

 mllp

 v0.8.8

 Table of contents

 	mllp

 	Modules

 	MLLP

 	MLLP.Ack

 	MLLP.Client

 	MLLP.ClientContract

 	MLLP.DefaultPacketFramer

 	MLLP.DefaultTelemetry

 	MLLP.Dispatcher

 	MLLP.EchoDispatcher

 	MLLP.Envelope

 	MLLP.FramingContext

 	MLLP.PacketFramer

 	MLLP.Peer

 	MLLP.Receiver

 	MLLP.TCP

 	MLLP.TCPContract

 	MLLP.TLS

 	MLLP.TLSContract

 	MLLP.Client.Error

 	Exceptions

 	MLLP.Client.Error

mllp
An Elixir library for transporting HL7 messages via MLLP (Minimal Lower Layer Protocol)
Status
This project is not at v1.0 yet. The API and internals will likely change quite a bit between now and v1.0. Also, be aware of the details of the license (Apache 2.0).
Usage
HL7 over MLLP
First, let's start an MLLP.Receiver on port 4090.
{:ok, r4090} = MLLP.Receiver.start(port: 4090, dispatcher: MLLP.EchoDispatcher)
Next, start an MLLP.Client process and store its PID.
{:ok, s1} = MLLP.Client.start_link({127,0,0,1}, 4090)
Alternatively, you could start a Client using a DNS name rather than an IP address.
{:ok, s1} = MLLP.Client.start_link("localhost", 4090)
Now send an HL7 message.
MLLP.Client.send(s1, HL7.Examples.wikipedia_sample_hl7() |> HL7.Message.new())
You will see log info like...

15:56:07.217 [debug] Receiver received data: [<<11, 77, 83, 72, 124, 94, 126, 92, 38, 124, 77, 101, 103, 97, 82, 101, 103, 124, 88, 89, 90, 72, 111, 115, 112, 67, 124, 83, 117, 112, 101, 114, 79, 69, 124, 88, 89, 90, 73, 109, 103, 67, 116, 114, 124, 50, 48, 48, 54, 48, ...>>].

15:56:07.217 [info] The EchoDispatcher simply logs and discards messages. Message type: mllp_hl7 Message: MSH|^~\&|MegaReg|XYZHospC|SuperOE|XYZImgCtr|20060529090131-0500||ADT^A01^ADT_A01|01052901|P|DG1|1||786.50^CHEST PAIN, UNSPECIFIED^I9|||A|||FFMD^0010^UAMC^L||67890^GRAINGER^LUCY^X^^^MD^0010^UAMC^L|MED|||||A0||13579^POTTER^SHERMAN^T^^^MD^0010^UAMC^L|||||||||||||||||||||||||||2006052909000^^O|||||||0105I30001^^^99DEF^AN

15:56:07.218 [debug] MLLP Envelope performed unnecessary unwrapping of unwrapped message
{:error, :application_reject,
 %MLLP.Ack{
 acknowledgement_code: "AR",
 hl7_ack_message: nil,
 text_message: "A real MLLP message dispatcher was not provided"
 }}
The Logger [debug] part tells us that the Receiver received the HL7 message. The Logger [info] part explains that the EchoDispatcher does not route the message anywhere (just "logs and discards" messages). Finally, the return value ({:error, :application_reject, ...}) is a NACK. The EchoDispatcher will not reply with an :application_accept.
Now, we will stop the Receiver.
 MLLP.Receiver.stop(4090)
Writing a message dispatcher
MLLP does not ship with a default message dispatcher as the cases can vary significantly from domain to domain. Instead,
MLLP provides you with helper libraries (e.g., HL7 and helper functions so you can
easily craft your own message dispatcher to suit your needs.
Now we will set up a receiver with a custom dispatcher.
defmodule DemoDispatcher do
 @behaviour MLLP.Dispatcher

 def dispatch(:mllp_hl7, message, state) when is_binary(message) do
 # Put your message handling logic here

 reply =
 MLLP.Ack.get_ack_for_message(
 message,
 :application_accept
)
 |> to_string()
 |> MLLP.Envelope.wrap_message()

