

 Mnesiac

 v0.3.14

 Table of contents

 	Mnesiac

 	Changelog

 	Modules

 	Mnesiac

 	Mnesiac.Store

 	Mnesiac.StoreManager

Mnesiac

[image: CI] [image: Coverage Status] [image: Hex.pm] [image: Hex.pm downloads]
Mnesia auto clustering made easy!
Docs can be found at https://hexdocs.pm/mnesiac.
NOTICE: Mnesiac, while stable, is still considered pre 1.0. This means the API can, and may, change at any time. Please ensure you review the docs and changelog prior to updating, or pin the version of mnesiac you are using in your mix.exs if necessary.
NOTICE: Mnesiac allows a significant amount of freedom with how it behaves. This allows you to customize Mnesiac to suit your needs. However, this also allows for a fair amount of foot gunning. Please ensure you've done your due diligence when using this library, or Mnesia itself for that matter. It isn't a silver bullet, and it shouldn't be treated as one.
Installation
Simply add mnesiac to your list of dependencies in mix.exs:
def deps do
 [
 {:mnesiac, "~> 0.3"}
]
end
Edit your app's config.exs to add the list of Mnesia stores:
config :mnesiac,
 stores: [MyApp.ExampleStore, ...],
 schema_type: :disc_copies, # defaults to :ram_copies
 table_load_timeout: 600_000 # milliseconds, default is 600_000
Then add mnesiac to your supervision tree:
	EXAMPLE: With libcluster using the Cluster.Strategy.Epmd strategy:

 ...

 topology = Application.get_env(:libcluster, :topologies)
 hosts = topology[:myapp][:config][:hosts]

 children = [
 {Cluster.Supervisor, [topology, [name: MyApp.ClusterSupervisor]]},
 {Mnesiac.Supervisor, [hosts, [name: MyApp.MnesiacSupervisor]]},
 ...
]

 ...
	EXAMPLE: Without libcluster:

 ...

 children = [
 {
 Mnesiac.Supervisor,
 [
 [:"test01@127.0.0.1", :"test02@127.0.0.1"],
 [name: MyApp.MnesiacSupervisor]
]
 },
 ...
]

 ...
Usage
Table creation
Create a table store, use Mnesiac.Store, and add it to your app's config.exs.
All stores MUST implement its own store_options/0, which returns a keyword list of store options.
There are three optional callbacks which can be implemented:
	init_store/0, which allows users to implement custom store initialization logic. Triggered by Mnesiac.
	copy_store/0, which allows users to implement a custom call to copy a store. Triggered by Mnesiac.
	resolve_conflict/1, which allows a user to implement logic when Mnesiac detects a store with records on both the local and remote Mnesia cluster node. Triggered by Mnesiac. Default is to do nothing.

MINIMAL EXAMPLE:
defmodule MyApp.ExampleStore do
 @moduledoc """
 Provides the structure of ExampleStore records for a minimal example of Mnesiac.
 """
 use Mnesiac.Store
 import Record, only: [defrecord: 3]

 @doc """
 Record definition for ExampleStore example record.
 """
 defrecord(
 :example,
 __MODULE__,
 id: nil,
 topic_id: nil,
 event: nil
)

 @typedoc """
 ExampleStore example record field type definitions.
 """
 @type example ::
 record(
 :example,
 id: String.t(),
 topic_id: String.t(),
 event: String.t()
)

 @impl true
 def store_options,
 do: [
 record_name: :example,
 attributes: example() |> example() |> Keyword.keys(),
 index: [:topic_id],
 ram_copies: [node()]
]
end
Clustering
If you are using libcluster or another clustering library, ensure that the clustering library starts before mnesiac. That's all, you don't need to do anything else.
If you are not using libcluster or similar clustering libraries then:
	When a node joins to an erlang/elixir cluster, run the Mnesiac.init_mnesia/1 function on the new node. This will initialize and copy the store contents from the other online nodes in the Mnesia cluster.

