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Mnesia auto clustering made easy!
Docs can be found at https://hexdocs.pm/mnesiac.
NOTICE: Mnesiac, while stable, is still considered pre 1.0. This means the API can, and may, change at any time. Please ensure you review the docs and changelog prior to updating, or pin the version of mnesiac you are using in your mix.exs if necessary.
NOTICE: Mnesiac allows a significant amount of freedom with how it behaves. This allows you to customize Mnesiac to suit your needs. However, this also allows for a fair amount of foot gunning. Please ensure you've done your due diligence when using this library, or Mnesia itself for that matter. It isn't a silver bullet, and it shouldn't be treated as one.
Installation
Simply add mnesiac to your list of dependencies in mix.exs:
def deps do
  [
    {:mnesiac, "~> 0.3"}
  ]
end
Edit your app's config.exs to add the list of Mnesia stores:
config :mnesiac,
  stores: [MyApp.ExampleStore, ...],
  schema_type: :disc_copies, # defaults to :ram_copies
  table_load_timeout: 600_000 # milliseconds, default is 600_000
Then add mnesiac to your supervision tree:
	EXAMPLE: With libcluster using the Cluster.Strategy.Epmd strategy:

  ...

    topology = Application.get_env(:libcluster, :topologies)
    hosts = topology[:myapp][:config][:hosts]

    children = [
      {Cluster.Supervisor, [topology, [name: MyApp.ClusterSupervisor]]},
      {Mnesiac.Supervisor, [hosts, [name: MyApp.MnesiacSupervisor]]},
      ...
    ]

  ...
	EXAMPLE: Without libcluster:

  ...

    children = [
      {
        Mnesiac.Supervisor,
        [
          [:"test01@127.0.0.1", :"test02@127.0.0.1"],
          [name: MyApp.MnesiacSupervisor]
        ]
      },
      ...
    ]

  ...
Usage
Table creation
Create a table store, use Mnesiac.Store, and add it to your app's config.exs.
All stores MUST implement its own store_options/0, which returns a keyword list of store options.
There are three optional callbacks which can be implemented:
	init_store/0, which allows users to implement custom store initialization logic. Triggered by Mnesiac.
	copy_store/0, which allows users to implement a custom call to copy a store. Triggered by Mnesiac.
	resolve_conflict/1, which allows a user to implement logic when Mnesiac detects a store with records on both the local and remote Mnesia cluster node. Triggered by Mnesiac. Default is to do nothing.

MINIMAL EXAMPLE:
defmodule MyApp.ExampleStore do
  @moduledoc """
  Provides the structure of ExampleStore records for a minimal example of Mnesiac.
  """
  use Mnesiac.Store
  import Record, only: [defrecord: 3]

  @doc """
  Record definition for ExampleStore example record.
  """
  defrecord(
    :example,
    __MODULE__,
    id: nil,
    topic_id: nil,
    event: nil
  )

  @typedoc """
  ExampleStore example record field type definitions.
  """
  @type example ::
          record(
            :example,
            id: String.t(),
            topic_id: String.t(),
            event: String.t()
          )

  @impl true
  def store_options,
    do: [
      record_name: :example,
      attributes: example() |> example() |> Keyword.keys(),
      index: [:topic_id],
      ram_copies: [node()]
    ]
end
Clustering
If you are using libcluster or another clustering library, ensure that the clustering library starts before mnesiac. That's all, you don't need to do anything else.
If you are not using libcluster or similar clustering libraries then:
	When a node joins to an erlang/elixir cluster, run the Mnesiac.init_mnesia/1 function on the new node. This will initialize and copy the store contents from the other online nodes in the Mnesia cluster.

Development
Ensure you have the proper language versions installed. To do this, an asdf tools file has been provided. Run the following:
git clone https://github.com/beardedeagle/mnesiac.git
git checkout -b MyFeature
asdf install
mix local.hex --force
mix local.rebar --force
mix deps.get --force
mix deps.compile --force
mix compile --force

NOTICE: You can find the asdf tool here.
Testing
Before you run any tests, ensure that you have cleaned up Mnesia:
mix purge.db

Test results and coverage reports are generated by running the following:
mix coveralls.html --trace --slowest 10 --no-start

Notice
This library was built standing on the shoulders of giants. A big thanks goes out to Mustafa Turan. The original library this was forked from can be found here: https://github.com/mustafaturan/mnesiam.
Happy coding!