 {:ok, %{state | reply_buffer: reply}}
 end
end
Now we can configure a Receiver to use our newly defined DemoDispatcher.
{:ok, r4090} = MLLP.Receiver.start(port: 4090, dispatcher: DemoDispatcher)
Next, let's set up a Client to exercise our new Receiver.
{:ok, s2} = MLLP.Client.start_link({127,0,0,1}, 4090)
Now when you send a message to the Receiver's port, the custom DemoDispatcher will be used.
MLLP.Client.send(s2, HL7.Examples.wikipedia_sample_hl7() |> HL7.Message.new())
Notice the DemoDispatcher warning is no longer in the Logger output.
15:43:26.605 [debug] MLLP Envelope performed unnecessary unwrapping of unwrapped message

15:43:26.606 [debug] Receiver received data: [<<11, 77, 83, 72, 124, 94, 126, 92, 38, 124, 77, 101, 103, 97, 82, 101, 103, 124, 88, 89, 90, 72, 111, 115, 112, 67, 124, 83, 117, 112, 101, 114, 79, 69, 124, 88, 89, 90, 73, 109, 103, 67, 116, 114, 124, 50, 48, 48, 54, 48, ...>>].
{:ok, :application_accept,
 %MLLP.Ack{acknowledgement_code: "AA", hl7_ack_message: nil, text_message: ""}}

Non-HL7 over MLLP
While the MLLP framing protocol is mostly for HL7, some companies also send and receive non-HL7 data over MLLP. If you find yourself needing to integrate with a system that has made this choice the following will be helpful.
defmodule ExpandedDemoDispatcher do
 @behaviour MLLP.Dispatcher

 def dispatch(:mllp_hl7, message, state) when is_binary(message) do
 # Your message handling logic here

 reply =
 MLLP.Ack.get_ack_for_message(message, :application_accept)
 |> to_string()
 |> MLLP.Envelope.wrap_message()

 {:ok, %{state | reply_buffer: reply}}
 end

 def dispatch(:mllp_unknown, message, state) when is_binary(message) do
 # Your message handling logic here

 reply = "Got the BLOB"

 {:ok, %{state | reply_buffer: reply}}
 end
end
Now, to use this expanded custom dispatcher with a Client and Receiver.
Let's start by getting a new Receiver.
iex> {:ok, r4091} = MLLP.Receiver.start(port: 4091, dispatcher: ExpandedDemoDispatcher)
{:ok,
 %{
 pid: #PID<0.367.0>,
 port: 4091,
 receiver_id: #Reference<0.144001725.3813670918.119240>
 }}
Next, start a Client.
iex> {:ok, s3} = MLLP.Client.start_link("localhost", 4091)
{:ok, #PID<0.383.0>}

Now let's send and receive non-HL7 data over MLLP
iex> MLLP.Client.send(s3, "Hip hip hurray")
15:14:20.531 [debug] Receiver received data: [<<11, 72, 105, 112, 32, 104, 105, 112, 32, 104, 117, 114, 114, 97, 121, 28, 13>>].
{:ok, "Got the BLOB"}
Telemetry (Client only currently)
Can be namespaced or changed by passing a replacement for DefaultTelemetry.
The default emits [:mllp, :client, :status | :sending | :received] telemetry events.
Emitted measurements contain status, errors, timestamps, etc.
The emitted metadata contains the Client state.
Using TLS
Support for TLS can be added for MLLP protocol to secure the data transfer between a client and receiver. Follow steps below to start a receiver and client using TLS
Create certificates
The first step in TLS configuration is to create a TLS certificates, which can be used by the server to start the listener. To help you with creating self signed certificate, run following script:
sh tls/tls.sh
This script creates the following certs:
	root ca
	server certificate signed by root ca
	client certificate signed by root ca
	expired client certificate signed by root caStart Receiver

