

 Mneme

 v0.0.3

 Table of contents

 	Modules

 	Mneme

Mneme

/ni:mi:/ - Snapshot testing for regular ol' Elixir code.
Mneme helps you write tests using auto_assert/1, a "replacement" for
ExUnit's assert. The difference between the two is simple: with
auto_assert, you write an expression and Mneme updates the test with
an assertion based on the runtime value.
For example, let's say you've written a test for a function that
removes even numbers from a list:
test "drop_evens/1 should remove all even numbers from an enum" do
 auto_assert drop_evens(1..10)

 auto_assert drop_evens([])

 auto_assert drop_evens([:a, :b, 2, :c])
end
The first time you run this test, you'll receive three prompts
(complete with diffs) asking if you'd like to update each of these
expressions. After accepting, your test is re-written:
test "drop_evens/1 should remove all even numbers from an enum" do
 auto_assert [1, 3, 5, 7, 9] <- drop_evens(1..10)

 auto_assert [] <- drop_evens([])

 auto_assert [:a, :b, :c] <- drop_evens([:a, :b, 2, :c])
end
The next time you run this test, you won't receive a prompt and these
will act (almost) like any other assertion. (See auto_assert/1 for
details on the differences from ExUnit's assert.)
Setup
1) add :mneme to your :import_deps in .formatter.exs
[
 import_deps: [:mneme],
 inputs: ["{mix,.formatter}.exs", "{config,lib,test}/**/*.{ex,exs}"]
]

2) start Mneme right after you start ExUnit in test/test_helper.exs
ExUnit.start()
Mneme.start()

test/my_test.exs
defmodule MyTest do
 use ExUnit.Case, async: true

 # 3) use Mneme wherever you use ExUnit.Case
 use Mneme

 test "arithmetic" do
 # 4) use auto_assert instead of ExUnit's assert - run this test
 # and delight in all the typing you don't have to do
 auto_assert 2 + 2
 end
end
Match patterns
Mneme tries to generate match patterns that are equivalent to what a
human (or at least a nice LLM) would write. Basic data types like strings,
numbers, lists, tuples, etc. will serialize as you would expect.
Some values, however, do not have a literal representation that can be
used in a pattern match. Pids are such an example. For those, guards
are used:
auto_assert self()

after running the test and accepting the change
auto_assert pid when is_pid(pid) <- self()
Pinned variables are also supported and are used if possible for these
kinds of values that do not have a convenient literal representation:
me = self()
auto_assert self()

after running the test
auto_assert ^me <- self()
Non-exhaustive list of special cases
	Non-serializable values like pids, refs, ports, and functions
generate guards (unless the exact value is present locally, in
which case a pin is used).

	Date and time values serialize to their sigil representation.

	Struct patterns only include fields that are different from the
struct defaults.

	Structs defined by Ecto schemas exclude primary keys and auto
generated fields like :inserted_at and :updated_at when
serialized.

Configuration
There are a few controls that can be used to change Mneme's behavior
when it runs auto-assertions. These can be set at the module-level by
passing options to use Mneme, the describe level using the
@mneme_describe attribute, or the test level using the @mneme
attribute. For instance:
defmodule MyTest do
 use ExUnit.Case

 # reject all changes to auto-assertions by default
 use Mneme, action: :reject

 test "this test will fail" do
 auto_assert 1 + 1
 end

 describe "some describe block" do
 # accept all changes to auto-assertions in this describe block
 @mneme_describe action: :accept

 test "this will update without prompting" do
 auto_assert 2 + 2
 end

 # prompt for any changes in this test
 @mneme action: :prompt
 test "this will prompt before updating" do
 auto_assert 3 + 3
 end
 end
end
See __using__/1 for a description of available options.
Requirements
Mneme currently requires that you use the Elixir formatter in your
tests and will reformat the entire file when it updates an assertion.
If you do not use the formatter, this may cause Mneme to change the
formatting of unrelated tests (though it shouldn't change the behavior).

 Anchor for this section

 Summary

 Functions

 __using__(opts)

 Sets up Mneme configuration for this module and imports auto_assert/1.

 auto_assert(body)

 Generate or run an assertion.

 start()

 Starts Mneme to run auto-assertions as they appear in your tests.

 Anchor for this section

Functions

 Link to this macro

 __using__(opts)

 View Source

 (macro)

Sets up Mneme configuration for this module and imports auto_assert/1.

 options

 Options

Options passed to use Mneme can be overriden in describe blocks or
for individual tests. See the "Configuration" section in the module
documentation for more.
	:action - The action to be taken when an auto-assertion updates. Actions are one of
:prompt, :accept, or :reject. If CI=true is set in environment
variables, the action will always be :reject. The default value is :prompt.

	:target - The call output when an auto-assertion updates. If :assert, auto-assertions
will be rewritten with ExUnit's assert when they update. The default value is :auto_assert.

 example

 Example

defmodule MyTest do
 use ExUnit.Case
 use Mneme # <- add this

 test "..." do
 auto_assert ...
 end
end

 Link to this macro

 auto_assert(body)

 View Source

 (macro)

Generate or run an assertion.
auto_assert generates assertions when tests run, issuing a terminal
prompt before making any changes (unless configured otherwise).
auto_assert [1, 2] ++ [3, 4]

after running the test and accepting the change
auto_assert [1, 2, 3, 4] <- [1, 2] ++ [3, 4]
If the match no longer succeeds, a warning and new prompt will be
issued to update it to the new value.
auto_assert [1, 2, 3, 4] <- [1, 2] ++ [:a, :b]

after running the test and accepting the change
auto_assert [1, 2, :a, :b] <- [1, 2] ++ [:a, :b]
Prompts are only issued if the pattern doesn't match the value, so
that pattern can also be changed manually.
this assertion succeeds
auto_assert [1, 2, | _] <- [1, 2] ++ [:a, :b]

 differences-from-exunit-assert

 Differences from ExUnit assert

The auto_assert macro is meant to match assert as closely as
possible. In fact, it generates ExUnit assertions under the hood.
There are, however, a few small differences to note:
	Pattern-matching assertions use the <- operator instead of the
= match operator. Value-comparison assertions still use ==
(for instance, when the expression returns nil or false).

	Guards can be added with a when clause, while assert would
require a second assertion. For example:
auto_assert pid when is_pid(pid) <- self()

assert pid = self()
assert is_pid(pid)

	Bindings in an auto_assert are not available outside of that
assertion. For example:
auto_assert pid when is_pid(pid) <- self()
pid # ERROR: pid is not bound
If you need to use the result of the assertion, it will evaluate
to the expression's value.
pid = auto_assert pid when is_pid(pid) <- self()
pid # pid is the result of self()

 Link to this function

 start()

 View Source

Starts Mneme to run auto-assertions as they appear in your tests.
This will almost always be added to your test/test_helper.exs, just
below the call to ExUnit.start():
test/test_helper.exs
ExUnit.start()
Mneme.start()

 OEBPS/dist/epub-75RCTLK3.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);var a="hll";function c(){u()}function u(){o("[data-group-id]").forEach(e=>{let t=e.getAttribute("data-group-id");e.addEventListener("mouseenter",n=>{i(t,!0)}),e.addEventListener("mouseleave",n=>{i(t,!1)})})}function i(r,e){o(`[data-group-id="${r}"]`).forEach(n=>{n.classList.toggle(a,e)})}c();})();

