tag)

 exists?(tag)

 pull(tag)

 Anchor for this section

Functions

 Link to this function

 create(dockerfile, tag)

 View Source

 Link to this function

 exists?(tag)

 View Source

 Link to this function

 pull(tag)

 View Source

Nerves.Artifact.BuildRunners.Docker.Utils

 Anchor for this section

 Summary

 Functions

 shell_info(header, text \\ "")

 Anchor for this section

Functions

 Link to this function

 shell_info(header, text \\ "")

 View Source

Nerves.Artifact.BuildRunners.Docker.Volume

 Anchor for this section

 Summary

 Functions

 create(volume_name)

 create_id(pkg)

 delete(volume_name)

 exists?(volume_name)

 id(pkg)

 id_file(pkg)

 name(pkg)

 Anchor for this section

Functions

 Link to this function

 create(volume_name)

 View Source

 Link to this function

 create_id(pkg)

 View Source

 Link to this function

 delete(volume_name)

 View Source

 Link to this function

 exists?(volume_name)

 View Source

 Link to this function

 id(pkg)

 View Source

 Link to this function

 id_file(pkg)

 View Source

 Link to this function

 name(pkg)

 View Source

Nerves.Artifact.BuildRunners.Local behaviour

Builds an artifact locally.
This build_runner will only function on certain Linux host configurations

 Anchor for this section

 Summary

 Callbacks

 clean(package)

 Builds an artifact locally.

 Functions

 archive(pkg, toolchain, opts)

 Builds an artifact locally.

 build(pkg, toolchain, opts)

 Builds an artifact locally.

 clean(pkg)

 Callback implementation for Nerves.Artifact.BuildRunner.clean/1.

 system_shell(pkg)

 Connect to a system configuration sub-shell

 Anchor for this section

Callbacks

 Link to this callback

 clean(package)

 View Source

 Specs

 clean(package :: Nerves.Package.t()) ::
 Nerves.Artifact.BuildRunner.clean_result()

Builds an artifact locally.

 Anchor for this section

Functions

 Link to this function

 archive(pkg, toolchain, opts)

 View Source

 Specs

 archive(Nerves.Package.t(), Nerves.Package.t(), term()) ::
 Nerves.Artifact.BuildRunner.archive_result()

Builds an artifact locally.

 Link to this function

 build(pkg, toolchain, opts)

 View Source

 Specs

 build(Nerves.Package.t(), Nerves.Package.t(), term()) ::
 Nerves.Artifact.BuildRunner.build_result()

Builds an artifact locally.
Opts:
 make_args: - Extra arguments to be passed to make.
 For example:
 You can configure the number of parallel jobs that buildroot
 can use for execution. This is useful for situations where you may
 have a machine with a lot of CPUs but not enough ram.
mix.exs
defp nerves_package do
 [
 # ...
 build_runner_opts: [make_args: ["PARALLEL_JOBS=8"]],
]
end

 Link to this function

 clean(pkg)

 View Source

Callback implementation for Nerves.Artifact.BuildRunner.clean/1.

 Link to this function

 system_shell(pkg)

 View Source

 Specs

 system_shell(Nerves.Package.t()) :: :ok

Connect to a system configuration sub-shell

Nerves.Artifact.Cache

 Anchor for this section

 Summary

 Functions

 checksum_path(pkg)

 delete(pkg)

 get(pkg)

 path(pkg)

 put(pkg, path)

 valid?(pkg)

 Anchor for this section

Functions

 Link to this function

 checksum_path(pkg)

 View Source

 Link to this function

 delete(pkg)

 View Source

 Link to this function

 get(pkg)

 View Source

 Link to this function

 path(pkg)

 View Source

 Link to this function

 put(pkg, path)

 View Source

 Link to this function

 valid?(pkg)

 View Source

Nerves.Artifact.Resolver behaviour

 Anchor for this section

 Summary

 Callbacks

 get(term)

 Functions

 do_get(arg1, pkg, reason \\ nil)

 get(resolvers, pkg)

 Anchor for this section

Callbacks

 Link to this callback

 get(term)

 View Source

 Specs

 get(term()) :: {:ok, data :: String.t()} | {:error, term()}

 Anchor for this section

Functions

 Link to this function

 do_get(arg1, pkg, reason \\ nil)

 View Source

 Link to this function

 get(resolvers, pkg)

 View Source

 Specs

 get(term(), pkg :: Nerves.Package.t()) ::
 {:ok, file :: String.t()} | {:error, term()}

Nerves.Artifact.Resolvers.GithubAPI

 Anchor for this section

 Summary

 Functions

 get(arg)

 Callback implementation for Nerves.Artifact.Resolver.get/1.

 validate_opts(opts)

 Anchor for this section

Functions

 Link to this function

 get(arg)

 View Source

Callback implementation for Nerves.Artifact.Resolver.get/1.

 Link to this function

 validate_opts(opts)

 View Source

Nerves.Artifact.Resolvers.URI

Downloads an artifact from a remote http location.