iex> MLLP.Receiver.start(port: 8154, dispatcher: MLLP.EchoDispatcher, transport_opts: %{tls: [cacertfile: "tls/root-ca/ca_certificate.pem", verify: :verify_none, certfile: "tls/server/server_certificate.pem", keyfile: "tls/server/private_key.pem"]})
Start Client
iex> {:ok, s3} = MLLP.Client.start_link("localhost", 8154, tls: [verify: :verify_peer, cacertfile: "tls/root-ca/ca_certificate.pem"])
Send a message
iex> MLLP.Client.send(s3, HL7.Examples.wikipedia_sample_hl7() |> HL7.Message.new())
Using Client Certificates
MLLP listener can enforce client to provide a valid certificate before establishing a successful connection. Follow steps below to use client cert with a listener
Start MLLP listener with :verify_peer option
iex> MLLP.Receiver.start(port: 8154, dispatcher: MLLP.EchoDispatcher, transport_opts: %{tls: [cacertfile: "tls/root-ca/ca_certificate.pem", verify: :verify_peer, certfile: "tls/server/server_certificate.pem", keyfile: "tls/server/private_key.pem"]})
Start MLLP Client with client cert
iex> {:ok, s3} = MLLP.Client.start_link("localhost", 8154, tls: [verify: :verify_peer, cacertfile: "tls/root-ca/ca_certificate.pem", certfile: "tls/client/client_certificate.pem", keyfile: "tls/client/private_key.pem"])
Send a message
iex> MLLP.Client.send(s3, HL7.Examples.wikipedia_sample_hl7() |> HL7.Message.new())
Using Client Restrictions
MLLP listener supports two options to restrict incoming client connections to make sure it accepts only trusted clients.
	IP/DNS restriction - In this mode, we can restrict incoming connections using Client IP/DNS.
	Client Cert Check - If verify: :verify_peer option is enabled on listener, it will enforce client to send a valid client cert and will only allow the connection if certificate returned from the client is valid and trusted.

Here are couple of exmaples of using client restrictions
Options 1 - Client IP/DNS restrictions
Start MLLP listener with allowed_clients options
iex> MLLP.Receiver.start(port: 8154, dispatcher: MLLP.EchoDispatcher, allowed_clients: ["localhost"])
Start MLLP Client
iex> {:ok, s3} = MLLP.Client.start_link("localhost", 8154)
Send a message
iex> MLLP.Client.send(s3, HL7.Examples.wikipedia_sample_hl7() |> HL7.Message.new())
In this example starting a client on another server other than localhost will fail and a warning will be logged on the server
[warn] Failed to verify client {ip, port}, error: :client_ip_not_allowed
This example provided is without TLS, We can modify it to use with TLS. Make sure to specify verify: :verify_none option in transport_opts on the listener. See Using TLS: for details on setting up TLS connections.
Options 2 - Client Cert Check
Start MLLP listener with TLS and allowed_clients options
iex> MLLP.Receiver.start(port: 8154, dispatcher: MLLP.EchoDispatcher, allowed_clients: ["client-1"], transport_opts: %{tls: [cacertfile: "tls/root-ca/ca_certificate.pem", verify: :verify_peer, certfile: "tls/server/server_certificate.pem", keyfile: "tls/server/private_key.pem"]})
Start MLLP Client
iex> {:ok, s3} = MLLP.Client.start_link("localhost", 8154, tls: [verify: :verify_peer, cacertfile: "tls/root-ca/ca_certificate.pem", certfile: "tls/client/client_certificate.pem", keyfile: "tls/client/private_key.pem"])
Send a message
iex> MLLP.Client.send(s3, HL7.Examples.wikipedia_sample_hl7() |> HL7.Message.new())
In the above scenarios we start a client with a valid certificate, but the cert issued is not one of the trusted client by the listener, thus the connection fails and a warning is logged by the listener
[warn] Failed to verify client {ip, port}, error: :fail_to_verify_client_cert
License
Elixir-MLLP source code is released under Apache 2 License. Check LICENSE file for more information.

MLLP

An Elixir library for transporting HL7 messages via MLLP (Minimal Lower Layer Protocol)

MLLP.Ack

Handles all Ack message operations including getting ack messages for a given HL7 message,
creating the ack for a given message,
and handling the return value for different ack codes.

 Anchor for this section

 Summary

 Types

 ack_verification_result()

 dispatcher_result()

 t()

 Functions

 get_ack_for_message(message, code, text_message \\ "")

 Gets the ack message for a given message and its application status

 verify_ack_against_message(bad_message, bad_ack)

 Verifies the ack code in the ack message against the original HL7 message. Possible valid codes and their values include:
AA -- Application Accept
CA -- Application Accept
AR -- Application Reject
CR -- Application Reject
AE -- Application Error
CE -- Application Error

 Anchor for this section

Types

 Link to this type

 ack_verification_result()

 Specs

 ack_verification_result() ::
 {:ok, atom(), t()}
 | {:error, atom(), t()}
 | {:error, :bad_ack_code, String.t()}
 | {:error, :bad_message_control_id, String.t()}
 | {:error, :invalid_message, String.t()}
 | {:error, :invalid_ack_message, String.t()}