  

    
Changelog
    

All notable changes to this project will be documented in this file.
The format is based on Keep a Changelog,
and this project adheres to Semantic Versioning.
[0.3.14] - 2023-05-13
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated GitHub repo files.
	Converted from TravisCI to Github Actions for CI.

Fixed
	Fixed dialyzer errors.
	Fixed credo warnings/errors.

[0.3.13] - 2023-05-07
Changed
	Updated GitHub repo files.
	Removed inch in favor of doctor for doc coverage reporting.

Fixed
	Fixed test suite polluting output with warnings about unused variables.

[0.3.12] - 2023-05-06
Changed
	Changed get_table_cookies/1 and get_table_cookies/2 to utilize table_load_timeout/0 for :rpc.call/5 calls.

[0.3.11] - 2023-05-06
Added
	Added test to ensure get_table_cookies/1 returns error when node is not reachable.

Fixed
	Fixed handling of :badrpc errors in copy_tables/1 and get_table_cookies/1 not being enumerable.

[0.3.10] - 2023-05-04
Changed
	Assert that Mnesiac.init_mnesia/1 is called successfully.
	Updated dependencies.
	Updated GitHub repo files.

Fixed
	Updated get_table_cookies/1 to use :local_tables instead of :tables to properly identify table copies that don't exist locally to a given node, closes #84.

[0.3.9] - 2021-02-21
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated Travis CI integration for new OTP release.
	Updated dependencies.
	Updated GitHub repo files.

[0.3.8] - 2020-09-01
Changed
	Moved :mnesia out of extra_applications into included_applications.
	Bumped OTP version.
	Updated Travis CI integration for new OTP release.
	Updated dependencies.
	Updated GitHub repo files.

[0.3.7] - 2020-07-17
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated Travis CI integration for new OTP and Elixir releases.
	Updated dependencies.
	Updated GitHub repo files.

[0.3.6] - 2020-03-01
Added
	Additional GitHub repo files.

Changed
	Bumped OTP version.
	Fixed Travis CI integration.

[0.3.5] - 2020-02-27
Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated dependencies.

[0.3.4] - 2019-08-20
Fixed
	Logger crashes in Mnesiac module.
	copy_table bug, closes #20.

Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated dependencies.

[0.3.3] - 2019-02-25
Fixed
	Apply regression fix to copy_store/0 and resolve_conflict/1.
	Docs cleanup.

[0.3.2] - 2019-02-22
Fixed
	Regression that made defining a custom table name impossible.

[0.3.1] - 2019-02-21
Added
	Inch reports.

Fixed
	Misc docs.

[0.3.0] - 2019-02-14
Added
	Distributed testing suite.
	Implemented store as a macro, with overridable callbacks.

Changed
	Bumped OTP version.
	Bumped Elixir version.
	Updated dependencies.
	Started using keepachangelog.com changelog format.
	Hex doc improvements.
	Travis CI improvements.

[0.2.0] - 2018-07-30
Added
	Additional tests.
	Created .github folder and files.
	Created badge links.
	Created dev and test instructions.

[0.1.0] - 2018-07-29
Added
	Initial release.
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def copy_store do
  for type <- [:ram_copies, :disc_copies, :disc_only_copies] do
    value = Keyword.get(store_options(), type, [])

    if Enum.member?(value, node()) do
      :mnesia.add_table_copy(Keyword.get(store_options(), :record_name, __MODULE__), node(), type)
    end
  end
end
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  Default Implementation


def init_store do
  :mnesia.create_table(Keyword.get(store_options(), :record_name, __MODULE__), store_options())
end
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This function is called by mnesiac when it has detected data for a table on both the local node and the remote node of the cluster it is connecting to.
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def resolve_conflict(cluster_node) do
  table_name = Keyword.get(store_options(), :record_name, __MODULE__)
  Logger.info(fn -> "[mnesiac:#{node()}] #{inspect(table_name)}: data found on both sides, copy aborted." end)

  :ok
end
Note: The default implementation for this function is to do nothing.
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  Examples


iex> store_options()
[attributes: [...], index: [:topic_id], disc_copies: [node()]]
Note: Defining :record_name in store_options() will set the mnesia table name to the same.
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