 Anchor for this section

 Summary

 Functions

 get(arg)

 Download the artifact from an http location

 Anchor for this section

Functions

 Link to this function

 get(arg)

 View Source

Download the artifact from an http location

Nerves.Env

Contains package info for Nerves dependencies
The Nerves Env is used to load information from dependencies that
contain a nerves.exs config file in the root of the dependency
path. Nerves loads this config because it needs access to information
about Nerves compile time dependencies before any code is compiled.

 Anchor for this section

 Summary

 Functions

 bootstrap()

 Export environment variables used by Elixir, Erlang, C/C++ and other tools
so that they use Nerves toolchain parameters and not the host's.

 change_target(target)

 Re evaluates the mix file under a different target.

 clean(pkgs)

 Cleans the artifacts for the package build_runners of all specified packages.

 data_dir()

 The location for storing global nerves data.

 disable()

 Disable the Nerves Env compilers

 download_dir()

 The download location for artifact downloads.

 enable()

 Enable the Nerves Env compilers

 enabled?()

 Check if the env compilers are disabled

 ensure_loaded(app, path \\ nil)

 Ensures that an application which contains a Nerves package config has
been loaded into the environment agent.

 export_package_env(package)

 firmware_path(config \\ mix_config())

 The path to the firmware file

 host_arch()

 Returns the architecture for the host system.

 host_os()

 Returns the os for the host system.

 images_path(config \\ mix_config())

 The path to where firmware build files are stored
This can be overridden in a Mix project by setting the :images_path key.

 loaded?()

 Check if the Nerves.Env is loaded

 package(name)

 Gets a package by app name.

 packages()

 Lists all Nerves packages loaded in the Nerves environment.

 packages_by_type(type, packages \\ nil)

 Lists packages by package type.

 source_date_epoch()

 start()

 Starts the Nerves environment agent and loads package information.
If the Nerves.Env is already started, the function returns
{:error, {:already_started, pid}} with the pid of that process

 stop()

 Stop the Nerves environment agent.

 system()

 Helper function for returning the system type package

 system_platform()

 Helper function for returning the system_platform type package

 toolchain()

 Helper function for returning the toolchain type package

 toolchain_platform()

 Helper function for returning the toolchain_platform type package

 Anchor for this section

Functions

 Link to this function

 bootstrap()

 View Source

 Specs

 bootstrap() :: :ok

Export environment variables used by Elixir, Erlang, C/C++ and other tools
so that they use Nerves toolchain parameters and not the host's.
For a comprehensive list of environment variables, see the documentation
for the package defining system_platform.

 Link to this function

 change_target(target)

 View Source

 Specs

 change_target(String.t()) :: :ok

Re evaluates the mix file under a different target.
This allows you to start in one target, like host, but then
switch to a different target.

 Link to this function

 clean(pkgs)

 View Source

 Specs

 clean([Nerves.Package.t()]) :: :ok

Cleans the artifacts for the package build_runners of all specified packages.

 Link to this function

 data_dir()

 View Source

 Specs

 data_dir() :: path :: String.t()

The location for storing global nerves data.
The base directory is normally set by the XDG_DATA_HOME
environment variable (i.e. $XDG_DATA_HOME/nerves/).
If XDG_DATA_HOME is unset, the user's home directory
is used (i.e. $HOME/.nerves).

 Link to this function

 disable()

 View Source

 Specs

 disable() :: :ok

Disable the Nerves Env compilers

 Link to this function

 download_dir()

 View Source

 Specs

 download_dir() :: path :: String.t()

The download location for artifact downloads.
Placing an artifact tar in this location will bypass the need for it to
be downloaded.

 Link to this function

 enable()

 View Source

 Specs

 enable() :: :ok

Enable the Nerves Env compilers

 Link to this function

 enabled?()

 View Source

 Specs

 enabled?() :: boolean()

Check if the env compilers are disabled

 Link to this function

 ensure_loaded(app, path \\ nil)

 View Source

 Specs

 ensure_loaded(app :: atom(), path :: String.t()) ::
 {:ok, Nerves.Package.t()} | {:error, term()}

Ensures that an application which contains a Nerves package config has
been loaded into the environment agent.

 Options

	app - The atom of the app to load
	path - Optional path for the app

 Link to this function

 export_package_env(package)

 View Source

 Specs

 export_package_env(Nerves.Package.t()) :: :ok

 Link to this function

 firmware_path(config \\ mix_config())

 View Source

 Specs

 firmware_path(keyword()) :: String.t()

The path to the firmware file

 Link to this function

 host_arch()

 View Source

 Specs

 host_arch() :: String.t()

Returns the architecture for the host system.

 Example return values

 "x86_64"
 "arm"

 Link to this function

 host_os()

 View Source

 Specs

 host_os() :: String.t()

Returns the os for the host system.