 Link to this type

 dispatcher_result()

 Specs

 dispatcher_result() ::
 {:ok, :application_accept | :application_error | :application_reject}

 Link to this type

 t()

 Specs

 t() :: %MLLP.Ack{
 acknowledgement_code: nil | String.t(),
 hl7_ack_message: nil | HL7.Message.t(),
 text_message: String.t()
}

 Anchor for this section

Functions

 Link to this function

 get_ack_for_message(message, code, text_message \\ "")

 Specs

 get_ack_for_message(
 message :: HL7.Message.t() | String.t(),
 acknowledgement_code :: atom() | String.t(),
 text_message :: String.t()
) :: HL7.Message.t()

Gets the ack message for a given message and its application status

 Link to this function

 verify_ack_against_message(bad_message, bad_ack)

 Specs

 verify_ack_against_message(
 message :: String.t() | HL7.Message.t(),
 ack_message :: String.t() | HL7.Message.t()
) :: ack_verification_result()

Verifies the ack code in the ack message against the original HL7 message. Possible valid codes and their values include:
AA -- Application Accept
CA -- Application Accept
AR -- Application Reject
CR -- Application Reject
AE -- Application Error
CE -- Application Error
All other possible codes would be considered bad ack codes and the method returns :error

MLLP.Client

MLLP.Client provides a simple tcp client for sending and receiving data
via MLLP over TCP.
While MLLP is primarily used to send HL7 messages,
MLLP.Client can be used to send non-hl7 messages, such as XML.
Connection Behaviour
Upon successful start up via start_link/4, the client will attempt to establish a connection to the given address
on the provided port. If a connection can not be immediately established, the client will keep
trying to establish a connection per the value of :auto_reconnect_interval which defaults to
1 second. Therefor it is possible that before a connection is fully established, the caller
may attempt to send a message which will result in MLLP.Client.Error.t() being returned containing
the last error encountered in trying to establish a connection. Additionally, said behavour could be encountered
at any point during life span of an MLLP.Client process if the connection becomees severed on either side.
All connections, send, and receive failures will be logged as errors.
Examples
Sending messages as strings
iex> MLLP.Receiver.start(dispatcher: MLLP.EchoDispatcher, port: 4090)
{:ok,
%{
 pid: #PID<0.2167.0>,
 port: 4090,
 receiver_id: #Reference<0.3312799297.2467299337.218126>
}}
iex> {:ok, client} = MLLP.Client.start_link("127.0.0.1", 4090)
{:ok, #PID<0.369.0>}
iex> msg = "MSH|^~\&|MegaReg|XYZHospC|SuperOE|XYZImgCtr|20060529090131-0500|..."
"MSH|^~\&|MegaReg|XYZHospC|SuperOE|XYZImgCtr|20060529090131-0500|..."
iex> MLLP.Client.send(client, msg)
{:ok, "MSH|^~\&|SuperOE|XYZImgCtr|MegaReg|XYZHospC|20060529090131-0500||ACK^A01^ACK|..."}
iex>
Sending messages with HL7.Message.t()
iex> MLLP.Receiver.start(dispatcher: MLLP.EchoDispatcher, port: 4090)
{:ok,
%{
 pid: #PID<0.2167.0>,
 port: 4090,
 receiver_id: #Reference<0.3312799297.2467299337.218126>
}}
iex> {:ok, client} = MLLP.Client.start_link("127.0.0.1", 4090)
{:ok, #PID<0.369.0>}
iex> msg = HL7.Message.new(HL7.Examples.wikipedia_sample_hl7())
iex> MLLP.Client.send(client, msg)
{:ok, :application_accept,
 %MLLP.Ack{
 acknowledgement_code: "AA",
 hl7_ack_message: nil,
 text_message: "A real MLLP message dispatcher was not provided"
}}
Using TLS
iex> tls_opts = [
 cacertfile: "/path/to/ca_certificate.pem",
 verify: :verify_peer,
 certfile: "/path/to/server_certificate.pem",
 keyfile: "/path/to/private_key.pem"
]
iex> MLLP.Receiver.start(dispatcher: MLLP.EchoDispatcher, port: 4090, tls: tls_opts)
iex> {:ok, client} = MLLP.Client.start_link("localhost", 8154, tls: [verify: :verify_peer, cacertfile: "path/to/ca_certfile.pem"])
iex> msg = HL7.Message.new(HL7.Examples.wikipedia_sample_hl7())
iex> MLLP.Client.send(client, msg)
{:ok, :application_accept,
 %MLLP.Ack{
 acknowledgement_code: "AA",
 hl7_ack_message: nil,
 text_message: "A real MLLP message dispatcher was not provided"
}}