Development
Ensure you have the proper language versions installed. To do this, an asdf tools file has been provided. Run the following:
git clone https://github.com/beardedeagle/mnesiac.git
git checkout -b MyFeature
asdf install
mix local.hex --force
mix local.rebar --force
mix deps.get --force
mix deps.compile --force
mix compile --force

NOTICE: You can find the asdf tool here.
Testing
Before you run any tests, ensure that you have cleaned up Mnesia:
mix purge.db

Test results and coverage reports are generated by running the following:
mix coveralls.html --trace --slowest 10 --no-start

Notice
This library was built standing on the shoulders of giants. A big thanks goes out to Mustafa Turan. The original library this was forked from can be found here: https://github.com/mustafaturan/mnesiam.
Happy coding!

Changelog

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.3.14] - 2023-05-13
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated GitHub repo files.
	Converted from TravisCI to Github Actions for CI.

Fixed
	Fixed dialyzer errors.
	Fixed credo warnings/errors.

[0.3.13] - 2023-05-07
Changed
	Updated GitHub repo files.
	Removed inch in favor of doctor for doc coverage reporting.

Fixed
	Fixed test suite polluting output with warnings about unused variables.

[0.3.12] - 2023-05-06
Changed
	Changed get_table_cookies/1 and get_table_cookies/2 to utilize table_load_timeout/0 for :rpc.call/5 calls.

[0.3.11] - 2023-05-06
Added
	Added test to ensure get_table_cookies/1 returns error when node is not reachable.

Fixed
	Fixed handling of :badrpc errors in copy_tables/1 and get_table_cookies/1 not being enumerable.

[0.3.10] - 2023-05-04
Changed
	Assert that Mnesiac.init_mnesia/1 is called successfully.
	Updated dependencies.
	Updated GitHub repo files.

Fixed
	Updated get_table_cookies/1 to use :local_tables instead of :tables to properly identify table copies that don't exist locally to a given node, closes #84.

[0.3.9] - 2021-02-21
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated Travis CI integration for new OTP release.
	Updated dependencies.
	Updated GitHub repo files.

[0.3.8] - 2020-09-01
Changed
	Moved :mnesia out of extra_applications into included_applications.
	Bumped OTP version.
	Updated Travis CI integration for new OTP release.
	Updated dependencies.
	Updated GitHub repo files.

[0.3.7] - 2020-07-17
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated Travis CI integration for new OTP and Elixir releases.
	Updated dependencies.
	Updated GitHub repo files.

[0.3.6] - 2020-03-01
Added
	Additional GitHub repo files.

Changed
	Bumped OTP version.
	Fixed Travis CI integration.

[0.3.5] - 2020-02-27
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated dependencies.

[0.3.4] - 2019-08-20
Fixed
	Logger crashes in Mnesiac module.
	copy_table bug, closes #20.

Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated dependencies.

[0.3.3] - 2019-02-25
Fixed
	Apply regression fix to copy_store/0 and resolve_conflict/1.
	Docs cleanup.

[0.3.2] - 2019-02-22
Fixed
	Regression that made defining a custom table name impossible.

[0.3.1] - 2019-02-21
Added
	Inch reports.

Fixed
	Misc docs.

[0.3.0] - 2019-02-14
Added
	Distributed testing suite.
	Implemented store as a macro, with overridable callbacks.

Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated dependencies.
	Started using keepachangelog.com changelog format.
	Hex doc improvements.
	Travis CI improvements.

[0.2.0] - 2018-07-30
Added
	Additional tests.
	Created .github folder and files.
	Created badge links.
	Created dev and test instructions.

[0.1.0] - 2018-07-29
Added
	Initial release.

Mnesiac

Mnesiac Manager

 Anchor for this section

 Summary

 Functions

 cluster_status()

 Cluster status

 connect(cluster_node)

 Cluster with a node

 init_mnesia(nodes)

 Start Mnesia with strict host checking

 join_cluster(cluster_node)

 Join to a Mnesia cluster

 node_in_cluster?(cluster_node)

 Is node in Mnesia cluster?

 running_db_node?(cluster_node)

 Is running Mnesia node?

 running_nodes()

 Running Mnesia nodes

 start()

 Start Mnesia alone

 Anchor for this section

Functions

 Link to this function

 cluster_status()

 View Source

Cluster status

 Link to this function

 connect(cluster_node)

 View Source

Cluster with a node

 Link to this function

 init_mnesia(nodes)

 View Source

Start Mnesia with strict host checking

 Link to this function

 join_cluster(cluster_node)

 View Source

Join to a Mnesia cluster

 Link to this function

 node_in_cluster?(cluster_node)

 View Source

Is node in Mnesia cluster?