 Example return values

 "win"
 "linux"
 "darwin"

 Link to this function

 images_path(config \\ mix_config())

 View Source

 Specs

 images_path(keyword()) :: String.t()

The path to where firmware build files are stored
This can be overridden in a Mix project by setting the :images_path key.
 images_path: "/some/other/location"
Defaults to (build_path)/nerves/images

 Link to this function

 loaded?()

 View Source

 Specs

 loaded?() :: boolean()

Check if the Nerves.Env is loaded

 Link to this function

 package(name)

 View Source

 Specs

 package(name :: atom()) :: Nerves.Package.t() | nil

Gets a package by app name.

 Link to this function

 packages()

 View Source

 Specs

 packages() :: [Nerves.Package.t()]

Lists all Nerves packages loaded in the Nerves environment.

 Link to this function

 packages_by_type(type, packages \\ nil)

 View Source

Lists packages by package type.

 Link to this function

 source_date_epoch()

 View Source

 Link to this function

 start()

 View Source

 Specs

 start() :: Agent.on_start()

Starts the Nerves environment agent and loads package information.
If the Nerves.Env is already started, the function returns
{:error, {:already_started, pid}} with the pid of that process

 Link to this function

 stop()

 View Source

 Specs

 stop() :: :ok

Stop the Nerves environment agent.

 Link to this function

 system()

 View Source

 Specs

 system() :: Nerves.Package.t()

Helper function for returning the system type package

 Link to this function

 system_platform()

 View Source

 Specs

 system_platform() :: module()

Helper function for returning the system_platform type package

 Link to this function

 toolchain()

 View Source

 Specs

 toolchain() :: Nerves.Package.t()

Helper function for returning the toolchain type package

 Link to this function

 toolchain_platform()

 View Source

 Specs

 toolchain_platform() :: Nerves.Package.t()

Helper function for returning the toolchain_platform type package

Nerves.Erlinit

Decode and encode erlinit.config files
This module is used to decode, merge, and encode multiple erlinit.config
files.

 Anchor for this section

 Summary

 Types

 t()

 Functions

 decode_config(config)

 Decode the data from the config into a keyword list

 encode_config(config)

 Encode the keyword list options into an erlinit.config file format

 merge_opts(old, new)

 Merge keyword options

 system_config_file(package)

 Return the path to the erlinit.config file provided by the Nerves System

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: [
 boot: Path.t(),
 ctty: String.t(),
 uniqueid_exec: String.t(),
 env: String.t(),
 gid: non_neg_integer(),
 graceful_shutdown_timeout: non_neg_integer(),
 hang_on_exit: boolean(),
 hang_on_fatal: boolean(),
 limits: String.t(),
 mount: String.t(),
 hostname_pattern: String.t(),
 pre_run_exec: String.t(),
 poweroff_on_exit: boolean(),
 poweroff_on_fatal: boolean(),
 reboot_on_fatal: boolean(),
 release_path: Path.t(),
 run_on_exit: String.t(),
 alternate_exec: String.t(),
 print_timing: boolean(),
 uid: non_neg_integer(),
 update_clock: boolean(),
 verbose: boolean(),
 warn_unused_tty: boolean(),
 working_directory: Path.t(),
 shutdown_report: Path.t()
]

 Anchor for this section

Functions

 Link to this function

 decode_config(config)

 View Source

 Specs

 decode_config(String.t()) :: t()

Decode the data from the config into a keyword list

 Link to this function

 encode_config(config)

 View Source

 Specs

 encode_config(t()) :: String.t()

Encode the keyword list options into an erlinit.config file format

 Link to this function

 merge_opts(old, new)

 View Source

 Specs

 merge_opts(t(), t()) :: t()

Merge keyword options

 Link to this function

 system_config_file(package)

 View Source

 Specs

 system_config_file(Nerves.Package.t()) :: {:ok, Path.t()} | {:error, :no_config}

Return the path to the erlinit.config file provided by the Nerves System

Nerves.Package

Defines a Nerves package struct and helper functions.
A Nerves package is a Mix application that defines the configuration for a
Nerves system or Nerves toolchain. For more details, see the Nerves
system documentation

 Anchor for this section

 Summary

 Types

 t()

 Functions

 config(app, path)

 config_path(path)

 Takes the path to the package and returns the path to its package config.

 load_config(arg)

 Loads the package config and parses it into a %Package{}

 shell(pkg)

 Starts an interactive shell with the working directory set
to the package path

 Anchor for this section

Types

 Link to this type

 t()

 View Source

 Specs

 t() :: %Nerves.Package{
 app: atom(),
 build_runner: atom(),
 compilers: [atom()],
 config: Keyword.t(),
 dep: :project | :path | :hex | :git,
 dep_opts: Keyword.t(),
 env: Keyword.t(),
 path: binary(),
 platform: atom(),
 type: :system | :package | :toolchain,
 version: Version.t()
}

 Anchor for this section

Functions

 Link to this function

 config(app, path)

 View Source

 Link to this function

 config_path(path)

 View Source

 Specs

 config_path(String.t()) :: String.t()

Takes the path to the package and returns the path to its package config.