 Anchor for this section

 Summary

 Types

 ip_address()

 pid_ref()

 t()

 Functions

 child_spec(init_arg)

 Returns a specification to start this module under a supervisor.

 is_connected?(pid)

 Returns true if the connection is open and established, otherwise false.

 reconnect(pid)

 Instructs the client to disconnect (if connected) and attempt a reconnect.

 send(pid, payload, options \\ %{}, timeout \\ :infinity)

 Sends a message and receives a response.

 send_async(pid, payload, timeout \\ :infinity)

 Sends a message without awaiting a response.

 start_link(address, port, options \\ [])

 Starts a new MLLP.Client.

 stop(pid)

 Stops an MLLP.Client given a MLLP.Client pid.

 Anchor for this section

Types

 Link to this type

 ip_address()

 Specs

 ip_address() :: :inet.socket_address() | String.t()

 Link to this type

 pid_ref()

 Specs

 pid_ref() :: atom() | pid() | {atom(), any()} | {:via, atom(), any()}

 Link to this type

 t()

 Specs

 t() :: %MLLP.Client{
 address: ip_address(),
 auto_reconnect_interval: non_neg_integer(),
 backoff: any(),
 close_on_recv_error: boolean(),
 connect_failure: term(),
 host_string: term(),
 pending_reconnect: reference() | nil,
 pid: pid() | nil,
 port: char(),
 send_opts: term(),
 socket: any(),
 socket_address: String.t(),
 socket_opts: Keyword.t(),
 tcp: module() | nil,
 telemetry_module: module() | nil,
 tls_opts: Keyword.t()
}

 Anchor for this section

Functions

 Link to this function

 child_spec(init_arg)

Returns a specification to start this module under a supervisor.
See Supervisor.

 Link to this function

 is_connected?(pid)

 Specs

 is_connected?(pid :: pid()) :: boolean()

Returns true if the connection is open and established, otherwise false.

 Link to this function

 reconnect(pid)

 Specs

 reconnect(pid :: pid()) :: :ok

Instructs the client to disconnect (if connected) and attempt a reconnect.

 Link to this function

 send(pid, payload, options \\ %{}, timeout \\ :infinity)

 Specs

 send(
 pid :: pid(),
 payload :: HL7.Message.t() | String.t() | binary(),
 options :: MLLP.ClientContract.send_options(),
 timeout :: non_neg_integer() | :infinity
) ::
 {:ok, String.t()}
 | MLLP.Ack.ack_verification_result()
 | {:error, MLLP.ClientContract.client_error()}

Sends a message and receives a response.
send/4 supports both HL7.Message and String.t().
All messages and responses will be wrapped and unwrapped via MLLP.Envelope.wrap_message/1 and
MLLP.Envelope.unwrap_message/1 respectively
In case the payload provided is an HL7.Message.t() the acknowledgment returned from the server
will always be verified via MLLP.Ack.verify_ack_against_message/2. This is the only case
where an MLLP.Ack.ack_verification_result() will be returned.

 Options

	:reply_timeout - Optionally specify a timeout value for receiving a response. Must be a positive integer or
 :infinity. Defaults to 60 seconds.

 Link to this function

 send_async(pid, payload, timeout \\ :infinity)

Sends a message without awaiting a response.
Given the synchronous nature of MLLP/HL7 this function is mainly useful for
testing purposes.

 Link to this function

 start_link(address, port, options \\ [])

 Specs

 start_link(
 address :: ip_address(),
 port :: :inet.port_number(),
 options :: MLLP.ClientContract.options()
) :: {:ok, pid()}

Starts a new MLLP.Client.
MLLP.Client.start_link/4 will start a new MLLP.Client process.
This function will raise a ArgumentError if an invalid ip_address() is provided.

 Options

	:use_backoff - Specify if an exponential backoff should be used for connection. When an attempt
 to establish a connection fails, either post-init or at some point during the life span of the client,
 the backoff value will determine how often to retry a reconnection. Starts at 1 second and increases
 exponentially until reaching backoff_max_seconds seconds. Defaults to true.