 Link to this function

 running_db_node?(cluster_node)

 View Source

Is running Mnesia node?

 Link to this function

 running_nodes()

 View Source

Running Mnesia nodes

 Link to this function

 start()

 View Source

Start Mnesia alone

Mnesiac.Store behaviour

This module defines a mnesiac store and contains overridable callbacks.

 Anchor for this section

 Summary

 Callbacks

 copy_store()

 This function is called by mnesiac when it joins a mnesia cluster and data for this store is found on the remote node in the cluster that is being connected to.

 init_store()

 This function is called by mnesiac either when it has no existing data to use or copy and will initialise a table

 resolve_conflict(node)

 This function is called by mnesiac when it has detected data for a table on both the local node and the remote node of the cluster it is connecting to.

 store_options()

 This function returns the store's configuration as a keyword list.
For more information on the options supported here, see mnesia's documentation.

 Anchor for this section

Callbacks

 Link to this callback

 copy_store()

 View Source

 (optional)

 @callback copy_store() :: term()

This function is called by mnesiac when it joins a mnesia cluster and data for this store is found on the remote node in the cluster that is being connected to.

 default-implementation

 Default Implementation

def copy_store do
 for type <- [:ram_copies, :disc_copies, :disc_only_copies] do
 value = Keyword.get(store_options(), type, [])

 if Enum.member?(value, node()) do
 :mnesia.add_table_copy(Keyword.get(store_options(), :record_name, __MODULE__), node(), type)
 end
 end
end

 Link to this callback

 init_store()

 View Source

 (optional)

 @callback init_store() :: term()

This function is called by mnesiac either when it has no existing data to use or copy and will initialise a table

 default-implementation

 Default Implementation

def init_store do
 :mnesia.create_table(Keyword.get(store_options(), :record_name, __MODULE__), store_options())
end

 Link to this callback

 resolve_conflict(node)

 View Source

 (optional)

 @callback resolve_conflict(node()) :: term()

This function is called by mnesiac when it has detected data for a table on both the local node and the remote node of the cluster it is connecting to.

 default-implementation

 Default Implementation

def resolve_conflict(cluster_node) do
 table_name = Keyword.get(store_options(), :record_name, __MODULE__)
 Logger.info(fn -> "[mnesiac:#{node()}] #{inspect(table_name)}: data found on both sides, copy aborted." end)

 :ok
end
Note: The default implementation for this function is to do nothing.

 Link to this callback

 store_options()

 View Source

 @callback store_options() :: term()

This function returns the store's configuration as a keyword list.
For more information on the options supported here, see mnesia's documentation.

 examples

 Examples

iex> store_options()
[attributes: [...], index: [:topic_id], disc_copies: [node()]]
Note: Defining :record_name in store_options() will set the mnesia table name to the same.

Mnesiac.StoreManager

Mnesia Store Manager

 Anchor for this section

 Summary

 Functions

 copy_schema(cluster_node)

 Copy schema

 copy_tables(cluster_node)

 Copy tables

 create_tables()

 Create tables

 del_schema_copy(cluster_node)

 Delete schema copy

 delete_schema()

 Delete schema

 ensure_tables_loaded()

 Ensure tables loaded

 get_table_cookies(node \\ node())

 This function returns a map of tables and their cookies.

 init_tables()

 Init tables

 Anchor for this section

Functions

 Link to this function

 copy_schema(cluster_node)

 View Source

Copy schema

 Link to this function

 copy_tables(cluster_node)

 View Source

Copy tables

 Link to this function

 create_tables()

 View Source

Create tables

 Link to this function

 del_schema_copy(cluster_node)

 View Source

Delete schema copy

 Link to this function

 delete_schema()

 View Source

Delete schema

 Link to this function

 ensure_tables_loaded()

 View Source

Ensure tables loaded

 Link to this function

 get_table_cookies(node \\ node())

 View Source

This function returns a map of tables and their cookies.

 Link to this function

 init_tables()

 View Source

Init tables

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