 Link to this function

 load_config(arg)

 View Source

 Specs

 load_config({app :: atom(), path :: String.t()}) :: t()

Loads the package config and parses it into a %Package{}

 Link to this function

 shell(pkg)

 View Source

 Specs

 shell(t()) :: :ok

Starts an interactive shell with the working directory set
to the package path

Nerves.Package.Platform behaviour

Defines the Nerves package platform behaviour
This behaviour is implemented on a module that would be used to construct
an artifact for a nerves package. Nerves packages are prioritized to be
compiled before any other dependencies, therefore, a package platform
is useful for constructing host tools to be used during the elixir compile
phase.
You can implement both Nerves.Package.Platform and Nerves.Artifact.BuildRunner
in the same module with the using macro.
Here is a simple example that touches a file in the Artifact.build_path
defmodule SystemPlatform do
 use Nerves.Package.Platform

 def bootstrap(_pkg) do
 System.put_env("NERVES_BOOTSTRAP_SYSTEM", "1")
 :ok
 end

 def build(pkg, _toolchain, _opts) do
 build_path = Artifact.build_path(pkg)
 File.rm_rf!(build_path)
 File.mkdir_p!(build_path)

 build_path
 |> Path.join("file")
 |> File.touch()

 {:ok, build_path}
 end

 def build_path_link(pkg) do
 Artifact.build_path(pkg)
 end

 def archive(pkg, _toolchain, _opts) do
 build_path = Artifact.build_path(pkg)
 name = Artifact.download_name(pkg) <> Artifact.ext(pkg)
 Nerves.Utils.File.tar(build_path, name)
 {:ok, Path.join(File.cwd!, name)}
 end

 def clean(pkg) do
 Artifact.build_path(pkg)
 |> File.rm_rf()
 end
end

 Anchor for this section

 Summary

 Callbacks

 bootstrap(t)

 Bootstrap is called as the final phase of loading the Nerves environment.
 It is used typically for setting / unsetting any system environment
 variables. For example, if we were building a C cross compiler, we would
 use the bootstrap phase to override CC to point to our compiler.

 build_path_link(package)

 Build path link should return the location inside the Artifact.build_path
that represents the final artifact. This is used to symlink the global
artifact to the local build_path location.

 Anchor for this section

Callbacks

 Link to this callback

 bootstrap(t)

 View Source

 Specs

 bootstrap(Nerves.Package.t()) :: :ok | {:error, error :: term()}

 Bootstrap is called as the final phase of loading the Nerves environment.
 It is used typically for setting / unsetting any system environment
 variables. For example, if we were building a C cross compiler, we would
 use the bootstrap phase to override CC to point to our compiler.

 Link to this callback

 build_path_link(package)

 View Source

 Specs

 build_path_link(package :: Nerves.Package.t()) :: build_path_link :: String.t()

Build path link should return the location inside the Artifact.build_path
that represents the final artifact. This is used to symlink the global
artifact to the local build_path location.

Nerves.Package.Utils.Squashfs

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 files(pid)

 fragment(pid, fragment, path, opts \\ [])

 init(list)

 Callback implementation for GenServer.init/1.

 merge(pid, file_systems, pseudofiles, path)

 path_to_paths(path)

 pseudofile(pid)

 pseudofile_fragment(pid, fragment)

 start_link(rootfs)

 stop(pid)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 files(pid)

 View Source

 Link to this function

 fragment(pid, fragment, path, opts \\ [])

 View Source

 Link to this function

 init(list)

 View Source

Callback implementation for GenServer.init/1.

 Link to this function

 merge(pid, file_systems, pseudofiles, path)

 View Source

 Link to this function

 path_to_paths(path)

 View Source

 Link to this function

 pseudofile(pid)

 View Source

 Link to this function

 pseudofile_fragment(pid, fragment)

 View Source

 Link to this function

 start_link(rootfs)

 View Source

 Link to this function

 stop(pid)

 View Source

Nerves.Port

The code from this file was copied in from MuonTrap
https://github.com/fhunleth/muontrap

 Anchor for this section

 Summary

 Functions

 cmd(command, args, opts \\ [])

 Run a command in a similar way to System.cmd/3.

 exec_path()

 port_options(options)

 Anchor for this section

Functions

 Link to this function

 cmd(command, args, opts \\ [])

 View Source

 Specs

 cmd(
 binary(),
 [binary()],
 keyword()
) :: {Collectable.t(), exit_status :: non_neg_integer()}

Run a command in a similar way to System.cmd/3.

 Link to this function

 exec_path()

 View Source

 Specs

 exec_path() :: String.t()

 Link to this function

 port_options(options)

 View Source

Nerves.Release

 Anchor for this section

 Summary

 Functions

 bootfile()

 erts()

 finalize(release)

 init(release)

 write_rootfs_priorities(applications, host_release_path, bootfile)

 Anchor for this section

Functions

 Link to this function

 bootfile()

 View Source

 Link to this function

 erts()

 View Source

 Link to this function

 finalize(release)

 View Source

 Link to this function

 init(release)

 View Source

 Link to this function

 write_rootfs_priorities(applications, host_release_path, bootfile)

 View Source

Nerves.System.BR

 Anchor for this section

 Summary

 Functions

 archive(pkg, toolchain, opts)

 Create an archive of the artifact

 bootstrap(map)

 Called as the last step of bootstrapping the Nerves env.

 build(pkg, toolchain, opts)

 Build the artifact

 build_path_link(pkg)

 Return the location in the build path to where the global artifact is linked.

 clean(pkg)

 Clean up all the build files

 Anchor for this section

Functions

 Link to this function

 archive(pkg, toolchain, opts)

 View Source

Create an archive of the artifact

 Link to this function

 bootstrap(map)

 View Source

Called as the last step of bootstrapping the Nerves env.