	:backoff_max_seconds - Specify the max limit of seconds the backoff reconection attempt should take,
 defauls to 180 (3 mins).

	:auto_reconnect_interval - Specify the interval between connection attempts. Specifically, if an attempt
 to establish a connection fails, either post-init or at some point during the life span of the client, the value
 of this option shall determine how often to retry a reconnection. Defaults to 1000 milliseconds.
 This option will only be used if use_backoff is set to false.

	:reply_timeout - Optionally specify a timeout value for receiving a response. Must be a positive integer or
 :infinity. Defaults to 60 seconds.

	:socket_opts - A list of socket options as supported by :gen_tcp.
 Note that :binary, :packet, and :active can not be overridden. Default options are enumerated below.
	send_timeout: Defaults to 60 seconds

	:close_on_recv_error - A boolean value which dictates whether the client socket will be
 closed when an error in receiving a reply is encountered, this includes timeouts.
 Setting this to true is usually the safest behaviour to avoid a "dead lock" situation between a
 client and a server. This functions similarly to the :send_timeout option provided by
:gen_tcp. Defaults to true.

	:tls - A list of tls options as supported by :ssl. When using TLS it is highly recommended you
 set :verify to :verify_peer, select a CA trust store using the :cacertfile or :cacerts options.
 Additionally, further hardening can be achieved through other ssl options such as enabling
 certificate revocation via the :crl_check and :crl_cache options and customization of
 enabled protocols and cipher suites for your specific use-case. See :ssl for details.

 Link to this function

 stop(pid)

 Specs

 stop(pid :: pid()) :: :ok

Stops an MLLP.Client given a MLLP.Client pid.
This function will always return :ok per GenServer.stop/1, thus
you may give it a pid that references a client which is already stopped.

MLLP.ClientContract behaviour

MLLP.ClientContract provides the behavior implemented by MLLP.Client. It may be useful
for testing in your own application with tools such as Mox

 Anchor for this section

 Summary

 Types

 client_error()

 error_reason()

 error_type()

 options()

 send_options()

 Callbacks

 send(
 pid,
 payload,
 options,
 timeout
)

 send_async(
 pid,
 payload,
 timeout
)

 Anchor for this section

Types

 Link to this type

 client_error()

 Specs

 client_error() :: MLLP.Client.Error.t()

 Link to this type

 error_reason()

 Specs

 error_reason() :: :closed | :timeout | :no_socket | :inet.posix()

 Link to this type

 error_type()

 Specs

 error_type() :: :connect_failure | :send_error | :recv_error

 Link to this type

 options()

 Specs

 options() :: [
 auto_reconnect_interval: non_neg_integer(),
 use_backoff: boolean(),
 backoff_max_seconds: integer(),
 reply_timeout: non_neg_integer() | :infinity,
 socket_opts: [:gen_tcp.option()],
 telemetry_module: nil,
 close_on_recv_error: boolean(),
 tls: [:ssl.tls_client_option()]
]

 Link to this type

 send_options()

 Specs

 send_options() :: %{optional(:reply_timeout) => non_neg_integer() | :infinity}

 Anchor for this section

Callbacks

 Link to this callback

 send(
 pid,
 payload,
 options,
 timeout
)

 Specs

 send(
 pid :: pid(),
 payload :: HL7.Message.t() | String.t(),
 options :: send_options(),
 timeout :: non_neg_integer() | :infinity
) ::
 {:ok, String.t()}
 | MLLP.Ack.ack_verification_result()
 | {:error, client_error()}

 Link to this callback

 send_async(
 pid,
 payload,
 timeout
)

 Specs

 send_async(
 pid :: pid(),
 payload :: HL7.Message.t() | String.t(),
 timeout :: non_neg_integer() | :infinity
) :: {:ok, :sent} | {:error, client_error()}

MLLP.DefaultPacketFramer

 Anchor for this section

 Summary

 Functions

 handle_unframed(unframed)

 Anchor for this section

Functions

 Link to this function

 handle_unframed(unframed)

MLLP.DefaultTelemetry

 Anchor for this section

 Summary

 Functions

 execute(event_name, measurements, metadata)

 Anchor for this section

Functions

 Link to this function

 execute(event_name, measurements, metadata)

MLLP.Dispatcher behaviour

 Anchor for this section

 Summary

 Callbacks

 dispatch(
 message_type,
 message,
 state
)

 Anchor for this section

Callbacks

 Link to this callback

 dispatch(
 message_type,
 message,
 state
)

 Specs

 dispatch(
 message_type :: atom(),
 message :: String.t(),
 state :: MLLP.FramingContext.t()
) :: {:ok, state :: MLLP.FramingContext.t()}

MLLP.EchoDispatcher

Echo dispatcher informs the user that a dispatch function was not set and returns an application_accept
or application_reject depending on if the message is valid (String) or not. Useful for debugging and serves
as an example for writing your own dispatcher.

