

 Mneme

 v0.2.1

 Table of contents

 	Changelog

 	Editor Setup

 	VS Code

 	Modules

 	Mneme

 	Mneme.AssertionError

 	Mneme.CompileError

 	Mneme.InternalError

Changelog

This project adheres to Semantic Versioning.
v0.2.1 (2023-03-19)
Enhancements
	More consistent formatting between :semantic and :text diffs.

v0.2.0 (2023-03-18)
Breaking
	Mneme now requires Elixir v1.14 or later.

Enhancements
	Adds semantic diffs which selectively highlight only meaningful changes when updating an assertion. This can be disabled with the diff: :text option; see the "Configuration" section of the Mneme module doc for more.

Fixes
	Invalid options now cause a warning instead of crashing test process.
	Internal errors now show an error instead of crashing test process.
	Fix bug causing multiple identical choices to be presented in some cases where empty lists were a part of the value.

v0.1.6 (2023-03-04)
Enhancements
	Improved compile-time error message when auto_assert is used outside of a test block (#9).

v0.1.5 (2023-02-25)
Enhancements
	More consistent handling of charlists: lists of integers will now generate themselves as a pattern as well as a charlist if the list is ASCII printable (#6).

v0.1.4 (2023-02-23)
Fixes
	Fix a bug that could cause auto_assert expressions to revert to the previous value when using Mneme.start(restart: true) (#7).

v0.1.3 (2023-02-22)
Enhancements
	Add a :default_pattern configuration option for auto-assertions which controls the pattern that should be selected by default when prompted.

Fixes
	When converting an auto-assertion to an ExUnit assertion, select the identical pattern when the :default_pattern is :infer (set by default).

v0.1.2 (2023-02-21)
Enhancements
	Add a :restart option to Mneme.start/1 to restart Mneme if called multiple times.

v0.1.1 (2023-02-20)
Enhancements
	Dramatically reduce the performance gap between auto_assert and ExUnit's assert.

v0.1.0 (2023-02-19)
First release.

VS Code Setup

If you are using Visual Studio Code and the ElixirLS extension, there are a couple of things that you can do to smooth out the workflow of running and updating your tests.
The ElixirLS extension comes with some built-in tasks to run tests:
	mix: Run tests
	mix: Run tests in current file
	mix: Run test at cursor

These are accessible by running the command Run task and then typing typing one of the tasks.
By default, these will open a terminal panel, but will not focus it, which isn't optimal as Mneme requires input when something changes.
We can bind these tasks to a keyboard shortcut globally and then update the focus defaults on a per-project basis.
Keyboard shortcuts
Run the command Preferences: Open Keyboard Shortcuts (JSON), then copy the following keyboard shortcuts to the bottom of the list:
{
 "key": "ctrl+space a",
 "command": "workbench.action.tasks.runTask",
 "args": "mix: Run tests"
},
{
 "key": "ctrl+space f",
 "command": "workbench.action.tasks.runTask",
 "args": "mix: Run tests in current file"
},
{
 "key": "ctrl+space c",
 "command": "workbench.action.tasks.runTask",
 "args": "mix: Run test at cursor"
},
You can replace "key" with whatever you'd prefer.
Per-project task defaults
Tasks provided by extensions can be modified by adding a .vscode/tasks.json to your project's root.
The following will modify the tasks listed above to give input focus to the panel they're run in.
{
 "version": "2.0.0",
 "tasks": [
 {
 "group": "test",
 "type": "mix",
 "task": "Run tests",
 "presentation": {
 "focus": true,
 },
 },
 {
 "group": "test",
 "type": "mix",
 "task": "Run tests in current file",
 "presentation": {
 "focus": true,
 },
 },
 {
 "group": "test",
 "type": "mix",
 "task": "Run test at cursor",
 "presentation": {
 "focus": true,
 },
 },
],
}
The Mneme repository has this set up here, for example.

Mneme

/ni:mi:/ - Snapshot testing for Elixir ExUnit
Early days
Mneme is in its infancy and has an intentionally minimal API
consisting largely of a single macro. Please feel free to submit
any feedback, bugs, or suggestions as issues on Github.
Thanks!