 Link to this function

 build(pkg, toolchain, opts)

 View Source

Build the artifact

 Link to this function

 build_path_link(pkg)

 View Source

 Specs

 build_path_link(Nerves.Package.t()) :: binary()

Return the location in the build path to where the global artifact is linked.

 Link to this function

 clean(pkg)

 View Source

 Specs

 clean(Nerves.Package.t()) :: :ok

Clean up all the build files

Nerves.Utils

 Anchor for this section

 Summary

 Functions

 json_decode(data)

 json_encode(data)

 random_alpha_num(length)

 untar(file, destination \\ nil)

 Anchor for this section

Functions

 Link to this function

 json_decode(data)

 View Source

 Link to this function

 json_encode(data)

 View Source

 Link to this function

 random_alpha_num(length)

 View Source

 Link to this function

 untar(file, destination \\ nil)

 View Source

Nerves.Utils.File

 Anchor for this section

 Summary

 Functions

 ext_cmd(binary)

 tar(path, file)

 Create a tar of the contents of the path and specified output file

 untar(file, destination \\ nil)

 validate(file)

 Anchor for this section

Functions

 Link to this function

 ext_cmd(binary)

 View Source

 Link to this function

 tar(path, file)

 View Source

Create a tar of the contents of the path and specified output file

 Link to this function

 untar(file, destination \\ nil)

 View Source

 Link to this function

 validate(file)

 View Source

Nerves.Utils.HTTPClient

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 get(pid, uri, opts \\ [])

 init(list)

 Callback implementation for GenServer.init/1.

 put_progress(size, max)

 start_link()

 stop(pid)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 get(pid, uri, opts \\ [])

 View Source

 Link to this function

 init(list)

 View Source

Callback implementation for GenServer.init/1.

 Link to this function

 put_progress(size, max)

 View Source

 Link to this function

 start_link()

 View Source

 Link to this function

 stop(pid)

 View Source

Nerves.Utils.Proxy

 Anchor for this section

 Summary

 Functions

 config(url)

 Anchor for this section

Functions

 Link to this function

 config(url)

 View Source

Nerves.Utils.Shell

 Anchor for this section

 Summary

 Functions

 error(message)

 info(message)

 success(message)

 warn(message)

 Anchor for this section

Functions

 Link to this function

 error(message)

 View Source

 Link to this function

 info(message)

 View Source

 Link to this function

 success(message)

 View Source

 Link to this function

 warn(message)

 View Source

Nerves.Utils.Stream

 Anchor for this section

 Summary

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 history(pid)

 init(opts)

 Callback implementation for GenServer.init/1.

 reply(from, reply_as, reply)

 start_link(opts)

 stdout(arg1, arg2, s)

 stop(pid)

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

 View Source

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 history(pid)

 View Source

 Link to this function

 init(opts)

 View Source

Callback implementation for GenServer.init/1.

 Link to this function

 reply(from, reply_as, reply)

 View Source

 Link to this function

 start_link(opts)

 View Source

 Link to this function

 stdout(arg1, arg2, s)

 View Source

 Link to this function

 stop(pid)

 View Source

Nerves.Utils.WSL

This module contains utility functions to assist in detecting a Windows
Subsystem for Linux environment as well as functions to convert paths between
the Windows host and Linux.

 Anchor for this section

 Summary

 Functions

 admin_powershell_command(command, args)

 Returns a two item tuple where the first item is a command and the second is
the argument list to run a powershell command as administrator in Windows

 cleanup_file(file, arg2)

 If the file was created in a temporary location, get the WSL path and delete it. Otherwise return :ok

 execute_wslpath(file, arguments)

 Executes wslpath with the file and arguments.

 get_fwup_devices()

 Gets a list of fwup devices on a Windows host. This function can be run from
within WSL, as it runs a powershell command to get the list and writes it to a
temporary file that WSL can access.

 get_temp_file_location(file)

 Returns a path to the base file name a temporary location in Windows

 get_wsl_paths(file, use_wslpath)

 Returns a two item tuple containing the Windows host path for a file and its WSL counterpart.

 has_wslpath?()

 Returns true if the WSL utility wslpath is available

 make_file_accessible(file, is_wsl, has_wslpath)

 Returns an item tuple with the Windows accessible path and whether the path is a temporary location or original location

 path_accessible_in_windows?(file, use_wslpath)

 Returns true if the path is accessible in Windows

 running_on_wsl?()

 Returns true if inside a WSL shell environment

 valid_windows_path?(path)