 Anchor for this section

 Summary

 Functions

 dispatch(atom, message, state)

 Callback implementation for MLLP.Dispatcher.dispatch/3.

 Anchor for this section

Functions

 Link to this function

 dispatch(atom, message, state)

 Specs

 dispatch(:mllp_hl7 | :mllp_unknown, binary(), MLLP.FramingContext.t()) ::
 {:ok, MLLP.FramingContext.t()}

Callback implementation for MLLP.Dispatcher.dispatch/3.

MLLP.Envelope

 Helper functions encoding and decoding MLLP-framed messages.
 Below is an example of an MLLP-framed HL7 payload. Note the <SB>, <CR>, and <EB> characters.
<SB>
MSH|^~\\&|MegaReg|XYZHospC|SuperOE|XYZImgCtr|20060529090131-0500||ADT^A01^ADT_A01|01052901|P|2.5<CR>
EVN||200605290901||||200605290900<CR>
PID|||56782445^^^UAReg^PI||KLEINSAMPLE^BARRY^Q^JR||19620910|M||||||||||0105I30001^^^99DEF^AN<CR>
PV1||I|W^389^1^UABH^^^^3||||12345^MORGAN^REX^J^^^MD^0010^UAMC^L||6|||||A0<CR>
OBX|1|NM|^Body Height||1.80|m^Meter^ISO+|||||F<CR>
OBX|2|NM|^Body Weight||79|kg^Kilogram^ISO+|||||F<CR>
AL1|1||^ASPIRIN<CR>
DG1|1||786.50^CHEST PAIN, UNSPECIFIED^I9|||A<CR>
<EB><CR>

 Anchor for this section

 Summary

 Functions

 cr()

 The MLLP Carriage Return character. In documentation it is often represented as <CR>.
The cr is a single-byte character with the ASCII value 0x0D. This character
may appear as "\r" in text editors.

 eb()

 The MLLP End-Block character. In documentation it is often represented as <EB>.
The eb is a single-byte character with the ASCII value 0x1C. This character is
also know as "FS (File Separator)" and may appear as ^\ in text editors.

 eb_cr()

 In MLLP, each message ends with eb and cr. The eb_cr is just a simple concatenation of eb and cr.

 sb()

 The MLLP Start-Block character. In documentation it is often represented as <SB>.
The sb is a single-byte character with the ASCII value 0x0B. This character is
also know as "VT (Vertical Tab)" and may appear as \\v or ^K in text editors.

 unwrap_message(wrapped_message)

 Unwraps an MLLP encoded message

 wrap_message(message)

 Wraps a string message in the MLLP start-of-block and end-of-block characters

 Anchor for this section

Functions

 Link to this function

 cr()

The MLLP Carriage Return character. In documentation it is often represented as <CR>.
The cr is a single-byte character with the ASCII value 0x0D. This character
may appear as "\r" in text editors.

 Examples

iex> MLLP.Envelope.eb
<<28>>

 Link to this function

 eb()

The MLLP End-Block character. In documentation it is often represented as <EB>.
The eb is a single-byte character with the ASCII value 0x1C. This character is
also know as "FS (File Separator)" and may appear as ^\ in text editors.

 Examples

iex> MLLP.Envelope.eb
<<28>>

 Link to this function

 eb_cr()

In MLLP, each message ends with eb and cr. The eb_cr is just a simple concatenation of eb and cr.

 Examples

iex> MLLP.Envelope.eb_cr
<<28, 13>>

 Link to this function

 sb()

The MLLP Start-Block character. In documentation it is often represented as <SB>.
The sb is a single-byte character with the ASCII value 0x0B. This character is
also know as "VT (Vertical Tab)" and may appear as \\v or ^K in text editors.

 Examples

iex> MLLP