[image: Hex.pm]
[image: Docs]
[image: CI]
Snapshot tests assert that some expression matches a reference value.
It's like an ExUnit assert, except that the reference value is
managed for you by Mneme.
Mneme follows in the footsteps of existing snapshot testing libraries
like Insta (Rust), expect-test
(OCaml), and assert_value
(Elixir). Instead of simple value or string comparison, however, Mneme
leans heavily into pattern matching.
Example
Let's say you've written a test for a function that removes even
numbers from a list:
test "drop_evens/1 should remove all even numbers from an enum" do
 auto_assert drop_evens(1..10)

 auto_assert drop_evens([])

 auto_assert drop_evens([:a, :b, 2, :c])
end
The first time you run this test, you'll see interactive prompts for
each call to auto_assert showing a diff and asking if you'd like to
accept the generated pattern. After accepting them, your test is
updated:
test "drop_evens/1 should remove all even numbers from an enum" do
 auto_assert [1, 3, 5, 7, 9] <- drop_evens(1..10)

 auto_assert [] <- drop_evens([])

 auto_assert [:a, :b, :c] <- drop_evens([:a, :b, 2, :c])
end
The next time you run this test, you won't receive a prompt and these
will act (almost) like any other assertion. If the result of the call
ever changes, you'll be prompted again and can choose to update the
test or reject it and let it fail.
With a few exceptions, auto_assert/1 acts very similarly to a normal
assert. See the macro docs
for a list of differences.
Quick start
	 Add :mneme do your deps in mix.exs:
defp deps do
 [
 {:mneme, ">= 0.0.0", only: :test}
]
end

	 Add :mneme to your :import_deps in .formatter.exs:
[
 import_deps: [:mneme],
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]

	 Start Mneme right after you start ExUnit in test/test_helper.exs:
ExUnit.start()
Mneme.start()

	 Add use Mneme wherever you use ExUnit.Case:
defmodule MyTest do
 use ExUnit.Case, async: true
 use Mneme

 test "arithmetic" do
 # use auto_assert instead of ExUnit's assert - run this test
 # and delight in all the typing you don't have to do
 auto_assert 2 + 2
 end
end

Match patterns
Mneme tries to generate match patterns that are equivalent to what a
human (or at least a nice LLM) would write. Basic data types like
strings, numbers, lists, tuples, etc. will be as you would expect.
Some values, however, do not have a literal representation that can be
used in a pattern match. Pids are such an example. For those, guards
are used:
auto_assert self()

after running the test and accepting the change
auto_assert pid when is_pid(pid) <- self()
Additionally, local variables can be found and pinned as a part of the
pattern. This keeps the number of hard-coded values down, reducing the
likelihood that tests have to be updated in the future.
test "create_post/1 creates a new post with valid attrs", %{user: user} do
 valid_attrs = %{title: "my_post", author: user}

 auto_assert create_post(valid_attrs)
end

after running the test
test "create_post/1 creates a new post with valid attrs", %{user: user} do
 valid_attrs = %{title: "my_post", author: user}

 auto_assert {:ok, %Post{title: "my_post", author: ^user}} <- create_post(valid_attrs)
end
In many cases, multiple valid patterns will be possible. Usually, the
"simplest" pattern will be selected by default when you are prompted,
but you can cycle through the options as well.
Non-exhaustive list of special cases
	Pinned variables are generated by default if a value is equal to a
variable in scope.

	Date and time values are written using their sigil representation.

	Struct patterns only include fields that are different from the
struct defaults.

	Structs defined by Ecto schemas exclude primary keys, association
foreign keys, and auto generated fields like :inserted_at and
:updated_at. This is because these fields are often randomly
generated and would fail on subsequent tests.

Formatting
Mneme uses Rewrite to update
source code, formatting that code before saving the file. Currently,
the Elixir formatter and FreedomFormatter are supported. If you do
not use a formatter, the first auto-assertion will reformat the entire
file.
Continuous Integration
In a CI environment, Mneme will not attempt to prompt and update any
assertions, but will instead fail any tests that would update. This
behavior is enabled by the CI environment variable, which is set by
convention by many continuous integration providers.
export CI=true

Editor support
Guides for optional editor integration can be found here:
	VS Code

Acknowledgements
Special thanks to:
	What if writing tests was a joyful experience?,
from the Jane Street Tech Blog, for inspiring this library.

	Sourceror, a library that
makes complex code modifications simple.

	Rewrite, which provides the
diff functionality present in Mneme.

	Owl, which makes it much easier
to build a pretty CLI.

	Insta, a snapshot testing tool for Rust,
whose great documentation provided an excellent reference for
snapshot testing.

	assert_value,
an existing Elixir project that provides similar functionality.
Thank you for paving the way!