 Returns true when the path matches various kinds of Windows-specific paths, like

 valid_wsl_path?(path)

 Returns true if the path is not a Windows path

 Anchor for this section

Functions

 Link to this function

 admin_powershell_command(command, args)

 View Source

Returns a two item tuple where the first item is a command and the second is
the argument list to run a powershell command as administrator in Windows

 Link to this function

 cleanup_file(file, arg2)

 View Source

 Specs

 cleanup_file(String.t(), :temporary_location | :original_location) ::
 :ok | {:error, atom()}

If the file was created in a temporary location, get the WSL path and delete it. Otherwise return :ok

 Link to this function

 execute_wslpath(file, arguments)

 View Source

 Specs

 execute_wslpath(String.t(), list()) :: String.t() | nil

Executes wslpath with the file and arguments.
When a valid WSL path is passed through to wslpath asking for a
valid path an "Invalid argument" error is returned. This function
catches this error and returns the valid path.

 Link to this function

 get_fwup_devices()

 View Source

Gets a list of fwup devices on a Windows host. This function can be run from
within WSL, as it runs a powershell command to get the list and writes it to a
temporary file that WSL can access.

 Link to this function

 get_temp_file_location(file)

 View Source

 Specs

 get_temp_file_location(String.t()) :: String.t()

Returns a path to the base file name a temporary location in Windows

 Link to this function

 get_wsl_paths(file, use_wslpath)

 View Source

 Specs

 get_wsl_paths(String.t(), boolean()) :: {String.t() | nil, String.t() | nil}

Returns a two item tuple containing the Windows host path for a file and its WSL counterpart.
If the path is not available in either Windows or WSL, nil will replace the item

 Examples

iex> Nerves.Utils.WSL.get_wsl_paths("mix.exs", Nerves.Utils.WSL.has_wslpath?())
{"C:\Users\username\src\nerves\mix.exs",
"/mnt/c/Users/username/src/nerves/mix.exs"}

 Link to this function

 has_wslpath?()

 View Source

 Specs

 has_wslpath?() :: boolean()

Returns true if the WSL utility wslpath is available

 Link to this function

 make_file_accessible(file, is_wsl, has_wslpath)

 View Source

 Specs

 make_file_accessible(String.t(), boolean(), boolean()) ::
 {String.t(), :original_location} | {String.t(), :temporary_location}

Returns an item tuple with the Windows accessible path and whether the path is a temporary location or original location

 Link to this function

 path_accessible_in_windows?(file, use_wslpath)

 View Source

 Specs

 path_accessible_in_windows?(String.t(), boolean()) :: boolean()

Returns true if the path is accessible in Windows

 Link to this function

 running_on_wsl?()

 View Source

 Specs

 running_on_wsl?() :: boolean()

Returns true if inside a WSL shell environment

 Link to this function

 valid_windows_path?(path)

 View Source

 Specs

 valid_windows_path?(String.t()) :: boolean()

Returns true when the path matches various kinds of Windows-specific paths, like:
C:\
C:\projects
\\myserver\sharename\
\\wsl$\Ubuntu-18.04\home\username\my_project\

 Link to this function

 valid_wsl_path?(path)

 View Source

 Specs

 valid_wsl_path?(String.t()) :: boolean()

Returns true if the path is not a Windows path

mix burn

Writes the generated firmware image to an attached SDCard or file.
By default, this task detects attached SDCards and then invokes fwup
to overwrite the contents of the selected SDCard with the new image.
Data on the SDCard will be lost, so be careful.
Command line options
	--device <filename> - skip SDCard detection and write the image to
the specified filename. SDCard paths depend on the operating system, but
have a form like /dev/sdc or /dev/mmcblk0. You may also specify a
filename to create an image that can be used with a bulk memory programmer
or copied to an SDCard manually with a utility like dd.

	--task <name> - apply the specified fwup task. See the fwup.conf
file that was used to create the firmware image for options. By
convention, the complete task writes everything to the SDCard including
bootloader and application data partitions. The upgrade task only
modifies the parts of the SDCard required to run the new software.

	--firmware <name> - (Optional) The path to the fw file to use.
Defaults to <image_path>/<otp_app>.fw

Examples
Upgrade the contents of the SDCard located at /dev/mmcblk0
mix burn --device /dev/mmcblk0 --task upgrade

 Anchor for this section

 Summary

 Functions

 firmware_file(opts)

 Anchor for this section

Functions

 Link to this function

 firmware_file(opts)

 View Source

mix compile.nerves_package

Build a Nerves Artifact from a Nerves Package

mix firmware

Build a firmware image for the selected target platform.
This task builds the project, combines the generated OTP release with
a Nerves system image, and creates a .fw file that may be written
to an SDCard or sent to a device.
Command line options
	--verbose - produce detailed output about release assembly

	--output - (Optional) The path to the .fw file used to write the patch
firmware. Defaults to Nerves.Env.firmware_path/1
Environment variables

	NERVES_SYSTEM - may be set to a local directory to specify the Nerves
system image that is used

	NERVES_TOOLCHAIN - may be set to a local directory to specify the
Nerves toolchain (C/C++ crosscompiler) that is used

 Anchor for this section

 Summary

 Functions

 erlinit_config_header(opts)

 system_otp_release()

 Anchor for this section

Functions

 Link to this function

 erlinit_config_header(opts)

 View Source

 Link to this function

 system_otp_release()

 View Source

mix firmware.burn

This task calls mix firmware & mix burn to burn a new firmware to a SDCard
Command line options
	--device <filename> - skip SDCard detection and write the image to
the specified filename. SDCard paths depend on the operating system, but
have a form like /dev/sdc or /dev/mmcblk0. You may also specify a
filename to create an image that can be used with a bulk memory programmer
or copied to an SDCard manually with a utility like dd.

	--task <name> - apply the specified fwup task. See the fwup.conf
file that was used to create the firmware image for options. By
convention, the complete task writes everything to the SDCard including
bootloaders and application data partitions. The upgrade task only
modifies the parts of the SDCard required to run the new software.

	--verbose - produce detailed output about release assembly

Environment variables
	NERVES_SYSTEM - may be set to a local directory to specify the Nerves
system image that is used

	NERVES_TOOLCHAIN - may be set to a local directory to specify the
Nerves toolchain (C/C++ crosscompiler) that is used

Examples
Upgrade the contents of the SDCard at /dev/mmcblk0 using the rpi0 system
NERVES_SYSTEM=rpi0 mix firmware.burn --device /dev/mmcblk0 --task upgrade

mix firmware.gen.gdb

Generates a helper shell script for using gdb to analyze core dumps
This script may be used on its own or used as a base for more complicated debugging.
It saves the script to gdb.sh.

 Anchor for this section

 Summary

 Functions

 run(args)

 Callback implementation for Mix.Task.run/1.

 Anchor for this section

Functions

 Link to this function

 run(args)

 View Source

 Specs

 run(keyword()) :: :ok

Callback implementation for Mix.Task.run/1.

mix firmware.image

Create a firmware image file that can be copied byte-for-byte to an SDCard
or other memory device.
Usage
mix firmware.image [my_image.img]
If not supplied, the output image file will be based off the OTP application
name.
Examples
Create the image file
mix firmware.image my_image.img

Write it to a MicroSD card in Linux
dd if=my_image.img of=/dev/sdc bs=1M

mix firmware.metadata

This task calls fwup to report the firmware stored in the currently built
firmware bundle. No firmware is built, so this task will fail if the firmware
bundle doesn't exist.
Note: Rebuilding firmware will almost certainly change the UUID if the build
is not reproducible.
Command line options
	--firmware <name> - (Optional) The path to the fw file to use.
Defaults to <image_path>/<otp_app>.fw

Examples
$ mix firmware.metadata
meta-product="my_firmware"
meta-description="A description"
meta-version="1.0.0"
meta-author="me"
meta-platform="rpi"
meta-architecture="arm"
meta-creation-date="2020-01-31T21:15:25Z"
meta-uuid="62f80587-ce82-59c4-4200-9c92df9849fd"

 Anchor for this section

 Summary

 Functions

 firmware_file(opts)

 Anchor for this section

Functions

 Link to this function

 firmware_file(opts)

 View Source

mix firmware.patch

Generate a firmware patch from a source and target firmware and output a new
firmware file with the patch contents. The source firmware file
This requires fwup >= 1.6.0
Command line options
	--source - (Optional) The path to the .fw file used as the source.
Defaults to the last firmware built.
	--target - (Optional) The path to the .fw file used as the target.
Defaults to generating a new firmware without overwriting the source.
	--output - (Optional) The path to the .fw file used to write the patch
firmware. Defaults to Nerves.Env.firmware_path/1

mix firmware.unpack

Unpack the firmware so that its contents can be inspected locally.
Usage
mix firmware.unpack [--output output directory] [--fw path to firmware]
Command line options
	--fw - (Optional) The path to the .fw file for unpacking.
Defaults to Nerves.Env.firmware_path/1
	--output - (Optional) The output directory for the unpacked firmware.
Defaults to the name of the firmware bundle with the extension replaced
with .unpacked.

Examples
Create a firmware bundle. It will be under the _build directory
mix firmware

Unpack the built firmware
mix firmware.unpack --output firmware_contents

Unpack a specified fw file
mix firmware.unpack --fw hello_nerves.fw

Inspect it
ls hello_nerves.unpacked/

mix nerves.artifact

Creates a Nerves artifact for a Nerves system or toolchain
This compiles the system or toolchain and creates the tar ball containing the
result. One would normally post this to GitHub releases or another website so
that it can be downloaded when someone uses the system or toolchain.
Command line options
	--path <path>: The location where you want the archive to be placed.
Default: $NERVES_DL_DIR || ~/.nerves/dl