Configuration
Certain behavior can be configured globally using application config
or locally in test modules either at the module, describe-block, or
test level.
To configure Mneme globally, you can set :defaults for the :mneme
application:
config :mneme,
 defaults: [
 diff: :semantic
]
These defaults can be overriden in test modules at various levels
either as options to use Mneme or as module attributes.
defmodule MyTest do
 use ExUnit.Case

 # reject all changes to auto-assertions by default
 use Mneme, action: :reject

 test "this test will fail" do
 auto_assert 1 + 1
 end

 describe "some describe block" do
 # accept all changes to auto-assertions in this describe block
 @mneme_describe action: :accept

 test "this will update without prompting" do
 auto_assert 2 + 2
 end

 # prompt for any changes in this test
 @mneme action: :prompt
 test "this will prompt before updating" do
 auto_assert 3 + 3
 end
 end
end
Configuration that is "closer to the test" will override more general
configuration:
@mneme > @mneme_describe > opts to use Mneme > :mneme app config
The exception to this is the CI environment variable, which causes
all updates to be rejected. See the "Continuous Integration" section
for more info.
Options
	:action - The action to be taken when an auto-assertion updates. Actions are one of
:prompt, :accept, or :reject. If CI=true is set in environment
variables, the action will always be :reject. The default value is :prompt.

	:default_pattern - The default pattern to be selected if prompted to update an assertion.
Can be one of :infer, :first, or :last. The default value is :infer.

	:diff - Controls the diff engine used to display changes when an auto-assertion
updates. If :semantic, uses a custom diff engine to highlight only
meaningful changes in the value. If :text, uses the Myers Difference
algorithm to highlight all changes in text. The default value is :semantic.

	:target - The target output for auto-assertions. If :mneme, the expression will
remain an auto-assertion. If :ex_unit, the expression will be rewritten
as an ExUnit assertion. The default value is :mneme.

 Anchor for this section

 Summary

 Functions

 __using__(opts)

 Sets up Mneme configuration for this module and imports auto_assert/1.

 auto_assert(body)

 Generate or run an assertion.

 start(opts \\ [])

 Starts Mneme to run auto-assertions as they appear in your tests.

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Sets up Mneme configuration for this module and imports auto_assert/1.
This macro accepts all options described in the "Configuration"
section above.

 example

 Example

defmodule MyTest do
 use ExUnit.Case
 use Mneme # <- add this

 test "..." do
 auto_assert ...
 end
end

 Link to this macro

 auto_assert(body)

 View Source

 (macro)

Generate or run an assertion.
auto_assert generates assertions when tests run, issuing a terminal
prompt before making any changes (unless configured otherwise).
auto_assert [1, 2] ++ [3, 4]

after running the test and accepting the change
auto_assert [1, 2, 3, 4] <- [1, 2] ++ [3, 4]
If the match no longer succeeds, a warning and new prompt will be
issued to update it to the new value.
auto_assert [1, 2, 3, 4] <- [1, 2] ++ [:a, :b]

after running the test and accepting the change
auto_assert [1, 2, :a, :b] <- [1, 2] ++ [:a, :b]
Prompts are only issued if the pattern doesn't match the value, so
that pattern can also be changed manually.
this assertion succeeds, so no prompt is issued
auto_assert [1, 2, | _] <- [1, 2] ++ [:a, :b]

 differences-from-exunit-assert

 Differences from ExUnit assert

The auto_assert macro is meant to match assert as closely as
possible. In fact, it generates ExUnit assertions under the hood.
There are, however, a few small differences to note:
	Pattern-matching assertions use the <- operator instead of the
= match operator. Value-comparison assertions still use ==
(for instance, when the expression returns nil or false).

	Guards can be added with a when clause, while assert would
require a second assertion. For example:
auto_assert pid when is_pid(pid) <- self()

assert pid = self()
assert is_pid(pid)

	Bindings in an auto_assert are not available outside of that
assertion. For example:
auto_assert pid when is_pid(pid) <- self()
pid # ERROR: pid is not bound
If you need to use the result of the assertion, it will evaluate
to the expression's value.
pid = auto_assert pid when is_pid(pid) <- self()
pid # pid is the result of self()

 Link to this function

 start(opts \\ [])

 View Source

Starts Mneme to run auto-assertions as they appear in your tests.
This will almost always be added to your test/test_helper.exs, just
below the call to ExUnit.start():
test/test_helper.exs
ExUnit.start()
Mneme.start()

 options

 Options

	:restart (boolean) - Restarts Mneme if it has previously been
started. This option enables certain IEx-based testing workflows
that allow tests to be run without a startup penalty. Defaults to
false.

Mneme.AssertionError exception

Mneme.CompileError exception

Mneme.InternalError exception

 (()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