Examples
$ mix nerves.artifact nerves_system_rpi0

If the command is called without the package name,
Nerves.Project.config()[:app] will be used by default.
$ mix nerves.artifact --path /tmp

mix nerves.info

Prints Nerves system information.
mix nerves.info

 OEBPS/dist/app-db64fcdc429a9b460caa.js
!function(n){var t={};function e(r){if(t[r])return t[r].exports;var o=t[r]={i:r,l:!1,exports:{}};return n[r].call(o.exports,o,o.exports,e),o.l=!0,o.exports}e.m=n,e.c=t,e.d=function(n,t,r){e.o(n,t)||Object.defineProperty(n,t,{enumerable:!0,get:r})},e.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},e.t=function(n,t){if(1&t&&(n=e(n)),8&t)return n;if(4&t&&"object"==typeof n&&n&&n.__esModule)return n;var r=Object.create(null);if(e.r(r),Object.defineProperty(r,"default",{enumerable:!0,value:n}),2&t&&"string"!=typeof n)for(var o in n)e.d(r,o,function(t){return n[t]}.bind(null,o));return r},e.n=function(n){var t=n&&n.__esModule?function(){return n.default}:function(){return n};return e.d(t,"a",t),t},e.o=function(n,t){return Object.prototype.hasOwnProperty.call(n,t)},e.p="",e(e.s=24)}({0:function(n,t,e){"use strict";function r(n){if("undefined"==typeof Symbol||null==n[Symbol.iterator]){if(Array.isArray(n)||(n=function(n,t){if(!n)return;if("string"==typeof n)return o(n,t);var e=Object.prototype.toString.call(n).slice(8,-1);"Object"===e&&n.constructor&&(e=n.constructor.name);if("Map"===e||"Set"===e)return Array.from(e);if("Arguments"===e||/^(?:Ui|I)nt(?:8|16|32)(?:Clamped)?Array$/.test(e))return o(n,t)}(n))){var t=0,e=function(){};return{s:e,n:function(){return t>=n.length?{done:!0}:{done:!1,value:n[t++]}},e:function(n){throw n},f:e}}throw new TypeError("Invalid attempt to iterate non-iterable instance.\nIn order to be iterable, non-array objects must have a [Symbol.iterator]() method.")}var r,u,i=!0,c=!1;return{s:function(){r=n[Symbol.iterator]()},n:function(){var n=r.next();return i=n.done,n},e:function(n){c=!0,u=n},f:function(){try{i||null==r.return||r.return()}finally{if(c)throw u}}}}function o(n,t){(null==t||t>n.length)&&(t=n.length);for(var e=0,r=new Array(t);e<t;e++)r[e]=n[e];return r}e.d(t,"l",(function(){return u})),e.d(t,"m",(function(){return i})),e.d(t,"d",(function(){return c})),e.d(t,"c",(function(){return a})),e.d(t,"f",(function(){return f})),e.d(t,"e",(function(){return l})),e.d(t,"g",(function(){return d})),e.d(t,"i",(function(){return s})),e.d(t,"a",(function(){return p})),e.d(t,"k",(function(){return y})),e.d(t,"j",(function(){return m})),e.d(t,"b",(function(){return b})),e.d(t,"h",(function(){return v}));var u=document.querySelector.bind(document),i=document.querySelectorAll.bind(document);function c(n){return n.replace(/[\-\[\]{}()*+?.,\\\^$|#\s]/g,"\\$&")}function a(n){return String(n).replace(/&/g,"&").replace(/</g,"<").replace(/>/g,">").replace(/"/g,""")}function f(){return document.body.dataset.type}function l(n,t){if(n){var e,o=r(n);try{for(o.s();!(e=o.n()).done;){var u=e.value,i=u.nodeGroups&&u.nodeGroups.find((function(n){return n.nodes.some((function(n){return n.anchor===t}))}));if(i)return i.key}}catch(n){o.e(n)}finally{o.f()}return null}}function d(){return window.location.hash.replace(/^#/,"")}function s(n){return new URLSearchParams(window.location.search).get(n)}function p(n){return fetch(n).then((function(n){return n.ok})).catch((function(){return!1}))}function y(n){"loading"!==document.readyState?n():document.addEventListener("DOMContentLoaded",n)}function m(n){return!n||""===n.trim()}function b(n,t){var e;return function(){for(var r=arguments.length,o=new Array(r),u=0;u<r;u++)o[u]=arguments[u];clearTimeout(e),e=setTimeout((function(){e=null,n.apply(void 0,o)}),t)}}function v(){return document.head.querySelector("meta[name=project][content]").content}},24:function(n,t,e){"use strict";e.r(t);var r=e(5);Object(r.a)()},5:function(n,t,e){"use strict";e.d(t,"a",(function(){return o}));var r=e(0);function o(){Object(r.m)("[data-group-id]").forEach((function(n){var t=n.getAttribute("data-group-id");n.addEventListener("mouseenter",(function(n){u(t,!0)})),n.addEventListener("mouseleave",(function(n){u(t,!1)}))}))}function u(n,t){Object(r.m)('[data-group-id="'.concat(n,'"]')).forEach((function(n){n.classList.toggle("hll",t)}))}}});

